Dynamic Block-level Cache Management for Cloud Computing Systems

Dulcardo Arteaga, Douglas Otstott, Ming Zhao
School of Computing and Information Sciences, Florida International University

Background Proposed Solution

= Goal Cloud system using block-level network = Dynamic block-level client-side
* Improve I/O performance of virtual machines storage system caching for cloud computing systems
(VMs) in cloud computing systems using caching | * Unified cache shared by co-hosted VMs
= Background . — to achieve full resource utilization
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commonly used in cloud systems Nl oot ﬁ 8 I/Os from different VMs
* Fast VM migrations : | * (Cache policies for;
o r STORAGE
* Scalability becomes serious issue as the size of VM % e write-through vs. write-back
cloud systems continue to increase oo '
- °* Maintain data consistency by periodically
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* Performance interference across VMs Performance bottleneck

System Design Proposed Approach

= Block device virtualization based caching Cloud system using dm-cache based client-side
* Device-mapper is a generic framework for creating block-level caching

virtual block devices

°* DM-cache provide a generic block-level disk cache for
network storage systems

= Unified cache for co-hosted VMs Target
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Experimental Evaluation

Conclusion and Future Work

= Experiment setup: » Conclusions
* SSD devices for local cache Multiple VMs booting from . . .
| Shared Cache e Dm-cache effectively uses client-side
* ISCSI for network storage storage to exploit locality for multiple VMs
°* Benchmarks: 35 --cache cold running on the same physical host
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