
1

Wide-scale Botnet Detection and Characterization
Anestis Karasaridis, Brian Rexroad, David Hoeflin

Abstract— Malicious botnets are networks of compromised
computers that are controlled remotely to perform large-scale
distributed denial-of-service (DDoS) attacks, send spam, trojan
and phishing emails, distribute pirated media or conduct other
usually illegitimate activities.

This paper describes a methodology to detect, track and
characterize botnets on a large Tier-1 ISP network. The approach
presented here differs from previous attempts to detect botnets
by employing scalable non-intrusive algorithms that analyze
vast amounts of summary traffic data collected on selected
network links. Our botnet analysis is performed mostly on
transport layer data and thus does not depend on particular
application layer information. Our algorithms produce alerts
with information about controllers. Alerts are followed up with
analysis of application layer data, that indicates less than 2%
false positive rates.

I. INTRODUCTION

MALICIOUS botnets are networks of ”bots”, compro-
mised hosts that are remotely controlled by a master

host via one or more controller hosts. The master host is
the computer used by the perpetrator and is used to issue
commands that are relayed to the bots via the controllers. The
controllers are often Internet Relay Chat (IRC) servers [1],
which are normally used for relaying messages among client
terminals. Controllers are often created from compromised
hosts that perform a coordinating role for the botnet. Figure 1
illustrates at a high level the relationship between the master,
a controller, the bots and potential targets.

Botnets are used for various purposes, most of them re-
lated to illegitimate activity [2,3]. Some of their uses in-
clude launching distributed denial-of-service (DDoS) attacks,
sending spam, trojan and phishing email, illegally distributing
pirated media, serving phishing sites, performing click fraud,
and stealing personal information, among others. They are also
the sources of massive exploit activity as they recruit new
vulnerable systems to expand their reach. Botnets have de-
veloped several techniques in their malware and infrastructure
that make them robust to typical mitigation techniques. Due
to their sheer volume, diverse capabilities, and robustness they
pose a significant and growing threat to the Internet as well as
enterprise networks. The threats undermine the reliability and
utility of the Internet for commerce and critical applications,
and therefore, better understanding of the structure of indi-
vidual botnets is needed to formulate appropriate mitigation
strategies.

Previous analysis [4] has shown that the majority of botnets
have been traditionally based on IRC. This is due to the
ability of IRC to easily scale to thousands of clients. There
are existing cases of other types of botnets based on HTTP,

A. Karasaridis and D. Hoeflin are with AT&T Labs, Middletown, NJ. C.B.
Rexroad supports the AT&T Chief Security Officer, Florham Park, NJ.

DNS, and peer-to-peer models. In [5], several heuristics are
suggested to identify possible IRC controllers by looking at
servers with abnormal ratios of invisible to visible users,
counts of users per channel or unusual channel user and nick
names, or service ports. Use of flow data to detect idling
clients to typical IRC ports is suggested in [6] as a way to
identify bots. In [7], it is suggested that the use of secondary
bot behavior such as propagation and attacks should be used
instead of trying to detect control traffic directly. DNS black
lists are frequently used by spammers to find which of their
hosts are black listed and analysis of such queries can lead
to additional bot identification [8]. Other detection approaches
involve the setup of honeypots and the analysis of the captured
malware to identify controllers [3,9].

The contribution of our work is the development of an
anomaly-based passive analysis algorithm that has been able
to detect IRC botnet controllers achieving less than 2% false-
positive rate. The algorithm is able to detect IRC botnet
controllers running on any random port without the need
for known signatures or captured binaries. Even though this
analysis is tuned to IRC-based botnets, we believe botnets
will continue to require inventory management as well as
a command and control structure that allows the botnets to
be detected using similar methods. There are some distinct
advantages to this type of botnet detection: a) Network data
analysis is entirely passive, so it is invisible to the botnets,
it does not interfere with network operations, and it does
not run any risk of contributing to the problem. b) With
some investment, it has been shown to be scalable to very
large networks, which actually provide larger data sets for
correlation of activity. c) It is able to show the dynamics
of botnet activity by detecting activities that have been most
effective in targeting our specific customer sets. We believe
this analysis complements honeypot-based analysis. This work
is being performed as part of the product evolution for AT&T
Internet Protect [10] and other aspects of AT&T’s network
security services portfolio.

The rest of the paper is organized as follows: Section II
describes our data collection process. Out botnet controller
detection algorithm is presented in Section III. The algorithm
for botnet client classification is presented in Section IV. Some
quantitative results on the number of controllers and bots we
have detected is given in Section V. Finally, we present our
conclusions and ongoing work in Section VI.

II. DATA COLLECTION AND FORMAT

In our analysis, we use primarily transport layer flow sum-
mary data for identification of botnet controllers. In compar-
ison to packet-level analysis, flow data reduces some privacy
protection concerns. Flow data also significant reduces the

amount of data to process, which makes it practical to transport
data to a central location for cross-correlation. The implemen-
tation is scalable to large networks in comparison to packet-
level analysis since nearly all network devices can generate at
least sampled flow data without significant performance impact
or modification. In our application, we have invested in the
capability to generate unsampled data in select portions of
the network to complement more sparsely sampled flow data
across a large Tier 1 ISP network. This implementation collects
many billions of flow records each day for security analysis
in addition to botnet identification processing described here.

Flow records contain summary information about sessions
between a single source address/port (sip/sport) and a
destination address/port (dip/dport) using a given protocol.
A single flow record contains the number of packets, bytes,
and an OR function of the flags used (if TCP is the transport
layer protocol), the start and end time of the session and the
transport layer protocol used. Flow record data are collected
from a large number of geographically and end-point diverse
circuits to a central processing facility where they can be
filtered, processed, and correlated.

In the following section we describe the botnet controller
detection algorithm.

III. DETECTION OF BOTNET CONTROLLERS

At a high level, our approach to detect botnet controllers
consists of the following steps below.

1) Aggregate triggers, identify hosts with suspicious behav-
ior (i.e., suspected bots) and isolate flow records to/from
those hosts.

2) Analyze flow activity to identify candidate control flows
and summarize them in conversations.

3) Aggregate and analyze candidate control conversations
to isolate suspected controllers and controller ports.

4) Post reports and alarms.

MasterController

Bots

Target

Fig. 1. Relationship between the bots, a controller, the master and the
potential targets.

In Figure 2, we show a high level flow diagram of our
algorithm for detection of botnet controllers. In the following
paragraphs, we discuss in more detail the steps of the algo-
rithm.

A. Aggregation of trigger events, identification of hosts with
suspicious behavior, and selection of flows

Our analysis uses as input reports of suspicious host activi-
ties such as scanning, emailing of spam and viruses, or DDoS
traffic generation. These reports are generated by internal
upstream systems and identify the hosts that were involved
in such activities, the type and duration of the activity, and
the links where such activity was detected [11]. Scanning
reports are processed further to identify interesting patterns,
such as ports scanned by a large number of hosts, or ports for
which we have seen an increase in the number of probes or
the number of hosts probing them [12]. Records of spamming
hosts are generated by analysis of SMTP logs stored in our
inbound mail gateways and are subdivided into lists of hosts
that send spam and hosts that send email viruses. Generation
of such reports constitutes a trigger event that initiates and
seeds our analysis. Our implementation of the algorithm allows
additional types of trigger events to be incorporated.

The next step is to aggregate the trigger events and to
search and fetch the flow records where the set of suspected
bots appear as the source or destination of the traffic. In
our implementation, we use empirical measurements to help
determine which circuits are likely to show flow activity to
or from particular IP addresses in specific time periods. This
can help focus our search when many circuits of flow data are
being processed.

Once the flow records of the suspected bots are fetched,
we begin the process of selecting flow records that represent
connections to potential controllers. These flow records are
summarized to what we call candidate controller conversa-
tions. To identify these conversations we use three independent
approaches which are described in the following paragraph.

B. Identification of candidate controller conversations

Due to a variety of factors, bots may start or end connections
with their controllers at diverse times throughout the day.
Consequently, we may not see a large number of flows
generated simultaneously from a large proportion of bots. This
is particularly true if the botnet is not receiving command
activity. In these cases, long-term analysis help to identify
controllers and/or generate higher levels of confidence in the
detection. In order to do this, certain communications between
suspected bots and other remote hosts are summarized and
recorded individually. The information stored includes the
remote port used and the number of flow records, packets and
bytes transferred between the suspected bot and the remote
host.

Here, we define ”conversation” as a summary of flow
records between a local and a remote host on a particular
remote port. A candidate controller conversation (CCC) is
a conversation between a suspected bot and a remote host
that satisfies certain criteria that are consistent with control

Conversations

to servers that
appear to be

hubs

Conversations

that are similar
to control

protocol

Conversations

to ports

typically used

by the control
protocol

Calculate number

of suspicious
clients by server/

port

Calculate

distances of hub

ports to model

Suspicious
flow records

Calculate

heuristics score

Botnet Alarms

Flow
records

Worm alarms Scan records
Spam

records
Watchlists

Aggregate Trigger
Information

Search flow

records

Identify

connections to hub
servers/ports

Identify

connections to

servers with

similarity to model

Identify

connections to
typical server ports

Input

Output

Program call

Suspect

servers/ports

Reports

Alarm generation
process

Application-

bound port

vectors

Fig. 2. Data flow diagram for the botnet analysis system.

traffic. Identification of CCCs involves initially the collection
of all flow records generated by the suspected bots. The
objective for isolating flows from the suspected bots is to allow
correlation and modeling of suspected controller activity. In
addition, the flow activity can also help to characterize activity
associated with these suspected bots that may otherwise have

been unnoticed. For example, additional ports used for attack
vector may be identified. This information may be useful to
help assess the threats posed by particular botnets.

Many controllers use ports typically associated with IRC,
therefore these ports (e.g., 6667, 6668, 7000/tcp) are checked
first to determine if there are obvious candidate controllers that

should be considered.
However, to help avoid detection, bots can use non-

typical IRC ports to connect to the controllers. In many
cases the control traffic is masqueraded as traffic from
some other well-known application. For example Worm/Bot
W32.Spybot.ABDO [13] uses port 53/TCP for its IRC
communication with the controller. Note here that 53/TCP is
typically used for large DNS transactions [14]. For this reason
we use two other approaches to detect candidate controller
flow records indicating connections between a suspected bot
and a candidate controller on a non-typical port. The first such
approach involves the identification of flow records between
the suspected bots and remote hosts that appear to be hub
servers, i.e., hosts which have multiple connections from many
suspected bots to one or more of their local ports. Figure 3
illustrates this relationship where the hub server is on the
left side of the figure and the suspected bots are on the
right. In Figure 3, lip stands for local IP address, lport

lip lport

rip1

rip2

rip3

rport1,1

rport1,2

rport1,3

Hub Server
Remote hosts

Fig. 3. Diagram of connectivity of a hub server.

for local port, rip for remote IP address and rport for
remote port. We are looking for pairs of lip/lport that
have associations with multiple rips or even with a single
rip with multiple rports. We build these associations by
processing flow records of suspected bots in periodic intervals.
We consider also the case where the hosts whose total traffic
is analyzed (e.g., hosts that were detected scanning), are also
the hub servers, therefore we do the processing both on the
source and destination IP addresses of the flow records. The
processing of flow records consists of the following stages.

• Capture all flow records related to a set of suspected bots.
• Store data in memory based on keys that involve the

4-tuples (lport,lip,rip,rport). The data include
the number of flows, packets, bytes and last flow times-
tamp.

• Parse the data in memory and find pairs (lport,lip)
that are associated with multiple rips or rports.

• Generate reports of such associations and store them on
disk to correlate with later events.

A second approach to identify candidate controller con-
nections to non-typical IRC ports is to find flow records

between the suspected bots and remote servers which have
traffic characteristics within the bounds of a flow model
for IRC traffic. This model is constructed by periodically
calculating percentiles of several metrics related to the flow
records. These values are compared with reference models that
represent typical command and control activity to determine
likely CCCs. Each CCC record contains the following data for
each suspected bot-candidate controller association:

• client IP address.
• remote server IP address.
• remote port.
• number of flows.
• number of packets.
• number of bytes.
• timestamps of first and last flows of the conversation.
• link where the activity took place.
• type of detection

C. Analysis of Candidate Controller Conversation records

The analysis of CCC records consists of three main parts: a)
calculation of the number of unique suspected bots for a given
remote server address/port, b) calculation of the distances
between the traffic to remote server ports and the model traffic,
and c) calculation of a heuristics score for server address/port
pairs that remain candidates from (a) and (b).

After we calculate the number of unique suspected bots per
remote server address/port in (a), we sort them by the number
of suspected bots and apply a second derivative estimate to
find the ”knee of the curve”. This is selected where the
second derivative, estimated by second order differences, is
maximized. If a server is above the ”knee” point of the number
of suspected bots curve, it is considered for further evaluation.
This approach in general allows us to automatically focus on
the larger botnets. Nevertheless, our implementation also gives
the flexibility to consider server address/port pairs where the
number of suspected bots is smaller than the ”knee” point.

For the calculation of distance in (b) above, we use four
statistics –0th, 25th, 50th, and 75th percentile– of the metrics
flows-per-address (fpa), packets-per-flow (ppf) and bytes-per-
packet (bpp) calculated from the flow records between all
suspected bots and servers on a particular port. This approach
allows averaging of the traffic characteristics across all sus-
pected bots connecting to a remote port. The distance Dp of
the traffic to server port p to the IRC traffic model is calculated
as the average Euclidean distance of all statistics of the metrics
between the observed and model traffic, i.e.,

Dp =
1

Nm

Nm∑
i=1

√√√√ Ns∑
j=1

(Xij −Mij)2, (1)

where Ns = 4 is the number of statistics, Nm = 3 is the
number of metrics, and Xij and Mij are the observed and
model traffic values of statistic j of metric i.

The port distances Dp are then sorted, and if a port distance
is below a threshold, it is considered a candidate control port.
Since this is early in the identification of controllers, the
threshold is selected to minimize the false negative rate.

If a remote server address/port satisfies both conditions of
large number of suspected bots and small traffic distance to the
model, as described above, then it is analyzed in more detail
where its flow records are processed to calculate a heuristics
score.

One component of the heuristics score is the number of
idle clients. Botnets tend to have a number of clients that are
connected to the controller and listening for commands. These
connections generate flow records that have certain patterns.
For example, controlling IRC servers may generate IRC Ping
messages to verify that their clients are connected. If the clients
are connected, they are required to generate an IRC Pong
message as soon as possible [1]. These messages generate
flows that show periodic patterns for a given client-server pair.

Table I shows an example case where flow records show
characteristics described above, namely TCP flow records
between a client (source) and an IRC server (destination)
having few packets and Push/Ack flags (flag value 24) where
the flow arrival times show a period around 90 seconds. Since
the client is the source in flow records, the flow records
capture the IRC Pong messages. The bytes-per-packet ratio
in this example is 65 Bytes but depending on the IRC Pong
message this size can vary based on the parameters passed to
the message (namely the server names that is addressed to).

In order to detect periodic patterns between suspected bots
and hub servers, we use a hierarchical Bayesian model. We
first separate flows for each client-server pair and sort them
based on the Start time of the flow. We then calculate the
interarrival times of flows as the difference between the
beginning of the current flow and end of the previous flow.

model{
for (i in 1:N) {

dt[i]˜dnorm(mu[i],tau)
log(mu[i])<-log(k2[i])+log(T)
k2[i]<-round(k[i])
k[i]˜dunif(0.5,10.49)

}
T˜dnorm(a,20)
a˜dunif(85,480)
tau˜dgamma(0.1,0.1)
s<-1/sqrt(tau) #stdev
cv<-s/T #coef var
}

#init:
list(T=88)

#data:
list(dt=c(94,90,93,90,180,91,93,91,89,91,
92,92,90,91,91,93,93,89,183,89,89,91,91,
91,91,89,89,92,88,94,182,98,91,88,91),N=35)

Fig. 4. Definition of a hierarchical Bayesian model used to detect and
measure periodicity in flow interarrival times using the WinBugs language.

The interarrival data dt[i] are modeled by normal distribu-

tions with means mu[i] and precision1 τ , where the means are
multiples of a fundamental period T . Allowing the mean to
be a multiple of a fundamental period enables the detection
of the fundamental period even when multiple observations
are missing. The number of observations that can be missing
is controlled by the model k[i]. An example of a hierarchical
Bayesian model used to detect noisy periodic sequences is
described in Figure 4 using the WinBugs language [15]. In the
example of Figure 4 we allow up to 10 missing observations.
T is defined as a normal variable around a point a which is
uniformly distributed in a region of typical periods. Initializing
T to be the minimum or the 25-th percentile of the data
contributes to the accurate convergence of the simulation.

Figure 5 gives the posterior densities of the estimated fun-
damental period T , the standard deviation s and the coefficient
of variation Cv . The graphs illustrate that for the given data,
the mean basic period is likely to be around 91sec and that
the coefficient of variation is likely to be very small (0.02).

T sample: 7000

 89.0 90.0 91.0 92.0

 0.0

 0.5

 1.0

 1.5

s sample: 7000

 1.0 2.0 3.0

 0.0
 0.5
 1.0

 1.5
 2.0

cv sample: 7000

 0.01 0.02 0.03

 0.0

 50.0

 100.0

 150.0

T: posterior density

S: posterior density

Cv: posterior density

Fig. 5. Densities of the fundamental period T , the standard deviation s and
the coefficient of variation Cv of T obtained by the hierarchical Bayesian
model used to estimate the periodicity in the interarrival times of flows.

As an alternative way to detect quasi-periodic flow records
that are incomplete (missing flows), we developed a modified
K-means algorithm [16]. The algorithm follows the steps
below.

1) Group flow records by (sip,dip,sport,dport) with
at least an Ack flag for servers/ports that are deemed
suspect based on port distance from the model and the
number of connected suspected bots.

2) For each group of flow records calculate interarrival
times of flow records (usually contain few packets).

3) Cluster interarrival times using the K-means algorithm.

1Precision τ is a function of the standard deviation s: τ = 1/s2.

TABLE I
FLOW RECORDS GENERATED BETWEEN AN IRC CLIENT (BOT) AND SERVER (BOT CONTROLLER) CAPTURING IRC PONG MESSAGES. A PERIODIC

PATTERN IN THE INTERARRIVAL TIMES OF FLOWS IS EVIDENT.

Source Destination Packets Bytes Start End Source Destination Flags Interarrival
IP IP Time Time Port Port Time(sec)

a.b.c.d q.w.e.r 2 130 1131397179 1131397179 55300 6667 24
a.b.c.d q.w.e.r 4 260 1131397273 1131397364 55300 6667 24 94
a.b.c.d q.w.e.r 2 130 1131397454 1131397454 55300 6667 24 90
a.b.c.d q.w.e.r 2 130 1131397544 1131397544 55300 6667 24 93
a.b.c.d q.w.e.r 2 130 1131397634 1131397634 55300 6667 24 90
a.b.c.d q.w.e.r 2 130 1131397725 1131397725 55300 6667 24 91
a.b.c.d q.w.e.r 2 130 1131397818 1131397818 55300 6667 24 93
a.b.c.d q.w.e.r 2 130 1131397909 1131397909 55300 6667 24 91
a.b.c.d q.w.e.r 2 130 1131397998 1131397998 55300 6667 24 89

4) Examine if there are large clusters with a small coeffi-
cient of variation (CV). If yes, the algorithm terminates.
The sample mean of the cluster is the approximate
period.

5) Examine if there are clusters with means that are mul-
tiples of the basic period. If yes, this an indication of
missing data and stronger evidence of the existence of
a basic period.

6) Examine if there are clusters with small CV with means
that are close. If yes, merge the clusters and recalculate
the number of cluster members and the CV of the
merged cluster. If the new cluster is large with a small
CV, then use the new mean as the basic period and
declare the client as periodic.

It is interesting to note here that this method can help identify
control channels even when there are very few unique suspect
bot-to-server communications available to evaluate.

The heuristics score is proportional to the fraction of quasi-
periodic clients. Other considerations are made based on if
the server uses both TCP and UDP on the suspect port and if
the server appears to be serving significant peer-to-peer traffic
(i.e., it has multiple peers on multiple service ports).

A confidence score is assigned to each suspected control
server address and port based on the factors described above,
i.e, number of suspected bots connected to the server, port
distance, heuristics score, number of triggers, number of
types of triggers, and alarm records are generated when the
confidence score is above a threshold. The threshold can be
adjusted based of the false positive rate that can be tolerated.

D. Validation of Controllers
Three methods are generally used to validate suspected

botnet controllers:
• Correlation with other available data sources (e.g., honey-

pot based detection)
• Coordination with a customer for validation and mitiga-

tion.
• Validation of domain names associated with services (i.e.,

valid services generally have appropriately registered
domain names with verifiable contact information).

IV. CHARACTERIZATION OF BOTNETS

One aspect of botnet characterization is the classification of
the activities of its bots. Botnet operators often assign different

sets of bots to perform different activities. For example, a set
of bots may be responsible of recruiting other bots by scanning
for certain vulnerabilities while another set is responsible for
distributing email spam. However, while bots belonging to a
certain botnet are expected to have some distinct modes of
operation, individual bots are also expected to have unique
behaviors due to variabilities in the software or hardware they
run on, phase difference in their states, different background
applications running simultaneously etc. One of our objectives
in characterizing a botnet is to be able to classify the activities
of its bots in the presence of background noise traffic. In this
section, we describe a classification algorithm that creates and
updates clusters of hosts based on their traffic profiles. This
approach can be used for hosts belonging to a specific botnet
or for any set of hosts that we want to classify based on its
behavior.

Once we select the hosts we want to classify, we exam-
ine their traffic and calculate the number of flow records
to application-bound ports. A destination port is considered
application-bound if it is in the range of the IANA assigned
ports (1-1023) [17], or there are at least two flows from the ex-
amined host to distinct remote addresses on a high-numbered
port (1024-65535). A concise, yet descriptive, representation
of the traffic profile of a host is a vector of application-bound
ports ranked by the number of flows observed. These port-rank
vectors are used as input to the classification scheme.

One important aspect of the classification scheme is the
definition of a similarity function S(i, j) between two vectors
vi and vj representing signatures of the behavior of two hosts.
Some of the desired properties of a similarity function are the
following:

• S(i, j) ∈ [0, 1].
• Similarity increases if a port number exists in both

vectors.
• Similarity is a strictly decreasing function of the port

rank.
• Similarity function is symmetric: S(i, j) = S(j, i).
One function that satisfies all of the above properties is the

following:

S(i, j) =
∑M

k=1 Ik(M −Oi + 1)(N −Oj + 1)
N(N + 1)(2N + 1)/6

, (2)

where M is the length of the shortest vector, N is the length
of the longest vector, Ik is the indicator function that the port

with index k exists in both vectors vi and vj. Finally, Oi and
Oj are the orders in which the port with index k appears in
vectors vi and vj, respectively.

Example: Assume two vectors xi = [445, 25, 53, 18067]T

and xj = [25, 53, 135, 139, 445]T . Then the similarity value is
calculated based on (2), where M = 4, N = 5 and S(i, j) =
(4 − 1 + 1)(5 − 5 + 1) + (4 − 2 + 1)(5 − 1 + 1) + (4 − 3 +
1)(5− 2 + 1)/(5 · 6 · 11/6) = 0.491.

The steps of our classification algorithm are the following.
• Given an initial set of hosts, calculate the similarity

for each pair of hosts and rank the similarities with
descending order. For the pairs with similarity larger than
a threshold (e.g., 0.9), go to the next step.

• For each pair of hosts, check if any of them is already
grouped (i.e., classified). If none of the hosts in the pair
is grouped, start a new group. Calculate the traffic profile
(vector of ranked application-bound ports) of the group.
If one of the hosts is already grouped add the other host
to the group.

• As new hosts are identified (in subsequent time intervals,
e.g., 1 hour), calculate their similarity to all of the existing
groups and allocate them to the group with the highest
similarity above the threshold.

• If there is no group in which they can be allocated,
allocate them to a common pool. Calculate similarities
between all pairs of hosts in the pool and repeat the initial
group formation process.

Below, we give an example of how the classification algorithm
works.

Example: Assume that there no existing groups, and that
we have identified hosts A − E as targets for classification
(e.g., suspected bots). We formulate their port-rank vectors
and apply the similarity function for each pair. Assume that
the similarity values are as shown in Table II. Since there are

TABLE II
EXAMPLE OF SIMILARITY VALUES BETWEEN A SET OF SUSPECTED BOTS

A− E .

A B C D E

A – 1 0.91 0.1 0.2
B – 0.8 0.3 0
C – 0 0.7
D – 0.97
E –

no existing groups, the classification starts by examining the
pairs with the highest similarity above the threshold, which in
this example is equal to 0.9 (such threshold allows groupings
of similar but not necessarily identical port-rank vectors):
S(A,B) = 1, S(D,E) = 0.97, and S(A,C) = 0.91. Hosts
A and B are currently not grouped and therefore we form
the first group Group1 with A and B. Then, we examine pair
D − E. Since there is already one existing group, D and E
are compared individually against the vector representing the
traffic profile of Group1. Given that the similarity values of D
and E to A and B are small or zero, D and E would form a
new group, Group2. Pair A− C has similarity 0.91, however
A already belongs to a group, and C would be assigned to

the same group as A, which is Group1. Assume now that
in the next time interval three new suspected bots F, G, and
H are identified and host C reappears. All hosts need to be
compared to existing groups Group1 and Group2. Assume now
that F has high similarity to Group1, G and H have zero
similarity to any of the existing groups and C now has strong
similarity (above the threshold) to Group2 (recall here that C
was initially assigned to Group1). Then, F would be allocated
to Group1, C’s contribution to Group1 would be removed and
added to Group2 while G and H would be added into the
pool where we do pair-wise comparisons between unallocated
suspected bots. If the similarity value between them is high
and above the threshold, then a new group Group3 would be
created. Otherwise, they would not be considered for group
allocation.

As mentioned above, when groups are formed, a group port-
rank vector (equivalent to the group’s traffic profile signature)
is also calculated by aggregating the port ranks of the individ-
ual members that form the group. The new ranks are calculated
based on the member ranks of the ports and the number of
members that have contributed to a certain port rank. When a
group is initially formed by two members the port is assigned
a rank that is the average of the ranks of the port in the two
members. When a host becomes member of a group, the ports
are re-ranked based on the following criteria: i) The port exists
in both vectors: The new rank of port k, Rnew

k is calculated
as follows.

Rnew
k = Rold

k +
rk

Nk
, (3)

where Nk is the number of members contributing to the rank
of port k in the existing group and rk is the rank of the port
of the new member to be added. ii) The port exists in the
port-rank vector of the new member but not in the port-rank
vector of the group. In this case the port is assigned a rank
equal to a large number essentially putting it to the bottom of
the rank of the group. iii) The port appears only in the group
port-rank vector, in which case it maintains its rank after the
merging of the new member. The final ranks are determined
by sorting Rnew

k . If the member is removed from a group the
term rk

Nk
in (3) is subtracted from the group rank term Rold

k .
Our classification algorithm allows the dynamic formation

of groups (group expansion, shrinking, aging), tracking of
group memberships and summarization of group profiles by
group signatures. It is independent of the choice of the simi-
larity function and robust in limitations in the data collection
(e.g., one-way packet collection in flows, reduced number of
collection points, etc.).

The algorithm is implemented in software that produces two
files for each identified group and one master membership
file for all the grouped hosts. The first group file contains
summary information about the group such as the application-
bound ports, the number of members of the group accessing
a port and the time when the information was last updated.
The second group file contains the IP addresses of the hosts
belonging to the group, the ports that they accessed, and the
last update time. The master membership file contains the IP
addresses of the grouped hosts, the group that they belong to
and the last update time. Examples of the output files are given

in Figure 6.

File: gma_10000001.txt

#Group Aggregate Port Information
#Port|Number_of_members|Last_updated
445|24|2005102614
25|24|2005102614

File: gap_10000001.txt

#Group Member Address Information
#IPaddress|Ports_ranked|Last_updated
a.9.184.67|445,25|2005100101
b.121.13.98|445,25|2005100101
c.140.212.26|445,25|2005100313
d.140.222.170|445,25|2005100412
e.166.113.174|445,25|2005100919
f.169.208.145|445,25|2005101002
.....

File: membdir.txt

#Member directory file
#IPaddress|Group|Last_updated
c.140.212.26|10000001|2005100313
b.121.13.98|10000001|2005100101
a.9.184.67|10000002|2005100101
g.132.126.130|10000002|2005102811
h.52.7.237|10000003|2005101521
i.52.2.205|10000003|2005102308
.....

Fig. 6. Sample output files generated by software that implements the host
classification algorithm. Note: IP addresses are anonymized for protection of
privacy. In this example, hosts belonging to Group1 are all scanning for a
known vulnerability on port 445 and have connections to port 25 to email
spam or viruses.

V. QUANTITATIVE RESULTS

Using our automated botnet detection system, we have
detected 376 unique controller IP addresses between August
2006 and February 2007. Correlating these addresses with
other sources (e.g., DNS data) has lead to the identification
of several hundred additional controller addresses. Of these,
5 addresses were false positives since they were deemed non-
malicious based on their DNS registration information. In the
period between November 2005 to May 2006 we discovered 6
million unique IP addresses participating in malicious botnets
and since then we have been discovering, on average, 1 million
new bots per month. The botnets we have been seeing are very
dynamic in nature: Based on long-term monitoring of validated
malicious botnets, we estimate that the average bot stays about
2-3 days on the same botnet controller, switching controller
addresses and domains very frequently.

VI. CONCLUSIONS AND FUTURE WORK

We presented an algorithm for the detection and charac-
terization of botnets using passive analysis based on flow
data. Using our approach we have been able to detect several
hundred controllers over a period of a few months running
on arbitrary ports with very low false positive rate. Our
approach has the following advantages: i) it is entirely passive
and therefore invisible to operators, ii) scales to the largest
of networks, iii) based on flow data analysis, which limits
privacy issues, iv) has a false positive rate of less than 2%,
v) helps identify botnets that are most affecting real users
(and customers), vi) can detect botnets that use encrypted
communications vii) helps quantify size of botnets, identify
and characterize their activities without joining the botnet.

Our ongoing efforts focus currently in the following areas:
a) integrate other forms of seed data into the analysis, b)
expand the existing algorithms to accommodate better peer-to-
peer and HTTP botnet controllers, c) automate DNS analysis
to validate legitimate services, d) expand analysis to charac-
terize structure and evolution of botnets.

ACKNOWLEDGMENT

The authors would like to thank Chaim Spielman, David
Gross, and Daniel Hurley, of AT&T Security and Ken Futa-
mura of AT&T Labs for providing valuable input.

REFERENCES

[1] J. Oikarinen, D. Reed, “Internet Relay Chat (IRC) Protocol,” IETF,
Request for Comments (RFC) 1459, May 1993.

[2] N. Ianelli, A. Hackworth, “Botnets as a vehicle for online crime,” CERT,
Request for Comments (RFC) 1700, December 2005.

[3] The Honeynet Project & Research Alliance, “Know your enemy: Track-
ing botnets,” http://www.honeynet.org, March 2005.

[4] K.J. Houle, G.M. Weaver, “Trends in denial of service attack technol-
ogy,” CERT, October 2001.

[5] J. Kristoff, “Botnets,” NANOG32, October 2004.
[6] S. Racine, “Analysis of internet relay chat usage of ddos zombies,”

Master’s thesis, ETH Zurich, April 2004.
[7] E. Cooke, F. Jahanian, D. McPherson, “The zombie roundup: Under-

standing, detecting and disrupting botnets,” in 1st Workshop on Steps to
Reducing Unwanted Traffic on the Internet (SRUTI), 2005.

[8] A. Ramachandran, M. Feamster, D. Dagon, “Revealing botnet mem-
bership using dnsbl counter-intelligence,” in 2nd Workshop on Steps to
Reducing Unwanted Traffic on the Internet (SRUTI), 2006.

[9] M.A. Rajab, J. Zarfoss, F. Monrose, A. Terzis, “A multifaceted approach
to understanding the botnet phenomenon,” in Internet Measurements
Conf. (IMC), 2006.

[10] AT&T, “Internet Protect,” http://www.corp.att.com/internetprotect/.
[11] K. Futamura, “Method and apparatus for detecting scans in real-time,”

filed U.S. Pattent, December 2005.
[12] K. Futamura, W. Ehrlich, C.B. Rexroad, “Method and apparatus for

detecting worms,” filed U.S. Pattent, December 2005.
[13] Symantec, “Worm W32.Spybot.ABDO,” http://securityresponse.

symantec.com/avcenter/venc/data/w32.spybot.abdo.html, December
2005.

[14] P. Mockapetris, “Domain names: Implementation and specification,”
IETF, Request for Comments (RFC) 1035, November 1987.

[15] The BUGS project, “WinBugs,” http://www.mrc-bsu.cam.ac.uk/bugs/
welcome.shtml.

[16] D. MacKay, Information Theory, Inference and Learning Algorithms.
Cambridge University Press, 2003.

[17] J. Reynolds, J. Postel, “Assigned numbers,” IETF, Request for Com-
ments (RFC) 1700, 1994.

