
1

When Poll is Better than Interrupt

Jisoo Yang Dave B. Minturn Frank Hady

{jisoo.yang | dave.b.minturn | frank.hady} (at) intel.com

Intel Corporation

Abstract

In a traditional block I/O path, the operating system com-

pletes virtually all I/Os asynchronously via interrupts.

However, performing storage I/O with ultra-low latency

devices using next-generation non-volatile memory, it

can be shown that polling for the completion – hence

wasting clock cycles during the I/O – delivers higher

performance than traditional interrupt-driven I/O. This

paper thus argues for the synchronous completion of

block I/O first by presenting strong empirical evidence

showing a stack latency advantage, second by delineating

limits with the current interrupt-driven path, and third by

proving that synchronous completion is indeed safe and

correct. This paper further discusses challenges and op-

portunities introduced by synchronous I/O completion

model for both operating system kernels and user appli-

cations.

1 Introduction

When an operating system kernel processes a block sto-

rage I/O request, the kernel usually submits and com-

pletes the I/O request asynchronously, releasing the CPU

to perform other tasks while the hardware device com-

pletes the storage operation. In addition to the CPU

cycles saved, the asynchrony provides opportunities to

reorder and merge multiple I/O requests to better match

the characteristics of the backing device and achieve

higher performance. Indeed, this asynchronous I/O strat-

egy has worked well for traditional rotating devices and

even for NAND-based solid-state drives (SSDs).

Future SSD devices may well utilize high-performance

next-generation non-volatile memory (NVM), calling for

a re-examination of the traditional asynchronous comple-

tion model. The high performance of such devices both

diminish the CPU cycles saved by asynchrony and re-

duce the I/O scheduling advantage.

This paper thus argues for the synchronous I/O comple-

tion model by which the kernel path handling an I/O re-

quest stays within the process context that initiated the

I/O. Synchronous completion allows I/O requests to by-

pass the kernel’s heavyweight asynchronous block I/O

subsystem, reducing CPU clock cycles needed to process

I/Os. However, a necessary condition is that the CPU has

to spin-wait for the completion from the device, increas-

ing the cycles used.

Using a prototype DRAM-based storage device to mimic

the potential performance of a very fast next-generation

SSD, we verified that the synchronous model completes

an individual I/O faster and consumes less CPU clock

cycles despite having to poll. The device is fast enough

that the spinning time is smaller than the overhead of the

asynchronous I/O completion model.

Interrupt-driven asynchronous completion introduces

additional performance issues when used with very fast

SSDs such as our prototype. Asynchronous completion

may suffer from lower I/O rates even when scaled to

many outstanding I/Os across many threads. We empiri-

cally confirmed this with Linux,* and examine the sys-

tem overheads of interrupt handling, cache pollution,

CPU power-state transitions associated with the asyn-

chronous model.

We also demonstrate that the synchronous completion

model is correct and simple with respect to maintaining

I/O ordering when used with application interfaces such

as non-blocking I/O and multithreading.

We suggest that current applications may further benefit

from the synchronous model by avoiding the non-

blocking storage I/O interface and by reassessing buffer-

ing strategies such as I/O prefetching. We conclude that

with future SSDs built of next-generation NVM ele-

ments, introducing the synchronous completion model

could reap significant performance benefits.

2 Background

The commercial success of SSDs coupled with reported

advancements of NVM technology is significantly reduc-

ing the performance gap between mass-storage and

memory [15]. Experimental storages device that com-

plete an I/O within a few microseconds have been dem-

onstrated [8]. One of the implications of this trend is that

2

the once negligible cost of I/O stack time becomes more

relevant [8,12]. Another important trend in operating with

SSDs is that big, sequential, batched I/O requests need no

longer be favored over small, random I/O requests [17].

In the traditional block I/O architecture, the operating

system’s block I/O subsystem performs the task of sche-

duling I/O requests and forwarding them to block device

drivers. This subsystem processes kernel I/O requests

specifying the starting disk sector, target memory ad-

dress, and size of I/O transfer, and originating from a file

system, page cache, or user application using direct I/O.

The block I/O subsystem schedules kernel I/O requests

by queueing them in a kernel I/O queue and placing the

I/O-issuing thread in an I/O wait state. The queued re-

quests are later forwarded to a low-level block device

driver, which translates the requests into device I/O com-

mands specific to the backing storage device.

Upon finishing an I/O command, a storage device is ex-

pected to raise a hardware interrupt to inform the device

driver of the completion of a previously submitted com-

mand. The device driver’s interrupt service routine then

notifies the block I/O subsystem, which subsequently

ends the kernel I/O request by releasing the target memo-

ry and un-blocking the thread waiting on the completion

of the request. A storage device may handle multiple

device commands concurrently using its own device

queue [2,5,6], and may combine multiple completion

interrupts, a technique called interrupt coalescing to re-

duce overhead.

As described the traditional block I/O subsystem uses

asynchrony within the I/O path to save CPU cycles for

other tasks while the storage device handles I/O com-

mands. Also, using I/O schedulers, the kernel can reorder

or combine multiple outstanding kernel I/O requests to

better utilize the underlying storage media.

This description of the traditional block storage path cap-

tures what we will refer to as the asynchronous I/O com-

pletion model. In this model, the kernel submits a device

I/O command in a context distinct from the context of the

process that originated the I/O. The hardware interrupt

generated by the device upon command completion is

also handled, at first, by a separate kernel context. The

original process is later awakened to resume its execu-

tion.

A block I/O subsystem typically provides a set of in-

kernel interfaces for a device driver use. In Linux, a block

device driver is expected to implement a ‘request_fn’

callback that the kernel calls while executing in an inter-

rupt context [7,10]. Linux provides another callback point

called ‘make_request’, which is intended to be used by

pseudo block devices, such as a ramdisk. The latter call-

back differs from the former one in that the latter is posi-

tioned at highest point in the Linux’s block I/O subsys-

tem and called within the context of the process thread.

3 Synchronous I/O completion model

When we say a process completes an I/O synchronously,

we mean the kernel’s entire path handling an I/O request

stays within the process context that initiated the I/O. A

necessary condition for this synchronous I/O completion

is that the CPU poll the device for completion. This pol-

ling must be realized by a spin loop, busy-waiting the

CPU while waiting for the completion.

Compared to the traditional asynchronous model, syn-

chronous completion can reduce CPU clock cycles

needed for a kernel to process an I/O request. This reduc-

tion comes primarily from a shortened kernel path and

from the removal of interrupt handling, but synchronous

completion brings with it an extra clock cycles spent in

polling. In this section, we make the case for the syn-

chronous completion by quantifying these overheads. We

then discuss problems with the asynchronous model and

argue the correctness of synchronous model.

3.1 Prototype hardware and device driver

For our measurements, we used a DRAM-based proto-

type block storage device connected to the system with

an early prototype of an NVM Express* [5] interface to

serve as a model of a fast future SSD based on next-

generation NVM. The device was directly attached to

PCIe* Gen2 bus with eight lanes and with a device-based

DMA engine handling data transfers. As described by the

NVM Express specification the device communicates

with the device driver via segments of main memory,

through which the device receives commands and places

completions. The device can instantiate multiple device

queues and can be configured to generate hardware inter-

rupts upon command completion.

Table 1 shows performance statistics for the prototype

device. The ‘C-state’ refers to the latency when the CPU

enters power-saving mode while the I/O is outstanding.

The performance measured is limited by prototype

throughput, not by anything fundamental, future SSDs

may well feature higher throughputs. The improved per-

I/O completion method 512B xfer 4KiB xfer

 Interrupt, Gen2 bus, enters C-state 3.3 µs 4.6 µs

 Interrupt, Gen2 bus 2.6 µs 4.1 µs

 Polling, Gen2 bus 1.5 µs 2.9 µs

 Interrupt, 8Gbps bus projection 2.0 µs 2.6 µs

 Polling, 8Gbps bus projection 0.9 µs 1.5 µs

Table 1. Time to finish an I/O command, excluding software

time, measured for our prototype device. The numbers measure

random-read performance with device queue depth of 1.

3

formance projection assumes a higher throughput SSD

on a saturated PCIe Gen3 bus (8Gbps).

We wrote a Linux device driver for the prototype hard-

ware supporting both asynchronous and synchronous

completion models. For the asynchronous model the

driver implements Linux’s ‘request_fn’ callback, thus

taking the traditional path of using the stock kernel I/O

queue. In this model, the driver uses a hardware interrupt.

The driver executes within the interrupt context for both

the I/O request submission and the completion. For the

synchronous model, the driver implements Linux’s

‘make_request’ callback, bypassing most of the Linux’s

block I/O infrastructure. In this model the driver polls for

completion from device and hence executes within the

context of the thread that issued the I/O.

For this study, we assume that hardware never triggers

internal events that incur substantially longer latency than

average. We expect that such events are rare and can be

easily dealt with by having operating system fall back to

traditional asynchronous model.

3.2 Experimental setup and methodology

We used 64bit Fedora* 13 running 2.6.33 kernel on an

x86 dual-socket server with 12GiB of main memory.

Each processor socket was populated with quad-core

2.93GHz Intel® Xeon® with 8MiB of shared L3 cache

and 256KiB of per-core L2 cache. Intel® Hyper-

Threading Technology was enabled totaling 16 architec-

tural CPUs available to software. CPU frequency-scaling

was disabled.

For measurements we used a combination of the CPU

timestamp counter and reports from user-level programs.

Upon events of interest in kernel, the device driver ex-

ecuted the ‘rdtsc’ instruction to read the CPU timestamp

counter, whose values were later processed offline to

produce kernel path latencies. For application IOPS (I/O

Operations Per Second) and I/O system call completion

latency, we used the numbers reported by ‘fio’ [1] I/O

micro-benchmark running in user mode.

We bypassed the file system and the buffer cache to iso-

late the cost of the block I/O subsystem. Note that our

objective is to measure the difference between the two

completion models when exercising the back-end block

I/O subsystem whose performance is not changed by the

use of the file system or the buffer cache and would thus

be additive to either completion model. The kernel was

compiled with -O3 optimization and kernel preemption

was enabled. The I/O scheduler was disabled for the

asynchronous path by selecting ‘noop’ scheduler in order

to make the asynchronous path as fast as possible.

3.3 Storage stack latency comparison

Our measurement answers following questions:

 How fast does each completion path complete appli-

cation I/O requests?

 How much CPU time is spent by the kernel in each

completion model?

 How much CPU time is available to another user

process scheduled in during an asynchronous I/O?

Figure 1 shows that the synchronous model completes an

I/O faster than asynchronous path in terms of absolute

latency. The figure shows actual measured latency for the

user application performing 4KiB and 512B random

reads. For our fast prototype storage device the CPU

spin-wait cost in the synchronous path is lower than the

code-path reduction achieved by the synchronous path,

completing a 4KiB I/O synchronously in 4.4µs versus

7.6µs for the asynchronous case. The figure breaks the

latency into hardware time and non-hardware overlap-

ping kernel time. The hardware time for the asynchron-

ous path is slightly greater than that of the synchronous

path due to interrupt delivery latency.

Figure 2 details the latency component breakdown of the

asynchronous kernel path. In the figure, Tu indicates the

CPU time actually available to another user process dur-

ing the time slot vacated during asynchronous path I/O

completion. To measure this time as accurately as possi-

ble, we implemented a separate user-level program sche-

duled to run on the same CPU as the I/O benchmark.

This program continuously checked CPU timestamps to

detect its scheduled period at a sub-microsecond granu-

larity. Using this program, we measured Tu to be 2.7µs

with 4KiB transfer that the device takes 4.1µs to finish.

The conclusion of the stack latency measurements is a

strong one: the synchronous path completes I/Os faster

and more efficiently uses the CPU. This is true despite

spin-waiting for the duration of the I/O because the work

the CPU performs in asynchronous path (i.e., Ta + Tb =

Figure 1. Storage stack block I/O subsystem cost comparison.

Each bar measures application-observed I/O completion latency,

which is broken into device hardware latency and non-

overlapping operating system latency. Error bars represent +/-

one standard deviation.

6.21 6.67
4.91 5.01

1.47 1.42

4.57 3.33
4.10

2.63

2.91
1.48

10.78
10.00

9.01

7.64

4.38

2.90

0

2

4

6

8

10

12

14

4KiB
Async

(C-state)

512B
Async

(C-state)

4KiB
Async

512B
Async

4KiB
Sync

512B
Sync

I/
O

 c
o

m
p

le
ti

o
n

 la
te

n
cy

 in
 u

se
c

Hardware device

Operating system

4

6.3µs) is greater than the spin-waiting time of the syn-

chronous path (4.38µs) with this fast prototype SSD. For

smaller-sized transfers, synchronous completion by pol-

ling wins over asynchronous completion by an even

greater margin.

With the synchronous completion model, improvement

in hardware latency directly translates to improvement in

software stack overhead. However, the same does not

hold for the asynchronous model. For instance, using

projected PCIe Gen3 bus performance, the spin-wait time

is expected to be reduced from current 2.9µs to 1.5µs,

making the synchronous path time be 3.0µs, while the

asynchronous path overhead remains the same at 6.3µs.

Of course the converse is also true, slow SSDs will be

felt by the synchronous model, but not by the asynchron-

ous model – clearly these results are most relevant for

very low latency NVM.

This measurement study also sets a lower bound on the

SSD latency for which the asynchronous completion

model recovers absolutely no useful time for other

processes: 1.4µs (Tb in Figure 2).

3.4 Further issues with interrupt-driven I/O

The increased stack efficiency gained with the synchron-

ous model for low latency storage devices does not just

result in lower latency, but also in higher IOPS. Figure 3

shows the IOPS scaling for increasing number of CPUs

performing 512B randomly addressed reads. For this test,

both the synchronous and asynchronous models use

100% of each included CPU. The synchronous model

does so with just a single thread per CPU, while the

asynchronous model required up to 8 threads per CPU to

achieve maximum IOPS. In the asynchronous model, the

total number of threads needed increases with number of

processors to compensate for the larger per-I/O latency.

The synchronous model shows the best per-CPU I/O

performance, scaling linearly with the increased number

of CPUs up to 2 million IOPS – the hardware limitation

of our prototype device. Even with its larger number of

threads per CPU, the asynchronous model displays a

significantly lower I/O rate, achieving only 60-70% of

the synchronous model. This lower I/O rate is a result of

inefficiencies inherent in the use of the asynchronous

model when accessing such a low latency storage device.

We discuss these inefficiencies in the following sections.

It should be noted that this discussion is correct only for a

very low latency storage device, like the one used here:

traditional higher latency storage devices gain compelling

efficiencies from the use the asynchronous model.

Interrupt overhead

The asynchronous model necessarily includes generation

and service of an interrupt. This interrupt brings with it

extra, otherwise unnecessary work increasing CPU utili-

zation and therefore decreasing I/O rate on a fully loaded

system. Another problem is that the kernel processes

hardware interrupts at high priority. Our prototype device

can deliver hundreds of thousands interrupts per second.

Even if the asynchronous model driver completes mul-

tiple outstanding I/Os during a single hardware interrupt

invocation, the device generates interrupts fast enough to

saturate the system and cause user noticeable delays.

Further while coalescing interrupts reduces CPU utiliza-

tion overhead, it also increases completion latencies for

individual I/Os.

Cache and TLB pollution

The short I/O-wait period in asynchronous model can

cause a degenerative task schedule, polluting hardware

cache and TLBs. This is because the default task schedu-

ler eagerly finds any runnable thread to fill in the slot

vacated by an I/O. With our prototype, the available time

for a schedule in thread is only 2.7µs, which equals 8000

CPU clock cycles. If the thread scheduled is lower priori-

ty than the original thread, the original thread will likely

be re-scheduled upon the completion of the I/O – lots of

state swapping for little work done. Worse, thread data

held in hardware resources such as memory cache and

TLBs are replaced, only to be re-populated again when

the original thread is scheduled back.

Figure 3. Scaling of storage I/Os per second (IOPS) with in-

creased number of CPUs. For asynchronous IOPS, I/O threads

are added until the utilization of each CPU reaches 100%.

181

357

532
704

895

1073
1223

1389

305

557

823

1114

1387

1648
1797

1968

1 2 3 4 5 6 7 8
Number of CPUs

Async IOPS (Thousand)

Sync IOPS (Thousand)

Figure 2. Latency component breakdown of asynchronous ker-

nel path. Ta (= Ta’ + Ta”) indicates the cost of kernel path that

does not overlap with Td, which is the interval during which the

device is active. Scheduling a user process P2 during the I/O

interval incurs kernel scheduling cost, which is Tb. The CPU

time available for P2 to make progress is Tu. For a 4KiB trans-

fer, Ta, Td, Tb, and Tu measure 4.9, 4.1, 1.4 and 2.7µs, respec-

tively.

5

CPU power-state complications

Power management used in conjunction with the asyn-

chronous model for the short I/O-wait of our device may

not only reduce the power saving, but also increase I/O

completion latency. A modern processor may enter a

power-saving ‘C-state’ when not loaded or lightly loaded.

Transition among C-states incurs latency. For the asyn-

chronous model, the CPU enters into a power saving C-

state when the scheduler fails to find a thread to run after

sending an I/O command. The synchronous model does

not automatically allow this transition to a lower C-state

since the processor is busy.

We have measured a latency impact from C-state transi-

tion. When the processor enters into a C-state, the asyn-

chronous path takes an additional 2µs in observed hard-

ware latency with higher variability (Figure 1, labeled

‘async C-state’). This additional latency is incurred only

when the system has no other thread to schedule on the

CPU. The end result is that a thread performing I/Os runs

slower when it is the only thread active on the CPU – we

confirmed this empirically.

It is hard for an asynchronous model driver to fine-tune

C-state transitions. In asynchronous path, the C-state

transition decision is primarily made by operating sys-

tem’s CPU scheduler or by the processor hardware itself.

On the other hand, a device driver using synchronous

completion can directly construct its spin-wait loop using

instructions with power-state hints, such as mwait [3],

better controlling C-state transitions.

3.5 Correctness of synchronous model

A block I/O subsystem is deemed correct when it pre-

serves ordering requirements for I/O requests made by its

frontend clients. Ultimately, we want to address the fol-

lowing problem:

A client performs I/O calls ‘A’ and ‘B’ in order, and

its ordering requirement is that B should get to the

device after A. Does synchronous model respect this

requirement?

For brevity, we assume that the client to be a user appli-

cation using Linux I/O system calls. We also assume a

file system and the page cache are bypassed. In fact, file

system and page cache themselves can be considered as

frontend clients using the block I/O subsystem.

We start with two assumptions:

A1. Application uses blocking I/O system calls.

A2. Application is single threaded.

Let us consider a single thread is submitting A and B in

order. The operating system may preempt and schedule

the thread on a different CPU, but it does not affect the

ordering of I/O requests since there is only a single thread

of execution. Therefore, it is guaranteed that B reaches to

the device after A.

Let us relax A1. The application order requires the thread

to submit A before B using non-blocking interface or AIO

[4]. With the synchronous model, this means that the

device has already completed the I/O for A at the moment

that the application makes another non-blocking system

calls for B. Therefore, the synchronous model guarantees

that B reaches to the device after A with non-blocking I/O

interface.

Relaxing A2, let us imagine two threads T1 and T2, each

performing A and B respectively. In order to respect the

application’s ordering requirement, T2 must synchronize

with T1 to avoid a race in such a way that T2 must wait

for T1 before submitting B. The end result is that the ker-

nel always sees B after kernel safely completes previous-

ly submitted A. Therefore, the synchronous model guar-

antees the ordering with multi-threaded applications.

The above exercise shows that an I/O barrier is unneces-

sary in the synchronous model to guarantee I/O ordering.

This contrasts with asynchronous model where a pro-

gram has to rely on an I/O barrier when it needs to force

ordering. Hence, synchronous model has a potential to

further simplify storage I/O routines with respect to gua-

ranteeing data durability and consistency.

Our synchronous device driver written for Linux has

been tested with multi-threaded applications using non-

blocking system calls. For instance, the driver has with-

stood many hours of TPC-C* benchmark run. The driver

has also been heavily utilized as a system swap space.

We believe that the synchronous completion model is

correct and fully compatible with existing applications.

4 Discussion

The asynchronous model may work better in processing

I/O requests with large transfer sizes or handling hard-

ware stalls that cause long latencies. Hence, a favorable

solution would be a synchronous and asynchronous hybr-

id, where there are two kernel paths for a block device:

the synchronous path is the fast path for small transfers

and often used, whereas the asynchronous path is the

slow fallback path for large transfers or hardware stalls.

We believe that existing applications have primarily as-

sumed the asynchronous completion model and tradition-

al slow storage devices. Although the synchronous com-

pletion model requires little change to existing software

to run correctly, some changes to the operating system

and to applications will allow for faster, more efficient

system operation when storage is used synchronously.

We did not attempt to re-write applications, but do sug-

gest possible software changes.

6

Perhaps the most significant improvement that could be

achieved for I/O intensive applications is to avoid using

the non-blocking user I/O interface such as AIO calls

when addressing a storage device synchronously. In this

case, using the non-blocking interface adds overhead and

complexity to the application without benefit because

operating system already completes the I/O upon the

return from a non-blocking I/O submission call. Al-

though applications that use the non-blocking interface

are functionally safe and correct with synchronous com-

pletion, the use of non-blocking interface negates the

latency and scalability gains achievable in kernel with the

synchronous completion model.

When the backing storage device is fast enough to com-

plete an I/O synchronously, applications that have tradi-

tionally self-managed I/O buffers must reevaluate their

buffering strategy. We observe that many I/O intensive

applications existing today, such as databases, the operat-

ing system’s page cache, and disk-swap algorithms, em-

ploy elaborate I/O buffering and prefetching schemes.

Such custom I/O schemes may add overhead with little

value for the synchronous completion model. Although

our work in the synchronous model greatly simplifies I/O

processing overhead in the kernel, application complexity

may still become a bottleneck. For instance, I/O prefetch-

ing becomes far less effective and could even hurt per-

formance. We have found the performance of page cache

and disk-swapper to increase when we disabled page

cache read-ahead and swap-in clustering.

Informing applications of the presence of synchronous

completions is therefore necessary. For example, an

ioctl() extension to query underlying completion model

should help applications decide the best I/O strategy.

Operating system processor usage statistics must account

separately for the time spent at the driver’s spin-wait

loop. Currently there is no accepted method of account-

ing for this ‘spinning I/O wait’ cycles. In our prototype

implementation, the time spent in the polling loop is

simply accounted towards system time. This may mislead

people to believe no I/O has been performed or to suspect

kernel inefficiency due to increased system time.

5 Related work

Following the success of NAND-based storage, research

interest has surged on the next-generation non-volatile

memory (NVM) elements [11,14,16,19]. Although base

materials differ, these memory elements commonly

promise faster and simpler media access than NAND.

Because of the DRAM-like random accessibility of many

next-generation NVM technologies, there is abundant

research in storage-class memories (SCM), where NVM

is directly exposed as a physical address space. For in-

stance, file systems have been proposed on SCM-based

architectures [9,21]. In contrast, we approach next-

generation NVM in a more evolutionary way, preserving

the current hardware and software storage interface, in

keeping with the huge body of existing applications.

Moneta [8] is a recent effort to evaluate the design and

impact of next-generation NVM-based SSDs. Moneta

hardware is akin to our prototype device in spirit because

it is a block device connected via PCIe bus. But imple-

mentation differences enabled our hardware to perform

faster than Moneta. Moneta also examined spinning to

cut the kernel cost, but its description is limited to latency

aspect. In contrast, this paper studied issues relevant to

the viability of synchronous completion, such as IOPS

scalability, interrupt thrashing, power state, etc.

Interrupt-driven asynchronous completion has long been

the only I/O model used by kernel to perform real storage

I/Os. Storage interface standards have thus embraced

hardware queueing techniques that further improve per-

formance of asynchronous I/O operations [2,5,6]. How-

ever, these are mostly effective for the devices with

slower storage medium such as hard disk or NAND flash.

It is a well-known strategy to choose a poll-based waiting

primitive over an event-based one when the waiting time

is short. A spinlock, for example, is preferred to a system

mutex lock if the duration of the lock is held is short.

Another example is the optional use of polling [18,20] for

network message passing among nodes when implement-

ing the MPI* library [13] used in high-performance com-

puting clusters. In such systems communication latencies

among nodes are just several microseconds due to the use

of low-latency, high-bandwidth communication fabric

along with a highly optimized network stack such as Re-

mote Direct Memory Access (RDMA*).

6 Conclusion

This paper makes the case for the synchronous comple-

tion of storage I/Os. When performing storage I/O with

ultra-low latency devices employing next-generation

non-volatile memories, polling for completion performs

better than the traditional interrupt-driven asynchronous

I/O path. Our conclusion has a practical importance,

pointing to the need for kernel researchers to consider

optimizations to the traditional kernel block storage inter-

face with next-generation SSDs, built of next-generation

NVM elements in mind. It is our belief that non-dramatic

changes can reap significant benefit.

Acknowledgements

We thank members of Storage Technology Group in Intel

Corporation for supporting this work. We also thank our

shepherd David Patterson and the anonymous reviewers

for their detailed feedback and guidance. The views and

conclusions in this paper are those of the authors and

should not be interpreted as representing the official poli-

cies, either expressed or implied, of Intel Corporation.

7

References

[1] Jen Axboe. Flexible I/O tester (fio). http://git.kernel.

dk/?p=fio.git;a=summary. 2010.

[2] Amber Huffman and Joni Clark. Serial ATA native

command queueing. Technical white paper,

http://www.seagate.com/content/pdf/whitepaper/D2c_t

ech_paper_intc-stx_sata_ncq.pdf, July 2003.

[3] Intel Corporation. Intel® 64 and IA-32 Architectures

Software Developer’s Manual, Volume 1-3. Intel, 2008.

[4] M. Tim Jones. Boost application performance using

asynchronous I/O. http://www.ibm.com/developer

works/linux/library/l-async/, 2006.

[5] NVMHCI Work Group. NVM Express. http://www.

nvmexpress.org/, 2011.

[6] SCSI Tagged Command Queueing, SCSI Architecture

Model – 3, 2007.

[7] Daniel P. Bovet and Marco Cesati. Understanding the

Linux Kernel, 3
rd

 Ed., O’Reilly, 2005.

[8] Adrian M. Caufield, Arup De, Joel Coburn, Todor I.

Mollov, Rajesh K. Gupta, and Steven Swanson. Mone-

ta: A high-performance storage array architecture for

next-generation, non-volatile memories, In Proceedings

of the 43
rd

 International Symposium of Microarchitec-

ture (MICRO), Atlanta, GA, December 2010.

[9] Jeremy Condit, Edmund B. Nightingale, Christopher

Frost, Engin Ipek, Benjamin Lee, Doug Burger, and

Derrick Coetzee. Better I/O through byte-addressable,

persistent memory. In Proceedings of the Symposium

on Operating Systems Principles (SOSP), pages 133–

146, Big Sky, MT, October 2009.

[10] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-

Hartman. Linux Device Drivers, 3
rd

 Ed., O’Reilly,

2005.

[11] B. Dieny, R. Sousa, G. Prenat, and U. Ebels, Spin-

dependent phenomena and their implementation in

spintronic devices. In International Symposium on

VLSI Technology, Systems and Applications (VLSI-

TSA), 2008.

[12] Annie Foong, Bryan Veal, and Frank Hady. Towards

SSD-ready enterprise platforms. In Proceedings of the

1
st
 International Workshop on Accelerating Data Man-

agement Systems Using Modern Processor and Storage

Architectures (ADMS), Singapore, September 2010.

[13] William Gropp, Ewing Lusk, Nathan Doss and Antho-

ny Skjellum. A high-performance, portable implemen-

tation of the MPI message passing interface standard.

Parallel Computing, 22:789-828, September 1996.

[14] S. Parkin. Racetrack memory: A storage class memory

based on current controlled magnetic domain wall mo-

tion. In Device Research Conference (DRC), pages 3-

6, 2009.

[15] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and

Jude A. Rivers. Scalable high performance main mem-

ory system using Ph ase-Change Memory technology.

In Proceedings of the 36
th

International Symposium of

Computer Architecture (ISCA), Austin, TX, June 2009.

[16] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner,

Y.-C. Chen, R. M. Shelby, M. Salinga, D. Krebs, S.-H.

Chen, H.-L. Lung, and C. H. Lam. Ph ase-change ran-

dom access memory: A scalable technology. IBM

Journal of Research and Development, 52:465-480,

2008.

[17] Dongjun Shin. SSD. In Linux Storage and Filesystem

Workshop, San Jose, CA, February 2008.

[18] David Sitsky and Kenichi Hayashi. An MPI library

which uses polling, interrupts and remote copying for

the Fujitsu AP1000+. In Proceedings of the 2
nd

 Interna-

tional Symposium on Parallel Architectures, Algo-

rithms, and Networks (ISPAN), Beijing, China, June

1996.

[19] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S.

Williams. The missing memristor found. Nature,

453(7191):80-83, May 2008.

[20] Sayantan Sur, Hyun-Wook Jin, Lei Chai, and Dhaba-

leswar K. Panda. RDMA read based rendezvous proto-

col for MPI over InfiniBand: design alternatives and

benefits. In Proceedings of the 11
th
 Symposium on

Principles and Practice of Parallel Programming

(PPoPP), pages 32-39, New York, NY, March 2006.

[21] Xiaojian Wu and Narasimha Reddy. SCMFS: A file

system for storage class memory. In Proceedings of the

International Conference for High Performance Com-

puting, Networking, Storage and Analysis (SC11), Seat-

tle, WA, November 2011.

* Other names and brands may be claimed as the property of others.

