
!
!
 
 !

•  Hybrid Cost Model: CHY(u, r)  
 represents expected I/O cost!
–  Involves!

–  See the paper for derivation!

Caching less for better performance:  
Balancing cache size and update cost of flash
memory cache in hybrid storage systems!
Yongseok Oh, Jongmoo Choi, Donghee Lee, Sam H. Noh  
University of Seoul, Dankook University, Hongik University (in Seoul, Korea)!

Hybrid Storage System!
•  Combine SSDs and HDDs!
•  SSD-like performance !

!for HDD-like price!
•  SSDs used as Flash Cache!
•  Issues in Flash Cache!
–  Performance!
•  Garbage collection (GC)!

–  Lifetime!
•  Erase count!

Over-Provisioned Space (OPS)! Our Goal: Find Optimal OPS Size!

OP-FCL (Optimal Partitioning-Flash Cache Layer): Workload Dependent Optimal Partitioning!

HDD!

Caching  
Space! OPS!

Flash Cache

Performance Evaluation!

10th USENIX Conference on File and Storage Technologies (FAST’12)!

Hybrid Storage Simulator!
•  CMU DiskSim 4.0+MSR SSD extension!
–  16GB Flash Cache+10K RPM HDDs!!

Flash Cache Layers!
•  FP-FCL (Fixed Partitioning)!
–  Conventional Hybrid Storage!

•  RW-FCL (Read Write Partitioning)!
–  Fixed OPS size with Read/Write Partitioning!

•  OP-FCL (Optimal Partitioning) that we propose!
!
Workload!
•  Exchange Server!
•  See the paper for more results!!

FP-FCL Optimal!

RW-FCL Optimal!

Fixed OPS size!

Performance with 
fixed OPS size!

Less!

Pe
rfo

rm
an

ce
!

Point of Optimal  
Performance!
(Our Goal)!

Overall  
performance!

GC cost!

Cache  
miss rate!

 0
 2
 4
 6
 8

 10
 12
 14
 16

C
ac

he
 S

iz
e

(G
B)

Logical Time

OPS!

Write!

Read!

Dynamic adjustment of OP-FCL!

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 20 40 60 80 100

G
C

 T
im

e
(h

ou
r)

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0 20 40 60 80 100

H
it

R
at

e

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

 0
 20
 40
 60
 80

 100
 120

 0 20 40 60 80 100

Av
er

ag
e

Er
as

e
C

ou
nt

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

 0
 2
 4
 6
 8

 10
 12
 14

 0 20 40 60 80 100

M
ea

n
R

es
p.

 T
im

e
(m

s)

Caching Space (%) in SSD

FP-FCL
RW-FCL
OP-FCL

Conclusion!
• Trade-off exists!
–  Caching Benefit vs. Update Cost!

•  OP-FCL balancing caching space and OPS sizes!
–  Provides near optimal performance!
–  Improves lifetime of Flash Cache!

Conventional Hybrid Storage!
Over-Provisioned  

Space	
 More	

•  Reserved space for GC in Flash Cache!
•  Greatly influence GC cost and hit rate!
•  In typical SSDs OPS size is FIXED to  
 an undisclosed size!
–  Cannot adapt to workload changes & GC cost !!

     





















 













Optimal Point  
at op_u = 64%, !

op_r = 25%!

R
ea

d
C

ac
he

 R
at

io
 (r

)!

Caching Space (u) in SSD!

•  Find u and r resulting in 
 Optimal I/O Cost!

Storage Cost Model!
!
!

e.g.,!
•  Flash access cost!
•  HDD access cost!

Workload Pattern!
!
!
!

e.g., !
•  Hit rate!
•  I/O rate!

•  Periodically calculate expected cost!
•  Find optimal point in cost graph!
–  represent minimal access cost !

Read  
0.64GB

OPS 
1.44GB

Write  
1.92GB!

Flash Cache: e.g., 4GB

36%!

OPS 
1.44GB

Caching Space  
2.56GB

r = 25%!

•  Adjust Flash Cache partition !
–  Based on found u and r values 
!

u = 64%!

75%!

•  Periodically Execute Optimal Partitioning Algorithm!
Hybrid Cost Model: CHY(u, r)!

Read Hit  
Curve!

Write Hit  
Curve!

Read  
0.64GB

OPS 
1.44GB

Write  
1.92GB!

Flash Cache: e.g., 4GB

36%!

op_r = 25%!

•  Adjust Flash Cache partition !
!

op_u = 64%!

75%!

r
 100-r

u

Read
 OPS
Write

100-u

op_u	
 op_r	

•  Flash Cache is divided  
 based on u and r !

Algorithm 1 Optimal Partitioning Algorithm

1: procedure OPTIMAL PARTITIONING

2: step← segment size/total cache size

3: INIT PARMS(op cost, op u, op r)

4: for u← step; u < 1.0; u← u+ step do

5: for r← 0.0; r ≤ 1.0; r← r+ step do

6: cur cost←C
HY

(u, r) ! Call Eq. 6

7: if cur cost < op cost then

8: op cost← cur cost

9: op u← u, op r← r

10: end if

11: end for

12: end for

13: ADJUST CACHE SIZE(op u, op r)

14: end procedure

new period starts. Then, with the hit rate curves gen-
erated by the Workload Tracker in the previous period,
the Partition Resizer gradually adjusts the sizes of the

three spaces, that is, the read and write cache space and
the OPS for the next period. To make the adjustment,

the Partition Resizer determines the optimal u and r as
described in Section 4, and those optimal values in turn

decide the optimal size of the three spaces.

To obtain the optimal u and r, we devise an iterative al-

gorithm presented in Algorithm 1. Starting from u=step,
the outer loop iterates the inner loop increasing u in ‘step’

increments while u is less than 1.0. The two extreme
configurations that we do not consider are where OPS is

0% and 100%. These are unrealistic configurations as
OPS must be greater than 0% to perform garbage collec-
tion, while OPS being 100% would mean that there is no

space to cache data. The inner loop starting from r=0
iterates, calculating the access cost of the hybrid stor-

age system as derived in Equation 6, while increasing r

in ‘step’ increments until r becomes greater or equal to

1.0. The ‘step’ value can be calculated as the segment
size divided by the total cache size, as shown in the sec-

ond line of Algorithm 1. The nested loop iterates N×M

times to calculate the costs, where N is the outer loop

count, 1/step-1, and M is the inner loop count, 1/step+1.
A single cost calculation consists of 10 ADD, 4 SUB, 11
MUL, and 4 DIV operations. Finer ‘step’ values may be

used resulting in finer u and r values, but with increased
cost calculation overhead. However, computational over-

head for executing this algorithm is quite small because
they run once every period and the calculations are just

simple arithmetic operations.

Once the optimal u and r and, in turn, the optimal sizes

are determined, the Partition Resizer starts to progres-
sively adjust the sizes of the three spaces. To increase

OPS size, it gradually evicts data in the read or write
caches. To increase cache space, that is, decrease OPS,

GC is performed to produce empty blocks. These empty
blocks are then used by the read and/or write caches.

The key role of our Mapping Manager is translating

the logical address to a physical location in the flash
cache layer. For this purpose, it maintains a mapping ta-

ble that keeps the translation information. In our imple-
mentation, we keep the mapping information at the last

page of each block. As we consider flash memory blocks
with 64 pages, the overhead is roughly 1.6%. Moreover,
we implement a crash recovery mechanism similar to

that of LFS [27]. If a power failure occurs, it searches
for the most up-to-date checkpoint and goes through a

recovery procedure to return to the checkpoint state.

6 Performance Evaluation

In this section, we evaluate OP-FCL. For comparison, we
also implement two other schemes. The first is the Fixed

Partition-Flash Cache Layer (FP-FCL) scheme. This is
the simplest scheme where the read and write cache is
not distinguished, but unified as a single cache. The OPS

is available with a fixed size. This scheme is used to
mimic a typical SSD of today that may serve as a cache

in a hybrid storage system. Normally, the SSD would not
distinguish read and write spaces and it would have some

OPS, whose size would be unknown. We evaluate this
scheme as we vary the percentage of the caching space

set aside for the (unified) cache. The best of these results
will represent the most optimistic situation in real life

deployment.

The other scheme is the Read and Write-Flash Cache

Layer (RW-FCL) scheme. This scheme is in line with the
observation made by Kgil et al. [11] in that read and write

caches are distinguished. This scheme, however, goes a
step further in that while the sum of the two cache sizes

remain constant, the size between the two are dynami-
cally adjusted for best performance according to the cost
models described in Section 4. For this scheme, the OPS

size would also be fixed as the total read and write cache
size is fixed. We evaluate this scheme as we vary the per-

centage of the caching space set aside for the combined
read and write cache. Initial, all three schemes start with

an empty data cache. For OP-FCL, the initial OPS size
is set to 5% of the total flash memory size.

The experiments are conducted using two sets of
traces. We categorize them based on the size of requests.

The first one, ‘Small Scale’, are workloads that request
less than 100GBs of total data. The other set, ‘Large

Scale’, are workloads with over 100GBs of data requests.
Details of the characteristics of these workloads are in

Table 1.

The first two subsections discuss the performance as-
pects of the two class of workloads. Then, in the next

8

