Consistency Without Ordering

WISC6NSIN Vijay Chidambaram, Tushar Sharma, Andrea Arpaci-Dusseau and Remzi Arpaci-Dusseau

MADIS ON

Motivation Why are ordering points bad?|| No-Order File System (NoFS)

Introduce waiting into file-system code * Employs backpointer-based consistency

Constrain the scheduling of disk writes * Uses non-persistent allocation structures

Increase complexity, leading to bugs

Require lower-level primitives like disk cache flush

SATA/IDE drives known to implement CACHE FLUSH

command incorrectly [1,3,4]

Operating system runs on stack of virtual devices

If a single layer ignores flush commandes, file-system

consistency is compromised

Virtual machines ignore flush commands to batch

writes and improve performance

From VirtualBox [2]: Key Assumption:

“If desired, the virtual disk images can be flushed * Backpointer and block data written atomically
when the guest issues the IDE FLUSH CACHE * Current SCSI drives 520 byte atomic write
command. Normally these requests are ignored for * Future disk drives will potentially provide 4K + 8
improved performance” bytes atomic write

Current state of the art in file-system crash consistency:
Lazy, optimistic file systems

 Write blocks to disk in any order

* No overhead at run-time

* Need expensive scan after crash
 Example: FFS, ext2

Eager, pessimistic file systems

 Employ ordering points in update protocols
* Constant performance penalty at run-time
* Quick recovery after crash

 Example: NTFS, XFS, ZFS, brtfs

Backpointer-based consistency:
Associate each object with its logical identity
Embed a backpointer in each object
Backpointers identify owner object
Data block backpointer points to owner file
File backpointer points to parent directories
Write blocks to disk in any order
Use backpointers to resolve inconsistencies

Is the best of both worlds possible?
Performance benefits of lazy approach with strong
consistency and availability of eager file systems

Backpointers in NOFS Using backpointers Evaluation
to reso IVe | NCO nSiSte N Cies The performance of NoFS compared to ext2 and ext3

Inode 40: / Directory Block N
icronencnmar

, Truncate of file A followed by a write to ext2 MNOFS ™ ext3
Data pointers j&€--==--- : )
empty file B 1
0.8 -
W. In memory: Before update
L

Inode 42: A Inode 43: B

Seq Read SeqWrite RandRead RandWrite File Create File Delete
Reads and writes to 4088 bytes per read or 100K files over 100

normalized throughput
vs ext2

42

0

Data Data 1 GB file write to 1 GB file directories with fsync
Data pointers pointers Backpointer pointers
Sackpointer Focinks )\ _oata ) ( Bk s e o
- Wext2 MNOFS ™ ext3
— FOE
2 08 - o
§ L 06 —
S o 04 - -
. L >
Inode 41: /foo Data Block In memory: After update § 02 -
° o O ] [ [ [
Inode 42: A Inode 43: B S Varmail Webserver Fileserver Sort

H Data blOCk baCprinter Filebench workloads 500 MB of data

The performance of NoFS is similar to that of ext2 and
better than or equal to ext3. File create/delete and
varmail workloads (which include a lot of fsync calls)
show the performance degradation in ext3 due to
ordering points.

@ = =»  Directory block backpointer
®--===2»  Inode backlink

Effect of background scan on write bandwidth

Non-persistent

. 80 -
. Due to a crash, only inode B and the data Z 0 |
. = KT K — A

Allocation structures such as bitmaps cannot be E Zg / \V/ \N/ \N/ \/

trusted after a crash - 8 30 - ¥ v ¥

. _ On disk: After crash a o

Hence, they must be verified before being used £ 20 Background scan every — —-writes starting at 205
NoFS does not maintain on-disk allocation Inode 42: A Inode 43: B 3 13 27 SEEonEs “=-Writes starting at Os

structures. Only in-memory versions are used.
Backpointers allow allocation structures to be
recomputed incrementally in the background after
file-system mount

Background threads use backpointers to determine
allocation status of each object and accordingly Performance cost of stat on unverified inodes

0 30 60 90 120 150 180 210 240 270 300 330
Time (s)

When sequential writes are interleaved with the
background scan, write bandwidth drops to half. Non
interleaved writes achieve full bandwidth.

o))
o

update in-memory structures _ S ~+Total data: 128 MB
< 50 = —Total data: 256 MB
References s 40 - %_ “=Total data: 512 MB
. : : £ &
[1] Abhishek Rajimwale, Vijay Chidambaram, Deepak Ramamurthi, Andrea C. In ext2: ThIS cou Id lead to data corruptlon ‘3’;)_ 30 S
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Coerced Cache Eviction and when A and B both access the data block @ S
Discreet-Mode Journaling: Dealing with Misbehaving Disks. In Proceedings of S 20 A
the International Conference on Dependable Systems and Networks GEJ 10
(DSN’11), Hong Kong, China, June 2011. In NoFS: When A tries to access the data = | . . |
[2] VirtualBox Manual. Responding to guest IDE/SATA flush requests. . . 0 140 550 280 420 £60
hito://www.virtualbox.ore/manual/ch12.html. block, the absence of backpointer is detected e (9
[3] Seagate Forums. ST3250823AS (7200.8) ignores FLUSH CACHE in AHCI .
mode. http://bit.ly/xcSAUV, September 2011. and an error is returnea Running stat on an unverified inode requires checking

[4] R1Soft. Disk Safe Best Practices. http: //wiki.rlsoft.com/display/CDP3/Disk

+SafesBestsPractices. December 2011 it by reading all its data blocks; Once the scan is done,

all inodes are verified, and this cost is not incurred.



