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Motivation Why are ordering points bad?|| No-Order File System (NoFS)

Introduce waiting into file-system code * Employs backpointer-based consistency

Constrain the scheduling of disk writes * Uses non-persistent allocation structures

Increase complexity, leading to bugs

Require lower-level primitives like disk cache flush

SATA/IDE drives known to implement CACHE FLUSH

command incorrectly [1,3,4]

Operating system runs on stack of virtual devices

If a single layer ignores flush commandes, file-system

consistency is compromised

Virtual machines ignore flush commands to batch

writes and improve performance

From VirtualBox [2]: Key Assumption:

“If desired, the virtual disk images can be flushed * Backpointer and block data written atomically
when the guest issues the IDE FLUSH CACHE * Current SCSI drives 520 byte atomic write
command. Normally these requests are ignored for * Future disk drives will potentially provide 4K + 8
improved performance” bytes atomic write

Current state of the art in file-system crash consistency:
Lazy, optimistic file systems

 Write blocks to disk in any order

* No overhead at run-time

* Need expensive scan after crash
 Example: FFS, ext2

Eager, pessimistic file systems

 Employ ordering points in update protocols
* Constant performance penalty at run-time
* Quick recovery after crash

 Example: NTFS, XFS, ZFS, brtfs

Backpointer-based consistency:
Associate each object with its logical identity
Embed a backpointer in each object
Backpointers identify owner object
Data block backpointer points to owner file
File backpointer points to parent directories
Write blocks to disk in any order
Use backpointers to resolve inconsistencies

Is the best of both worlds possible?
Performance benefits of lazy approach with strong
consistency and availability of eager file systems

Backpointers in NOFS Using backpointers Evaluation
to reso IVe | NCO nSiSte N Cies The performance of NoFS compared to ext2 and ext3
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The performance of NoFS is similar to that of ext2 and
better than or equal to ext3. File create/delete and
varmail workloads (which include a lot of fsync calls)
show the performance degradation in ext3 due to
ordering points.
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structures. Only in-memory versions are used.
Backpointers allow allocation structures to be
recomputed incrementally in the background after
file-system mount

Background threads use backpointers to determine
allocation status of each object and accordingly Performance cost of stat on unverified inodes
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When sequential writes are interleaved with the
background scan, write bandwidth drops to half. Non
interleaved writes achieve full bandwidth.
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