Dynamic Block-level Cache Management for Cloud Computing Systems

Dulcardo Arteaga, Douglas Otstott, Ming Zhao
School of Computing and Information Sciences, Florida International University

Background Proposed Solution

= Goal Cloud system using block-level network = Dynamic block-level client-side
* Improve I/O performance of virtual machines storage system caching for cloud computing systems
(VMs) in cloud computing systems using caching | * Unified cache shared by co-hosted VMs
= Background . — to achieve full resource utilization
. arge - . . .
* Block-level network storage (iSCSI, NBD, SAN) f: AWM ’ * Ability to differentiate and isolate block
commonly used in cloud systems Nl oot ﬁ 8 I/Os from different VMs
* Fast VM migrations : | * (Cache policies for;
o r STORAGE
* Scalability becomes serious issue as the size of VM % e write-through vs. write-back
cloud systems continue to increase oo '
- °* Maintain data consistency by periodically
* Bottleneck in shared network storage
| 9 Shared Storage flushing write-back-cached data
* Performance interference across VMs Performance bottleneck

System Design Proposed Approach

= Block device virtualization based caching Cloud system using dm-cache based client-side
* Device-mapper is a generic framework for creating block-level caching

virtual block devices

°* DM-cache provide a generic block-level disk cache for
network storage systems

= Unified cache for co-hosted VMs Target
* Create per-VM virtual block device through dm-cache in 8
order to differentiate block-level 1/Os from different o> 7 VM
5~/
VMs §$§/ /dev/Iv-disk# \
* Map the different virtual block devices to the same : STORAGE
cache device in order to maximize the cache utilization i | Host 1
,' (/dev/imapper/cachet#)
. |
IV | <= | VirtualCache | 4= | Source Device i
Device |
VM Logical device-mapper iISCSI/SAN n
volume I VM
Cache Device Shared Storage
Host2 Performance improved

dm-cache

Experimental Evaluation

Conclusion and Future Work

= Experiment setup: » Conclusions
* SSD devices for local cache Multiple VMs booting from . . .
| Shared Cache e Dm-cache effectively uses client-side
* ISCSI for network storage storage to exploit locality for multiple VMs
°* Benchmarks: 35 --cache cold running on the same physical host
= JOzone read/re-read 30 \ =cache warm e SSD-based results show a performance
.] —_ ‘/0 . 0 -
= Boot multiple VMs using share cache . / \ +no cache improvement of 43% when booting VMs
o 25 . ~ concurrently
Read Performance <)) \
With dm-cache E 20 R m Future Work
o000 N\ e e Implement more intelligent algorithm for
T oo N 2000-10000 "é = shared cache partitioning while
g oo || @ guaranteeing fairness across all VMs
2 u 40005000 o Consider the unique characteristics of SSDs
g 5 devices and design optimized caching
100(()) 64 = 0-1000 pOlICIGS
64 128 16 O
S oa e o Jranster 0 5 4 6 3 e Consider cross-client cooperative caching to
096 8192 .0, Size (Kb i i ..
File Size (Kb) _ _ further improve caching efficiency
of Virtual Machines

This work IS partly

‘/I S A Virtualized Infrastructure, Systems & Applications sworsore by ait gonstor
(VISA) Research Laboratory (http://visa.cis.fiu.edu) povider —company i

Netherlands.

