Using Proxies to Accelerate Cloud Applications

Siddharth Ramakrishnan
Jon Weissman

Department of CSE
University of Minnesota
Introduction

• Cloud ecosystem (Gannon 2009)
 – SAAS: (Google Spreadsheet, Gmail)
 – I/P-AAS: (Virt: EC2/S3, Azure), Google AppEngine
 – Parallel frameworks: (MapReduce cloud)

• Scale-up/Scale-down

• Remote execution/hosting

• Performance

• Transparency
Application View: Cloud Diversity

• Data clouds
 – S3, SkySurvey, GoogleHealth, ...

• Compute clouds
 – EC2, IronScale, ...

• Service clouds
 – Gmail, Gmaps, Google-earth
Trends

• Specialization and diversity
 – Functional and non-functional
 – Non-functional: security, reliability, SLAs, cost
 – Functional: type of data, type of services, ...

• Distributed clouds
 – Smaller footprint data center containers
 geographically dispersed
 – Logical cloud federation: OpenCirrus
Confluence

• Diversity of clouds + push for distribution
 • (1) No single cloud model will rule
 • (2) New distributed models are attractive
 • (3) Emerging applications will utilize multiple clouds “multi-cloud” applications
An Aside: Edge Systems

- Edge systems
 - Compute-oriented: BOINC, @home, ...
 - Data-oriented: P2P, Bittorent, openDHT, ...

Appeal: scale, cost, *diversity*

=> Edge computers can play an important role in multi-cloud applications
Multi-Cloud Applications

• Specialization => data-intensive applications will increasingly span multiple clouds
 – data is dispersed across multiple clouds
• Distributed data mining
 – Ex: weather data + commodity prices
• Scientific workflows
 – Ex: life science: GenBank<->BLAST<->PubMed, ...
• Mashups
 – Ex: GoogleEarth + CDC pandemic data
• Multi-cloud parallel frameworks
 – Ex: MapReduce, AllPairs, ...
The Problem

- Current cloud interaction paradigm is client-server
 - Web Services or http
- Data flows back and forth to end-client application

Better available nodes

compute on S_1 output
Solution: Proxy Architecture: 50K ft

Exploit diversity of proxy nodes

Resource constrained
Data-oriented Proxy Roles

• Cloud service interaction
 – Proxy as a client

• Routing
 – Proxy routes data to other proxies

• Computing => Grids
 – Proxy computes data operators: compress, filter, merge, mine, ...

• Caching => P2P
 – Proxy caches data (from cloud, computations, ...)
Proxy Network

• Where do proxies come from?
 – volunteers, deployed CDNs, ...

• How do proxies form overlays?
 – is there a system-wide overlay and/or application-specific overlays?
 – need more experience with multi-cloud applications
How Much Network Diversity?

1. Cluster of good proxies
2. Best proxy depends on cloud service
Proxy Hop Penalty?

• Despite network proximity and data reduction, proxies may add a network hop
 – 1600 paths
 – Over 70% benefited by intermediary
 – Over 20% performance improvement
Example: Montage
Montage Speedup

Initiator is the workflow engine, remote from Montage services
One proxy per Montage service, co-located
Example: Image Processing

Basic workflow

Enhanced proxy workflow
Results

There exist many proxies that can accelerate this application.

end-user
image server
location fixed
Summary

- Cloud specialization will trigger a new wave of multi-cloud applications
- Proposed a proxy network to “accelerate” these applications => bottleneck awareness
- Many research challenges
 - Proxy node selection
 - Proxy network configuration