
CASE: Exploiting Content Redundancy for Improving Space Efficiency and
Benchmarking Accuracy in Storage Emulation

Lei Tian (presenter)
University of Nebraska-Lincoln

Hong Jiang
University of Nebraska-Lincoln

1 Introduction

For decades, benchmarking file and storage systems re-
mains a difficult task for evaluators and practitioners
alike, where the obtained evaluation results are often
considered inaccurate, incomplete and sometimes mis-
leading [1, 2]. To offer realistic, interactive, compre-
hensive evaluations, storage emulation, a technique that
allows simulated storage components to be plugged into
real systems to run real applications, has become a prac-
tically feasible and attractive benchmarking solution.

To date, we observe that in practice many benchmarks
and applications are very sensitive to and rely on the
contents of data sets as input. They usually have very
different demands for computational power and stor-
age space depending on the data contents. Taking a
commonly-used compression applicationtar as a sim-
ple storage benchmarking example, we compress three
bitmap image files (“animation.bmp”, “wolf.bmp”, and
“white.bmp” respectively, 2400×1920 resolution, file
size of 13,824,054 bytes), and use a block layer trac-
ing utility (blktrace to collect the detailed information
of I/O requests during saving compressed files. The re-
sults shown in Figure 1 indicate that the compression
times and resulting I/O patterns may significantly differ-
entiate from each other as a function of different image
contents. More importantly, without storing the exact
data contents, it is highly likely for tar to report errors
and then fail to complete when it is used to evaluate
the compressing performance in storage benchmarking.
Further, modern-day file systems have become increas-
ingly content-sensitive since they employ content-based
technologies such as checksum, crypto, and compres-
sion to satisfy the demanding requirements for high reli-
ability, security and storage efficiency.

Therefore, we argue, to retain the exact data contents
of datasets used in storage systems evaluations is a ne-
cessity for content-sensitive applications, benchmarks,
and file systems. Otherwise, it will be very prone to
either overestimating or underestimating the real per-
formance of storage systems. This in turn can mis-
lead designers and administrators to draw incorrect con-
clusions when such content-sensitive applications and
benchmarks are used but without the input of the ex-
act data contents. Therefore, how to provide a space-

efficient storage system evaluation platform while stor-
ing the exact data contents becomes a challenging but
imperative problem that must be addressed.

2 Design and Implementation
To this end, we proposeCASE, a flexible content-aware
and space-efficient storage emulator for benchmarking.
The basic idea behind CASE is simple: it deploys the
data deduplication technique to eliminate duplicates to
achieve the goal of space saving for content-sensitive ap-
plications and benchmarks. CASE is inspired by two
key observations: (1) the ubiquitous data redundancy
in real-world workloads. A recent study of the work-
loads obtained from a virtual machine running two web
servers (“web”), an email server (“mail”), and a file
server (“homes”), shows that the unique writes account
for 42.35%, 7.83%, and66.37% of the total writes under
the web, mail, and homes workloads respectively [3];
and (2) the very high level of data redundancy in most,
if not all, existing benchmarking tools. For example,
Postmark, Filebench, and IOmeter) opt to use a com-
mon data buffer to temporally store read/written data for
each request. They usually initialize the data buffer with
all zeros in the initialization phase, and then issue I/O
requests with this buffer repetitively.

CASE is designed to be a timing-accurate block-level
storage emulator beneath the standard SCSI storage pro-
tocol, while performing inline data deduplication for the
space-reduction purpose that is transparent to the up-
per file systems and applications to be benchmarked. In
particular, a pure block-level storage emulation design
makes CASE independent of any upper file system and
database. We can install and benchmark any type of file
systems or databases on CASE without any constraint
on and modification to them.

Figure 2 shows an architectural view of CASE. Be-
neath a SCSI target subsystem layer, CASE interprets
and responds to the SCSI commands to emulate a SCSI
disk. CASE consists of three main functional modules:
Request Handler, Timing Service, andStorage Service.
Request Handler is responsible for receiving and en-
queuing I/O requests from the upper layer and, after pro-
cessing, forwarding them to the other two modules. Re-
quest Handler is also responsible for dequeuing the I/O
requests and returning the status (and the corresponding

1



Figure 1: Distribution of IOs of file compressions as a function of different image contents.

HDD 

Spec.
RAID

Spec.SSD RAM

FC

Target 

Driver

Remote SCSI Initiators

Local SCSI Initiators

SCSI Subsystem

SAS

Target 

Driver

iSCSI

Target 

Driver

General SCSI Target SubSystem

Request Handler

Timing Service
User 

Space
DiskSim Simulator

Fingerprint 

Store
Mapping

Table

Kernel

Space

Storage Service

Data Store

Figure 2: The CASE architecture.

data for reads) to the upper layer, after they are properly
processed by the other two modules.

The function of Timing Service is to compute the re-
sponse time for every incoming I/O request by simu-
lating the I/O behaviors of the targeted storage devices
with a simulation engine, and then inform CASE of the
exact completion time according to the obtained time
delay. Similar to Memulator [4], CASE uses the well-
known storage system simulator, DiskSim [5], to sim-
ulate the target storage components and devices. We
choose DiskSim as the simulation engine to provide tim-
ing control for two main reasons: 1) DiskSim has been
the most commonly used storage simulator because of
its calibrated device models and recognized simulation
accuracy; and 2) DiskSim is highly configurable. Its hi-
erarchical framework can support multiple layers of var-
ious storage components (e.g., buses, controllers, HDDs,
SSDs, and RAIDs) and specification parameters can be
tuned on demand. By integrating DiskSim into the Tim-
ing Service module, CASE is capable of performing
timing-accurate storage emulation with a flexible sup-
port of various types of storage components and their
combinations.

For space efficiency, CASE generates fingerprints for

each write request and lookups them in a fingerprint
store to eliminate duplicate writes and minimize foot-
prints of workloads. For each read request, CASE relies
on a special two-tiered address-mapping table to retrieve
corresponding data from the underlying storage device,
and reports the completion with the data and status.

3 Conclusion
The content-aware, albeit semantic-oblivious, feature of
CASE enables it to significantly reduce storage space
requirements for both content-sensitive and content-
insensitive applications and benchmarks, without the
substantial burden of file system semantics awareness
and conveyance necessary for the semantic-aware stor-
age emulation approaches. We prototype CASE and pre-
liminary experimental results demonstrate its potential
power. The experimental results show that it can re-
duce storage requirements by up to 2 orders of magni-
tude while reducing the write traffic by up to85.4%.

References
[1] Avishay Traeger, Erez Zadok, Nikolai Joukov, and

Charles P. Wright. A Nine Year Study of File Sys-
tem and Storage Benchmarking.ACM Transactions
on Storage, 4(2):25–80, 2008.

[2] V. Tarasov, S. Bhanage, E. Zadok, and M. Seltzer.
Benchmarking file system benchmarking: It *is*
rocket science. InHotOS XIII, May 2011.

[3] Ricardo Koller and Raju Rangaswami. I/o dedu-
plication: utilizing content similarity to improve i/o
performance. InFAST’10, 2010.

[4] John Linwood Griffin, Jiri Schindler, Steven W.
Schlosser, John C. Bucy, and Gregory R. Ganger.
Timing-accurate storage emulation. InFAST ’02,
Berkeley, CA, USA, January 2002.

[5] John S. Bucy, Jiri Schindler, Steven W. Schlosser,
Gregory R. Ganger, and Contributors. The disksim
simulation environment version 4.0 reference man-
ual. Technical Report CMU-PDL-08-101, Carnegie
Mellon University Parallel Data Lab, May 2008.

2


	Introduction
	Design and Implementation
	Conclusion

