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Abstract 

In a traditional block I/O path, the operating system com-

pletes virtually all I/Os asynchronously via interrupts. 

However, performing storage I/O with ultra-low latency 

devices using next-generation non-volatile memory, it 

can be shown that polling for the completion – hence 

wasting clock cycles during the I/O – delivers higher 

performance than traditional interrupt-driven I/O. This 

paper thus argues for the synchronous completion of 

block I/O first by presenting strong empirical evidence 

showing a stack latency advantage, second by delineating 

limits with the current interrupt-driven path, and third by 

proving that synchronous completion is indeed safe and 

correct. This paper further discusses challenges and op-

portunities introduced by synchronous I/O completion 

model for both operating system kernels and user appli-

cations. 

1 Introduction 

When an operating system kernel processes a block sto-

rage I/O request, the kernel usually submits and com-

pletes the I/O request asynchronously, releasing the CPU 

to perform other tasks while the hardware device com-

pletes the storage operation. In addition to the CPU 

cycles saved, the asynchrony provides opportunities to 

reorder and merge multiple I/O requests to better match 

the characteristics of the backing device and achieve 

higher performance. Indeed, this asynchronous I/O strat-

egy has worked well for traditional rotating devices and 

even for NAND-based solid-state drives (SSDs). 

Future SSD devices may well utilize high-performance 

next-generation non-volatile memory (NVM), calling for 

a re-examination of the traditional asynchronous comple-

tion model. The high performance of such devices both 

diminish the CPU cycles saved by asynchrony and re-

duce the I/O scheduling advantage. 

This paper thus argues for the synchronous I/O comple-

tion model by which the kernel path handling an I/O re-

quest stays within the process context that initiated the 

I/O. Synchronous completion allows I/O requests to by-

pass the kernel’s heavyweight asynchronous block I/O 

subsystem, reducing CPU clock cycles needed to process 

I/Os. However, a necessary condition is that the CPU has 

to spin-wait for the completion from the device, increas-

ing the cycles used. 

Using a prototype DRAM-based storage device to mimic 

the potential performance of a very fast next-generation 

SSD, we verified that the synchronous model completes 

an individual I/O faster and consumes less CPU clock 

cycles despite having to poll. The device is fast enough 

that the spinning time is smaller than the overhead of the 

asynchronous I/O completion model. 

Interrupt-driven asynchronous completion introduces 

additional performance issues when used with very fast 

SSDs such as our prototype. Asynchronous completion 

may suffer from lower I/O rates even when scaled to 

many outstanding I/Os across many threads. We empiri-

cally confirmed this with Linux,* and examine the sys-

tem overheads of interrupt handling, cache pollution, 

CPU power-state transitions associated with the asyn-

chronous model. 

We also demonstrate that the synchronous completion 

model is correct and simple with respect to maintaining 

I/O ordering when used with application interfaces such 

as non-blocking I/O and multithreading. 

We suggest that current applications may further benefit 

from the synchronous model by avoiding the non-

blocking storage I/O interface and by reassessing buffer-

ing strategies such as I/O prefetching. We conclude that 

with future SSDs built of next-generation NVM ele-

ments, introducing the synchronous completion model 

could reap significant performance benefits. 

2 Background 

The commercial success of SSDs coupled with reported 

advancements of NVM technology is significantly reduc-

ing the performance gap between mass-storage and 

memory [15]. Experimental storages device that com-

plete an I/O within a few microseconds have been dem-

onstrated [8]. One of the implications of this trend is that 
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the once negligible cost of I/O stack time becomes more 

relevant [8,12]. Another important trend in operating with 

SSDs is that big, sequential, batched I/O requests need no 

longer be favored over small, random I/O requests [17]. 

In the traditional block I/O architecture, the operating 

system’s block I/O subsystem performs the task of sche-

duling I/O requests and forwarding them to block device 

drivers. This subsystem processes kernel I/O requests 

specifying the starting disk sector, target memory ad-

dress, and size of I/O transfer, and originating from a file 

system, page cache, or user application using direct I/O. 

The block I/O subsystem schedules kernel I/O requests 

by queueing them in a kernel I/O queue and placing the 

I/O-issuing thread in an I/O wait state. The queued re-

quests are later forwarded to a low-level block device 

driver, which translates the requests into device I/O com-

mands specific to the backing storage device. 

Upon finishing an I/O command, a storage device is ex-

pected to raise a hardware interrupt to inform the device 

driver of the completion of a previously submitted com-

mand. The device driver’s interrupt service routine then 

notifies the block I/O subsystem, which subsequently 

ends the kernel I/O request by releasing the target memo-

ry and un-blocking the thread waiting on the completion 

of the request. A storage device may handle multiple 

device commands concurrently using its own device 

queue [2,5,6], and may combine multiple completion 

interrupts, a technique called interrupt coalescing to re-

duce overhead. 

As described the traditional block I/O subsystem uses 

asynchrony within the I/O path to save CPU cycles for 

other tasks while the storage device handles I/O com-

mands. Also, using I/O schedulers, the kernel can reorder 

or combine multiple outstanding kernel I/O requests to 

better utilize the underlying storage media. 

This description of the traditional block storage path cap-

tures what we will refer to as the asynchronous I/O com-

pletion model. In this model, the kernel submits a device 

I/O command in a context distinct from the context of the 

process that originated the I/O. The hardware interrupt 

generated by the device upon command completion is 

also handled, at first, by a separate kernel context. The 

original process is later awakened to resume its execu-

tion. 

A block I/O subsystem typically provides a set of in-

kernel interfaces for a device driver use. In Linux, a block 

device driver is expected to implement a ‘request_fn’ 

callback that the kernel calls while executing in an inter-

rupt context [7,10]. Linux provides another callback point 

called ‘make_request’, which is intended to be used by 

pseudo block devices, such as a ramdisk. The latter call-

back differs from the former one in that the latter is posi-

tioned at highest point in the Linux’s block I/O subsys-

tem and called within the context of the process thread. 

3 Synchronous I/O completion model 

When we say a process completes an I/O synchronously, 

we mean the kernel’s entire path handling an I/O request 

stays within the process context that initiated the I/O. A 

necessary condition for this synchronous I/O completion 

is that the CPU poll the device for completion. This pol-

ling must be realized by a spin loop, busy-waiting the 

CPU while waiting for the completion. 

Compared to the traditional asynchronous model, syn-

chronous completion can reduce CPU clock cycles 

needed for a kernel to process an I/O request. This reduc-

tion comes primarily from a shortened kernel path and 

from the removal of interrupt handling, but synchronous 

completion brings with it an extra clock cycles spent in 

polling. In this section, we make the case for the syn-

chronous completion by quantifying these overheads. We 

then discuss problems with the asynchronous model and 

argue the correctness of synchronous model. 

3.1 Prototype hardware and device driver 

For our measurements, we used a DRAM-based proto-

type block storage device connected to the system with 

an early prototype of an NVM Express* [5] interface to 

serve as a model of a fast future SSD based on next-

generation NVM. The device was directly attached to 

PCIe* Gen2 bus with eight lanes and with a device-based 

DMA engine handling data transfers. As described by the 

NVM Express specification the device communicates 

with the device driver via segments of main memory, 

through which the device receives commands and places 

completions. The device can instantiate multiple device 

queues and can be configured to generate hardware inter-

rupts upon command completion. 

Table 1 shows performance statistics for the prototype 

device. The ‘C-state’ refers to the latency when the CPU 

enters power-saving mode while the I/O is outstanding. 

The performance measured is limited by prototype 

throughput, not by anything fundamental, future SSDs 

may well feature higher throughputs. The improved per-

I/O completion method 512B xfer 4KiB xfer 

 Interrupt, Gen2 bus, enters C-state 3.3 µs  4.6 µs 

 Interrupt, Gen2 bus 2.6 µs 4.1 µs 

 Polling, Gen2 bus 1.5 µs 2.9 µs 

 Interrupt, 8Gbps bus projection 2.0  µs 2.6  µs 

 Polling, 8Gbps bus projection 0.9  µs 1.5  µs 
   

Table 1. Time to finish an I/O command, excluding software 

time, measured for our prototype device. The numbers measure 

random-read performance with device queue depth of 1. 
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formance projection assumes a higher throughput SSD 

on a saturated PCIe Gen3 bus (8Gbps). 

We wrote a Linux device driver for the prototype hard-

ware supporting both asynchronous and synchronous 

completion models. For the asynchronous model the 

driver implements Linux’s ‘request_fn’ callback, thus 

taking the traditional path of using the stock kernel I/O 

queue. In this model, the driver uses a hardware interrupt. 

The driver executes within the interrupt context for both 

the I/O request submission and the completion. For the 

synchronous model, the driver implements Linux’s 

‘make_request’ callback, bypassing most of the Linux’s 

block I/O infrastructure. In this model the driver polls for 

completion from device and hence executes within the 

context of the thread that issued the I/O. 

For this study, we assume that hardware never triggers 

internal events that incur substantially longer latency than 

average.  We expect that such events are rare and can be 

easily dealt with by having operating system fall back to 

traditional asynchronous model. 

3.2 Experimental setup and methodology 

We used 64bit Fedora* 13 running 2.6.33 kernel on an 

x86 dual-socket server with 12GiB of main memory. 

Each processor socket was populated with quad-core 

2.93GHz Intel® Xeon® with 8MiB of shared L3 cache 

and 256KiB of per-core L2 cache. Intel® Hyper-

Threading Technology was enabled totaling 16 architec-

tural CPUs available to software. CPU frequency-scaling 

was disabled. 

For measurements we used a combination of the CPU 

timestamp counter and reports from user-level programs. 

Upon events of interest in kernel, the device driver ex-

ecuted the ‘rdtsc’ instruction to read the CPU timestamp 

counter, whose values were later processed offline to 

produce kernel path latencies. For application IOPS (I/O 

Operations Per Second) and I/O system call completion 

latency, we used the numbers reported by ‘fio’ [1] I/O 

micro-benchmark running in user mode. 

We bypassed the file system and the buffer cache to iso-

late the cost of the block I/O subsystem. Note that our 

objective is to measure the difference between the two 

completion models when exercising the back-end block 

I/O subsystem whose performance is not changed by the 

use of the file system or the buffer cache and would thus 

be additive to either completion model. The kernel was 

compiled with -O3 optimization and kernel preemption 

was enabled. The I/O scheduler was disabled for the 

asynchronous path by selecting ‘noop’ scheduler in order 

to make the asynchronous path as fast as possible. 

3.3 Storage stack latency comparison 

Our measurement answers following questions: 

 How fast does each completion path complete appli-

cation I/O requests? 

 How much CPU time is spent by the kernel in each 

completion model? 

 How much CPU time is available to another user 

process scheduled in during an asynchronous I/O? 

Figure 1 shows that the synchronous model completes an 

I/O faster than asynchronous path in terms of absolute 

latency. The figure shows actual measured latency for the 

user application performing 4KiB and 512B random 

reads. For our fast prototype storage device the CPU 

spin-wait cost in the synchronous path is lower than the 

code-path reduction achieved by the synchronous path, 

completing a 4KiB I/O synchronously in 4.4µs versus 

7.6µs for the asynchronous case. The figure breaks the 

latency into hardware time and non-hardware overlap-

ping kernel time. The hardware time for the asynchron-

ous path is slightly greater than that of the synchronous 

path due to interrupt delivery latency. 

Figure 2 details the latency component breakdown of the 

asynchronous kernel path. In the figure, Tu indicates the 

CPU time actually available to another user process dur-

ing the time slot vacated during asynchronous path I/O 

completion. To measure this time as accurately as possi-

ble, we implemented a separate user-level program sche-

duled to run on the same CPU as the I/O benchmark. 

This program continuously checked CPU timestamps to 

detect its scheduled period at a sub-microsecond granu-

larity. Using this program, we measured Tu to be 2.7µs 

with 4KiB transfer that the device takes 4.1µs to finish. 

The conclusion of the stack latency measurements is a 

strong one: the synchronous path completes I/Os faster 

and more efficiently uses the CPU. This is true despite 

spin-waiting for the duration of the I/O because the work 

the CPU performs in asynchronous path (i.e., Ta + Tb = 

 

Figure 1. Storage stack block I/O subsystem cost comparison. 

Each bar measures application-observed I/O completion latency, 

which is broken into device hardware latency and non-

overlapping operating system latency. Error bars represent +/- 

one standard deviation. 
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6.3µs) is greater than the spin-waiting time of the syn-

chronous path (4.38µs) with this fast prototype SSD. For 

smaller-sized transfers, synchronous completion by pol-

ling wins over asynchronous completion by an even 

greater margin. 

With the synchronous completion model, improvement 

in hardware latency directly translates to improvement in 

software stack overhead. However, the same does not 

hold for the asynchronous model. For instance, using 

projected PCIe Gen3 bus performance, the spin-wait time 

is expected to be reduced from current 2.9µs to 1.5µs, 

making the synchronous path time be 3.0µs, while the 

asynchronous path overhead remains the same at 6.3µs. 

Of course the converse is also true, slow SSDs will be 

felt by the synchronous model, but not by the asynchron-

ous model – clearly these results are most relevant for 

very low latency NVM. 

This measurement study also sets a lower bound on the 

SSD latency for which the asynchronous completion 

model recovers absolutely no useful time for other 

processes: 1.4µs (Tb in Figure 2). 

3.4 Further issues with interrupt-driven I/O 

The increased stack efficiency gained with the synchron-

ous model for low latency storage devices does not just 

result in lower latency, but also in higher IOPS. Figure 3 

shows the IOPS scaling for increasing number of CPUs 

performing 512B randomly addressed reads. For this test, 

both the synchronous and asynchronous models use 

100% of each included CPU. The synchronous model 

does so with just a single thread per CPU, while the 

asynchronous model required up to 8 threads per CPU to 

achieve maximum IOPS. In the asynchronous model, the 

total number of threads needed increases with number of 

processors to compensate for the larger per-I/O latency. 

The synchronous model shows the best per-CPU I/O 

performance, scaling linearly with the increased number 

of CPUs up to 2 million IOPS – the hardware limitation 

of our prototype device. Even with its larger number of 

threads per CPU, the asynchronous model displays a 

significantly lower I/O rate, achieving only 60-70% of 

the synchronous model. This lower I/O rate is a result of 

inefficiencies inherent in the use of the asynchronous 

model when accessing such a low latency storage device. 

We discuss these inefficiencies in the following sections. 

It should be noted that this discussion is correct only for a 

very low latency storage device, like the one used here: 

traditional higher latency storage devices gain compelling 

efficiencies from the use the asynchronous model. 

Interrupt overhead  

The asynchronous model necessarily includes generation 

and service of an interrupt. This interrupt brings with it 

extra, otherwise unnecessary work increasing CPU utili-

zation and therefore decreasing I/O rate on a fully loaded 

system. Another problem is that the kernel processes 

hardware interrupts at high priority. Our prototype device 

can deliver hundreds of thousands interrupts per second. 

Even if the asynchronous model driver completes mul-

tiple outstanding I/Os during a single hardware interrupt 

invocation, the device generates interrupts fast enough to 

saturate the system and cause user noticeable delays. 

Further while coalescing interrupts reduces CPU utiliza-

tion overhead, it also increases completion latencies for 

individual I/Os. 

Cache and TLB pollution 

The short I/O-wait period in asynchronous model can 

cause a degenerative task schedule, polluting hardware 

cache and TLBs. This is because the default task schedu-

ler eagerly finds any runnable thread to fill in the slot 

vacated by an I/O. With our prototype, the available time 

for a schedule in thread is only 2.7µs, which equals 8000 

CPU clock cycles. If the thread scheduled is lower priori-

ty than the original thread, the original thread will likely 

be re-scheduled upon the completion of the I/O – lots of 

state swapping for little work done. Worse, thread data 

held in hardware resources such as memory cache and 

TLBs are replaced, only to be re-populated again when 

the original thread is scheduled back. 

 

Figure 3. Scaling of storage I/Os per second (IOPS) with in-

creased number of CPUs. For asynchronous IOPS, I/O threads 

are added until the utilization of each CPU reaches 100%. 
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nel path. Ta (= Ta’ + Ta”) indicates the cost of kernel path that 
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device is active. Scheduling a user process P2 during the I/O 

interval incurs kernel scheduling cost, which is Tb. The CPU 

time available for P2 to make progress is Tu. For a 4KiB trans-

fer, Ta, Td, Tb, and Tu measure 4.9, 4.1, 1.4 and 2.7µs, respec-

tively. 
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CPU power-state complications  

Power management used in conjunction with the asyn-

chronous model for the short I/O-wait of our device may 

not only reduce the power saving, but also increase I/O 

completion latency. A modern processor may enter a 

power-saving ‘C-state’ when not loaded or lightly loaded. 

Transition among C-states incurs latency. For the asyn-

chronous model, the CPU enters into a power saving C-

state when the scheduler fails to find a thread to run after 

sending an I/O command. The synchronous model does 

not automatically allow this transition to a lower C-state 

since the processor is busy. 

We have measured a latency impact from C-state transi-

tion. When the processor enters into a C-state, the asyn-

chronous path takes an additional 2µs in observed hard-

ware latency with higher variability (Figure 1, labeled 

‘async C-state’). This additional latency is incurred only 

when the system has no other thread to schedule on the 

CPU. The end result is that a thread performing I/Os runs 

slower when it is the only thread active on the CPU – we 

confirmed this empirically. 

It is hard for an asynchronous model driver to fine-tune 

C-state transitions. In asynchronous path, the C-state 

transition decision is primarily made by operating sys-

tem’s CPU scheduler or by the processor hardware itself. 

On the other hand, a device driver using synchronous 

completion can directly construct its spin-wait loop using 

instructions with power-state hints, such as mwait [3], 

better controlling C-state transitions. 

3.5 Correctness of synchronous model 

A block I/O subsystem is deemed correct when it pre-

serves ordering requirements for I/O requests made by its 

frontend clients. Ultimately, we want to address the fol-

lowing problem: 

A client performs I/O calls ‘A’ and ‘B’ in order, and 

its ordering requirement is that B should get to the 

device after A. Does synchronous model respect this 

requirement? 

For brevity, we assume that the client to be a user appli-

cation using Linux I/O system calls. We also assume a 

file system and the page cache are bypassed. In fact, file 

system and page cache themselves can be considered as 

frontend clients using the block I/O subsystem. 

We start with two assumptions: 

A1. Application uses blocking I/O system calls.  

A2. Application is single threaded. 

Let us consider a single thread is submitting A and B in 

order. The operating system may preempt and schedule 

the thread on a different CPU, but it does not affect the 

ordering of I/O requests since there is only a single thread 

of execution. Therefore, it is guaranteed that B reaches to 

the device after A. 

Let us relax A1. The application order requires the thread 

to submit A before B using non-blocking interface or AIO 

[4]. With the synchronous model, this means that the 

device has already completed the I/O for A at the moment 

that the application makes another non-blocking system 

calls for B. Therefore, the synchronous model guarantees 

that B reaches to the device after A with non-blocking I/O 

interface. 

Relaxing A2, let us imagine two threads T1 and T2, each 

performing A and B respectively. In order to respect the 

application’s ordering requirement, T2 must synchronize 

with T1 to avoid a race in such a way that T2 must wait 

for T1 before submitting B. The end result is that the ker-

nel always sees B after kernel safely completes previous-

ly submitted A. Therefore, the synchronous model guar-

antees the ordering with multi-threaded applications. 

The above exercise shows that an I/O barrier is unneces-

sary in the synchronous model to guarantee I/O ordering. 

This contrasts with asynchronous model where a pro-

gram has to rely on an I/O barrier when it needs to force 

ordering. Hence, synchronous model has a potential to 

further simplify storage I/O routines with respect to gua-

ranteeing data durability and consistency. 

Our synchronous device driver written for Linux has 

been tested with multi-threaded applications using non-

blocking system calls. For instance, the driver has with-

stood many hours of TPC-C* benchmark run. The driver 

has also been heavily utilized as a system swap space. 

We believe that the synchronous completion model is 

correct and fully compatible with existing applications. 

4 Discussion 

The asynchronous model may work better in processing 

I/O requests with large transfer sizes or handling hard-

ware stalls that cause long latencies. Hence, a favorable 

solution would be a synchronous and asynchronous hybr-

id, where there are two kernel paths for a block device: 

the synchronous path is the fast path for small transfers 

and often used, whereas the asynchronous path is the 

slow fallback path for large transfers or hardware stalls. 

We believe that existing applications have primarily as-

sumed the asynchronous completion model and tradition-

al slow storage devices. Although the synchronous com-

pletion model requires little change to existing software 

to run correctly, some changes to the operating system 

and to applications will allow for faster, more efficient 

system operation when storage is used synchronously. 

We did not attempt to re-write applications, but do sug-

gest possible software changes. 
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Perhaps the most significant improvement that could be 

achieved for I/O intensive applications is to avoid using 

the non-blocking user I/O interface such as AIO calls 

when addressing a storage device synchronously. In this 

case, using the non-blocking interface adds overhead and 

complexity to the application without benefit because 

operating system already completes the I/O upon the 

return from a non-blocking I/O submission call. Al-

though applications that use the non-blocking interface 

are functionally safe and correct with synchronous com-

pletion, the use of non-blocking interface negates the 

latency and scalability gains achievable in kernel with the 

synchronous completion model. 

When the backing storage device is fast enough to com-

plete an I/O synchronously, applications that have tradi-

tionally self-managed I/O buffers must reevaluate their 

buffering strategy. We observe that many I/O intensive 

applications existing today, such as databases, the operat-

ing system’s page cache, and disk-swap algorithms, em-

ploy elaborate I/O buffering and prefetching schemes. 

Such custom I/O schemes may add overhead with little 

value for the synchronous completion model. Although 

our work in the synchronous model greatly simplifies I/O 

processing overhead in the kernel, application complexity 

may still become a bottleneck. For instance, I/O prefetch-

ing becomes far less effective and could even hurt per-

formance. We have found the performance of page cache 

and disk-swapper to increase when we disabled page 

cache read-ahead and swap-in clustering. 

Informing applications of the presence of synchronous 

completions is therefore necessary. For example, an 

ioctl() extension to query underlying completion model 

should help applications decide the best I/O strategy. 

Operating system processor usage statistics must account 

separately for the time spent at the driver’s spin-wait 

loop. Currently there is no accepted method of account-

ing for this ‘spinning I/O wait’ cycles. In our prototype 

implementation, the time spent in the polling loop is 

simply accounted towards system time. This may mislead 

people to believe no I/O has been performed or to suspect 

kernel inefficiency due to increased system time. 

5 Related work 

Following the success of NAND-based storage, research 

interest has surged on the next-generation non-volatile 

memory (NVM) elements [11,14,16,19]. Although base 

materials differ, these memory elements commonly 

promise faster and simpler media access than NAND. 

Because of the DRAM-like random accessibility of many 

next-generation NVM technologies, there is abundant 

research in storage-class memories (SCM), where NVM 

is directly exposed as a physical address space. For in-

stance, file systems have been proposed on SCM-based 

architectures [9,21]. In contrast, we approach next-

generation NVM in a more evolutionary way, preserving 

the current hardware and software storage interface, in 

keeping with the huge body of existing applications. 

Moneta [8] is a recent effort to evaluate the design and 

impact of next-generation NVM-based SSDs. Moneta 

hardware is akin to our prototype device in spirit because 

it is a block device connected via PCIe bus. But imple-

mentation differences enabled our hardware to perform 

faster than Moneta. Moneta also examined spinning to 

cut the kernel cost, but its description is limited to latency 

aspect. In contrast, this paper studied issues relevant to 

the viability of synchronous completion, such as IOPS 

scalability, interrupt thrashing, power state, etc. 

Interrupt-driven asynchronous completion has long been 

the only I/O model used by kernel to perform real storage 

I/Os. Storage interface standards have thus embraced 

hardware queueing techniques that further improve per-

formance of asynchronous I/O operations [2,5,6]. How-

ever, these are mostly effective for the devices with 

slower storage medium such as hard disk or NAND flash. 

It is a well-known strategy to choose a poll-based waiting 

primitive over an event-based one when the waiting time 

is short. A spinlock, for example, is preferred to a system 

mutex lock if the duration of the lock is held is short. 

Another example is the optional use of polling [18,20] for 

network message passing among nodes when implement-

ing the MPI* library [13] used in high-performance com-

puting clusters. In such systems communication latencies 

among nodes are just several microseconds due to the use 

of low-latency, high-bandwidth communication fabric 

along with a highly optimized network stack such as Re-

mote Direct Memory Access (RDMA*). 

6 Conclusion 

This paper makes the case for the synchronous comple-

tion of storage I/Os. When performing storage I/O with 

ultra-low latency devices employing next-generation 

non-volatile memories, polling for completion performs 

better than the traditional interrupt-driven asynchronous 

I/O path. Our conclusion has a practical importance, 

pointing to the need for kernel researchers to consider 

optimizations to the traditional kernel block storage inter-

face with next-generation SSDs, built of next-generation 

NVM elements in mind. It is our belief that non-dramatic 

changes can reap significant benefit. 
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