
conference

proceedings

FAST ’11:
9th USENIX
Conference on
File and Storage
Technologies

San Jose, CA, USA
February 15–17, 2011

Proceedings of FA
ST ’11: 9th U

SEN
IX Conference on File and Storage Technologies

San Jose, CA
, USA

February 15–17, 2011
Sponsored by

USENIX
in cooperation with
ACM SIGOPS

© 2011 by The USENIX Association
All Rights Reserved

his volume is published as a collective work. Rights to individual papers
remain with the author or the author’s employer. Permission is granted for
the noncommercial reproduction of the complete work for educational or
research purposes. Permission is granted to print, primarily for one person’s
exclusive use, a single copy of these Proceedings.USENIX acknowledges all
trademarks herein.

ISBN 978-1-931971-82-9

USENIX Association

Proceedings of FAST ’11:

9th USENIX Conference on File and Storage

Technologies

February 15–17, 2011
San Jose, CA, USA

Conference Organizers
Program Co-Chairs
Greg Ganger, Carnegie Mellon University
John Wilkes, Google

Program Committee
Marcos K. Aguilera, Microsoft Research
Cristiana Amza, University of Toronto
John Bent, Los Alamos National Lab
Jeff Chase, Duke University
Jeff Hammerbacher, Cloudera
Steve Hand, University of Cambridge
Wilson Hsieh, Google
Arkady Kanevsky, VMware
Christos Karamanolis, VMware
Michael A. Kozuch, Intel Labs Pittsburgh
Carlos Maltzahn, University of California, Santa Cruz
Arif Merchant, Google
Brian Noble, University of Michigan
James Plank, University of Tennessee
Benjamin Reed, Yahoo! Research
Ohad Rodeh, IBM Almaden Research Center
Rob Ross, Argonne National Lab
Karsten Schwan, Georgia Institute of Technology
Keith Smith, NetApp
Eno Thereska, Microsoft Research
Cristian Ungureanu, NEC Labs
Elizabeth Varki, University of New Hampshire
Andrew Warfield, University of British Columbia
Hakim Weatherspoon, Cornell University

Tutorial Chair
David Pease, IBM Almaden Research Center

Steeering Committee
Remzi H. Arpaci-Dusseau, University of Wisconsin—

Madison
Randal Burns, Johns Hopkins University
Greg Ganger, Carnegie Mellon University
Garth Gibson, Carnegie Mellon University and Panasas
Peter Honeyman, CITI, University of Michigan, Ann

Arbor
Kimberly Keeton, HP Labs
Darrell Long, University of California, Santa Cruz
Jai Menon, IBM Research
Erik Riedel, EMC
Margo Seltzer, Harvard School of Engineering and

Applied Sciences
Chandu Thekkath, Microsoft Research
Ric Wheeler, Red Hat
John Wilkes, Google
Ellie Young, USENIX Association

The USENIX Association Staff

External Reviewers
Nitin Agrawal
Akshat Aranya
Rico D’Amore
Mikkel Hagen
Tim Harris
Allen Hubbe

Erik Kruus
Mark Lillibridge
Grant Mackey
Adam Manzanares
Dutch T. Meyer
Sigfredo Nin

James Nunez
Milo Polte
Bianca Schroeder
Mustafa Uysal
Adam Villa

FAST ’11: 9th USENIX Conference on File and Storage Technologies
February 15–17, 2011
San Jose, CA, USA

Message from the Program Co-Chairs . v

Wednesday, February 16

Deduplication

A Study of Practical Deduplication .1
Dutch T. Meyer, Microsoft Research and the University of British Columbia; William J. Bolosky, Microsoft
Research

Tradeoffs in Scalable Data Routing for Deduplication Clusters .15
Wei Dong, Princeton University; Fred Douglis, EMC; Kai Li, Princeton University and EMC; Hugo Patterson,
Sazzala Reddy, and Philip Shilane, EMC

Specializing Storage

Capo: Recapitulating Storage for Virtual Desktops . 31
Mohammad Shamma, Dutch T. Meyer, Jake Wires, Maria Ivanova, Norman C. Hutchinson, and Andrew
Warfield, University of British Columbia

Exploiting Half-Wits: Smarter Storage for Low-Power Devices .47
Mastooreh Salajegheh, University of Massachusetts Amherst; Yue Wang, Texas A&M University; Kevin Fu,
University of Massachusetts Amherst; Anxiao (Andrew) Jiang, Texas A&M University; Erik Learned-Miller,
University of Massachusetts Amherst

Consistent and Durable Data Structures for Non-Volatile Byte-Addressable Memory .61
Shivaram Venkataraman, HP Labs, Palo Alto, and University of Illinois at Urbana-Champaign; Niraj Tolia,
Maginatics; Parthasarathy Ranganathan, HP Labs, Palo Alto; Roy H. Campbell, University of Illinois at
Urbana-Champaign

Flash

CAFTL: A Content-Aware Flash Translation Layer Enhancing the Lifespan of Flash Memory based Solid State
Drives .77
Feng Chen, Tian Luo, and Xiaodong Zhang, The Ohio State University

Leveraging Value Locality in Optimizing NAND Flash-based SSDs .91
Aayush Gupta, Raghav Pisolkar, Bhuvan Urgaonkar, and Anand Sivasubramaniam, The Pennsylvania State
University

Reliably Erasing Data from Flash-Based Solid State Drives .105
Michael Wei, Laura Grupp, Frederick E. Spada, and Steven Swanson, University of California, San Diego

The Disk Ain’t Dead

A Scheduling Framework That Makes Any Disk Schedulers Non-Work-Conserving Solely Based on Request
Characteristics . 119
Yuehai Xu and Song Jiang, Wayne State University

Improving Throughput for Small Disk Requests with Proximal I/O . 133
Jiri Schindler, Sandip Shete, and Keith A. Smith, NetApp,Inc.

FastScale: Accelerate RAID Scaling by Minimizing Data Migration . 149
Weimin Zheng and Guangyan Zhang, Tsinghua University

Thursday, February 17

Scaling Well

The SCADS Director: Scaling a Distributed Storage System Under Stringent Performance Requirements 163
Beth Trushkowsky, Peter Bodík, Armando Fox, Michael J. Franklin, Michael I. Jordan, and David A. Patterson,
University of California, Berkeley

Scale and Concurrency of GIGA+: File System Directories with Millions of Files . 177
Swapnil Patil and Garth Gibson, Carnegie Mellon University

AONT-RS: Blending Security and Performance in Dispersed Storage Systems . 191
Jason K. Resch, Cleversafe, Inc.; James S. Plank, University of Tennessee

Making Things Right

Emulating Goliath Storage Systems with David .203
Nitin Agrawal, NEC Laboratories America; Leo Arulraj, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau, University of Wisconsin—Madison

Just-in-Time Analytics on Large File Systems . 217
H. Howie Huang, Nan Zhang, and Wei Wang, George Washington University; Gautam Das, University of Texas
at Arlington; Alexander S. Szalay, Johns Hopkins University

Making the Common Case the Only Case with Anticipatory Memory Allocation . 231
Swaminathan Sundararaman, Yupu Zhang, Sriram Subramanian, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau, University of Wisconsin—Madison

Flash the Second

Exploiting Memory Device Wear-Out Dynamics to Improve NAND Flash Memory System Performance 245
Yangyang Pan, Guiqiang Dong, and Tong Zhang, Rensselaer Polytechnic Institute, USA

FAST: Quick Application Launch on Solid-State Drives .259
Yongsoo Joo, Ewha Womans University; Junhee Ryu, Seoul National University; Sangsoo Park, Ewha Womans
University; Kang G. Shin, Ewha Womans University and University of Michigan

Cost Effective Storage using Extent Based Dynamic Tiering .273
Jorge Guerra, Florida International University; Himabindu Pucha, Joseph Glider, and Wendy Belluomini, IBM
Research Almaden; Raju Rangaswami, Florida International University

Message from the Program Co-Chairs

Dear Colleagues,

We welcome you to the 9th USENIX Conference on File and Storage Technologies (FAST ’11). We are proud to
carry on the FAST tradition of presenting high-quality, innovative file and storage systems research. The program
includes papers on emerging hot topics, with contributions to solid-state storage technology, power-efficient stor-
age systems, and deduplication. It displays the breadth of storage systems research with work on storage in cloud
computing and low-power sensor networks. It also contains significant contributions to the core of the field, includ-
ing disk systems, trace and benchmarking studies, and RAID.

FAST continues to be a premier venue to bring together researchers and practitioners from the academic and indus-
trial communities. This, too, is reflected in the program, which includes a mix of papers from universities, from
companies, and from collaborations between the two arenas.

FAST ’11 received 74 submissions (slightly lower than in previous years), from which 20 papers were selected, for
an acceptance rate of 27%. Every paper received at least three reviews from PC members, and every paper dis-
cussed in the second round—including all the accepted ones—received at least 6 reviews from PC members. For a
few papers, additional external reviews were solicited.

The review process was conducted online over two months and at a program committee meeting held in Moun-
tain View, CA, in November 2010. We again used Eddie Kohler’s HotCRP software to handle paper submissions,
reviews, PC discussion, and notifications. We used a two-round process that relied almost entirely on our excel-
lent program committee for reviews. In the first round, each paper was assigned to three PC members. We then
culled about half the papers and commissioned an additional three PC reviews for the remaining papers. Additional
reviews were obtained for a few controversial papers—those with high variance in reviews. Twenty-four of the
twenty-six PC members attended the PC meeting in person, and one other by video conferencing. The quality of
the conversation at that meeting contributed significantly to the quality of the decisions that we were able to make.

We would like to thank everybody who contributed to assembling this program. First and foremost, we are indebt-
ed to all of the authors who submitted papers to FAST ’11. We had a good body of high-quality work from which
to select our program. We would also like to thank the attendees of FAST ’11 and future readers of these papers.
Together with the authors, you form the FAST community and make storage research vibrant and fun.

We would also like to recognize the contributions of USENIX and the USENIX staff, who make everything else
about assembling a conference program easy. The USENIX staff dealt with innumerable issues large and small and
provided outstanding technical and emotional support. They are a delight to work with, and largely responsible for
the success of FAST this and every year. Thanks!

Finally, we would like to thank the Program Committee members for their countless hours and dedication. Serv-
ing on the FAST PC involves a huge amount of work. Each PC member completed 13 to 15 in-depth reviews of 11+
page papers, as well as participating in the discussions and helping out in other roles such as session chairs, poster/
WiP selection, and choosing the best papers.

We look forward to seeing you in San Jose!

Greg Ganger, Carnegie Mellon University
John Wilkes, Google
Program Co-Chairs

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 1

A Study of Practical Deduplication
Dutch T. Meyer*† and William J. Bolosky*

*Microsoft Research and †The University of British Columbia
{dmeyer@cs.ubc.edu, bolosky@microsoft.com}

Abstract
We collected file system content data from 857 desktop
computers at Microsoft over a span of 4 weeks. We
analyzed the data to determine the relative efficacy of
data deduplication, particularly considering whole-file
versus block-level elimination of redundancy. We
found that whole-file deduplication achieves about
three quarters of the space savings of the most aggres-
sive block-level deduplication for storage of live file
systems, and 87% of the savings for backup images.
We also studied file fragmentation finding that it is not
prevalent, and updated prior file system metadata stud-
ies, finding that the distribution of file sizes continues
to skew toward very large unstructured files.

1 Introduction
File systems often contain redundant copies of infor-
mation: identical files or sub-file regions, possibly
stored on a single host, on a shared storage cluster, or
backed-up to secondary storage. Deduplicating storage
systems take advantage of this redundancy to reduce the
underlying space needed to contain the file systems (or
backup images thereof). Deduplication can work at
either the sub-file [10, 31] or whole-file [5] level. More
fine-grained deduplication creates more opportunities
for space savings, but necessarily reduces the sequential
layout of some files, which may have significant per-
formance impacts when hard disks are used for storage
(and in some cases [33] necessitates complicated tech-
niques to improve performance). Alternatively, whole-
file deduplication is simpler and eliminates file-
fragmentation concerns, though at the cost of some oth-
erwise reclaimable storage.

Because the disk technology trend is toward improved
sequential bandwidth and reduced per-byte cost with
little or no improvement in random access speed, it’s
not clear that trading away sequentiality for space sav-
ings makes sense, at least in primary storage.

In order to evaluate the tradeoff in space savings be-
tween whole-file and block-based deduplication, we

conducted a large-scale study of file system contents on
desktop Windows machines at Microsoft. Our study
consists of 857 file systems spanning 162 terabytes of
disk over 4 weeks. It includes results from a broad
cross-section of employees, including software devel-
opers, testers, management, sales & marketing, tech-
nical support, documentation writers and legal staff.
We find that while block-based deduplication of our
dataset can lower storage consumption to as little as
32% of its original requirements, nearly three quarters
of the improvement observed could be captured through
whole-file deduplication and sparseness. For four
weeks of full backups, whole file deduplication (where
a new backup image contains a reference to a duplicate
file in an old backup) achieves 87% of the savings of
block-based. We also explore the parameter space for
deduplication systems, and quantify the relative bene-
fits of sparse file support. Our study of file content is
larger and more detailed than any previously published
effort, which promises to inform the design of space-
efficient storage systems.

In addition, we have conducted a study of metadata and
data layout, as the last similar study [1] is now 4 years
old. We find that the previously observed trend toward
storage being consumed by files of increasing size con-
tinues unabated; half of all bytes are in files larger than
30MB (this figure was 2MB in 2000). Complicating
matters, these files are in opaque unstructured formats
with complicated access patterns. At the same time
there are increasingly many small files in an increasing-
ly complex file system tree.

Contrary to previous work [28], we find that file-level
fragmentation is not widespread, presumably due to
regularly scheduled background defragmenting in Win-
dows [17] and the finding that a large portion of files
are rarely modified (see Section 4.4.2). For more than a
decade, file system designers have been warned against
measuring only fresh file system installations, since
aged systems can have a significantly different perfor-
mance profile [28]. Our results show that this concern
may no longer be relevant, at least to the extent that the
aging produces file-level fragmentation. Ninety-six

2 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

percent of files observed are entirely linear in the block
address space. To our knowledge, this is the first large
scale study of disk fragmentation in the wild.

We describe in detail the novel analysis optimizations
necessitated by the size of this data set.

2 Methodology
Potential participants were selected randomly from Mi-
crosoft employees. Each was contacted with an offer to
install a file system scanner on their work computer(s)
in exchange for a chance to win a prize. The scanner
ran autonomously during off hours once per week from
September 18 – October 16, 2009. We contacted 10,500
people in this manner to reach the target study size of
about 1000 users. This represents a participation rate of
roughly 10%, which is smaller than the rates of 22% in
similar prior studies [1, 9]. Anecdotally, many potential
participants declined explicitly because the scanning
process was quite invasive.

2.1 File system Scanner
The scanner first took a consistent snapshot of fixed
device (non-removable) file systems with the Volume
Shadow Copy Service (VSS) [20]. VSS snapshots are
both file system and application consistent1. It then
recorded metadata about the file system itself, including
age, capacity, and space utilization. The scanner next
processed each file in the snapshot, writing records to a
log. It recorded Windows file metadata [19], including
path, file name and extension, time stamps, and the file
attribute flags. It recorded any retrieval and allocation
pointers, which describe fragmentation and sparseness
respectively. It also recorded information about the
whole system, including the computer’s hardware and
software configuration and the time at which the
defragmentation tool was last run, which is available in
the Windows registry. We took care to exclude from
study the pagefile, hibernation file, the scanner itself,
and the VSS snapshots it created.

During the scan, we recorded the contents of each file
first by breaking the file into chunks using each of two
chunking algorithms (fixed block and Rabin finger-
printing [25]) with each of 4 chunk size settings (8K-
64K in powers of two) and then computed and saved
hashes of each chunk. We found whole file duplicates
in post-processing by identifying files in which all

1 “Application consistent” means that VSS-aware appli-
cations have an opportunity to save their state cleanly
before the snapshot is taken.

chunks matched. In addition to reading the ordinary
contents of files we also collected a separate set of
scans where the files were read using the Win32 Back-
upRead API [16], which includes metadata about the
file and would likely be the format used to store file
system backups.

We used salted MD5 [26] as our hash algorithm, but
truncated the result to 48 bits in order to reduce the size
of the data set. The Rabin-chunked data with an 8K
target chunk size had the largest number of unique
hashes, somewhat more than 768M. We expect that
about two thousand of those (0.0003%) are false
matches due to the truncated hash.

Another process copied the log files to our server at
midnight on a random night of the week to help smooth
the considerable network traffic. Nevertheless, the cop-
ying process resulted in the loss of some of the scans.
Because the scanner placed the results for each of the
32 parameter settings into separate files and the copying
process worked at the file level, for some file systems
we have results for some, but not all of the parameter
settings. In particular, larger scan files tended to be par-
tially copied more frequently than smaller ones, which
may result in a bias in our data where larger file sys-
tems are more likely to be excluded. Similarly, scans
with a smaller chunk size parameter resulted in larger
size scan files and so were lost at a higher rate.

2.2 Post Processing
At the completion of the study the resulting data set was
4.12 terabytes compressed, which would have required
considerable machine time to import into a database. As
an optimization, we observed that the actual value of
any unique hash (i.e., hashes of content that was not
duplicated) was not useful to our analyses.

To find these unique hashes quickly we used a novel 2-
pass algorithm. During the first pass we created a 2 GB
Bloom filter [4] of each hash observed. During this
pass, if we tried to insert a value that was already in the
Bloom filter, we inserted it into a second Bloom filter
of equal size. We then made a second pass through the
logs, comparing each hash to the second Bloom filter
only. If it was not found in the second filter, we were
certain that the hash had been seen exactly once and
could be omitted from the database. If it was in the fil-
ter, we concluded that either the hash value had been
seen more than once, or that its entry in the filter was a
collision. We recorded all of these values to the data-
base. Thus this algorithm was sound, in that it did not
impact the results by rejecting any duplicate hashes.

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 3

However it was not complete despite being very effec-
tive, in that some non-duplicate hashes may have been
added to the database even though they were not useful
in the analysis. The inclusion of these hashes did not
affect our results, as the later processing ignored them.

2.3 Biases and Sources of Error
The use of Windows workstations in this study is bene-
ficial in that the results can be compared to those of
similar studies [1, 9]. However, as in all data sets, this
choice may introduce biases towards certain types of
activities or data. For example, corporate policies sur-
rounding the use of external software and libraries
could have impacted our results.

As discussed above, the data retrieved from machines
under observation was large and expensive to generate
and so resulted in network timeouts at our server or
aborted scans on the client side. While we took
measures to limit these effects, nevertheless some
amount of data never made it to the server, and more
had to be discarded as incomplete records. Our use of
VSS makes it possible for a user to selectively remove
some portions of their file system from our study.

We discovered a rare concurrency bug in the scanning
tool affecting 0.003% of files. While this likely did not
affect results, we removed all files with this artifact.

Our scanner was unable to read the contents of Win-
dows system restore points, though it could see the file
metadata. We excluded these files from the deduplica-
tion analyses, but included them in the metadata anal-
yses.

3 Redundancy in File Contents
Despite the significant declines in storage costs per GB,
many organizations have seen dramatic increases in
total storage system costs [21]. There is considerable
interest in reducing these costs, which has given rise to
deduplication techniques, both in the academic com-
munity [6] and as commercial offerings [7, 10, 14, 33].
Initially, the interest in deduplication has centered on its
use in “embarrassingly compressible” scenarios, such
as regular full backups [3, 8] or virtual desktops [6, 13].
However, some have also suggested that deduplication
be used more widely on general purpose data sets [31].

The rest of this section seeks to provide a well-founded
measure of duplication rates and compare the efficacy
of different parameters and methods of deduplication.
In Section 3.1 we provide a brief summary of dedupli-

cation, and in Section 3.2 we discuss the performance
challenges deduplication introduces. In Section 3.3 we
share observed duplication rates across a set of work-
stations. Finally, Section 3.4 measures duplication in
the more conventional backup scenario.

3.1 Background on Deduplication
Deduplication systems decrease storage consumption
by identifying distinct chunks of data with identical
content. They then store a single copy of the chunk
along with metadata about how to reconstruct the origi-
nal files from the chunks.

Chunks may be of a predefined size and alignment, but
are more commonly of variable size determined by the
content itself. The canonical algorithm for variable-
sized content-defined blocks is Rabin Fingerprints [25].
By deciding chunk boundaries based on content, files
that contain identical content that is shifted (say be-
cause of insertions or deletions) will still result in
(some) identical chunks. Rabin-based algorithms are
typically configured with a minimum and maximum
chunk size, as well as an expected chunk size. In all
our experiments, we set the minimum and maximum
parameters to 4K and 128K, respectively while we var-
ied the expected chunk size from 8K to 64K by powers-
of-two.

3.2 The Performance Impacts of
Deduplication
Managing the overheads introduced by a deduplication
system is challenging. Naively, each chunk’s finger-
print needs to be compared to that of all other chunks.
While techniques such as caches and Bloom filters can
mitigate overheads, the performance of deduplication
systems remains a topic of research interest [32]. The
I/O system also poses a performance challenge. In addi-
tion to the layer of indirection required by deduplica-
tion, deduplication has the effect of de-linearizing data
placement, which is at odds with many data placement
optimizations, particularly on hard-disk based storage
where the cost for non-sequential access can be orders
of magnitude greater than sequential.

Other more established techniques to reduce storage
consumption are simpler and have smaller performance
impact. Sparse file support exists in many file systems
including NTFS [23], XFS [29], and ext4 [15] and is
relatively simple to implement. In a sparse file a chunk
of zeros is stored notationally by marking its existence
in the metadata, removing the need to physically store
it. Whole file deduplication systems, such as the Win-
dows SIS facility [5] operate by finding entire files that

4 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Extension % of Dupli-
cate Space

Mean File
Size (bytes)

dll 20% 521K
lib 11% 1080K
pdb 11% 2M
<none> 7% 277K
exe 6% 572K
cab 4% 4M
msp 3% 15M
msi 3% 5M
iso 2% 436M
<a guid> 1% 604K
hxs 1% 2M
xml 1% 49K
jpg 1% 147K
wim 1% 16M
h 1% 23K
Table 1: Whole File Duplicates by Extension

Figure 4: CDF of File System Capacity

Extension Fixed % Extension Rabin %
vhd 3.6% vhd 5.2%
pch 0.5% lib 1.6%
dll 0.5% obj 0.8%
pdb 0.4% pdb 0.6%
lib 0.4% pch 0.6%
wma 0.3% iso 0.6%
pst 0.3% dll 0.6%
<none> 0.3% avhd 0.5%
avhd 0.3% wma 0.4%
mp3 0.3% wim 0.4%
pds 0.2% zip 0.3%
iso 0.2% pst 0.3%
Table 2: Non-whole File, Non-Zero Duplicate
Data as a Fraction of File System Size by File

Extension, 8K Fixed and Rabin Chunking

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 100 200 300 400 500 600 700
Capacity (GB)

2009 2004 2000

Figure 1: Deduplication vs. Chunk Size for Various

Algorithms

Figure 2: Deduplication vs. Deduplication Domain

Size

Figure 3: CDF of Bytes by Containing File Size for

Whole File Duplicates and All Files

0%

10%

20%

30%

40%

50%

60%

64K 32K 16K 8K

De
du

pe
d/

un
de

du
pe

d
si

ze

Chunk Size

Whole File Fixed-Block Rabin

0%
10%
20%
30%
40%
50%
60%
70%
80%

De
du

pe
d/

un
de

du
pe

d
si

ze

Deduplication Domain Size (file systems)

Whole File 64 KB Fixed 8KB Fixed

64KB Rabin 8KB Rabin

0%

20%

40%

60%

80%

100%

16K 128K 1M 8M 64M 512M 4G
Containing File Size (bytes)

Duplicates All files

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 5

are duplicates and replacing them by copy-on-write
links. Although SIS does not reduce storage consump-
tion as much as a modern deduplication system, it
avoids file allocation concerns and is far less computa-
tionally expensive than more exhaustive deduplication.

3.3 Deduplication in Primary Storage
Our data set includes hashes of data in both variable
and fixed size chunks, and of varying sizes. We chose a
single week (September 18, 2009) from this dataset and
compared the size of all unique chunks to the total con-
sumption observed. We had two parameters that we
could vary: the deduplication algorithm/parameters and
the set of file systems (called the deduplication domain)
within which we found duplicates; duplicates in sepa-
rate domains were considered to be unique contents.

The set of file systems included corresponds to the size
of the file server(s) holding the machines’ file systems.
A value of 1 indicates deduplication running inde-
pendently on each desktop machine. “Whole Set”
means that all 857 file systems are stored together in a
single deduplication domain. We considered all power-
of-two domain sizes between 1 and 857. For domain
sizes other than 1 or 857, we had to choose which file
systems to include together into particular domains and
which to exclude when the number of file systems
didn’t divide evenly by the size of the domain. We did
this by using a cryptographically secure random num-
ber generator. We generated sets for each domain size
ten times and report the mean of the ten runs. The
standard deviation of the results was less than 2% for
each of the data points, so we don’t believe that we
would have gained much more precision by running
more trials2.

Rather than presenting a three dimensional graph vary-
ing both parameters, we show two slices through the
surface. In both cases, the y-axis shows the deduplicat-
ed file system size as a percentage of the original file
system size. Figure 1 shows the effect of the chunk size
parameter for the fixed and Rabin-chunked algorithms,
and also for the whole file algorithm (which doesn’t
depend on chunk size, and so varies only slightly due to
differences in the number of zeroes found and due to
variations in which file systems scans copied properly;
see Section 3.2). This graph assumes that all file sys-
tems are in a single deduplication domain; the shape of
the curve is similar for smaller domains, through the
space savings are reduced.

2 As it was, it took about 8 machine-months to do the
analyses.

Figure 2 shows the effect changing the size of the
deduplication domains. Space reclaimed improves
roughly linearly in the log of the number of file systems
in a domain. Comparing single file systems to the
whole set, the effect of grouping file systems together is
larger than that from the choice of chunking algorithm
or chunk size, or even of switching from whole file
chunking to block-based.

The most aggressive chunking algorithm (8K Rabin)
reclaimed between 18% and 20% more of the total file
size than did whole file deduplication. This offers weak
support for block-level deduplication in primary stor-
age. The 8K fixed block algorithm reclaimed between
10% and 11% more space than whole file. This ca-
pacity savings represents a small gain compared to the
performance and complexity of introducing advanced
deduplication features, especially ones with dynamical-
ly variable block sizes like Rabin fingerprinting.

Table 1 shows the top 15 file extensions contributing to
duplicate content for whole file duplicates, the percent-
age of duplicate space attributed to files of that type,
and the mean file size for each type. It was calculated
using all of the file systems in a single deduplication
domain. The extension marked <a guid> is a particular
globally unique ID that’s associated with a widely dis-
tributed software patch. This table shows that the sav-
ings due to whole file duplicates are concentrated in
files containing program binaries: dll, lib, pdb, exe, cab,
msp, and msi together make up 58% of the saved space.

Figure 3 shows the CDF of the bytes reclaimed by
whole file deduplication and the CDF of all bytes, both
by containing file size. It shows that duplicate bytes
tend to be in smaller files than bytes in general. Anoth-
er way of looking at this is that the very large file types
(virtual hard disks, database stores, etc.) tend not to
have whole-file copies. This is confirmed by Table 1.

Table 2 shows the amount of duplicate content not in
files with whole-file duplicates by file extension as a
fraction of the total file system content. It considers the
whole set of file systems as a single deduplication do-
main, and presents results with an 8K block size using
both fixed and Rabin chunking. For both algorithms,
by far the largest source of duplicate data is VHD (vir-
tual hard drive) files. Because these files are essentially
disk images, it’s not surprising both that they contain
duplicate data and also that they rarely have whole-file
duplicates. The next four file types are all compiler
outputs. We speculate that they generate block-aligned
duplication because they have header fields that con-
tain, for example, timestamps but that their contents is

6 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

otherwise deterministic in the code being compiled.
Rabin chunking may find blocks of code (or symbols)
that move somewhat in the file due to code changes that
affect the length of previous parts of the file.

3.4 Deduplication in Backup Storage
Much of the literature on deduplication to date has re-
lied on workloads consisting of daily full backups [32,
33]. Certainly these workloads represent the most at-
tractive scenario for deduplication, because the content
of file systems does not change rapidly. Our data set
did not allow us to consider daily backups, so we con-
sidered only weekly ones.

With frequent and persistent backups, the size of histor-
ical data will quickly out-pace that of the running sys-
tem. Furthermore, performance in secondary storage is
less critical than in that of primary, so the reduced se-
quentiality of a block-level deduplicated store is of
lesser concern. We considered the 483 file systems for
which four continuous weeks of complete scans were
available, starting with September 18, 2009, the week
used for the rest of the analyses.

Our backup analysis considers each file system as a
separate deduplication domain. We expect that com-
bining multiple backups into larger domains would
have a similar effect to doing the same thing for prima-
ry storage, but we did not run the analysis due to re-
source constraints.

In practice, some backup solutions are incremental (or
differential), storing deltas between files, while others
use full backups. Often, highly reliable backup policies
use a mix of both, performing frequent incremental
backups, with occasional full backups to limit the po-
tential for loss due to corruption. Thus, the meaning of
whole-file deduplication in a backup store is not imme-
diately obvious. We ran the analysis as if the backups
were stored as simple copies of the original file sys-
tems, except that the contents of the files was the output
from the Win32 BackupRead [16] call, which includes
some file metadata along with the data. For our pur-
poses, imagine that the backup format finds whole file
duplicates and stores pointers to them in the backup
file. This would result in a garbage collection problem
for the backup files when they’re deleted, but the details
of that are beyond the scope of our study and are likely
to be simpler than a block-level deduplicating store.

Using the Rabin chunking algorithm with an 8K ex-
pected chunk size, block-level deduplication reclaimed
83% of the total space. Whole file deduplication, on

the other hand, yielded 72%. These numbers, of
course, are highly sensitive to the number of weeks of
scans used in the study; it’s no accident that the results
were around ¾ of the space being claimed when there
were four weeks of backups. However, one should not
assume that because 72% of the space was reclaimed by
whole file deduplication that only 3% of the bytes were
in files that changed. The amount of change was larger
than that, but the deduplicator found redundancy within
a week as well and the two effects offset.

4 Metadata
This paper is the 3rd major metadata study of Windows
desktop computers [1, 9]. This provides a unique per-
spective in the published literature, as we are able to
track more than a decade of trends file and file system
metadata. On a number of graphs, we took the lines
from 2000 and 2004 from an earlier study [1] and plot-
ted them on our graphs to make comparisons easier.
Only the 2009 data is novel to this paper. Some graphs
contain both CDF and histogram lines. In these graphs,
the CDF should be read from the left-hand y-scale and
the histogram from the right. We present much of our
data in the form of cumulative density function plots.
These plots make it easy to determine the distributions,
but do not easily show the mean. Where appropriate,
we list the mean of the distribution in the text.

Figure 5: CDF of File Systems by Fullness

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% Full

2009 2004 2000

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 7

Figure 9: CDF of Directories by Count of Subdi-

rectories

Figure 10: Files by Directory Depth

Figure 11: Bytes by Directory Depth

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 5 10
Subdirectories/Directory

2009 2004 2000

0%

2%

4%

6%

8%

10%

12%

14%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 5 10 15 20
Directory Depth

CDF Histogram

0%
2%
4%
6%
8%
10%
12%
14%
16%
18%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 5 10 15 20
Directory Depth

CDF Histogram

Figure 6: CDF of File Systems by Count of Files

Figure 7: CDF of File Systems by Count of Direc-

tories

Figure 8: CDF of Directories by Count of Files

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 250 500 750 1000 1250
Files (1000s)

2009 2004 2000

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 25 50 75 100 125 150 175 200
Directories (1000s)

2009 2004 2000

0%

20%

40%

60%

80%

100%

0 10 20 30 40
Files/Directory

2009 2004 2000

8 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

4.1 Physical Machines
Our data set contains scans of 857 file systems hosted
on 597 computers. 59% were running Windows 7, 20%
Windows Vista, 18% Windows Server 2008 and 3%
Windows Server 2003. They had a mean and median
physical RAM of about 4GB, and ranged from 1-10GB.
5% had 8 processors, 44% 4, 49% 2 and 3% were
uniprocessors3.

4.2 File systems
We analyze file systems in terms of their age, capacity,
fullness, and the number of files and directories. We
present our results, interpretations, and recommenda-
tions to designers in this section.

4.2.1 Capacity
The mean file system capacity is 194GB. Figure 4
shows a cumulative density function of the capacities of
the file systems in the study. It shows a significant in-
crease in the range of commonly observed file system
sizes and the emergence of a noticeable step function in
the capacities. Both of these trends follow from the
approximately annual doubling of physical drive capac-
ity. We expect that this file system capacity range will
continue to increase, anchored by smaller SSDs on the
left, and continuing step wise towards larger magnetic
devices on the right. This will either force file systems
to perform acceptably on an increasingly wide range of
media, or push users towards more highly tuned special
purpose file systems.

4.2.2 Utilization
Although capacity has increased by nearly two orders
of magnitude since 2000, utilization of capacity has
dropped only slightly, as shown in Figure 5. Mean uti-
lization is 43%, only somewhat less than the 53% found
in 2000. No doubt this is the result of both users adapt-
ing to their available space and hard drive manufactur-
ers tracking the growth in data. The CDF shows a near-
ly linear relationship, with 50% of users having drives
no more than 40% full, 70% at less than 60% utiliza-
tion, and 90% at less than 80%. Proposals to take ad-
vantage of the unused capacity of file systems [2, 11]
must be cautious that they only assume scaling of the
magnitude of free space, not the relative portion of the
disk that is free. System designers also must take care
not to ignore the significant contingent (15%) of all
users with disks more than 75% full.

3 The total is 101% due to rounding error.

4.3 File system Namespace
Recently, Murphy and Seltzer have questioned the mer-
its of hierarchical file systems [22], based partly on the
challenge of managing increasing data sizes. Our analy-
sis shows many ways in which namespaces have be-
come more complex. We have observed more files,
more directories, and an increase in namespace depth.
While a rigorous comparison of namespace organiza-
tion structures is beyond the scope of this paper, the
increase in namespace complexity does lend evidence
to the argument that change is needed in file system
organization. Both file and directory counts show a
significant increase from previous years in Figures 6
and 7 respectively, with a mean of 225K files and 36K
directories per file system.

The CDF in Figure 8 shows the number of files per
directory. While the change is small, it is clear – even
as users in 2009 have more files, they have fewer files
per directory, with a mean of 6.25 files per directory.

Figure 9 shows the distribution of subdirectories per
directory. Since the mean subdirectories per directory
is necessarily one4, the fact that the distribution is more
skewed toward smaller sizes indicates that the directory
structure is deeper with a smaller branching factor.
However, the exact interpretation of this result warrants
further study. It is not clear if this depth represents a
conscious organization choice, is the result of users
being unable effectively to organize their hierarchical
data or is simply due to the design of the software that
populates the tree. Figure 10 shows the histogram and
CDF of files by directory depth for the 2009 data; simi-
lar results were not published in the earlier studies.

The histogram in Figure 11 shows how the utilization
of storage is related to namespace depth. There is a
steep decline in the number of bytes stored more than 5
levels deep in the tree. However, as we will see in Sec-
tion 4.4, this does not mean the deeply nested files are
unimportant. Comparing it with Figure 10 shows that
files higher in the directory tree are larger than those
deeper.

4.4 Files
Our analysis of files in the dataset shows distinct clas-
ses of files emerging. The frequently observed fact that
most files are small and most bytes are in large files has
intensified. The mean file size is now 318K, about three
times what it was in 2000. Files can be classified by

4 Ignoring that the root directory isn’t a member of any
directory.

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 9

their update time as well. A large class of files is writ-
ten only once (perhaps at install time).

4.4.1 File Size
In one respect, file sizes have not changed at all. The
median file size remains 4K (a result that has been re-
markably consistent since at least 1981 [27]), and the
distribution of file sizes has changed very little since
2000. Figure 12 shows that the proportion of these
small files has in fact increased with fewer files both
somewhat larger and somewhat smaller than 4K. There
is also an increase in larger files between 512K and
8MB.

Figure 13 shows a histogram of the total number of
bytes stored in files of various sizes. A trend towards
bi-modality has continued, as predicted in 2007 [1],
though a third mode above 16G is now appearing. Fig-
ure 14 shows that more capacity usage has shifted to the
larger files, even though there are still few such files in
the system. This suggests that optimizing for large files
will be increasingly important.

Viewed a different way, we can see that trends towards
very large files being the principle consumers of storage
have continued smoothly. As discussed in Section 4.5,
this is a particular challenge because large files like
VHDs have complex internal structures with difficult to
predict access patterns. Semantic knowledge to exploit
these structures, or file system interfaces that explicitly
support them may be required to optimize for this class
of data.

4.4.2 File Times
File modifications time stamps are usually updated
when a file is written. Figure 15 shows a histogram and
CDF of time since file modification with log scaling on
the x-axis5. The same data with 1 month bins is plotted
in Figure 16. Most files are modified between one
month and a year ago, but about 20% are modified
within the last month.

5 Unlike the other combined histogram/CDF graphs,
this one has both lines using the left y-axis due to a bug
in the graphing package.

Figure 12: Histogram of Files by Size

Figure 13: Histogram of Bytes by Containing File

Size

Figure 14: CDF of Bytes by Containing File Size

0%

2%

4%

6%

8%

10%

12%

14%

0 8 128 2K 32K 512K 8M 128M
File Size (bytes), power-of-two bins

2009 2004 2000

0%

2%

4%

6%

8%

10%

12%

1K 16K 256K 4M 64M 1G 16G 256G
Containing File Size (bytes), power-of-two bins

2009 2004 2000

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1K 16K 256K 4M 64M 1G 16G 256G
Containing File Size (bytes)

2009 2004 2000

10 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Figure 17 relates file modification time to the age of the
file system. The x-axis shows the time since a file was
last modified divided by the time since the file system
was formatted. This range exceeds 100% because
some files were created prior to installation and were
subsequently copied to the file system, preserving their
modification time. The spike around 100% mostly con-
sists of files that were modified during the system in-
stallation. The area between 0% and 100% shows a
relatively smooth decline, with a slight inflection
around 40%.

NTFS has always supported a last access time field for
files. We omit any analysis because updates to it are
disabled by default as of Windows Vista [18].

4.5 Extensions
Figure 18 shows only modest change in the extensions
for the most popular files. However, the extension
space continues to grow. The ten most popular files
extensions now account for less than 45% of the total
files compared with over 50% in 2000.

Figure 19 shows the top storage consumers by file ex-
tension. Several changes are apparent here. First, there
is a significant increase in storage consumed by files
with no extension, which have moved from 10th place
in all previous years to be the largest class of files to-
day, replacing DLLs. VHD and ISO files are virtual
disks and images for optical media. They have in-
creased in relative size, but not as quickly as LIB files.
Finally, the portion of storage space consumed by the

Figure 18: Popularity of Files by Extension

h ø
gif

dll gif

dll
manifest h

h xml dll

htm ø
htm

ø
cs txt

exe
cpp xml

cpp
txt cpp

c
gif

jpg
jpg

lib
exe

txt

0%

10%

20%

30%

40%

50%

60%

2009 2004 2000

Figure 15: Time Since Last File Modification

Figure 16: Time Since Last File Modification

Figure 17: Time Since Last File Modification as a

Fraction of File System Age.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 10 100 1000
Time since last modification (days), power-of-two

bins

CDF Histogram

0%

2%

4%

6%

8%

10%

12%

14%

16%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 12 24 36 48
Time since last modification (months), one month

bins

CDF Histogram

0%
1%
1%
2%
2%
3%
3%
4%
4%
5%
5%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 20% 40% 60% 80% 100% 120%

Time Since File Modification/FS Age
(%), 1% bins

CDF Histogram

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 11

top extensions has increased by nearly 15% from previ-
ous years.

5 On-disk Layout
The behavior and characteristics of magnetic disks con-
tinue to be a dominant concern in storage system opti-
mization. It has been shown that file system perfor-
mance changes over time, largely due to fragmentation
[28]. While we have no doubt that the findings were
true in 1997, our research suggests that this observation
no longer holds in practice.

We measure fragmentation in our data set by recording
the files’ retrieval pointers, which point to NFTS’s data
blocks. Retrieval pointers that are non-linear indicate a
fragmented file. We find such fragmentation to be rare,
occurring in only 4% of files. This lack of fragmenta-
tion in Windows desktops is due to the fact that a large
fraction of files are not written after they are created
and due to the defragmenter, which runs weekly by
default6. However, among files containing at least one
fragment, fragments are relatively common. In fact,
25% of fragments are in files containing more than 170
fragments. The most highly fragmented files appear to
be log files, which (if managed naively) may create a

6 This is true for all of our scans other than the 17 that
came from machines running Windows Server 2003.

new fragment for each appending write.

6 Related Work
Studies of live deployed system behavior and usage
have long been a key component of storage systems
research. Workload studies [30] are helpful in deter-
mining what file systems do in a given slice of time, but
provide little guidance as to the long term contents of
files or file systems. Prior file system content studies
[1, 9] have considered collections of machines similar
to those observed here. The most recent such study
uses 7 year old data, while data from the study before it
is 11 years old, which we believe justifies the file sys-
tem portion of this work. However, this research also
captures relevant results that the previous work does
not.

Policroniades and Pratt [24] studied duplication rates
using various chunking strategies on a dataset about
0.1% of the size of ours, finding little whole-file dupli-
cation and a modest difference between fixed-block and
content-based chunking. Kulkarni et al. [12] found
combining compression, eliminating duplicate identi-
cal-sized chunks and delta-encoding across multiple
datasets to be effective. Their corpus was about 8GB.

We are able to track file system fragmentation and data
placement, which has not been analyzed recently [28]
or at large scale. We are also able to track several
forms of deduplication, which is an important area of
current research. Prior work has used very selective
data sets usually focusing either on frequent full back-
ups [3, 8], virtual machine images [6, 13], or simulation
[10]. In the former case, data not modified between
backups can be trivially deduplicated, and in the latter
disk images start from a known identical storage, and
diverge slowly over time. In terms of size, only the
DataDomain [33] study rivals ours. It is less than half
the size presented here and was for a highly self-
selective group. Thus, we not only consider a more
general, but also a larger dataset than comparable stud-
ies. Moreover, we include a comparison to whole-file
deduplication, which has been missing in much of the
deduplication research to date. Whole file deduplica-
tion is an obvious alternative to block-based deduplica-
tion because it is light-weight and as we have shown,
nearly as effective at reclaiming space.

Figure 19: Bytes by File Extension

ø
dll

dll

dll

vhd

pdb

lib

pdb

exe

vhd

exe

pst

pdb

wma

pch

exe

lib

mp3

pch

cab

lib

cab

pst

chm

wma

mp3

cab

iso

ø

ø

0%

10%

20%

30%

40%

50%

60%

2009 2004 2000

12 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

7 Conclusion
We studied file system data, metadata, and layout on
nearly one thousand Windows file systems in a com-
mercial environment. This new dataset contains
metadata records of interest to file system designers,
data content findings that will help create space effi-
ciency techniques, and data layout information useful in
the evaluation and optimization of storage systems.

We find that whole-file deduplication together with
sparseness is a highly efficient means of lowering stor-
age consumption, even in a backup scenario. It ap-
proaches the effectiveness of conventional deduplica-
tion at a much lower cost in performance and complexi-
ty. The environment we studied, despite being
homogeneous, shows a large diversity in file system
and file sizes. These challenges, the increase in un-
structured files, and an ever-deepening and more popu-
lated namespace pose significant challenge for future
file system designs. However, at least one problem –
that of file fragmentation, appears to be solved, provid-
ed that a machine has periods of inactivity in which
defragmentation can be run.

Acknowledgements
We would like to thank the hundreds of Microsoft em-
ployees who were willing to allow us to install software
that read the entire contents of their disks, Richard
Draves for helping us with the Microsoft bureaucracy,
Microsoft as whole for funding and enabling this kind
of research, our program committee shepherd Keith
Smith and the anonymous reviewers for their guidance
as well as detailed and helpful comments, and Fred
Douglis for some truly last-minute comments and
proof-reading.

References
[1] N. Agrawal, W. Bolosky, J. Douceur and J. Lorch.
A five-year study of file-system metadata. In Proc. 5th
USENIX Conference on File and Storage Technologies,
2007.

[2] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J.
Liptak, R. Rangaswami, and V. Hristidis. Borg: block-
reorganization for self-optimizing storage systems. In
Proc. 7th USENIX Conference on File and Storage
Technologies, 2009.

[3] D. Bhagwat, K. Eshghi, D. Long, and M.
Lillibridge, Extreme binning: scalable, parallel

deduplication for chunk-based file backup, In Proc. 17th
IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication
Systems, 2009.

[4] B. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM
13(7): 422—426, 1970.

[5] W. Bolosky, S. Corbin, D. Goebel and J. Douceur.
Single instance storage in Windows 2000. In Proc. 4th
USENIX Windows Systems Symposium, 2000.

[6] A. Clements, I. Ahmad, M. Vilayannur, J. Li.
Decentralized deduplication in SAN cluster file
systems. In Proc. USENIX Annual Technical
Conference, 2009.

[7] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy,
and P. Shilane. Tradeoffs in scalable data routing for
deduplication clusters. In Proc. 9th USENIX
Conference on File and Storage Technology, 2011.

[8] S. Dorward and S. Quinlan. Venti: A new approach
to archival data storage. In Proc. 1st USENIX
Conference on File and Storage Technologies, 2002.

[9] J. Douceur and W. Bolosky. A large-scale study of
file-system contents. In Proc. 1999 ACM
SIGMETRICS International Conference on
Measurement and Modelling of Computer Systems,
1999.

[10] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk,
W. Kilian, P. Strzelczak, J. Szczepkowski, C.
Ungureanu, and M. Welnicki. Hydrastor: a scalable
secondary storage. In Proc. 7th USENIX Conference on
File and Storage Technologies, 2009.

[11] H. Huang, W. Hung, and K. G. Shin. Fs2:
dynamic data replication in free disk space for
improving disk performance and energy consumption.
In Proc. 20th ACM Symposium on Operating Systems
Principles, 2005.

[12] P. Kulkarni, F. Douglis, J. LaVoie, and J. Tracey.
Redundancy elimination within large collections of
files. In Proc. USENIX 2004 Annual Technical
Conference, 2004.

[13] K. Jin and E. Miller. The effectiveness of
deduplication on virtual machine disk images. In Proc.
SYSTOR 2009: The Israeli Experimental Systems
Conference, 2009.

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 13

[14] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deola-
likar, G. Trezise, and P. Camble. Sparse indexing:
large scale, inline deduplication using sampling and
locality. In Proc. 7th USENIX Conference on File and
Storage Technologies, 2009.

[15] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A.
Tomas, and L. Vivier. The new ext4 filesystem: current
status and future plans. In Proc. of the Linux
Symposium, June, 2007.

[16] Microsoft Corporation. BackupRead Function.
MSDN. [Online] 2010. [Cited: August 17, 2010.]
http://msdn.microsoft.com/en-
us/library/aa362509(VS.85).aspx.

[17] Microsoft Corporation. Description of the
scheduled tasks in Widows Vista. Microsoft Support.
[Online] July 8, 2010. [Cited: August 9, 2010.]
http://support.microsoft.com/kb/939039.

[18] Microsoft Corporation. Disabling Last Access
Time in Windows Vista to Improve NTFS Perfomance.
The Storage Team Blog. [Online] 2006. [Cited
November 2, 2010.]
http://blogs.technet.com/b/filecab/archive/2006/11/07/d
isabling-last-access-time-in-windows-vista-to-improve-
ntfs-performance.aspx.

[19] Microsoft Corporation. File systems. Microsoft
TechNet. [Online] 2010. [Cited: August 9, 2010.]
http://technet.microsoft.com/en-
us/library/cc938929.aspx.

[20] Microsoft Corporation. Volume Shadow Copy
Service. MSDN. [Online] 2010. [Cited August 31,
2010.] http://msdn.microsoft.com/en-
us/library/bb968832(VS.85).aspx

[21] D. R. Miller. Storage Economics: Four Principles
for Reducing Total Cost of Ownership. Hitachi
Corporate Web Site. [Online] May 2009. [Cited:
August 17, 2010.] http://www.hds.com/assets/pdf/four-
principles-for-reducing-total-cost-of-ownership.pdf.

[22] N. Murphy and M. Seltzer. Hierarchical file
systems are dead. In Proc. 12th Workshop on Hot
Topics in Operating Systems, 2009.

[23] R. Nagar. Windows NT File System Internals.
O’Reilly, 1997

[24] C. Policroniades and I. Pratt. Alternatives for
detecting redundancy in storage systems. In Proc.
USENIX 2004 Annual Technical Conference, 2004.

[25] M. Rabin. Fingerprinting by Random Polynomials.
Harvard University Center for Research In Computing
Technology Technical Report TR-CSE-03-01, 1981.
Boston, MA.

[26] R. Rivest. The MD5 Message-Digest Algorithm.
[Online] April 1992. [Cited: August 17, 2010.]
http://tools.ietf.org/rfc/rfc1321.txt.

[27] Satyanarayanan, M. A study of file sizes and
functional lifetimes. In Proc. 8th ACM Symposium on
Operating Systems Principles, 1981.

[28] M. Seltzer and K. Smith. File system aging:
increasing the relevance of file system benchmarks. In
Proc. 1997 ACM SIGMETRICS, June 1997.

[29] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M.
Nishimoto, and G. Peck. Scalability in the XFS file
system. In Proc. 1996 USENIX Annual Technical
Conference, 1996.

[30] W. Vogels. File system usage in windows NT 4.0.
In Proc. 17th ACM Symposium on Operating Systems
Principles, 1999.

[31] C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale, S.
Rago, G. Cakowski, C. Dubnicki, and A. Bohra.
Hydrafs: A high-throughput file system for the
Hydrastor content-addressable storage system. In Proc.
8th USENIX Conference on File and Storage
Technologies, 2010.

[32] E. Ungureanu and C. Kruus. Bimodal content
defined chunking for backup streams, In Proc. 8th
USENIX Conference on File and Storage Technologies,
2010.

[33] B. Zhu, K. Li, and H. Patterson. Avoiding the disk
bottleneck in the Data Domain deduplication file
system. In Proc. 6th USENIX Conference on File and
Storage Technologies, 2008, pp. 1-14.

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 15

Tradeoffs in Scalable Data Routing for Deduplication Clusters

Wei Dong∗

Princeton University

Fred Douglis

EMC

Kai Li
Princeton University

and EMC

Hugo Patterson

EMC

Sazzala Reddy

EMC

Philip Shilane

EMC

Abstract

As data have been growing rapidly in data centers,

deduplication storage systems continuously face chal-

lenges in providing the corresponding throughputs and

capacities necessary to move backup data within backup

and recovery window times. One approach is to build a

cluster deduplication storage system with multiple dedu-

plication storage system nodes. The goal is to achieve

scalable throughput and capacity using extremely high-

throughput (e.g. 1.5 GB/s) nodes, with a minimal loss

of compression ratio. The key technical issue is to route

data intelligently at an appropriate granularity.

We present a cluster-based deduplication system that

can deduplicate with high throughput, support dedupli-

cation ratios comparable to that of a single system, and

maintain a low variation in the storage utilization of in-

dividual nodes. In experiments with dozens of nodes,

we examine tradeoffs between stateless data routing ap-

proaches with low overhead and stateful approaches that

have higher overhead but avoid imbalances that can

adversely affect deduplication effectiveness for some

datasets in large clusters. The stateless approach has

been deployed in a two-node commercial system that

achieves 3 GB/s for multi-stream deduplication through-

put and currently scales to 5.6 PB of storage (assuming

20X total compression).

1 Introduction

For business reasons and regulatory requirements [14,

29], data centers are required to backup and recover their

exponentially increasing amounts of data [15] to and

from backup storage within relatively small windows of

time; typically a small number of hours. Furthermore,

many copies of the data must be retained for potentially

long periods, from weeks to years. Typically, backup

software aggregates files into multi-gigabyte “tar” type

files for storage. To minimize the cost of storing the

∗Work done in part as an intern with Data Domain, now part of

EMC.

many backup copies of data, these files have tradition-

ally been stored on tape.

Deduplication is a technique for effectively reducing

the storage requirement of backup data, making disk-

based backup feasible. Deduplication replaces identi-

cal regions of data (files or pieces of files) with refer-

ences (such as a SHA-1 hash) to data already stored on

disk [6, 20, 27, 36]. Several commercial storage systems

exist that use some form of deduplication in combina-

tion with compression (such as Lempel-Ziv [37]) to store

hundreds of terabytes up to petabytes of original (logical)

data [8, 9, 16, 25]. One state-of-the-art single-node dedu-

plication system achieves 1.5 GB/s in-line deduplication

throughput while storing petabytes of backup data with

a combined data reduction ratio in the range of 10X to

30X [10].

To meet increasing requirements, our goal is a backup

storage system large enough to handle multiple pri-

mary storage systems. An attractive approach is to

build a deduplication cluster storage system with indi-

vidual high-throughput nodes. Such a system should

achieve scalable throughput, scalable capacity, and a

cluster-wide data reduction ratio close to that of a single

very large deduplication system. Clustering storage sys-

tems [5, 21, 30] are a well-known technique to increase

capacity, but adding deduplication nodes to such clusters

suffer from two problems. First, it will fail to achieve

high deduplication because such systems do not route

based on data content. Second, tightly-coupled cluster

file systems often do not exhibit linear performance scal-

ability because of requirements for metadata synchro-

nization or fine-granularity data sharing.

Specialized deduplication clusters lend themselves to

a loosely-coupled architecture because consistent use

of content-aware data routing can leverage the sophis-

ticated single-node caching mechanisms and data lay-

outs [36] to achieve scalable throughput and capac-

ity while maximizing data reduction. However, there

is a tension between deduplication effectiveness and

16 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

throughput. On one hand, as chunk size decreases, dedu-

plication rate increases, and single-node systems may

deduplicate chunks as small as 4-8 KB1 to achieve very

high deduplication. On the other hand, with larger chunk

sizes, high throughput is achieved because of stream

and inter-file locality, and per-chunk memory overhead

is minimized [18, 35]. High throughput deduplication

with small chunk sizes is achieved on individual nodes

using techniques that take advantage of cache locality to

reduce I/O bottlenecks [20, 36]. For existing dedupli-

cation clusters like HYDRAstor [8], though, relatively

large chunk sizes (∼64 KB) are used to maintain high

throughput and fault tolerance at the cost of deduplica-

tion. We would like to achieve scalable throughput and

capacity with cluster-wide deduplication close to that of

a state-of-the-art single node.

In this paper, we propose a deduplicating cluster that

addresses these issues by intelligently “striping” large

files across a cluster: we create super-chunks that rep-

resent consecutive smaller chunks of data, route super-

chunks to nodes, and then perform deduplication at each

node. We define data routing as the assignment of super-

chunks to nodes. By routing data at the granularity of

super-chunks rather than individual chunks, we maintain

cache locality, reduce system overheads by batch pro-

cessing, and exploit the deduplication characteristics of

smaller chunks at each node. The challenges with rout-

ing at the super-chunk level are, first, the risk of creating

duplicates, since the fingerprint index is maintained in-

dependently on each node; and second, the need for scal-

able performance, since the system can overload a single

node by routing too much data to it.

We present two techniques to solve the data routing

problem in building an efficient deduplication cluster,

and we evaluate them through trace-driven simulation

of collected backups up to 50 TB. First, we describe a

stateless technique that routes based on only 64 bytes

from the super-chunk. It is remarkably effective on typi-

cal backup datasets, usually with only a ∼10% decrease

in deduplication for small clusters compared to a single

node; for balanced workloads the gap is within ∼10-20%

even for clusters of 32–64 nodes. Second, we compare

the stateless approach to a stateful technique that uses

information about where previous chunks were routed.

This achieves deduplication nearly as high as a single

node and distributes data evenly among dozens of nodes,

but it requires significant computation and either greater

memory or communication overheads. We also explore

a range of techniques for routing super-chunks that trade

off memory and communication requirements, including

varying how super-chunks are formed, how large they

are on average, how they are assigned to nodes, and how

1Throughout the paper, references to chunks of a given size refer to

chunks that are expected to average that size.

node imbalance is addressed.

The rest of this paper is organized as follows. Sec-

tion 2 describes our system architecture, then Section 3

focuses on alternatives for super-chunk creation and

routing. Section 4 presents our experimental method-

ology, datasets, and simulator, and Section 5 shows the

corresponding results. We briefly describe our product

in Section 6. We discuss related work in Section 7, and

conclusions and future work are presented in Section 8.

2 System Overview

This section presents our deduplication cluster design.

We first review the architecture of our earlier storage sys-

tem [36], which we use as a single-node building block.

Because the design of the single-node system empha-

sizes high throughput, any cluster architecture must be

designed to support scalable performance. We then show

the design of the deduplication cluster with stateless rout-

ing, corresponding to our product (differences pertaining

to stateful routing are presented later in the paper).

We use the following criteria to govern our design de-

cisions for the system architecture and choosing a routing

strategy:

• Throughput Our cluster should scale throughput

with the number of nodes by maximizing parallel

usage of high-throughput storage nodes. This im-

plies that our architecture must optimize for cache

locality, even with some penalty with respect to

deduplication capacity—we will write duplicates

across nodes for improved performance, within rea-

son.

• Capacity To maximize capacity, repeated patterns

of data should be forwarded to storage nodes in

a consistent fashion. Importantly, capacity usage

should be balanced across nodes, because if a node

fills up, the system must place new data on alternate

nodes. Repeating the same data on multiple nodes

leads to poor deduplication.

The architecture of our single-node deduplication sys-

tem is shown in Figure 1(a). We assume the incom-

ing data streams have been divided into chunks with a

content-based chunking algorithm [4, 22], and a finger-

print has been computed to uniquely identify each chunk.

The main task of the system is to quickly determine

whether each incoming chunk is new to the system and

then to efficiently store new chunks. High-throughput

fingerprint lookup is achieved by exploiting the dedupli-

cation locality of backup datasets: in the same backup

stream, chunks following a duplicate chunk are likely to

be duplicates, too.

To preserve locality, we use a technique based on

Stream Informed Segment2 Layout [36]: disk storage is

2Note that the term “segment” in the earlier paper means the same

2

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 17

(b) Dataflow of Deduplication Cluster

(a) Deduplication Node Architecture

Memory
New DataBloom Filter Fingerprint Cache

Fingerprint
Index

Fingerprints Chunk Data

Containers
Disk Storage

Load Cache

Dedup
LogicLookup Lookup

Chunked Data Streams

Multiple Backup Servers
Running Plugins

Super-Chunks

Chunks

Data Streams
Meta Data

data
routing

co
nt

ro
l

Master
Bin Mapping

Dedupllication Nodes

Figure 1: Deduplication node architecture and cluster de-

sign using individual nodes as building blocks.

divided into fixed-size large pieces called containers, and

each stream has a dedicated container. The non-duplicate

fingerprints and chunk data are appended to the metadata

part and the data part of the container. The sequence of

fingerprints needed to reconstruct a file is also written as

chunks and stored to containers, and a root fingerprint

is maintained in a directory structure. When the current

container is full, it is flushed to disk, and a new container

is allocated for the stream.

To identify existing chunks, a fingerprint cache avoids

a substantial fraction of index lookups, and for those not

found in the cache, a Bloom filter [3] identifies with high

probability which fingerprints will be found in the on-

disk index. Thus disk accesses only occur either when a

duplicate chunk misses in our cache or when a full con-

tainer of new chunks is flushed to disk. (In rare cases, a

false positive from the Bloom filter will cause an unnec-

essary lookup to the on-disk index.) Once a fingerprint is

loaded, many fingerprints that were written at the same

time are loaded with it, enabling subsequent duplicate

chunks to hit in the fingerprint cache.

Figure 1(b) demonstrates how to combine multiple

deduplication nodes into a cluster. Backup software

on each client collects individual files into a backup

as the term “chunk” in this paper.

stream, which it transfers to a backup server. We of-

fer a plugin [12] that runs on a customer’s backup

servers, which divides each stream into chunks, fin-

gerprints them, groups them into a super-chunk, and

routes each super-chunk to a deduplicating storage node.

Each storage node locally applies deduplication logic to

chunks while preserving data locality, which is essential

to maintain high throughput.

To clarify the parallelization that takes place in our

cluster, consider writing a file to the cluster. When

a super-chunk is routed to a storage node, deduplica-

tion begins while the next super-chunk is created and

routed to a potentially different node. All of the meta-

data needed to reconstruct a file is stored in chunks and

distributed across the nodes. When reading back a file,

parallel reads are initiated to all of the nodes by looking

ahead through the metadata references and issuing reads

for super-chunks to the appropriate nodes. To achieve

maximum parallelization, the I/O load should be equal

on each node, and both read and write throughput should

scale linearly with the number of nodes.

Note that we do not yet specifically address the inter-

node dependencies that arise in the event of a failure.

Each node is highly redundant, with RAID and other data

integrity mechanisms. It would be possible to provide re-

dundant controllers in each node to eliminate that single

point of failure, but these details are beyond the scope of

this paper.

Storage Rebalancing: When super-chunks are routed

to a storage node, we use a level of indirection called

a bin. We assign a super-chunk to a bin using the mod

function, and then map each bin to a given node. By

using many more bins (∼1000) than actual nodes, the

Bin Manager (running on the master node) can rebalance

nodes by reassigning bins in the future. The Bin Manager

also handles expansion cases such as when a node’s stor-

age expands or when a new node is added to the clus-

ter. In those cases, the Bin Manager reassigns bins to

the new storage to maintain balanced usage. Rebalanc-

ing data takes place online while backups and other op-

erations continue, and the entire process is transparent

to the user. After a rebalance operation, the cluster will

generally remain balanced for future backups. The mas-

ter node communicates the bin-to-node mapping to the

plugin.

Bin migration occurs when the storage usage of a node

exceeds the average usage in the cluster by some thresh-

old (defaulting to 5%). Note that if there is a great deal of

skew in the total physical storage of a single bin, that bin

can exceed the threshold even if it is the only bin stored

on a node. Such anomalous behavior is rare but possible,

and we discuss some examples of this in Section 5.

3

18 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

3 Data Routing

This section addresses two issues with data routing in

our deduplication cluster: how to group chunks into

super-chunks, and how to route data. Super-chunk for-

mation is relatively straightforward and is discussed in

Section 3.1. We focus here on two routing strategies:

stateless routing, light-weight and well suited for most

balanced workloads (Section 3.2); and stateful routing,

requiring more overhead but maintaining a higher dedu-

plication rate with larger clusters (Section 3.3).

3.1 Super-Chunk Formation

There are two important criteria for grouping consecu-

tive chunks into super-chunks. First, we want an average

super-chunk size that supports high throughput. Second,

we want super-chunk selection to be resistant to small

changes between full backups.

The size of a super-chunk could vary from a single

chunk to many megabytes, or it could be equal to indi-

vidual files as suggested by Extreme Binning [2]. We

experimented with a variety of average super-chunk sizes

from 8 KB up to 4 MB on backup datasets. The average

super-chunk size affects deduplication, balance across

storage nodes, and throughput, and it is more thoroughly

explored in Section 5.3. We generally found that a 1 MB

average super-chunk size is a good choice, because it re-

sults in efficient data locality on storage nodes as well as

generally high deduplication, and this is the default value

used in our experiments unless otherwise noted.

Determining super-chunk boundaries (anchoring) mir-

rors the problem of anchoring chunks [24] in many ways

and should be implemented in a content-dependent fash-

ion. Since all chunks in a super-chunk are routed to-

gether, deduplication is affected by super-chunk bound-

aries. We represent each chunk with a feature (see the

next subsection), compare the feature against a mask,

and when the mask is matched, the selected chunk be-

comes the boundary between super-chunks. Minimum

and maximum super-chunk sizes are enforced, half and

double the desired super-chunk size respectively.

3.2 Stateless Routing

Numerous data routing techniques are possible: routing

based only on the contents of the current super-chunk is

stateless, while routing super-chunks using information

about the location of existing chunks is stateful (see Sec-

tion 3.3).

For stateless routing, the basic technique is to pro-

duce a feature value representing the data and then ap-

ply a simple function (such as mod #bins) to the value to

make the assignment. As a super-chunk is a sequence of

chunks, we first compute a feature from each chunk, and

then select one of those features to represent the super-

chunk.

There are many options for generating a chunk fea-

ture. A hash could be calculated over an entire chunk

(hash(*)) or over a prefix of the bytes near an anchor

point (hash(N), for a prefix of N bytes). Using the hash

of a representative portion of a chunk results in data that

are similar, but not identical, being routed to the same

node; the net effect is to improve deduplication while in-

creasing skew. We tried a range of prefix lengths and

found the best results when using the first 64 bytes after

a chunk anchor point (i.e., hash(64)), which we com-

pare to hash(*). When using a hash for routing rather

than deduplication, collisions are acceptable, so we use

the first 32-bit word of the SHA-1 hash for hash(64).

In addition, we considered other variants, such as

fingerprints computed over sliding windows of con-

tent [22]; these did not make a substantial difference in

the outcome, and we do not discuss them further.

To select a super-chunk feature based on the chunk

features, the first, maximum, minimum, or most common

chunk feature could be selected; using just the first has

the advantage that it is not necessary to buffer an entire

super-chunk before deciding where to route it, something

that matters when hundreds or thousands of streams are

being processed simultaneously. Another stateless tech-

nique is to treat the feature of each chunk as a “vote”

for a node and select the most common, which does not

work especially well, because hash values are often uni-

formly distributed. We experimented with a variety of

options and found the most interesting results with four

combinations: hash(64) of the first chunk, the mini-

mum hash(64) across a super-chunk, hash(*) of the

first chunk, and the minimum hash(*) across a super-

chunk (compared in detail in Section 5.2). Elsewhere,

hash(64) refers to the feature from the first chunk un-

less stated otherwise.

The main advantages of stateless techniques are (1)

reduced overhead for recording node assignments, and

(2) reduced requirements for recovering this state after

a system failure. Stateless routing has some properties

of a “shared nothing” [31] architecture because of lim-

ited shared state. There is a potential for a loss of dedu-

plication compared to the single-node case, and there is

also the potential for increased data skew if the selected

features are not uniformly distributed. We find empiri-

cally that the reduction in deduplication effectiveness is

within acceptable bounds, and bin migration can usually

address excessive data skew.

3.3 Stateful routing

Using information about the location of existing chunks

can improve deduplication, at an increased cost in (a)

computation and (b) memory or communication. We

present a stateful approach that produces deduplication

that is frequently comparable to that of a single node

4

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 19

even with a significant number of nodes (32-64); also,

by balancing the benefit of matching existing chunks

against the capacity of overloaded nodes, it avoids the

need to migrate data after the fact. This approach is not a

panacea, however, as it increases memory requirements

(per-node Bloom filters, if storing them on a master node,

and buffering an entire super-chunk before routing it) and

computational overhead, as discussed below.

To summarize our stateful routing algorithm, in its

simplest form:

1. Use a Bloom filter to count the number of times

each fingerprint in a super-chunk is already stored

on a given node.

2. Weight the number of matches (“votes”) by each

node’s relative storage utilization. Overweight

nodes are excluded.

3. If the highest weighted vote is above a threshold,

select that node.

4. If no node has sufficient weighted votes, route to the

node selected via hash(64) of the first chunk if it is

not overloaded; otherwise route to the least loaded

node.

We now explain the algorithm in more detail. To route

a super-chunk, once the master node knows the num-

ber of chunks in common with (a.k.a. “matching”) each

node, it selects a destination. However, such a “voting”

approach requires care to avoid problematic cases: sim-

ply targeting the node with the most matching chunks

will route more and more super-chunks there, because

the more data it has relative to other nodes, the more

likely it is to match the most chunks.

Thus, one refinement to this stateful approach is to cre-

ate a threshold for a minimum fraction of chunks that

must match a node before it is selected. With a uniform

distribution, one expects each node to match at most C
N

chunks on average, where C is the number of chunks in

the super-chunk and N is the number of nodes. Typically

not all chunks will match any node, and the average num-

ber of matches will be lower, but if a node already stores

significantly more than the expected average, this is a

reason to route the super-chunk to that node. In our sys-

tem, a voting benefit threshold of 1.5 means that a node

is considered as a candidate only if it already matches

at least 1.5C
N

chunks. This prevents a node from being

selected simply because it matches more than any other

node, when no node matches well enough to be of inter-

est.

Simply using a static threshold for the number of

matches to vote a super-chunk to a particular node still

results in high data skew, as popular nodes get more

popular over time. A technique we call weighted vot-

ing addresses that deficiency by striking a balance be-

tween deduplication and uniform storage utilization. It

decreases the perceived value of known duplicates in

proportion to the extent to which a node is overloaded

relative to the average storage utilization of the system.

As an example, if a node matches 2C
N

chunks in a super-

chunk, but that node stores 120% (6
5
) of the average

node, then the node is treated as though it matched 5
6
∗

2C
N

chunks. Note that while a node that stores less than

the average could be given a weight < 1, increasing the

overall weighted value, instead we assign such nodes a

weight of 1. This ensures that when multiple nodes can

easily accommodate the new super-chunk, the node is

selected based on the best match. We experimented with

various weight functions, but we found that it is effective

simply to exclude nodes that are above a capacity thresh-

old. In practice, a capacity of 5% above the average was

selected as the threshold (see Sec 5.4).

The computational cost arises because the stateful ap-

proach computes where every chunk in a super-chunk

is currently stored. A Bloom filter lookup has to be

performed for each chunk, on each node in the cluster,

before a routing destination can be picked. Each such

lookup is extremely fast (∼100− 200ns), but there can

be a great many of these lookups: inserting M chunks

into an N-node cluster would result in NM Bloom filter

lookups, compared to M lookups in a single-node sys-

tem. The additional overhead in memory or communi-

cation depends on whether the master node(s) tracks the

state of each storage node (resulting in substantial mem-

ory allocations) or sends the chunk fingerprints to the

storage nodes and collects counts of how many chunks

match each node (resulting in communication overhead).

One way to mitigate the effect is to sample [20] chunks

that are used for voting. We reduce the number of chunks

considered by checking each chunk’s fingerprint for a

bit pattern of a specific length (e.g., B bits must match

a pattern for a 1/2B sampling rate); the total number of

lookups is then approximately NM/2B. Without sam-

pling, the total cost of the Bloom filter lookups is about

1.2 hours of computation for a 5-TB dataset, but a sam-

pling rate of 1/8 cuts this to 13 minutes of overhead with

a nominal reduction in deduplication (see Section 5.5).

That work can further be parallelized across back-ends

or in threads on the front-end.

As an example, the general approach to weighted vot-

ing is depicted in Figure 2. In this example, the seven

numbered chunks in this super-chunk are sampled for

voting. Chunks 1, 3, and 4 are contained on node 1,

chunks 2, 3, 5, and 6 are on node 2, chunk 5 is also on

node 4, and chunk 7 is not stored on any node. Node

1 has 3 raw votes, and node 2 has 4. Factoring in

space, since node 2 uses much more than the average,

5

20 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Relative Physical
Storage Usage

Weighted
votes = 3.003

1.0 = 0.971
1.03

Bloom Filters

No Match

= 2.964
1.35

1 2 3 4 5 6 7

Super-Chunk

0.83

Node 1

1.35

Node 2

1.03

Node 4

0.79

Node 3

0

0.83

Node 1

1.35

Node 2

1.03

Node 4

0.79

Node 3

Figure 2: Weighted voting example. A node with many

matches will be selected if it does not also have too much

data already, relative to the other nodes. Any node with a

relative storage usage of less than 1 is treated as though

it is at the average.

its weighted votes are (4/1.35) = 2.96. Node 1 has a

slightly higher weighted vote of 3. The minimum weight

for a node to be selected is 1.5×7
4

= 2.6. Thus node 1 is

selected for routing.

The main advantage of a stateful technique is the op-

portunity to incorporate expected deduplication and ca-

pacity balancing while assigning chunks to nodes. On

the other hand, computational or communication over-

head must be considered when choosing this technique,

though it is an attractive option for coping with unbal-

anced workloads or cluster sizes beyond our current ex-

pectations.

4 Experimental Methodology

We use trace-driven simulation to evaluate the tradeoffs

of the various techniques described in the previous sec-

tion. This section describes the datasets used, the evalu-

ation metrics, and the details of the simulator.

4.1 Datasets

In this paper, we simulate super-chunk routing for nine

datasets. Three were collected from large backup envi-

ronments representing typical scenarios where a backup

server hosts multiple data types from dozens of clients.

These datasets contain approximately 40-50 TB precom-

pressed data. To analyze how our routing technique han-

dles datasets with specific properties, we also analyze

five datasets representing single data types. Four of the

datasets are each approximately 5 TB and a fifth is about

13 TB. In addition, we synthesize a “blended” dataset

consisting of a mixture of the five smaller datasets. In

general, we use them in the form that a deduplication

appliance would see them: tar files that are usually

many gigabytes in size, rather than individual small files.

With the exception of the “blended” dataset, all of these

datasets represent real backups from production environ-

ments.

Name
Size (GB)

Dedup. Months
Total Peak

Collection 1 40,695 2,867 6.1 1–2

Collection 2 44,536 1,536 11.5 4–6

Collection 3 51,584 2,150 6.1 3

Perforce 4,574 250 20.8 6

Workstations 4,926 200 5.6 6

Exchange 5,253 33 6.8 7

System Logs 5,436 122 38.7 4

Home Dirs. 12,907 855 19.3 3

Blended 33,097 N/A 12.5 N/A

Table 1: Summary of datasets. The Collection datasets

were collected from backup servers with multiple data

types, and the other datasets were collected from sin-

gle data-type environments. Deduplication ratios are ob-

tained from a single-node system.

For the three collected datasets, we received permis-

sion to analyze production backup servers within EMC.

We gathered traces for each file including the timestamp,

sequence of chunk fingerprints, and other metadata nec-

essary to analyze chunk routing. At an earlier collection

on internal backup servers, we gathered copies of backup

files for the individual data types.

Table 1 lists salient information of these datasets: the

total logical size, the daily peak size, the single-node

deduplication rate, and the number of months in the 99th

percentile of retention period. The datasets are:

Collection 1: Backups from approximately 100 clients

consisting of half software development and half busi-

ness records. Backups are retained 1-2 months.

Collection 2: Backups from approximately 50 engineer-

ing workstations with 4 months of retention and servers

with 6 months of retention.

Collection 3: Backups of over 100 clients for Exchange,

SQL servers, and Windows workstations with 3 months

of retention.

Perforce: Backups from a version control repository.

Workstations: Backups from 16 workstations used for

build and test.

Exchange: Backups from a Microsoft Exchange server.

Each day contains a single full backup.

System Logs: Backups from a server’s /var directory,

containing numerous system files and logs. Full backups

were created weekly.

Home Directory: Backups from engineers’ home di-

rectories, containing source code, office documents, etc.

Full backups were created weekly.

Blended: To explore the effects of multiple datasets be-

ing written to a storage system (a common scenario),

we created a blended dataset. We combined alternating

super-chunks of the single data-type datasets, weighted

6

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 21

by overall size; thus there are approximately two super-

chunks from the “home directory” dataset for each super-

chunk of the others. The overall deduplication for this

dataset (12.5) is somewhat higher than the weighted aver-

age across the datasets (12.3), due to some cross-dataset

commonality.

While our experiments studied all of these datasets,

because of space limitations, we typically only present

results for two: Workstations and Exchange. Exper-

iments with Workstations have results consistent with

the other datasets and represents our expected customer

experience. The Exchange dataset showed consistently

worse results with our techniques and is presented for

comparison. Because of data patterns within Exchange,

using a 1-MB super-chunk results in overloading a single

bin with 1/16 of the data.

4.2 Evaluation Metrics

The principal evaluation metrics are:

Total Deduplication (TD): The ratio of the original

dataset size to the size after identical chunks are elim-

inated. (We do not consider local compression (e.g.,

Lempel-Ziv [37]), which is orthogonal to the issues con-

sidered in this paper.)

Data Skew: The ratio of the largest node’s physical

(post-deduplication) storage usage to the average usage,

used to evaluate how far from this perfect balance a par-

ticular configuration is. High skew leads to a node filling

up and duplicate data being written to alternative nodes,

as discussed in Section 2.

Effective Deduplication (ED): Total Deduplication di-

vided by Data Skew, as a single utility measure that en-

compasses both deduplication effectiveness and storage

imbalance. ED is equivalent to Total Deduplication com-

puted as if every node consumes the same amount of

physical storage as the most loaded node. This metric

is meaningful because the whole cluster degrades when

one node is filled up. ED permits us to compare routing

techniques and parameter options with a single value.

Normalized ED: ED divided by deduplication achieved

by a single-node system. This is an indication of how

close a super-chunk routing method is to the ideal dedu-

plication achievable on a cluster system. It allows us

to compare the effectiveness of chunk-routing methods

across different datasets under the same [0,1] scale.

Fingerprint Index Lookups: Number of on-disk index

lookups, used as an approximation to throughput. The

lookup rate is the number of lookups divided by the num-

ber of chunks processed by a storage node.

4.3 Simulator

Most of the results presented in this paper come from a

set of simulations, organized as follows:

1. For the Collection datasets, we read from a dedu-

plicating storage node and reconstructed files based on

metadata to create a full trace including the chunk size,

its hash(*) value, and its hash(64) value. The other

datasets were preprocessed by reading in each file, com-

puting chunks of a particular average size (typically

8 KB), and storing a trace.

2. The per-chunk data are passed into a program to

determine super-chunk boundaries and route those super-

chunks to particular nodes. It produces statistical infor-

mation about deduplication rates, data skew, the number

of Bloom filter lookups performed, and so on. In addi-

tion, it logs the SHA1 hash and location of each super-

chunk, on a per-node basis. Its parameters include the

super-chunk routing algorithm; the average super-chunk

size (typically 1 MB); the maximum relative node size

before bin migration is performed (for stateless) or node

assignment is avoided (for stateful), defaulting to 1.05;

some stateful routing parameters described below, and

several others not considered here.

The simulator was validated in part by comparing

deduplication results for Total Deduplication and skew

to the values reported by the live two-node system. Due

to minor implementation differences, normalized TD is

typically up to 2–3% higher in the simulator than in the

live system, though in one case the real system reported

slightly higher normalized deduplication. Skew is simi-

larly close.

The stateful routing parameters are: (a) Vote sampling:

what fraction of chunks, on average, should be passed

to the Bloom filters and checked for matches? (Default:

1/8.) (b) Vote threshold: how many more matches than

the average (as a fraction) should an average-sized node

be, before being used rather than the node routed by the

first chunk? (Default: 1.5)

3. To analyze caching effects on a storage system,

each of the node-specific super-chunk files can be used

to synthesize a data stream with the same deduplication

patterns and chunk sizes, which speeds up experimenta-

tion relative to reading the original data repeatedly. For

simplicity, the compression for the synthesized chunks

was fixed at 2:1, a close approximation to overall com-

pression for the datasets used. This stream is then written

to a deduplication appliance, sending each bin to its final

node in the original simulations after migration.

The accuracy of using a synthesized stream in place

of the original dataset was validated by comparing Total

Deduplication of several synthesized results to those of

original datasets.

5 Experimental Results

We focused our experiments on analyzing the impact of

super-chunk routing on capacity and fingerprint index

lookups across a range of cluster sizes and a variety of

datasets. We start by surveying how different routing ap-

7

22 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o

rm
a

liz
e

d
 E

D

nodes (log scale)

(a) Collection 1

stateful
hash(64) mig

hash(64) no mig
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o

rm
a

liz
e

d
 E

D

nodes (log scale)

(b) Collection 2

stateful
hash(64) mig

hash(64) no mig
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o

rm
a

liz
e

d
 E

D

nodes (log scale)

(c) Collection 3

stateful
hash(64) mig

hash(64) no mig

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o

rm
a

liz
e

d
 E

D

nodes (log scale)

(d) Perforce

stateful
hash(64) mig

hash(64) no mig
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o

rm
a

liz
e

d
 E

D

nodes (log scale)

(e) Workstations

stateful
hash(64) mig

hash(64) no mig
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o

rm
a

liz
e

d
 E

D

nodes (log scale)

(f) Exchange

stateful
hash(64) mig

hash(64) no mig

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o

rm
a

liz
e

d
 E

D

nodes (log scale)

(g) System Logs

stateful
hash(64) mig

hash(64) no mig
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o

rm
a

liz
e

d
 E

D

nodes (log scale)

(h) Home Dirs

stateful
hash(64) mig

hash(64) no mig
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o

rm
a

liz
e

d
 E

D

nodes (log scale)

(i) Blended

stateful
hash(64) mig

hash(64) no mig

Figure 3: Normalized ED of the stateless and stateful techniques as a function of the number of nodes. The top row

represents the collected “real-world” datasets. Stateful and hash(64) (mig) use a capacity threshold of 5%.

proaches fare over a broad range of datasets and clus-

ter sizes (Section 5.1). This gives a picture of how To-

tal Deduplication and skew combine into the Effective

Deduplication metric. Then we dive into specifics:

• What is the best feature (hash(64) vs. hash(*),

routing by first chunk vs. all chunks in a super-

chunk) for routing super-chunks (Section 5.2)?

• How does super-chunk size affect fingerprint cache

lookups and locality (Section 5.3)?

• How sensitive is the system to various parameter

settings, including capacity threshold (Section 5.4)

and those involved in stateful routing (Section 5.5)?

5.1 Overall Effectiveness

We first compare the basic techniques, stateless and

stateful, across a range of datasets. Figure 3 shows a

scatter plot for the nine datasets and three algorithms:

hash(64) without bin migration, hash(64) with a 5%

migration threshold, and stateful routing with a 5% ca-

pacity limitation.

In general, hash(64) without migration works well

for small clusters (2–4 nodes) but degrades steadily as

the cluster size increases. Adding bin migration greatly

improves the ED for most of the datasets, though even

with bin migration, ED for Exchange decreases rapidly

as the number of nodes increases, and there is also a

sharp decrease for Home Directories and Blended at

64 nodes. This skew occurs when a single bin is substan-

tially larger than the average node utilization (see Sec-

tion 5.4). Stateful routing is often within 10% of the

single-node deduplication even at 64 nodes, although for

some datasets the gap is closer to 20%. However, there

is additional overhead, as discussed in Section 5.5.

Table 2 presents normalized Total Deduplication (TD),

data skew, and Effective Deduplication (ED) for several

datasets, as the number of nodes varies (corresponding to

the hash(64) (mig) and stateful curves in Figure 3). It

shows how a moderate increase in skew results in a mod-

erate reduction in ED (Workstations), but Exchange

suffers from both repeated data (losing 1
3

of TD) and sig-

nificant skew (further reducing ED by a factor of 4).

5.2 Feature Selection

As discussed in Section 3.2, there are a number of ways

to route a super-chunk. Here we compare four super-

chunk features: hash(64) of the first chunk, the mini-

mum of all hash(64), the hash(*) of the first chunk, or

the minimum of all hash(*). We also compare against

the method used by HYDRAstor [8], which consists of

64-KB chunks routed based on their fingerprint. Figure 4

shows the normalized ED of these four features for two

datasets, not factoring in any capacity limitations. For

Workstations, all four choices are similarly effective,

which is consistent with the other datasets that are not

8

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 23

hash(64) stateful

nodes TD Skew ED TD Skew ED

Collection 1

1 1.00 1.00 1.00 1.00 1.00 1.00

2 0.93 1.02 0.91 0.95 1.00 0.95

4 0.89 1.03 0.86 0.95 1.00 0.95

8 0.86 1.03 0.84 0.95 1.01 0.94

16 0.85 1.04 0.81 0.94 1.04 0.91

32 0.83 1.04 0.80 0.94 1.04 0.91

64 0.83 1.07 0.77 0.94 1.05 0.90

Collection 2

1 1.00 1.00 1.00 1.00 1.00 1.00

2 0.97 1.00 0.97 0.98 1.00 0.98

4 0.94 1.02 0.92 0.97 1.00 0.97

8 0.92 1.04 0.88 0.97 1.00 0.97

16 0.90 1.04 0.86 0.97 1.00 0.97

32 0.88 1.04 0.85 0.96 1.00 0.96

64 0.87 1.04 0.84 0.96 1.00 0.96

Collection 3

1 1.00 1.00 1.00 1.00 1.00 1.00

2 0.92 1.01 0.92 0.95 1.01 0.94

4 0.88 1.05 0.84 0.95 1.03 0.93

8 0.85 1.04 0.82 0.96 1.04 0.92

16 0.84 1.05 0.80 0.96 1.05 0.91

32 0.83 1.03 0.80 0.95 1.05 0.91

64 0.82 1.07 0.77 0.95 1.05 0.91

Workstations

1 1.00 1.00 1.00 1.00 1.00 1.00

2 0.97 1.02 0.95 0.98 1.00 0.98

4 0.95 1.02 0.93 0.98 1.01 0.97

8 0.94 1.04 0.90 0.98 1.04 0.94

16 0.92 1.05 0.88 0.98 1.04 0.94

32 0.91 1.04 0.88 0.97 1.03 0.94

64 0.91 1.05 0.86 0.97 1.04 0.93

Exchange

1 1.00 1.00 1.00 1.00 1.00 1.00

2 0.86 1.01 0.86 0.89 1.00 0.89

4 0.78 1.01 0.77 0.87 1.02 0.85

8 0.72 1.04 0.69 0.87 1.02 0.85

16 0.68 1.08 0.63 0.87 1.01 0.86

32 0.67 2.09 0.32 0.87 1.05 0.83

64 0.65 4.12 0.16 0.87 1.04 0.83

Table 2: Total Deduplication (TD), data skew, and nor-

malized Effective Deduplication ratio (ED = T D
skew

) for

some of the datasets, using capacity thresholds of 5%.

shown. Exchange demonstrates the extreme case, in

which most chunk-routing features degrade badly with

large clusters. One can see the effect of high skew when

a common feature results in distinct chunks being routed

to the same node. This is less common when the entire

chunk’s hash is used than when a prefix is used: first

hash(*) spreads out the data more, resulting in less data

skew and better ED. Even though chunks are consistently

routed with the HYDRAstor technique (HYDRAstor), the

ED is generally worse than the other techniques because

of the larger chunk size: the deduplication is less than

half that achieved with 8-KB chunks on a single node.

The figure demonstrates that first hash(64) is

generally somewhat better for smaller clusters, while

first hash(*) is better for larger ones. (This effect

arises because first hash(64) is more likely to keep

putting even somewhat similar chunks on the same node,

which improves deduplication but increases skew.) Us-

ing the minimum of either feature, as Extreme Binning

does for hash(*), generally achieves similar dedupli-

cation to using the first chunk. Due to its effectiveness

with the cluster sizes being deployed in the near future

and its reduction in buffer requirements, we use first

hash(64) as the default and refer to it as hash(64) for

simplicity elsewhere.

5.3 Factors Impacting Cluster Throughput

A major goal of our architecture is to maximize through-

put as the cluster scales, and in a deduplicating sys-

tem, the main throughput bottleneck is fingerprint index

lookups that require a random disk read [36]. We are not

able to produce a throughput measure in MB/s through

simulation, so we use fingerprint index lookups as an in-

direct measure of throughput.

There are two important issues involving fingerprint

index lookups to consider. The first is the total number

of fingerprint index lookups that take place, since this is

a measure of the amount of work required to process a

dataset and is impacted by data skew. The second is the

rate of fingerprint index lookup, which indicates the lo-

cality of data written to disk. These values are impacted

both by the super-chunk size and number of nodes in a

cluster, and we have selected a relatively large cluster

size (32 nodes) while varying the super-chunk size.

Early generations of backups (the first few weeks of a

dataset) tend to be laid out sequentially because of a low

deduplication rate, while higher generations of backups

are more scattered. To highlight this impact, we ana-

lyzed the caching effects while writing the final 1 TB of

each synthesized dataset across the N nodes. In these ex-

periments, the cache size is held at 12,500 fingerprints.

While this may seem small, it is similar to a cache of

400,000 fingerprints on a single, large node, Also, a

cache must handle multiple backup streams, while our

experiments use one dataset at a time.

Figure 5 shows the skew of the uncompressed (log-

ical) data, maximum normalized total number of finger-

print index lookups, maximum normalized fingerprint in-

dex lookup rate, and ED when routing super-chunks of

various sizes for (a) Workstations and (b) Exchange.

Note that we report skew of the logical data here instead

of skew of the post-dedupe data reported elsewhere, be-

cause fingerprint lookups happen on logical data. The

9

24 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o
rm

a
liz

e
d
 E

ff
e
c
ti
v
e
 D

e
d
u
p
lic

a
ti
o
n

Nodes

(a) Workstations

first hash(64)
first hash(*)

min hash(64)
min hash(*)
HYDRAstor

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
o
rm

a
liz

e
d
 E

ff
e
c
ti
v
e
 D

e
d
u
p
lic

a
ti
o
n

Nodes

(b) Exchange

first hash(64)
first hash(*)

min hash(64)
min hash(*)
HYDRAstor

Figure 4: Normalized ED versus number of nodes with various features. No bin migration is performed. The HYDRA-

stor points represent 64-KB chunks routed without super-chunks, with virtually no data skew but significantly worse

deduplication in most cases. Workstations is representative of many other datasets, while Exchange is anomalous.

 0

 0.5

 1

 1.5

 2

 2.5

 3

8K... 64K 512K 1M 2M 4M

In
d
e
x
 L

o
o
k
u
p
s
 a

n
d
 O

th
e
r

M
e
tr

ic
s

Super-Chunk Size

(a) Workstations

logical skew
max lookup

max lookup rate
ED

 0

 0.5

 1

 1.5

 2

 2.5

 3

8K... 64K 512K 1M 2M 4M

In
d
e
x
 L

o
o
k
u
p
s
 a

n
d
 O

th
e
r

M
e
tr

ic
s

Super-Chunk Size

(b) Exchange

logical skew
max lookup

max lookup rate
ED

Figure 5: Skew of data written to nodes (pre-deduplication), maximum number of fingerprint index lookups and lookup

rate, and ED versus super-chunk size for a 32-node cluster. Fingerprint index lookup values are normalized relative

to those metrics when routing individual 8-KB chunks. As the super-chunk size increases, the maximum number of

on-disk index lookups decreases for Workstations (improving throughput), while effective deduplication decreases.

Workstations is representative of many other datasets, while Exchange is anomalous.

fingerprint index lookup numbers are normalized relative

to the rate seen when routing individual 8-KB chunks.

Because the lookup rate improvement achieved by us-

ing larger super-chunk sizes generally comes with a cost

of lower deduplication, we also plot normalized ED to

aid the selection of an appropriate super-chunk size. It

should be noted that we found smaller differences in

lookup rate and total number of lookups with smaller

clusters.

For Workstations, we see that the total number of

fingerprint index lookups and rate generally shrink as

we use larger super-chunk sizes. Routing 4-MB super-

chunks results in ∼ 65% of the maximum total index

lookups compared to routing chunks. Though data skew,

maximum lookup rate, and maximum number of lookups

tend to follow the same trends, the values for maximum

number of lookups and maximum lookup rate may come

from different nodes.

The index lookups (both total and rate) for Exchange

around 1 MB highlights a case where our technique may

perform poorly due to a frequently repeating pattern in

the data set that causes a large fraction of the hash(64)

values to map to the same bin. With smaller super-chunk

sizes, less data are carried with each super-chunk, so

skew can be reasonably balanced via migration, and for

larger super-chunks, the problematic hash(64) value is

no longer selected. For this dataset, a super-chunk size of

1 MB results in higher skew that lowers ED, and it has a

high total number of lookups and worst-case cache miss

rate. This is a particularly difficult example for our sys-

10

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 25

0

0.2

0.4

0.6

0.8

1

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

N
o
rm

a
liz

e
d
 E

ff
e
c
ti
v
e
 D

e
d
u
p
lic

a
ti
o
n

a
n
d
 P

e
a
k
 D

a
ta

 M
o
v
e
m

e
n
t
(D

M
)

Capacity Threshold

workstations:

stateful ED
hash(64) ED
hash(64) DM

exchange:

stateful ED
hash(64) ED
hash(64) DM

Figure 6: Normalized ED as a function of capacity

threshold on 32 nodes, for hash(64) and stateful, and

peak fraction of data movement (DM) for hash(64).

Note that lower points are better for data movement,

while higher is better for ED.

tem as the same node had both the highest lookup rate

and skew, which roughly multiply together to equal total

lookups.

Although any particular super-chunk size can poten-

tially result in skew if patterns in the data result in one bin

being selected too often, the problem is rare in practice.

Thus, despite this one poor example, we decided that

1-MB super-chunks provide both reasonable throughput

and deduplication and use that as the default super-chunk

size in our other experiments.

The scalability of our cluster design could more thor-

oughly be analyzed with a comparison of the number of

fingerprint index lookups for various cluster sizes relative

to the single node case. Intuitively, a single-node system

might have similar lookup characteristics to nodes in a

cluster when routing very large super-chunks and with-

out data skew.

5.4 Space Usage Thresholds

Limitations on storage use arise in two contexts. For

stateless routing, we periodically migrate bins away from

nodes storing more than the average, if they exceed a

fixed threshold relative to the mean. In the simulations,

bin migration takes place after multiple 1-TB epochs

have been processed, totaling ∼ 20% of a given dataset.

This means that we attempt migrations approximately 5

times per dataset regardless of size, plus once more at

the end, if needed. For stateful routing, we refrain from

placing new data on a node that is already storing more

than that threshold above the average.

Figure 6 demonstrates the impact of the capacity

threshold on ED and peak data movement, using the

Workstations and Exchange datasets on 32-nodes.

The top four curves show ED: for Workstations, dedu-

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

E
ff
e
c
ti
v
e
 D

e
d
u
p
lic

a
ti
o
n
 (

U
n
n
o
rm

a
liz

e
d
)

Percent of Total Input Processed

migration points
single node

2 nodes mig
2 nodes no mig

64 nodes mig
64 nodes no mig

Figure 7: Effective Deduplication as a function of the

amount of data processed, with and without bin migra-

tion at a 5% threshold, for the Workstations dataset

on 2 and 64 nodes. Migration points are marked along

the top, every 1 TB, with deduplication computed every

0.1 TB. The deduplication for a single node is depicted

as the top curve.

plication effectiveness improves with increasingly tight

capacity bounds, although the benefit below 5% is mini-

mal, while for Exchange, the existence of a single over-

sized bin when using 1 MB super-chunks ensures a large

skew regardless of threshold in the case of hash(64).

The bottom two curves provide an indication of the

impact of bin migration on data movement, as the thresh-

old changes. We compute the fraction of data moved

from a node at the end of an epoch, relative to the amount

of physical data stored on the node at the time of the mi-

gration, and report the maximum across all nodes and

epochs. Exchange moves 15–20% of the incoming data

(which is on the order of 1
32

of 1 TB) without improv-

ing ED, while we would migrate at most a few percent

of one node’s data for Workstations. Note that across

the entire dataset, migration accounts for at most 1
1000

of the data, and on the 2-node commercial systems cur-

rently deployed, they have never occurred. Because at

32 nodes we do see small amounts of migration even for

the Workstations dataset, and increasing the thresh-

old from 1.01 to 1.05 reduces the total data migrated by

nearly a factor of 2 without much of an impact on ED, we

use 1.05 as the default threshold in other experiments.

Figure 7 shows the impact of bin migration over time

on the Workstations dataset. The curves for 2 nodes

are identical, as no migration was performed. The curves

for 64 nodes are significantly different, with the curve

without migration having much worse ED. However,

even with migration, the ED drops between migration

points due to increasing skew. Note that this graph does

not normalize deduplication relative to a single node, in

order to highlight the effect of starting with entirely new

11

26 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Sampling Workstations Exchange Memory

Rate
ED

Look-
ED

Look-
(GB)

(1-in-N) ups (B) ups (B)

1 5.28 20.57 5.74 21.95 96

2 5.27 10.83 5.72 11.62 48

4 5.27 6.03 5.76 6.46 24

8 5.31 3.61 5.63 3.88 12

16 5.27 2.41 5.46 2.59 6

32 5.19 1.81 5.13 1.95 3

Table 3: The ED, Bloom filter lookups in billions, and

Bloom filter memory requirements in a 32-node system,

for two of the datasets. They vary as a function of the

sampling rate: which chunks are checked for existence

on each node. The memory requirement is independent

of the dataset.

data, then increasing deduplication over time.

5.5 Parameters for Stateful Routing

In addition to capacity limitations, stateful routing is pa-

rameterized by vote sampling and vote threshold as ex-

plained in Section 4.3. Sampling has a great impact on

the number of fingerprint lookups, while surprisingly, the

system is not very sensitive to a threshold requiring a

node to be a particularly good match to be selected.

We evaluated sampling across a variety of datasets and

cluster sizes, varying the selectivity of the anchors used

to vote from 1 down to 1
32

. Table 3 reports the effect

of sampling on ED and Bloom filter lookups for two of

the datasets. (Slight rises in ED with less frequent sam-

pling result from slightly lower skew due to not match-

ing a node quite as often.) The last column of the table

shows the size of a Bloom filter on a master node for a

1% false positive rate and up to 20 TB of unique 8-KB

chunks on each node; it demonstrates how the aggregate

memory requirement on the master would decrease as the

sampling rate decreases. The required size to track each

node is multiplied by the number of nodes, 32 in this

experiment. Each node would also have its own local

Bloom filter, which would be unaffected by the sampling

rate used for stateful routing. If lookups are forwarded

to each node, sampling would be used to limit the num-

ber of lookups, but the per-node Bloom filters used for

deduplication would be used for routing, and no extra

memory would be required.

We found that the ED is fairly constant from looking up

all chunks (a sampling rate of 1) down to a rate of 1
8

and

often similar when sampling 1
16

; it degrades significantly,

as expected, when less than that. Thus we use a default

of 1
8

for stateful routing elsewhere in this paper.

We also examined the vote benefit threshold. While

we use a default of 1.5, the system is not very sensitive

to values from 0.75 to 2. The key is to have a high enough

threshold that a single chunk will not “attract” more and

more dissimilar chunks due to one match.

6 Cluster Deduplication Product

EMC now makes a product based on this technol-

ogy [13]. The cluster configuration currently consists of

two nodes and uses the hash(64) routing technique with

bin migration. Each node has the following hardware

configuration: 4 socket processor, 4 cores per socket, and

each core is running at 2.93 Ghz; 64 GB of memory;

four 10-Gb Ethernet interfaces (one for external traffic

and one for inter-node traffic, both in a fail-over pair);

and 140 TB of storage, consisting of 12 shelves of 1-TB

drives. Each shelf has 16 drives in a 12+2 RAID-6 con-

figuration with 2 spare drives.

The total physical capacity of the two-node system is

280 TB. Under typical backup usage, total compression

is expected to be 20X, which leads to a logical capac-

ity of 5.6 PB of storage. Write performance with mul-

tiple streams is over 3 GB/s. Note that this performance

was achieved with processing on the backup server as de-

scribed in Section 2, which communicates with storage

nodes to filter duplicate chunks before network transfer.

Because of the filtering step, logical throughput (file size

divided by transfer time) can even exceed LAN speed.

We measured the steady-state write and read perfor-

mance with 1–4 nodes and found close to linear improve-

ment as the number of nodes increases. While simula-

tions suggest our architecture will scale to a larger num-

ber of nodes, we have not yet tuned our product for a

larger system or run performance tests.

In over six months of customer usage, bin migration

has never run, which indicates stateless routing typically

maintains balance across two nodes.

7 Related Work

Chunk-based deduplication is the most widely used

deduplication method for secondary storage. Such a

system breaks a data file or stream into contiguous

chunks and eliminates duplicate copies by recording ref-

erences to previous, identical chunks. Numerous stud-

ies have investigated content-addressable storage us-

ing whole files [1], fixed-size blocks [27, 28], content-

defined chunks [17, 24, 36], and combinations or com-

parisons of these approaches [19, 23, 26, 32]; generally,

these have found that using content-defined chunks im-

proves deduplication rates when small file modifications

are stored. Once the data are divided into chunks, it is

represented by a secure fingerprint (e.g., SHA-1) used

for deduplication.

A technique to decrease the in-memory index require-

ments is presented in Sparse Indexing [20], which uses a

sampling technique to reduce the size of the fingerprint

12

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 27

index. The backup set is broken into relatively large re-

gions in a content-defined manner similar to our super-

chunks, each containing thousands of chunks. Regions

are then deduplicated against a few of the most similar

regions that have been previously stored using a sparse,

in-memory index with only a small loss of deduplication.

While Sparse Indexing is used in a single system to re-

duce its memory footprint, the notion of sampling within

a region of chunks to identify other chunks against which

new data may be deduplicated is similar to our sam-

pling approach in stateful routing. However, we use

those matches to direct to a specific node, while they use

matches to load a cache for deduplication.

Several other deduplication clusters have been pre-

sented in the literature. Bhagwat et al. [2] describe a

distributed deduplication system based on “Extreme Bin-

ning”: data are forwarded and stored on a file basis, and

the representative chunk ID (the minimum of all chunk

fingerprints of a file) is used to determine the destination.

An incoming file is only deduplicated against a file with

a matching representative chunk ID rather than against

all data in the system. Note that Extreme Binning is in-

tended for operations on individual files, not aggregates

of all files being backed up together. In the latter case,

this approach limits deduplication when inter-file local-

ity is poor, suffers from increased cache misses and data

skew, and requires multiple passes over the data when

these aggregates are too big to fit in memory.

DEBAR [34] also deduplicates individual files written

to their cluster. Unlike our system, DEBAR deduplicates

files partially as they are written to disk and completes

deduplication during post-processing by sharing finger-

prints between nodes.

HYDRAstor [8] is a cluster deduplication storage

system that creates chunks from a backup stream and

routes chunks to storage nodes, and HydraFS [33] is

a file system built on top of the underlying HYDRA-

stor architecture. Throughput of hundreds of MB/s is

achieved on 4-12 storage nodes while using 64 KB-sized

chunks. Individual chunks are routed by evenly parti-

tioning fingerprint space across storage nodes, which is

similar to the routing techniques used by Avamar [11]

and PureDisk [7]. In comparison, our system uses larger

super-chunks for routing to maximize cache locality and

throughput but also uses smaller chunks for deduplica-

tion to achieve higher deduplication.

Choosing the right chunking granularity presents a

tradeoff between deduplication and system capacity and

throughput even in a single-node system [35]. Bi-

modal chunking [18] is based on the observation that

using large chunks reduces metadata overhead and im-

proves throughput, but large chunks fail to recover some

deduplication opportunities when they straddle the point

where new data are added to the stream. Bimodal chunk-

ing tries to identify such points and uses a smaller chunk

size around them for better deduplication.

8 Conclusion and Future Work

This paper presents super-chunk routing as an important

technique for building deduplication clusters to achieve

scalable throughput and capacity while maximizing ef-

fective deduplication. We have investigated properties of

both stateless and stateful versions of super-chunk rout-

ing. We also describe a two-node deduplication storage

product that implements the stateless method to achieve

3 GB/sec deduplication throughput with the capacity to

store approximately 5.6 PB of backup data.

Our study has three conclusions. First, we have found

that using super-chunks, a multiple of fine-grained dedu-

plication chunks, for data routing is superior to using

individual chunks to achieve scalable throughput while

maximizing deduplication. We have demonstrated that a

1-MB super-chunk size is a good tradeoff between index

lookups, which directly impact deduplication through-

put, and effective cluster-wide deduplication.

Second, the stateless routing method (hash(64)) with

bin migration is a simple and yet efficient way to build

a deduplication cluster. Our simulation results on real-

world datasets show that this method can achieve good

balance and scalable throughput (good caching locality)

while achieving at least 80% of the single-node effective

deduplication, and bin migration appears to be critical to

the success of the stateless approach in larger clusters.

Third, our study shows that effective deduplication of

the stateless routed cluster for certain datasets (most no-

tably Exchange) may drop quickly as the number of

nodes increases beyond 4. To solve this problem, we

have proposed a stateful data routing approach. Simula-

tions show this approach can achieve 80% or better nor-

malized ED when using up to 64 nodes in a cluster, even

for “pathological” cases.

Several issues remain open. First, we would like to

further our understanding of the conditions that cause se-

vere data skew with the stateless approach. To date, no

bin migration has occurred in the production system de-

scribed in this paper; this is not surprising considering

that ED for hash(64) on two nodes is virtually identical

for each of our datasets, with or without bin migration.

The same is true for most, but not all, of the datasets as

the cluster size increases moderately. Second, we plan

to examine the scalability of the system across a broad

range of cluster sizes and the impact of parameters such

as feature selection and super-chunk size. Third, we want

to explore the use of bin migration to support reconfigu-

ration such as node additions. Finally, we plan to build a

prototype cluster with stateful routing so that more thor-

ough experiments can be conducted in lab and in cus-

tomer environments.

13

28 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Acknowledgments

We thank Dhanabal Ekambaram, Paul Jardetzky, Ed Lee,

Dheer Moghe, Naveen Rastogi, Pratap Singh, and Grant

Wallace for helpful comments and/or assistance with our

experimentation. We are especially grateful to the anony-

mous referees and our shepherd, Cristian Ungureanu, for

their feedback and guidance.

References

[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,

R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,

M. Theimer, and R. P. Wattenhofer. Farsite: fed-

erated, available, and reliable storage for an incom-

pletely trusted environment. In OSDI ’02: Proceed-

ings of the 5th Symposium on Operating Systems

Design and Implementation, pages 1–14, 2002.

[2] D. Bhagwat, K. Eshghi, D. D. Long, and M. Lillib-

ridge. Extreme binning: scalable, parallel dedu-

plication for chunk-based file backup. In MAS-

COTS 09: Proceedings of the 17th IEEE Interna-

tional Symposium on Modeling, Analysis, and Sim-

ulation of Computer and Telecommunication Sys-

tems, Sept. 2009.

[3] B. Bloom. Space/time trade-offs in hash cod-

ing with allowable errors. Communications of the

ACM, 13(7):422–426, July 1970.

[4] S. Brin, J. Davis, and H. Garcı́a-Molina. Copy

detection mechanisms for digital documents. In

Proceedings of ACM SIGMOD International Con-

ference on Management of Data, pages 398–409,

1995.

[5] P. H. Carns, W. B. Ligon, III, R. B. Ross, and

R. Thakur. Pvfs: a parallel file system for linux

clusters. In Proceedings of the 4th Annual Linux

Showcase and Conference, pages 391–430. MIT

Press, 2000.

[6] L. P. Cox., C. D. Murray, and B. D. Noble. Pastiche:

making backup cheap and easy. In OSDI ’02: Pro-

ceedings of the 5th Symposium on Operating Sys-

tems Design and Implementation, pages 285–298,

New York, NY, USA, 2002. ACM.

[7] M. Dewaikar. Symantec NetBackup PureDisk:

optimizing backups with deduplication for re-

mote offices, data center and virtual machines.

http://eval.symantec.com/mktginfo/

enterprise/white_papers/b-symantec_ne%

tbackup_puredisk_WP-en-us.pdf, September

2009.

[8] C. Dubnicki, G. Leszek, H. Lukasz, M. Kaczmar-

czyk, W. Kilian, P. Strzelczak, J. Szczepkowski,

C. Ungureanu, and M. Welnicki. HYDRAstor: a

scalable secondary storage. In FAST ’09: Proceed-

ings of the 7th conference on File and Storage Tech-

nologies, pages 197–210, February 2009.

[9] EMC Corporation. Data Domain products. http:

//www.datadomain.com/products/, 2009.

[10] EMC Corporation. DD880: dedupli-

cation storage for the core data cen-

ter. http://www.datadomain.com/pdf/

DataDomain-DD880-Datasheet.pdf, 2009.

[11] EMC Corporation. Efficient data protec-

tion with EMC Avamar global dedupli-

cation software. http://www.emc.com/

collateral/software/white-papers/

h2681-efdta-prot-av%amar.pdf, July 2009.

[12] EMC Corporation. Data Domain Boost Soft-

ware, 2010. http://www.datadomain.com/

products/dd-boost.html.

[13] EMC Corporation. Data Domain Global

Deduplication Array, 2010. http:

//www.datadomain.com/products/

global-deduplication-array.html.

[14] European Parliament. Directive 2006/24/EC ”On

the retention of data generated or processed in con-

nection with the provision of publicly available

electronic communications services or of public

communication networks” , March 2006.

[15] J. F. Gantz, C. Chute, A. Manfrediz, S. Minton,

D. Reinsel, W. Schlichting, and A. Toncheva. The

diverse and exploding digital universe: an updated

forecast of worldwide information growth through

2011. An IDC White Paper — sponsored by EMC,

March 2008.

[16] IBM Corporation. IBM ProtecTIER Deduplica-

tion Solutions, 2010. http://www-03.ibm.com/

systems/storage/tape/protectier.

[17] N. Jain, M. Dahlin, and R. Tewari. Taper: tiered

approach for eliminating redundancy in replica syn-

chronization. In FAST ’05: Proceedings of the 4th

USENIX Conference on File and Storage Technolo-

gies, pages 21–21, 2005.

[18] E. Kruus, C. Ungureanu, and C. Dubnicki. Bimodal

content defined chunking for backup streams. In

FAST ’10: Proceedings of the 8th Conference on

File and Storage Technologies, February 2010.

[19] P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey.

Redundancy elimination within large collections of

14

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 29

files. In Proceedings of the USENIX Annual Tech-

nical Conference, pages 59–72, 2004.

[20] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deola-

likar, G. Trezise, and P. Camble. Sparse indexing:

large scale, inline deduplication using sampling and

locality. In FAST ’09: Proceedings of the 7th Con-

ference on File and Storage Technologies, pages

111–123, 2009.

[21] The Lustre File System, 2010. http://www.

lustre.org.

[22] U. Manber. Finding similar files in a large file sys-

tem. In Proceedings of the USENIX Winter Techni-

cal Conference, pages 1–10, 1994.

[23] D. T. Meyer and W. J. Bolosky. A Study of Practical

Deduplication. In FAST ’11: Proceedings of the

9th Conference on File and Storage Technologies,

February 2011.

[24] A. Muthitacharoen, B. Chen, and D. Mazières. A

low-bandwidth network file system. In SOSP ’01:

Proceedings of the 18th ACM Symposium on Oper-

ating Systems Principles, pages 174–187, 2001.

[25] Network Appliance. NetApp ONTAP.

http://www.netapp.com/us/products/

platform-os/dedupe.html, 2009.

[26] C. Policroniades and I. Pratt. Alternatives for de-

tecting redundancy in storage systems data. In Pro-

ceedings of the USENIX Annual Technical Confer-

ence, pages 73–86, 2004.

[27] S. Quinlan and S. Dorward. Venti: a new approach

to archival storage. In FAST ’02: Proceedings of the

1st USENIX conference on File and Storage Tech-

nologies, 2002.

[28] S. C. Rhea, R. Cox, and A. Pesterev. Fast, inex-

pensive content-addressed storage in foundation. In

Proceedings of the USENIX Annual Technical Con-

ference, pages 143–156, 2008.

[29] 107th Congress, United States of America. Public

Law 107-204: ”Sarbanes-Oxley Act of 2002”, July

2002.

[30] S. R. Soltis, T. M. Ruwart, and M. T. Okeefe. The

global file system. In MSS ’96: Proceedings of the

5th NASA Goddard Conference on Mass Storage,

pages 319–342, 1996.

[31] M. Stonebraker. The case for shared-nothing. IEEE

Database Engineering, 9(1), March 1986.

[32] N. Tolia, M. Kozuch, M. Satyanarayanan, B. Karp,

T. Bressoud, and A. Perrig. Opportunistic Use of

Content Addressable Storage for Distributed File

Systems. In Proceedings of the USENIX Annual

Technical Conference, pages 127–140, 2003.

[33] C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale,

S. Rago, G. Calkowski, C. Dubnicki, and A. Bohra.

HydraFS: a high throughput file system for the

HYDRAstor content-addressable storage system.

In FAST ’10: Proceedings of the 8th Conference

on File and Storage Technologies, February 2010.

[34] T. Yang, D. Feng, Z. Niu, K. Zhou, and

Y. Wan. DEBAR: a scalable high-performance de-

duplication storage system for backup and archiv-

ing. In IEEE International Symposium on Parallel

& Distributed Processing, May 2010.

[35] L. You and C. Karamanolis. Evaluation of efficient

archival storage techniques. In MSS ’04: Proceed-

ings of the 21st Symposium on Mass Storage Sys-

tems, Apr. 2004.

[36] B. Zhu, K. Li, and H. Patterson. Avoiding the disk

bottleneck in the Data Domain deduplication file

system. In FAST ’08: Proceedings of the 6th Con-

ference on File and Storage Technologies, pages

269–282, February 2008.

[37] J. Ziv and A. Lempel. A universal algorithm for

sequential data compression. IEEE Transactions on

Information Theory, 23(3):337–343, May 1977.

15

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 31

Capo: Recapitulating Storage for Virtual Desktops

Mohammad Shamma, Dutch T. Meyer, Jake Wires, Maria Ivanova,
Norman C. Hutchinson and Andrew Warfield

Department of Computer Science
University of British Columbia

Abstract
Shared storage underlies most enterprise VM deploy-

ments because it is an established technology that admin-
istrators are familiar with and because it good job of pro-
tecting data. However, shared storage is also very expen-
sive to scale. This paper describes Capo1, a transparent
and persistent block request proxy for virtual machine
disk images. Capo reduces the load on shared storage by
using local disks as persistent caches, using multicast-
based preloading to broadcast read results across a clus-
ter, and by imposing differential durability – dividing a
VM’s file system into regions of varying writeback fre-
quency. We motivate the system’s design through the
analysis of a week-long trace of 55 production virtual
desktops and then describe and evaluate our implemen-
tation. Capo is particularly well suited for virtual desk-
top deployments, in which large numbers of VMs boot
from a small number of “gold master” images and are
refreshed on a periodic basis.

1 Introduction

The storage we trust is expensive. Fast and reliable data
storage is something that organizations are prepared to
pay a premium for, both in the capital costs of enterprise
storage hardware and the operational costs of ensuring
that important data is written to it.

Interestingly, the deployment of virtualization has in-
verted the historical imperative that systems be config-
ured to “opt-in” to storing data on appropriate network
shares instead of on less reliable locations such as lo-
cal disks. While administrators used to have to work to
configure applications to use enterprise storage, virtual
environments simply store everything on it.

1The name of our system is borrowed from the phrase “Da Capo
al coda”, which is used in sheet music to indicate a brief return to the
beginning of a piece, followed by a jump to the Coda, or conclusion.
In sonatas, this “recapitulation” involves revisiting a similar, but some-
times different version of the main theme of the arrangement.

As such, these environments present the opposite
problem: The requirement that virtual machine images
be universally accessible, with high performance, to all
physical hosts in a cluster has necessitated the deploy-
ment of SAN hardware in even modest virtualization
deployments. The improved density and utilization af-
forded by virtualization allows systems to scale to large
numbers of VMs; shared storage must scale proportion-
ately to provide for them. This symptom is especially
problematic for virtual desktops, where infrastructure is
being deployed to host literally thousands of nearly iden-
tical VM images. A number of commercial virtual desk-
top systems now exist, and deployments suffer from a
significant, if not dominant, cost for enterprise storage.

This paper argues that shared, central, storage is the
correct approach for scalable virtual environments. It
is trustworthy, relatively easy to manage, and simple to
reason about. However, we believe that for applications
such as virtual desktops, which involve large numbers
of image clones, the majority of request load is redun-
dant and can be effectively serviced by local, commodity
disks within individual servers. Furthermore, we believe
that the levels of durability provided by enterprise stor-
age in these environments are in excess of what is neces-
sary for large portions of desktop OS disk images.

The contributions of this paper are twofold: First, we
validate our hypothesis through the analysis of a week-
long trace of all storage traffic from a production deploy-
ment of 55 Windows Vista desktops in an executive and
administrative office of a large public organization. Our
results examine the opportunities that exist for caching
data both within and across virtual desktop images. They
also examine the breakdown of request workload within
desktop filesystems.

Second, based on the analysis of this trace, we de-
scribe the design and implementation of Capo, a dis-
tributed persistent cache that aims to reduce aggregate
load on shared storage in virtual desktop environments.
Capo uses local server disks to provide persistent caching

32 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

of VM images, and includes mechanisms to share and
pre-load caches of gold master images across VMs and
across hosts. Finally, Capo introduces a facility for dif-
ferential durability, which allows administrators to selec-
tively “opt out” of enterprise storage guarantees by relax-
ing the durability properties of subsets of a desktop’s file
system.

Virtual desktop systems have already taken advantage
of several approaches to scale storage to large numbers
of desktop machines. We begin in Section 2 by providing
some brief initial background on these systems.

2 VDI Background

Virtual desktops represent the latest round in a decades-
long oscillation between thin- and thick-client computing
models. So-called Virtual Desktop Infrastructure (VDI)
systems have emerged as a means of serving desktop
computers from central, virtualized hardware. VDIs are
being touted as a new compromise in a history of largely
unsuccessful attempts to migrate desktop users onto thin
clients, and the approach does provide a number of bene-
fits. Giving users private virtual machines preserves their
ability to customize their environment and interact with
the system as they would a normal desktop computer.
From the administration perspective, consolidating VMs
onto central compute resources has the potential to re-
duce power consumption, allow location-transparent ac-
cess, better protect private data, and ease software up-
grades and maintenance.

Commercial VDI systems appear to be experiencing
a degree of success: Gartner predicts that forty percent
of all worldwide desktops—49 Million in total—will be
virtualized by 2013 [17]. Today, the two major vendors
of VDI systems, Citrix and VMWare, individually de-
scribe numerous case studies of active virtual desktop
deployments of over 10,000 users. From a storage per-
spective, VDI systems have faced immediate challenges
around space overheads and the ability to deploy and up-
grade desktops over time. As background, this section
describes how these problems are typically solved in ex-
isting architectures, as illustrated in Figure 1.

2.1 Copy-on-Write and Linked Clones
Operating system images are entire virtual disks, often
tens of gigabytes each. A naive approach to support-
ing hundreds or thousands of virtual machines results in
two immediate storage scalability problems. First, VMs
must have isolated disk images, but maintaining individ-
ual copies of every single disk is impractical and con-
sumes an enormous amount of space. Second, adding
new users requires that images can be quickly duplicated
without necessitating a complete copy.

VM

VM

VM

System
Gold

Master

“Weekly” Durable
On upgrade, gold
master and all
children are deleted
and replaced with
a new version.

Read-only
Base Images

Linked clones. Sparse,
private, read/write.

Durable
User data is
maintained across
upgrades. Linked
in to the gold
master’s file system.

User
Data

Template

All writes stored
in private clones.
Sparse reads pass

to base image.

Figure 1: Typical image management in VDI systems.

This observation is not new; it has been a recur-
ring challenge in virtualization. Existing VDI systems
make use of VM-specific file formats such as Microsoft’s
VHD [14] and VMware’s VMDK [22]. Both allow a
sparse overlay image to be “chained” to a read-only base
image (or gold master). As shown in Figure 1, modifi-
cations are written to private, per-VM overlays, and any
data not in the overlay is read from the base image. In
this manner, large numbers of virtual disks may share
a single gold master. This approach consolidates com-
mon initial image data, and new images may be quickly
cloned from a single gold master.

2.2 Image Updates and Periodic Rollback
Image chaining saves space and allows new images to
be cloned from a gold master almost instantaneously. It
is not a panacea though. Chained images immediately
begin to diverge from the master version as VMs issue
writes to them. One immediate problem with this diver-
gence is the consumption of independent extra storage
on a per-image basis. This divergence problem for stor-
age consumption is typically addressed through the use
of data deduplication [24, 6, 4].

For VDI, wasted storage is not the most pressing con-
cern: block-level chaining means that patches and up-
grades cannot be applied to the base image in a manner
that merges and reconciles with the diverged clones. This
means the ability to deploy new software or upgrades to a
large number of VMs, which was initially provided from
the single gold master is immediately lost.

The leading VDI offerings all solve this problem in a
very similar way: They disallow users from persisting
long term changes to the system image. When gold mas-
ter images are first created and clones are deployed, the
VDI system arranges images to isolate private user data
(documents, settings, etc.) on separate storage from the
system disk itself. As suggested initially in the Collec-
tive project [3], this approach allows a new gold master

2

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 33

with updated software to be prepared and deployed to
VMs simply by replacing the gold master, creating new
(empty) clones, and throwing away the old version of
the system disk along with all changes. This approach
effectively “freshens” the underlying system image of
all users periodically and ensures that all users are us-
ing a similar well-configured desktop. For the most part,
it also means that users are unable to install additional,
long-lived software within VDI images without support
from administrators.

3 Virtual Desktop Trace

To better understand VDI workloads, we arranged to
measure all block and file level activity from the a pro-
duction VDI deployment for a one week period during
the Summer of 2010. The deployment being studied is
an office in a large public organization containing exec-
utive and administrative support staff. The deployment
had been in production use for six months and includes
55 Windows Vista desktops, the organization is in the
process of rolling out another 300 desktops this fall.

3.1 Methodology

We installed a Windows storage class driver into the base
system image of the virtual desktop machines. The driver
was written to record block read and write events to
the virtual disks using the Microsoft Windows Software
Trace Preprocessor (WPP). It recorded request size and
virtual disk address. In 93% of cases we were also able
to determine the file on which the access originated by
following the OriginalFileObject pointer in the Windows
I/O Request Packet (IRP) structure. To better contextu-
alize this information, we also installed a driver at the
filesystem level and recorded cache accesses, the appli-
cation making each request, and the file flags for each file
accessed. Our disk-level driver is written in 515 lines of
C, while our file-level driver is 82 lines of C.

Logs from these drivers were written to a network
share and collected on the Thursday following a full
week of logging. In total we collected 75GB of logs in
a compressed binary format. We then checked for cor-
ruption, missing logs, or missing events. Out of over 300
million entries we found a single anomalous write to a
clearly invalid block address, which we removed. We
could find no explanation for the event. In the rest of
this section we present our analysis of this data. Unless
otherwise specified, we will refer to block level accesses
to a virtual disk and measure aggregate workloads in I/O
operations per second (IOPS).

3.2 Our Virtual Desktop Environment

The environment we are studying is structured very much
like the one described in Section 2. At the time our mea-
surements were gathered it hosted 55 Microsoft Win-
dows Vista virtual desktops with VMWare View, of
which roughly 27 are in dedicated day-to-day use as the
primary desktop. This small size is the primary limi-
tation of our study, but we expect to measure consider-
ably more as the installation grows. Furthermore, even
at the current size it is possible to see considerable self-
similarity among machines, as we will discuss.

End users work from Dell FX100 Zero thin clients,
while VMs are served from HP BL490c G6 Blades run-
ning ESX Server. These servers connect to a Network
Appliance 3170s over fiber channel, for booting from
the SAN, and 10GigE, for VM disk images. System
images are hosted via NFS on a 14 drive RAID group
with 2 parity disks. The operating systems and applica-
tions are optimized for the virtual environment [20] and
are pre-loaded with Firefox, Microsoft Office Enterprise,
and Sophos Anti-Virus among other software. At the end
of every Wednesday, a new system image is published to
all users exactly as discussed in Section 2.2.

3.3 Analysis

We begin by asking, What are the day-to-day charac-
teristics of VDI storage workloads? Figure 2 shows the
entire study in I/O operations-per-second for the 24-hour
period of each of the 7 full days recorded. There is a
distinct peak load period between 8:30 and 9:30 every
morning, as employees arrive at work. Three peaks in
this period are highlighted in the figure and presented
for expanded analysis in Table 1. The right-most col-
umn shows the applications responsible for the most disk
I/O, excluding the system and services. Most days, Fire-
fox and the virus scanner are very active in this period,
we also see Thunderbird, Pidgin, and Microsoft Outlook
frequently. We were surprised to see the Search Indexer
active as well, because we were told its background scan-
ning task had been disabled to reduce I/O consumption.
Our best guess is that it was invoked manually.

We measured the write to read percentages for both
IOps and throughput, which is useful in characterizing
the workload. Our workload is write-heavy in IOps, and
read-heavy in throughput, both by approximately two-
to-one. We then measured the percentage of VMs which
contributed at least 5% of the peak workload, to deter-
mine if peaks were caused by multiple VMs or by a few
outliers. In most cases, it is the former; however, the peak
in slice 4 was caused primarily by 4 VMs. The column
titled “Dup. reads” illustrates the potential for caching.
We present two numbers. The left-most is the percent-

3

34 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

0AM 2AM 4AM 6AM 8AM 10AM 12N 2PM 4PM 6PM 8PM 10PM 0AM

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600 Thursday Friday Saturday Sunday Monday Tuesday Wednesday

1
5 6432

Figure 2: Activity measured in I/O operations over each of the 7 days.

Time Period Write % % of VMs Dup. reads Top Applications by IOps
(IOps / Thpt) (≥ 5%) (VM / Clust.) (excludes system and scvhost)

1 Mon. 8:30am-8:45am 50% / 22% 26% 81% / 91% Search Indexer, Firefox, Sophos
2 Fri. 8:30am-9:00am 52% / 22% 29% 88% / 97% Firefox, Search Indexer, Sophos
3 Tue. 9:15am-9:30am 64% / 43% 29% 78% / 99% Defrag, Firefox, Search Indexer
4 Mon. 2:00pm-2:30pm 62% / 41% 7% 59% / 99% Firefox, Pidgin, Sophos
5 Tue. 2:40pm-3:00pm 69% / 52% 26% 77% / 97% Firefox, Defrag, Pidgin
6 Wed. 4:00pm-4:15pm 60% / 37% 26% 99% / >99% Firefox, Pidgin, Sophos

Table 1: Points of interest in Figure 2.

age of reads that have been previously seen by that VM
over the course of the trace. With a large enough cache,
we could potentially absorb all these reads. The right-
hand column presents the same measure, but imagines
that caching could be shared across all VMs in the clus-
ter. Slice 4 stands out for having an unusually low du-
plicate read rate for VMs, but a very high rate across the
cluster as a whole. We investigated and found that two
very active VMs had duplicate read rates of 26% and
30%. By including the least beneficial 38%, 15% and
4% of VMs, we could reach duplicate read rates of 40%,
60% and 90% respectively. From this we conclude that
you can achieve significant improvements with caching,
possibly even by sharing caches, but that some benefits
may require careful selection of the VMs in question.

Lunch, dinner, and late nights are periods of relative
inactivity, as are the weekends. Late afternoon peaks
are sporadic, but reach loads nearly as high as the morn-
ing. One such peak, marked 4 in Figure 2 and Table 1,
was caused by a relatively small number of machines en-
gaged in heavy browsing activity. This is not the norm,
as all other peaks occur when more than a quarter of
the VMs are significantly active. This is clear in Fig-
ure 3, which shows a CDF of VMs by their contribution
to the total workload for each peak. These peak load pe-
riods are particularly important, because they define the
hardware necessary to service the workload without dis-
ruption. We conclude that, VDI workloads are defined
by their peaks, and those peaks usually occur at times
of common activity among many VMs. In Sections 4.1
and 4.2 we take advantage of this fact to improve perfor-
mance in VDI environments.

Number of VMs
0 5 10 15 20 25

 0%

 20%

 40%

 60%

 80%

100%

1 Mon. 8:30am−8:45am
2 Fri. 8:30am−9:30am
3 Tue. 9:15am−9:30am
4 Mon. 2:00pm−2:30pm
5 Tue. 2:40pm−3:00pm
6 Wed. 4:00pm−4:15pm

Figure 3: Contributors to each of the major workload
peaks.

Next, we ask, How can we characterize the I/O re-
quests? In Figure 4 we show the entire workload by
both request count and size. We differentiate reads from
writes, and also isolate each request by its target in the
file system namespace. The workload is 65% writes,
which account for 35% of the throughput, versus 35%
of reads accounting for 65% of the throughput. Meta-
data operations account for large portion of the requests;
unfortunately we cannot determine how these modifica-
tions relate to the namespace. Directories typically man-
aged by the operating system, such as \Windows and
\Program files are also frequently accessed. There
are fewer accesses to user directories and temporary files;
most of the latter are to \Temporary Internet
Files, as opposed to \Windows\Temp. These find-
ings contrast those of Vogels who’s study showed that
93% of file-level modification occurred in \User direc-
tories [23]. We conclude that, while a wide range of

4

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 35

 0% 20% 40% 60% 80% 100%

Thpt.

Thpt.

Iops

Iops

290.9GB
17M Iops

440.5GB
9M Iops

Writes

Reads

User
Windows
Program Files

Temp
pagefile.sys
Metadata

Other
Unknown

Figure 4: Size and amount of block level writes by file
system path.

hours
0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324

pe
rc

en
ta

ge
 o

f w
rit

es

 0%

 20%

 40%

 60%

 80%

100%

Thursday 106.8 GB
Friday 27.3 GB
Saturday 75.4 GB
Sunday 87.6 GB

Monday 68.5 GB
Tuesday 140.7 GB
Wednesday 177.0 GB

Figure 5: Percentage of bytes that need to be written to
the server if writes are held back for different time peri-
ods. This is lower than the original volume of writes due
to the elimination of rewrites.

the namespace is accessed, it is not accessed uniformly,
and access to data directly managed by users is rare.
We will revisit this observation in Section 4.3.4.

Since our workload is write-heavy, we next ask, how
are these writes organized in time? Figure 5 shows the
percentage of disk writes that overwrite recently writ-
ten data, for time intervals ranging from 10 seconds to
a whole day. We have included results from each of the
seven days to underscore how consistent the results are.
In a short time span, just 10 seconds, 8% of bytes that
are written are written again. This rate increases to 20%-
30% in 10 minute periods and ranges between 50%-55%
for twenty-four hour periods. From this we conclude
that, Considerable system-wide effort is spent on data
with a high modification rate. We show how this can
used to our advantage in Section 4.3.

Since VMs typically use disk images chained from a
gold master, we are interested in the rate at which the
overlay image diverges from the original image. We
therefore ask, At what frequency do we observe the first
write to a sector? Figure 6 plots this data for the av-
erage VM, as well as the most and least divergent VM,
over the entire study. Within 24 hours, most VMs hit a

Time (Hours)
0 20 40 60 80 100 120 140 160 180

D
iv

er
ge

nc
e

(G
B)

0.00
0.48
0.95
1.43
1.91
2.38
2.86
3.34
3.81

95%
conf.

Max

Min

Figure 6: Bytes of disk diverging from the gold master.

To
ta

l S
ys

te
m

 D
iv

er
ge

nc
e

(G
B)

0.00
9.54

19.07
28.61
38.15
47.68
57.22
66.76
76.29

Time
W

. 1
5:

00
W

. 2
1:

00
T.

 0
3:

00
T.

 0
9:

00
T.

 1
5:

00
T.

 2
1:

00
F.

 0
3:

00
F.

 0
9:

00
F.

 1
5:

00
F.

 2
1:

00
S.

 0
3:

00
S.

 0
9:

00
S.

 1
5:

00
S.

 2
1:

00
S.

 0
3:

00
S.

 0
9:

00
S.

 1
5:

00
S.

 2
1:

00
M

. 0
3:

00
M

. 0
9:

00
M

. 1
5:

00
M

. 2
1:

00
T.

 0
3:

00
T.

 0
9:

00
T.

 1
5:

00
T.

 2
1:

00
W

. 2
3:

00
W

. 0
5:

00
W

. 1
1:

00
W

. 1
7:

00

Unknown

Other
Metadata
Pagefile
Temp
Prog. Files
Windows
User

Figure 7: Total divergence versus time for each names-
pace category.

near plateau in their divergence, around 1GB. Over time
this does increase, but slowly. A smaller set of VMs
do diverge more quickly and significantly, but they are
far from the 95% confidence interval. We conclude that,
there is significant shared data between VMs, even after
several days of divergence.

Naturally, we do not expect divergent writes to occur
uniformly, so we pose a question: Where in the names-
pace do divergent writes occur, and does this change
over time? Figure 7 plots the cumulative divergence for
each VM in the cluster, and divides that total among var-
ious components of the namespace. One can observe
that the pagefile diverges immediately, then remains a
constant size over time, as does the system metadata.
Both these files are bounded in size. Meanwhile writes
to \Windows and areas of the disk we cannot associate
with any file continue to grow over the full week of the
study. We conclude that, While writes occur everywhere
in the namespace, they exhibit significant trends when
categorized according to the destination.

3.4 Summary
While there is more to say about this workload and
those of VDI environments in general, the observations
in this section are valuable. Summarizing our observa-

5

36 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

tions from the trace data:

• VDI workloads are defined by their peaks, and those
peaks usually occur at times of common activity
among many VMs

• While a wide range of the namespace is accessed,
it is not accessed uniformly, and access to data di-
rectly managed by users is rare

• Considerable system-wide effort is spent on data
with a high modification rate

• There is significant shared data between VMs, even
after several days of divergence

• While writes occur everywhere in the namespace,
they exhibit significant trends when categorized ac-
cording to the destination

These observations taken together suggest that addi-
tional caching, combined with an awareness of names-
pace organization might resolve the performance chal-
lenges that we have observed. The following section
builds on the observations and analysis presented here,
and describes the architecture of Capo.

4 Architecture

The trace analysis in Section 3 suggests that caching be-
low the individual VMs may be effective in resolving the
demand peaks that we observed. In this section we de-
scribe Capo, including its three major components:

1. A single-host cache which eliminates redundant
reads and writes from virtual desktops hosted on the
same server.

2. A multi-host cache preloader which eliminates re-
dundant reads from virtual desktops hosted on dif-
ferent servers.

3. A component that supports differential durability,
which modifies cache coherency based on the loca-
tion in the namespace of the affected file.

Figure 8 shows the overall architecture of Capo. Capo
exists as a layer within the virtual machine monitor
(VMM) which supports the individual desktop VMs.
The figure depicts each host including a Local Persistent
Cache which is stored on the local disk of the host ma-
chine and is described in Section 4.1. Spanning all of the
hosts is the Transparent Multi-host Prefetch component
which optimistically preloads data accessed by one host
into the local caches of the other hosts. It is described
in Section 4.2. The Durability Map component supports
the wide variation in the durability requirements of the
various components of the file system. It is described in
Section 4.3.

VM VM VM VM

VMM

Host 0

Durability Map

Local Persistent

Cache

Transparent Multihost

Prefetch

Shared

Storage

VM VM VM VM

VMM

Host n

Durability Map Capo:

Per-host persistent

caching and request

management layer.

Capo:

Cluster-wide request

interposition layer.

Local Persistent

Cache

Figure 8: The Major Architectural Components of Capo.

4.1 Local Persistent Cache
All VDI deployments rely on central enterprise storage
that provides high availability, durability, and reliability.
The servers that host virtual desktops are also configured
with local disk storage which consists of cheap COTS
disk drives with comparably lower reliability but higher
aggregate I/O bandwidth.

The trace-based analysis of our local VDI deployment
suggests that a cache shared between multiple virtual
desktops might be very effective. As shown in Figure 3,
there is significant overlap between the top applications
executed on different virtual machines. Table 1 refines
this and indicates that aggressive caching can yield very
high read hit rates. Also, as shown in Figure 5, a signif-
icant fraction of data is overwritten very quickly. There-
fore, as depicted in Figure 8, each server machine that
hosts virtual desktops uses its local disk as a persistent
cache. A key goal for Capo is to provide an appropriate
level of durability for all data while taking advantage of
the higher aggregate bandwidth available to local disk.
The level of durability achieved depends on the caching
policy in place.

4.1.1 Caching Policies

The cache supports two consistency policies: write-
through and write-back. These policies are enforced at
disk image granularity. Each of these policies represents
a different tradeoff between virtual disk consistency and
overall system performance.

The write-through policy provides the highest level of
consistency guarantees a machine would expect from a
block device. In this policy the cache replicates writes to
both the centralized storage and the local cache. Write
requests are not acknowledged until they hit both disks.
This policy relieves the centralized storage from serving
reads to blocks that have been previously read from or
written to. The drawback of this policy is that write re-

6

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 37

quests must be sent across the network, consuming net-
work bandwidth and increasing both the load on the cen-
tralized storage and the client’s perceived write request
latency.

The write-back policy delays pushing updates to disk
blocks by caching writes locally in the write cache. Up-
dates are pushed to the central storage in a crash consis-
tent manner at a per-virtual-disk configurable frequency.
The choice of write-back frequency trades off system
performance and durability of disk contents in case of a
failure. A high update frequency minimizes the amount
of data loss in case of the failure of the local disk, while
a lower frequency enhances overall system performance
by coalescing writes in the local cache.

4.1.2 Design and Implementation

The local persistent cache is implemented as an exten-
sion to the publicly available XenServer 5.6 release. It
runs in Xen’s “domain 0” VM and interposes on the
block request path below virtual machines. Cached data
is stored as sparse image files in a Linux file system.
Each virtual disk’s cache consists of either two or three
components, shown in Figure 9: a read store, write store,
and possibly a snapshot store. Each of these components
is represented using a data file and a bitmap in the per-
sistent cache. The bitmap’s purpose is to identify which
sectors of the corresponding data file are valid. Writing a
sector to a cache component involves writing the sector’s
data to the data file and setting the sector’s corresponding
bits in the on-disk bitmap.
Write requests are satisfied by writing their data sec-

tors to the cache’s write store. When the cache is set to
write-through, the sectors are also written concurrently
to the centralized storage. Read requests are satisfied by
first checking the write store, then the snapshot if it ex-
ists, and finally the read store. At each layer, if a sector is
valid as specified in the bitmap, the data can be returned
immediately from that layer. If none of the stores contain
valid data, the sectors are read from the centralized stor-
age, written to the read store, and returned to the client
VM.

Virtual

Disk
Write ReadRead

Virtual Disk Cache (VM Host) Central Storage

Snapshot

1
2

2

3

Figure 9: Capo’s virtual disk cache components and
snapshot procedure.

The snapshot mechanism in the cache works in tan-

dem with a transactional update mechanism in the back-
end storage to ensure crash consistent updates to remote
disk images when operating in write-back mode. Push-
ing updates to the backend storage involves three steps,
as shown in Figure 9. First, a write cache snapshot is
created by pausing the request stream momentarily and
moving the contents of the cache’s write store to the
snapshot store. Secondly, the snapshot contents are ap-
plied transactionally to the centralized storage and to the
read cache concurrently. Finally, after the snapshot up-
dates have been applied, the snapshot store is cleared.

The cache is implemented as a user-level shared li-
brary that interposes on I/O calls, specifically the glibc
and libaio I/O and file management operations. Due to
the relative sizes of the disks in virtual desktops (around
10GB) and the disks in the physical machine which hosts
them (greater than 1TB) and the amount of sharing be-
tween virtual desktops (see Figure 6), we can easily sup-
port hundreds of virtual desktops on a server without
worrying about overfilling the cache. In our implemen-
tation, when the cache does fill, we simply throw it away
and start again.

4.2 Multi-host Cache Preload
Capo’s local persistent cache goes a long way towards
eliminating redundant read requests on individual ma-
chines. But as growing VM deployments lead to larger
numbers of physical hosts, redundant reads across these
hosts place additional burden on central servers. Fur-
ther scalability improvements can be attained in this case
by multicasting common data to all hosts simultaneously
rather than to each host individually.

To this end, we have developed a multicast cache
preloader for local caches. The preloader is completely
lock-free and requires no modifications to existing cen-
tralized servers. It consists of a service which observes
network traffic to and from the central storage server.
Clients on each host contact the service and register
watches for files which are determined to be good can-
didates for preloading. The service captures any reads
made to these files and distributes the results to all sub-
scribed clients via multicast. In this way, the first host to
read common data essentially prefetches it for all other
hosts.

4.2.1 Design and Implementation

Our initial design for the preload server was to use a mir-
ror port on the central storage server to monitor network
traffic. As in Ditto [5], our server captured raw network
packets and reconstructed TCP flows to extract relevant
data (in our case, NFS requests and responses). When
deploying this solution, however, we observed signifi-

7

38 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

cant packet loss between the mirror port on the filer and
our server, and since a single packet loss is enough to cor-
rupt an entire NFS request or response, we were missing
many opportunities to preload data.

Our second, and current, design employs a user-level
NFS proxy that sits between the clients and the filer. NFS
requests and responses are routed through the proxy, and
the proxy identifies data that should be preloaded into
other local persistent caches. This increases the latency
of filer requests somewhat, but avoids all of the issues
with packet capture.

In the current implementation, NFS clients are left
unmodified. Instead, a single preload client runs on
each physical host. On startup, these processes regis-
ter watches with the server for files known to be shared
across hosts. Because this data is predominately read-
only, no synchronization is required when multicast
clients update the local caches. When the preload server
observes reads to files being watched by clients, it multi-
casts the responses to all clients.
Because NFS clients are unmodified, reads of shared

files result in two responses: the unicast response to the
original requester, and a second multicast response to all
subscribed clients. This leads to an increase in over-
all read bandwidth consumption from the proxy to the
clients, but reduces the load on the storage server. The
redundant unicast response could easily be avoided by
making NFS clients aware of the multicast service.

We also currently prioritize unicast responses over
multicast responses. This limits the latency overhead
seen by NFS clients while delaying preloading on other
clients, making it slightly more likely that they will sub-
mit unicast requests for the same data. With modified
NFS clients, we could more viably prioritize multicast
responses, improving the efficacy of preloading.
The preload server sends a significant amount of traf-

fic over a number of multicast sessions, and has exposed
problems with the support for multicast in some mod-
ern switches. On some of the switches that we have
experimented against, multicast packets appear to con-
sume a disproportionately large amount of resources. As
a result, even relatively low-throughput multicast traf-
fic has resulted in packet drops with detrimental conse-
quences for concurrent TCP connections. The results can
be dramatic: early experiments with completely unthrot-
tled multicast traffic resulted in NFS throughput drops
from 100MB/sec to 3MB/sec.

To address this, we have implemented a rudimentary,
adaptive flow-control protocol, similar to one described
in SnowFlock [13]. Each packet sent by the server is as-
sociated with an epoch. The server periodically updates
the epoch number, and when clients notice a new epoch,
they send a message indicating the number of packets
successfully received during the previous epoch. In this

way the server gets feedback about packet drop rates and
is able to vary transmission rates accordingly. An ad-
ditive increase/multiplicative decrease scheme with ag-
gressive back-off has produced reasonable results in our
benchmarks.
This flow-control protocol – and preloading in general

– is strictly best-effort: no work is wasted trying to re-
transmit dropped multicast packets. If the preload clients
fail to receive multicast updates for required data, it will
eventually be fetched via the conventional unicast path.
The client logic for deciding which files to preload is

simplified by a few basic design principles. We assume
that, given a number of VMs derived from a common
master image, reads of the base image made by any indi-
vidual VM will likely be duplicated by all VMs. That is,
while the disks belonging to derived VMs will tend to di-
verge as the VMs age, the common portion of these disks
will likely be read by all or none of the VMs. Thus if
the multicast server observes any read of a common file,
it is worth sending this data to all hosts on which Capo
is caching this file. By the same assumption, multicast
clients do not pro-actively request data from the server,
as they are not in a position to know which portions of
files will be read by VMs.

4.3 Differential Durability
Major VDI providers have all adopted the software up-
date strategy proposed in The Collective [3], where user
directories are isolated from the rest of the file sys-
tem. Modifications made to files in the user directories
must be durable; users depend on these changes. Capo
therefore uses write-through caching on these directo-
ries, propagating all changed blocks immediately to the
centralized storage servers. Anymodifications to the sys-
tem image can then be performed on all VMs in one step
by completely replacing the system images in the entire
pool, leaving the user’s data unmodified. This impacts
durability—any writes to the system portion (e.g., by up-
dating the registry or installing software) will be lost. In
this section we use and extend this notion to optimize for
our write-heavy workload.

4.3.1 Write-Back Period

As mentioned in Section 2.2, VDI deployments man-
age system data centrally, regularly replacing the system
data seen by each virtual desktop with a clean updated
version. While users are allowed to make changes to
their system data, these changes are not guaranteed to
be durable. Writes to the \Program Files directory as
part of an application install process, for example, rep-
resent work done by a user, but a software installation
could easily be repeated if a failure caused this to be nec-

8

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 39

Path Policy
\Program Files\ write-back
\WINDOWS\ write-back
\Users\ProgramData\VMware\VDM\logs write-back
\Users\$USER$\ntuser.dat write-back
\Users\$USER$\AppData\local write-back
\Users\$USER$\AppData\roaming write-back
\pagefile.sys no-write-back
\ProgramData\Sophos no-write-back
\Temp\ no-write-back
\Users\$USER$\AppData\Local\Microsoft\Windows\Temporary Internet Files no-write-back
Everything else, including user data and FileSystem metadata write-through

Table 2: Sample cache-coherency policies applied as part of durability optimization.

essary. It might be acceptable if the loss of such effort
was limited to, for example, an hour or even a day. We
can set our write-back period for such partially durable
files to a corresponding length of time.

4.3.2 Extending Partial Durability to User files

While much of the data on the User volume is impor-
tant to the user and must have maximum durability, Win-
dows, in particular, places some files containing system
data in the User volume. Examples include log files,
the user portion of the Windows registry, and the local
and roaming profiles containing per-application configu-
ration settings. Table 2 shows some paths on User vol-
umes in Windows that can reasonably be cached with a
write-back policy and a relatively long write-back period.

4.3.3 Eliminating Write-Back

There are some system files that need not be durably
stored at all. These include files that are discarded on sys-
tem restarts or can easily be reconstructed if lost. Writes
to the pagefile, for example, represent nearly a tenth of
the total throughput to centralized storage in our work-
load. These writes consume valuable storage and net-
work bandwidth, but since the pagefile is discarded on
system restart, durably storing this data provides no ben-
efit. The additional durability obtained by transmitting
these writes over a congested network to store them on
highly redundant centralized storage provides no value
because this data fate-shares with the local host machine
and its disk. Many temporary files are used in the same
way, requiring persistent storage only as long as the VM
is running.

We store this data to local disk only, assigning it a
write-back cache policy with an infinitely long write-
back period. In the event of a hardware crash on a phys-
ical host, the VM will be forced to reboot, and the data

can be discarded.

4.3.4 Design

Initially, we approached the problem of mapping these
policies to write requests as one of request tagging, in
which a driver installed on each virtual desktop would
provide hints to the local cache about each write. While
this approach is flexible and powerful, maintaining the
correct consistency between file and filesystem metadata
(much of which appears as opaque writes to the Master
File Table in NTFS) under different policies is challeng-
ing. Instead, we have developed a simpler and better per-
forming approach using existing filesystem features.

The path-based policies we use in our experiments can
be seen in Table 2; naturally, these may be customized by
an administrator. We provide these policies to a disk op-
timization tool that we run when creating a virtual ma-
chine image. The optimization tool also takes a popu-
lated and configured base disk image. For each of the two
less-durable policies, it takes the given path and moves
the existing data to one of two newly-created NTFS file
systems dedicated to that policy. It then replaces the path
in the original file system with a reparse point (Window’s
analogue of a symbolic link) to the migrated data. This
transforms the single file system into three file systems
with the same original logical view. Each of the three
file systems are placed on a volume with the appropriate
policy provided by the local disk cache. This technique
is similar to the view synthesis in Ventana [18], though
we are the first to apply the technique with a local cache
to optimize performance.

We appreciate that applying different consistency poli-
cies to files in a single logical file system may be contro-
versial. The risk in doing so is that a crash or hardware
failure results in a dependency between a file that is pre-
served and a file that is lost. Such a state could lead to
instability; however, we are aware of no dependencies

9

40 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

crossing from files with high durability requirements to
those with lower durability requirements in practice. Fur-
ther, we observe that this threat already exists in the pro-
duction environment we studied, which overwrites sys-
tem images with a common shared image on a weekly
basis.

5 Evaluation

To evaluate the effectiveness of Capo, we first consider
how effective differential durability is at reducing write
load from unimportant regions of disk. Next, we show
the storage reduction achieved by Capo with eleven con-
current users synthesizing active desktop workloads. Fi-
nally we show the storage reduction achieved by Capo
by replaying I/O logs gathered from a production system
(see Section 3) under different caching policies.

5.1 Differential Durability
This section describes several microbenchmarks that
evaluate the effectiveness of differential durability in iso-
lation of other features and provide a clearer mapping
of end-user activity to observed writes. We applied the
policies in Table 2 to several realistic desktop workloads.
For each, we measured the portion of write requests that
would fall under each policy category.

Facebook Microsoft
Outlook

Microsoft
Word

Pe
rc

en
ta

ge
 o

f w
rit

es
 in

 w
or

kl
oa

d

 0%

 20%

 40%

 60%

 80%

100%

w
−t

hr

w
−t

hr

w
−t

hr

w
−b

ck

w
−b

ck

w
−b

ck

n−
w

b

n−
w

b

n−
w

b

Unknown
Other
Metadata
User

Local Config.
Windows

pagefile.sys
Temp

Write Through Write Back No Write Back

Figure 10: Percentage of writes in three microbench-
marks organized by governing cache-coherence policy.

5.1.1 Web Workload

Our web workload is intended to capture a short burst of
web activity. The user opens www.facebook.com with
Microsoft Internet Explorer, logs in, and posts a brief
message to their account. They then log off and close
the browser. The entire task lasts less than a minute. The

workload consists of 8MB (43.6% by count) of writes
and 25.3MB (56.4% by count) of reads.

A breakdown of writes by their associated policy for
each workload is shown in Figure 10. In this short work-
load only a small, but non-trivial improvement can be
made. Local configuration changes such as registry, temp
file, and cache updates need not be written immediately,
removing or delaying just over 20% of the operations.

5.1.2 Email Workload

Our email workload is based on Microsoft Outlook. The
user sends emails to a server we have configured to au-
tomatically reply to every message by sending back an
identical message. Ten emails are sent and received in
succession before the test ends. The workload consists
of 63MB (39% by count) of writes and 148MB (61% by
count) of reads.

Here the improvement is much more substantial. Al-
though very few writes can be stored to local disk in-
definitely, over half can be delayed in writing to central-
ized storage. This is due to Outlook’s caching behavior,
which makes heavy use of the system and application
data folders. Emails in the .pst file are included in the
user category. It is worth noting that many files in the
windows and application data are obvious temp files, but
did not match our current policies. With more careful
tuning, the policies could be further optimized for this
workload.

5.1.3 Application Workload

Our application workload is intended to simulate a sim-
ple editing task. We open Microsoft Word and create a
new document. We also open www.wikipedia.org in Mi-
crosoft Internet Explorer. We then proceed to navigate
to 10 randomWikipedia pages in turn, and copy the first
paragraph of each into our word document, saving the
document each time. Finally, we close both programs.
The workload consists of 120MB (20.0% by count) of
writes and 406MB (80.0% by count) of reads.

Viewing many small pages creates a large number of
small writes to temporary files and memory pressure2 in-
creases the pagefile usage. Both programs write signif-
icantly to system folders, leaving less than 36% of the
workload to be issued as write-through.

5.2 Multi-host Cache Preload
To evaluate the effectiveness of Capo’s multi-host
prefetching we boot three Windows XP VMs on three
different hosts. The experiment first fully boots one VM

2The guest was running Windows Vista with 1GB of RAM, 25%
higher than the XenDesktop recommended minimum.

10

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 41

before booting the other two VMs concurrently, with the
intention of demonstrating that the reads triggered by the
boot on the first host are sufficient to achieve a savings
for the later boots.

Figure 11 shows the read workload observed at
the server in three different cache configurations: No
cache, Write-through and Write-through with multi-host
preload. Notice that the read workload for booting the
two VMs is roughly double that of booting a single
VM for both the no cache and write-through configura-
tions. On the other hand write-through with multi-host
prefetching almost eliminates the workload due to boot-
ing the two later machines.

Time (Seconds)
0 10 20 30 40 50 60 70 80 90 100 110

R
ea

d
IO

ps

0

500

1000

1500

2000

2500

3000
No Cache
Write−through
Write−through with
multi−host preload

Figure 11: Read IOps per second for booting three VMs
on three different hosts.

5.3 Synthetic Workload

To evaluate Capo as a whole, we arranged to simulate
a set of (very) active desktop users, performing similar
workloads to those seen in the trace. Figure 13 shows
the results of request traffic hitting both the local caches
(in aggregate across all images) and the filer, while 11
users actively use a variety of office and web-based ap-
plications.

First, note that the load in this case is higher than any
of the peaks seen in the trace data. This workload rep-
resents a higher level of aggregate storage activity than
was ever seen in the production environment. Second,
observe that despite being configured conservatively for
complete write back, Capo reduces all peaks in the stor-
age request load.

5.4 Trace Replay

To evaluate the benefits of deploying Capo in a real world
setting, we replay the collected I/O traces (see Section 3)
using different disk caching policies. The next sections
describe our experimental setting, analyze our replayer
fidelity, and present the replay results.

Time (Sec)
0 200 400 600 800 1000 1200 1400 1600

IO
ps

0
500

1000
1500
2000
2500
3000
3500

No Cache
Write Through Cache

Figure 13: IOps per second for a workload of 11 Win-
dows users on a XenCenter Cluster.

5.4.1 Experimental Setting

The test environment consists of four physical machines
which serve as hosts for the virtual machines that replay
requests from the recorded trace, and a filer to serve as
a backend storage for these virtual machines’ disks. The
filer runs Linux’s default kernel NFS server to host an
XFS volume built on top of a RAID 0 consisting of six
disks. The host machines run XenServer 5.6 and store
their local caches in an ext3 volume on top of a RAID
configuration similar to that of the filer. The machines
are connected using a 1Gb Ethernet switch.

We replayed the workload of each desktop for which
we had collected traces in a distinct virtual machine on
one of the XenServer hosts. As it is impractical to replay
the entire week’s trace for each configuration, we choose
to focus on the six peak regions identified in Section 3.

Entirely isolating our analysis to the peak regions
would start each replay with an empty cache. Instead,
we accurately recreated the state the cache would be in at
the start of each region by priming it with the data from
whole trace up to that point. This includes any write-
back blocks that would have been pending. The write-
back interval was set to ten minutes for the write-back
and differential durability policies.

5.4.2 Replay Fidelity

Both the hosts and the storage server in our replay exper-
iment are different from those in the original system from
which we collected the traces. We satisfied ourselves that
the replay is representative by measuring the observed
load during a simple replay without any caching. Fig-
ure 12 plots the fourth selected time period’s I/O oper-
ations per second as observed at a number of different
points in the I/O stack of the experimental environment.

The Trace line represents the aggregate workload as
observed in the original trace. The Replay line represents
the rate at which the replayer issues I/O requests to the
system as observed at the replay clients. These two lines

11

42 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Time (Minutes)
0 5 10 15 20 25 30

IO
ps

0
500

1000
1500
2000
2500
3000
3500
4000

Trace
Replay
Server
VHD

Figure 12: Replay fidelity and resulting load on the server.

Peak IOps / Reduction in peak IOps compared to No Cache configuration
Time No Cache Write Through Write Back Differential

Period Peak Total Peak Total Peak Total Peak Total
1 2307 / 100% 262590 / 100% 893 / 38% 155757 / 59% 670 / 29% 67798 / 25% 712 / 30% 91877 / 34%
2 2516 / 100% 561894 / 100% 937 / 37% 319936 / 56% 671 / 26% 113184 / 20% 903 / 35% 161737 / 28%
3 1302 / 100% 143468 / 100% 876 / 67% 126049 / 87% 595 / 45% 43455 / 30% 802 / 61% 84044 / 58%
4 1887 / 100% 450914 / 100% 910 / 48% 334089 / 74% 595 / 31% 131064 / 29% 849 / 44% 271529 / 60%
5 1214 / 100% 159736 / 100% 890 / 73% 141656 / 88% 704 / 57% 45868 / 28% 841 / 69% 75500 / 47%
6 2185 / 100% 72082 / 100% 1155 / 52% 66668 / 92% 910 / 41% 29086 / 40% 1368 / 62% 42895 / 59%

avg 100% 100% 52.5% 76% 38.1% 28.6% 50.1% 47.6%

Table 3: Peak and Total IOps workload observed at the file server during the replay of time periods of interest under
different caching policies. Each peak or total IOps value is followed by its ratio relative to its corresponding value
observed with no cache deployed. The last row represents the average reduction of the metric across the six time
periods of interest.

are almost indistinguishable in the figure which indicates
that the timing of our replayer is accurate.

The Server line represents the load observed at the
server. Notice that this load is lighter than the aggregate
trace load, largely due to coalescing requests in the stor-
age stack of the XenServer hosts. The VHD line repre-
sents the load observed at the server when image files are
stored in the Microsoft VHD format. Notice that VHD
adds significant overhead to the workload; most of this
overhead is due to meta data management.

We draw two observations from this evaluation. First,
our replay client is able to match the request issue rate of
the original trace with high fidelity. Second, because of
transformations that result from both the XenServer stor-
age stack and the underlying VM image format, the load
experienced at the storage target may be dramatically dif-
ferent from that measured at the client. In evaluating our
cache under replay in the next subsection, we first replay
with no caching involved to establish a baseline load at
the filer, and then compare caching configurations to this
baseline.

5.4.3 Replay Results

We replayed the 6 periods of intense workload identi-
fied in Figure 2 using four different cache configurations.
These cache configurations are no cache, write-through,
write-back and differential. Figure 14 plots the IOps ob-

served at the server using each configuration. As ex-
pected, differential durability represents a compromise
between the load reduction realized by write-back and
completely protecting important user data.

Table 3 summarizes the peak and total I/O workload
reductions for the time periods of interest. The write-
back policy applied to the entire disk was the best in re-
ducing I/O workload. On average it reduced the peak
and total I/O workload to 38.1% and 28.6% of that with-
out any caching in place. The differential durability pol-
icy goes further to protect user files, and still reduced the
peak and total I/O workload down to 50.1% and 47.6%
on average. Finally, as expected the write-through policy
had the worst average peak and total workload reductions
of 52.5% and 76%.

6 Related Work

The caching component of Capo is most closely related
to the ITC [19], Andrew [10], and Coda [12] file systems
which utilize the local disk as a cache for whole files
retrieved from servers. The Cedar file system [21] allows
users to share immutable files over the network; by only
supporting immutable files Cedar eliminates the need for
cache consistency management.
Unlike these distributed file system caches, Capo op-

erates at the block level. Cache consistency management

12

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 43

Time (Minutes)
0 5 10 15

IO
ps

0

500

1000

1500

2000

2500
No Cache
Write−through
Write−back
Differential Caching

(a) Time period 1

Time (Minutes)
0 5 10 15 20 25 30

IO
ps

0
500

1000
1500
2000
2500
3000

No Cache
Write−through
Write−back
Differential Caching

(b) Time period 2

Time (Minutes)
0 5 10 15

IO
ps

0
200
400
600
800

1000
1200
1400

No Cache
Write−through
Write−back
Differential Caching

(c) Time period 3

Time (Minutes)
0 5 10 15 20 25 30

IO
ps

0

500

1000

1500

2000
No Cache
Write−through
Write−back
Differential Caching

(d) Time period 4

Time (Minutes)
0 5 10 15 20

IO
ps

0
200
400
600
800

1000
1200
1400

No Cache
Write−through
Write−back
Differential Caching

(e) Time period 5

Time (Minutes)
0 5 10 15

IO
ps

0

500

1000

1500

2000

2500
No Cache
Write−through
Write−back
Differential Caching

(f) Time period 6

Figure 14: IOps per second observed at the filer for replays of selected periods of interest under different cache
configurations.

13

44 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

is simplified by the fact that each virtual disk has a sin-
gle writer and copy-on-write is used to prevent updat-
ing shared data. As in Cedar, shared data is always im-
mutable.

Fs-cache [11] and iCache [9] are systems that, like
Capo, implement block-level caching for remote stor-
age systems: a file system in the case of Fs-cache and
an iSCSI target in the case of iCache. Capo extends
the basic block caches of these systems using a host
cache shared by all the VMs on a host, the multi-host
prefetcher, and differential durability for files. All of
these features are inspired by our target environment of
supporting virtual desktops.

Capo’s use of write-back caching reduces the demand
placed on the central storage facility in a manner sim-
ilar to that of Everest [15]. Where Everest replicates
offloaded write requests to tolerate disk failures, Capo
uses a technique similar to Snapmirror [16] to periodi-
cally push self-consistent updates across the network for
data that is cached in write-back mode.

Other researchers have studied the performance of
storage in virtualized environments. In particular, Gu-
lati et al. [7] study the storage demands of enterprise ap-
plications in virtualized environments. In contrast, our
study of virtual desktops provides insight into the unique
characteristics of this emerging use of virtualization.

SnowFlock [13] provides a fork abstraction to instan-
taneously replicate stateful virtual machines to scale up
computations in the cloud easily. Similar to our multi-
host cache preloader, SnowFlock uses multicasting to
replicate the persistent (disk) and non-persistent (mem-
ory) state of the cloned virtual machines.

Agrawal et al. [1] and Bolosky et al. [2] collect and an-
alyze snapshots of Desktop machine’s file system meta-
data over long periods of time. This kind of analysis
restricts I/O workload analysis to mean estimates and
doesn’t capture the dynamic characteristics of Desktop
I/O such as burstiness. In this work we focus on captur-
ing detailed block level I/O operations to better under-
stand the variation of Desktop I/O workloads in time.
Lithium [8] gives up centralization in favor of distri-

bution to provide scalable storage for virtual machines.
To improve availability of data, Lithium replicates disk
updates to remote hosts either synchronously or lazily
(eventual consistency). These two replication policies
are synonymous to Capo’s write-through and write-back
caching policies. However, Lithium’s treatment of repli-
cation consistency is more complicated due to its dis-
tributed nature.

7 Conclusion

Enterprise storage provides considerable benefit to vir-
tual environments. However, for applications such as

virtual desktops, which involve large numbers of nearly
identical images running concurrently, a large portion of
the request load placed on shared storage is unnecessary.
After analyzing a one-week trace of a production VDI
deployment, we presented Capo, a distributed and per-
sistent cache which reduces the aggregate load placed on
shared storage. Capo uses local disks on individual phys-
ical servers to cache image contents for the VMs being
hosted. It includes mechanisms to share common cached
base images across VMs, and to prefetch caches across
physical hosts. In addition, Capo supports a configurable
degree of differential durability, allowing administrators
to relax the durability properties and the associated write
load of less-important subsets of a VM’s file system.

Acknowledgements

We thank our shepherd Greg Ganger, the anonymous re-
viewers, and Brendan Cully for their valuable feedback
that helped improve this paper. We also thank the Uni-
versity of British Columbia’s IT department, particularly
Brent Dunington and Lois Cumming, for allowing us to
collect I/O traces from one of their VDI deployments.
We would also like to thank MITACS, NSERC, Citrix
and IBM CAS who have provided support for the stu-
dents involved in this work.

References

[1] N. Agrawal, W. Bolosky, J. Douceur, and J. Lorch.
A five-year study of file-system metadata. ACM
Transactions on Storage (TOS), 3(3):9, 2007.

[2] W. Bolosky, J. Douceur, D. Ely, and M. Theimer.
Feasibility of a serverless distributed file system de-
ployed on an existing set of desktop PCs. In Pro-
ceedings of the 2000 ACM SIGMETRICS interna-
tional conference on Measurement and modeling of
computer systems, pages 34–43. ACM, 2000.

[3] R. Chandra, N. Zeldovich, C. Sapuntzakis, and
M. S. Lam. The collective: A cache-based system
management architecture. In In Proc. 2nd Sympo-
sium on Networked Systems Design and Implemen-
tation (NSDI, pages 259–272, 2005.

[4] A. Clements, I. Ahmad, M. Vilayannur, and J. Li.
Decentralized deduplication in SAN cluster file
systems. In Proceedings of the 2009 conference
on USENIX Annual technical conference, page 8.
USENIX Association, 2009.

[5] F. Dogar, A. Phanishayee, H. Pucha, O. Ruwase,
and D. Andersen. Ditto - a system for opportunis-
tic caching in multi-hop wireless mesh networks.

14

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 45

In Proceedings of ACM MobiCom, San Francisco,
CA, Sept. 2008.

[6] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk,
W. Kilian, P. Strzelczak, J. Szczepkowski, C. Un-
gureanu, and M. Welnicki. Hydrastor: a scalable
secondary storage. In FAST ’09: Proceedings of
the 7th Conference on File and Storage Technolo-
gies, pages 197–210, Berkeley, CA, USA, 2009.
USENIX Association.

[7] A. Gulati, C. Kumar, and I. Ahmad. Storage work-
load characterization and consolidation in virtual-
ized environments. In 2nd International Workshop
on Virtualization Performance: Analysis, Charac-
terization, and Tools (VPACT), 2009.

[8] J. Hansen and E. Jul. Lithium: virtual machine
storage for the cloud. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 15–
26. ACM, 2010.

[9] X. He. A caching strategy to improve iSCSI per-
formance. 27th Annual IEEE Conference on Lo-
cal Computer Networks, 2002. Proceedings. LCN
2002., pages 278–285, 2002.

[10] J. Howard, M. Kazar, S. Menees, and DA. Scale
and performance in a distributed file system.
ACM Transactions on Computer Systems (TOCS),
6(1):51–81, 1988.

[11] D. Howells and R. Ltd. Fs-cache: A network
filesystem caching facility. In Proceedings of the
Linux Symposium, volume 1, 2006.

[12] J. Kistler and M. Satyanarayanan. Disconnected
operation in the Coda file system. ACM Trans-
actions on Computer Systems (TOCS), 10(1):3–25,
1992.

[13] H. Lagar-Cavilla, J. Whitney, A. Scannell,
P. Patchin, S. Rumble, E. De Lara, M. Brudno, and
M. Satyanarayanan. SnowFlock: rapid virtual ma-
chine cloning for cloud computing. In Proceedings
of the 4th ACM European conference on Computer
systems, pages 1–12. ACM, 2009.

[14] Microsoft. Virtual hard disk image format speci-
fication, Feb. 2009. http://technet.microsoft.

com/en-us/virtualserver/bb676673.aspx.

[15] D. Narayanan, A. Donnelly, E. Thereska, S. El-
nikety, and A. Rowstron. Everest: Scaling down
peak loads through I/O off-loading. In Proceed-
ings of the 8th USENIX conference on Operating
systems design and implementation, pages 15–28.
USENIX Association, 2008.

[16] R. Patterson, S. Manley, M. Federwisch, D. Hitz,
S. Kleiman, and S. Owara. SnapMirror: file-
system-based asynchronous mirroring for disaster
recovery. In Proceedings of the 1st USENIX Con-
ference on File and Storage Technologies, page 9.
USENIX Association, 2002.

[17] C. Pettey and H. Stevens. Gartner says worldwide
hosted virtual desktop market to surpass $65 bil-
lion in 2013, Mar. 2009. http://www.gartner.

com/it/page.jsp?id=920814.

[18] B. Pfaff, T. Garfinkel, and M. Rosenblum. Virtu-
alization aware file systems: Getting beyond the
limitations of virtual disks. In In 3rd Symposium
of Networked Systems Design and Implementation
(NSDI, pages 353–366, 2006.

[19] M. Satyanarayanan, J. H. Howard, D. a. Nichols,
R. N. Sidebotham, A. Z. Spector, and M. J. West.
The ITC distributed file system. ACM SIGOPS Op-
erating Systems Review, 19(5):35–50, Dec. 1985.

[20] E. Scholten. How to: Optimize guests
for vmware view, July 2010. http:

//www.vmguru.nl/wordpress/2010/07/

how-to-optimize-guests-for-vmware-view.

[21] M. D. Schroeder, D. K. Gifford, and R. M. Need-
ham. A caching file system for a programmer’s
workstation. In SOSP, pages 25–34, 1985.

[22] VMWare. Virtual machine disk format
(vmdk), 2010. http://www.vmware.com/

technical-resources/interfaces/vmdk.html.

[23] W. Vogels. File system usage in windows nt 4.0. In
ACM Symposium on Operating System Principles,
pages 93–109. ACM, 1999.

[24] B. Zhu, K. Li, and H. Patterson. Avoiding the
disk bottleneck in the data domain deduplication
file system. In Proceedings of the 6th USENIX Con-
ference on File and Storage Technologies, pages 1–
14. USENIX Association, 2008.

15

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 47

Exploiting Half-wits: Smarter Storage for Low-Power Devices

Mastooreh Salajegheh∗, Yue Wang†, Kevin Fu∗, Anxiao (Andrew) Jiang†, Erik Learned-Miller∗
∗Department of Computer Science, University of Massachusetts Amherst

†Department of Computer Science and Engineering, Texas A&M University
{negin,kevinfu,elm}@cs.umass.edu, {yuewang,ajiang}@cse.tamu.edu

Abstract

This work analyzes the stochastic behavior of writing to
embedded flash memory at voltages lower than recom-
mended by a microcontroller’s specifications to reduce
energy consumption. Flash memory integrated within a
microcontroller typically requires the entire chip to op-
erate on common supply voltage almost double what the
CPU portion requires. Our approach tolerates a lower
supply voltage so that the CPU may operate in a more en-
ergy efficient manner. Energy efficient coding algorithms
then cope with flash memory that behaves unpredictably.

Our software-only coding algorithms (in-place writes,
multiple-place writes, RS-Berger codes) enable reliable
storage at low voltages on unmodified hardware by ex-
ploiting the electrically cumulative nature of half-written
data in write-once bits. For a sensor monitoring applica-
tion using the MSP430, coding with in-place writes re-
duces the overall energy consumption by 34%. In-place
writes are competitive when the time spent on computa-
tion is at least four times greater than the time spent on
writes to flash memory. Our evaluation shows that tightly
maintaining the digital abstraction for storage in embed-
ded flash memory comes at a significant cost to energy
consumption with minimal gain in reliability.

1 Introduction
Billions of microcontrollers appear in embedded systems
ranging from thermostats and utility meters to tollway
payment transponders and pacemakers1. Recent years
have witnessed a proliferation of low-power embedded
devices [2, 7, 17, 21], many of which use on-chip flash
memory for storage.

While the reliability, low cost, and high storage den-
sity of flash memory make it a natural choice for embed-
ded systems [15], its relatively high voltage requirement
(Table 1) introduces challenges for energy-efficient de-

1A single manufacturer claims to have shipped over 8 billion mi-
crocontrollers http://www.microchip.com/sec/annual/FY10/.

signs aiming to maximize the system’s effective lifetime
(e.g., the run time on a typical battery whose voltage
declines over time). Instrumenting the system to oper-
ate at a fixed low voltage vl is one way to reduce power
consumption; however, achieving consistently correct re-
sults for flash writes are guaranteed only if vl is higher
than a manufacturer-specified threshold. Moreover, in
energy-limited devices that cannot provide a constant
supply voltage, scenarios may arise in which the flash
memory is the only part of the circuit whose operating
requirements are not met. In such cases, applications can
expect normal operation when they are not performing
flash writes and unpredictable behavior when they are.

Microcontroller CPU Flash write
Min. voltage Min. voltage

TI MSP430 [36] 1.8 V 2.2 or 2.7 V
PIC32M [24] 2.3 V 3.0 V

ATmega128L [3] 2.7 V 4.5 V

Table 1: Flash memory restricts choices for the CPU
voltage supply on microcontrollers because the CPU
shares the same power rail as the on-chip flash memory.

Because embedded flash memory typically shares a
common voltage supply with the CPU (separate power
rails are cost prohibitive), a single voltage must be cho-
sen that satisfies different components with different
minimum voltage requirements. Current embedded sys-
tems address the voltage limitations of flash memory in
one of the following ways:

i) A system can choose a high supply voltage suffi-
cient for both reliable writes to flash memory and reliable
CPU operation. This is a common choice for embed-
ded systems with on-chip flash memory, but causes the
CPU to consume more energy than necessary. For exam-
ple, the TI MSP430F2131 microcontroller [36] in active
mode consumes almost double the power when operat-

48 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Figure 1: Operating at a lower voltage and tolerat-
ing errors instead of the conventional case of choos-
ing the highest minimum voltage requirement may
help decrease energy consumption. Considering that
Energy = voltage2 × time/resistance, decreasing volt-
age decreases the energy consumption quadratically.

ing at 2.2 V instead of 1.8 V. Its onboard flash memory
requires 2.2 V for reliable writes to flash memory.

ii) A system can choose a low supply voltage sufficient
for CPU operation, but insufficient for reliable writes to
flash memory. This choice allows the energy source to
last longer and for the CPU to compute more efficiently.
An example of such a system is the Intel WISP [33],
a batteryless RFID tag that sets its operating voltage to
1.8 V—below its onboard flash memory’s 2.2 V spec-
ified minimum—to save power. Flash memory cannot
be written on this device. The microcontroller could use
a low-power wireless interface (e.g., RF backscatter) to
store data remotely. Such an approach, however, raises
privacy as well as performance concerns [32].

iii) A system can modify hardware to enable dy-
namic voltage scaling. This approach requires additional
analog circuitry such as voltage regulators and GPIO-
controlled switches. Because many embedded systems
are extremely cost sensitive, this choice is unattractive
for high-volume manufacturing with low per-unit profit
margins. An additional 50 cent part on a thermostat con-
trol can be cost prohibitive. Moreover, small changes
may necessitate a new PCB layout—upsetting the deli-
cate supply chain and invalidating stocked inventories of
already fabricated PCBs.

Approach. Our approach reduces the operating volt-
age of the microcontroller to a point at which the result-
ing energy savings of the CPU portion of the workload
exceeds the energy cost of the algorithms for ensuring
reliable writes (Figure 1). The technique requires min-
imal or no hardware modification and also allows for
RFID-scale devices to better exploit capacitors as power
supplies. The capacitor provides finite energy and there-
fore the voltage decays exponentially. The long tail of
the curve provides insufficient voltage for conventional
writes to flash memory, but is sufficient for reliable stor-
age with our techniques.

Of wits and half-wits. In 1982, Rivest and Shamir in-
troduced the notion of write-once bits (wits) in the con-
text of coding theory to make write-once storage behave
like read-write storage [31]. Bits in flash memory be-
have like wits because a programmed bit cannot be re-
programmed without calling an energy-intensive erase
operation to a block of memory much larger than a sin-
gle write. We coin the term half-wits to refer to wits used
in a manner inconsistent with a manufacturer’s specifica-
tions, resulting in stochastic behavior. Half-wits in this
work are wits of flash memory used below the recom-
mended supply voltage.

In examining error rates at low voltage and construct-
ing a system that provides reliable storage despite errors,
our work suggests that it is appropriate to relax previ-
ously assumed constraints and reexamine the costly dig-
ital abstractions layered above on-chip flash memory.

Contributions. Our primary contributions include an
empirical evaluation that characterizes the behavior of
on-chip flash memory at voltages below minimum lev-
els specified by manufacturers, and algorithms that en-
able reliable writes to flash memory while coping with
low voltage. Our evaluation identifies three key factors
affecting error rates: voltage, Hamming weight of the
data, and the wear-out history of the flash memory.

The first algorithm, in-place writes, makes attempts at
write time to store a value correctly in the given memory
address. The in-place writes method repeatedly writes
data to the same memory address. The intuition behind
this approach is that repeating a write attempt in a con-
sistent location accumulates the charge in the same cell,
increasing the chance of storing a bit of information cor-
rectly. In addition, since flash writes only change bits
in a single direction, a correctly written bit cannot be re-
versed to produce an error on a second write attempt. The
second algorithm, multiple-place writes, tries to decrease
the probability of error by making attempts at both write
time and read time. This method stores data in more than
one location aiming that the data (even partially) will be
stored correctly in at least one of these locations. The
third algorithm is a hybrid error-correcting code combin-
ing Reed-Solomon (RS) [29] and Berger [5] codes. The
Berger code detects, but does not correct, asymmetric er-
rors caused by the low write voltage. Given the approx-
imate locations of errors, which are determined by the
Berger code, the RS code efficiently recovers the origi-
nally stored data.

The paper compares all three methods in terms of en-
ergy consumption, execution time, and error correction
rate. We also show that our methods are most effective
for CPU-bound workloads. With respect to cost and en-
ergy, our techniques may enable already deployed em-
bedded flash memory to remain competitive with emerg-
ing technology for low-power, non-volatile memory.

2

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 49

0 20 40 60 80 100 120 140 160
−200

−150

−100

−50

0

50

100

150

200

250

Time (s)

Vo
lta

ge
 (m

v)

(a) Writes at 2.0 V

0 20 40 60 80 100 120 140 160
−200

−150

−100

−50

0

50

100

150

200

250

Time (s)

Vo
lta

ge
 (m

v)

(b) Writes at 1.9 V

0 20 40 60 80 100 120 140 160
−200

−150

−100

−50

0

50

100

150

200

250

Time (s)

Vo
lta

ge
 (m

v)

(c) Writes at 1.8 V

Figure 2: As operating voltage decreases, flash-write errors increase. (a) shows an original ECG signal correctly
stored at 2.0 V (despite operating below the recommended threshold). As the voltage decreases in (b) and further
in (c), erroneous writes (light-colored spikes, height varying according to the magnitude of the error) become more
common. The black line shows the reconstructed signal that includes the errors.

2 Behavior of Storage on Half-wits
Before we can design effective coding algorithms, we
must first understand the behavior of errors in half-wits.
By tolerating a lower voltage, an energy-limited em-
bedded device can decrease its power consumption and
therefore extend its lifetime on a finite energy supply2.
The minimum operating voltage of embedded devices
that use nonvolatile on-chip storage is usually deter-
mined by the requirements of flash memory. For exam-
ple, the TI MSP430 microcontroller can operate at 1.8 V,
but its nominal minimum voltage for flash writing and
erasure is 2.2 V (Table 1). Increasing operating voltage
from 1.8 V to 2.2 V causes the CPU to draw about 50%
more power without commensurate gain in clock speed
because of the voltage squaring effect.

The drawback of lowering voltage below flash mem-
ory requirements in order to save power is the loss of
flash memory reliability. Figure 2 shows the result of
running a MSP430F2131 at three different voltages—
all lower than the nominal minimum for flash writes—
to store electrocardiogram (ECG) data samples from the
PhysioNet database [13] in flash memory. Many medical
sensor networks [20, 22, 34] that provide ECG measure-
ments are energy limited and use on-chip flash memory
as primary storage.

These graphs support the intuition that flash writes
may not be error free at low voltages and that there exist
voltage levels below the minimum recommended voltage
at which flash writes function correctly3. To investigate
the behavior of flash memory at low voltage and deter-
mine the factors influencing the error rate, we performed
experiments on an automated testbed of our own design.

2Or because of relaxed requirements, eliminate the need for multi-
ple batteries in series to achieve a high voltage.

3Moreover, a nonzero error rate may be tolerable by some appli-
cations. In the case of ECG data, the cardiac pulse interval can be
recovered from noisy data stored at low voltage.

2.1 Experimental Methodology

We use a consistent experimental setup for all of the ex-
periments in this work. Our choice of test platform is a TI
MSP430 [36] microcontroller with on-chip flash mem-
ory. More specifically, we tested two types of TI mi-
crocontrollers: MSP430F2131 and MSP430F1232. The
MSP430 is common in low-power embedded applica-
tions; we note especially its use in sensor motes [28]
and RFID-scale batteryless devices [33]. In our setup,
an MSP430 microcontroller runs a test program that in-
volves both computation and flash operation. We power
the microcontroller with an external power supply held
steady at a voltage below the nominal minimum for flash
writes. An external chip captures the contents of flash
memory after each experiment.

To automate the testing of flash write behavior, we
have developed a flash memory testbed. The two major
components of the testbed are a test platform and a con-
nected monitoring platform. The monitoring platform is
based on an additional MSP430 microcontroller. The test
platform runs a test program at low voltage. When the
test program completes, the test platform sends the result
of the experiment to the monitoring chip via GPIO pins.
The test and monitoring platforms share 8+1 GPIO pins
to carry one byte of data and a clock signal. Once the
test platform puts data on its eight data pins, it raises the
clock pin. The monitoring chip reads data from its GPIO
pins whenever it detects a rising clock signal and logs
the results in its own flash memory. The monitoring chip
runs at a voltage above the nominal minimum for its own
flash writes, and therefore stores reliably.

2.2 Unreliable, Low-Voltage Flash Memory Writes

The TI MSP430 datasheet [36] states that flash writes
at any voltage lower than the nominal minimum volt-
age (which is 2.2 V in the case of MSP430F2131) are
not guaranteed to succeed. However, as the graphs in

3

50 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Figure 2 show, not all flash writes fail at low voltages.
On the contrary, in this specific experiment, most of the
writes (95.24% at 1.9 V and 89.88% at 1.8 V) succeed.

In a NOR flash memory, all cells are initialized to 1,
and writing data to a byte of flash memory means setting
an appropriate number of bits to 0 by applying electri-
cal charge to the corresponding flash cells. At low volt-
age, there may be insufficient charge to effect a transi-
tion to 0, and a flash write may store fewer 0 bits than
requested [27]. To be specific, we define errors as fol-
lows: when a byte of data d1 is written in a flash memory
address and then data d2 is read from that address, there
is an error if d1 �= d2. An experiment, explained next, in-
vestigates the behavior of low-voltage flash memory and
gives bit-level results.

Using the automated flash testbed explained in Section
2.1, the test platform runs a program that writes numbers
{0, · · · ,255} to flash memory, then sends the contents of
its flash memory to the monitoring platform via GPIO
pins. Table 2 compares the written data and the intended
data for cases in which errors occurred. It demonstrates
that, when both are represented as integers, the absolute
value of the stored data is always greater than or equal to
the absolute value of the intended data.

2.3 Determining Factors That Affect Error Rates

We consider the following potential factors that may af-
fect the error rate of setting a bit to 0 in a flash memory
at low voltage: voltage level, Hamming weight of the
data, wear-out history, permutation of 0s, and neighbor
cells. The effects of each of these variables are evalu-
ated by designing an experiment to test a hypothesis. All
the experiments are performed on flash memories with
minimal previous usage unless stated otherwise.

Voltage level: Our hypothesis is that the lower a chip’s
operating voltage (and that of its on-chip flash memory),
the higher the error rate of flash writes. Figure 3 confirms
this hypothesis; moreover, the graph shows that for dif-
ferent chips of exactly the same type, the error rate can
be different even under equivalent voltage.

Experiment: Two MSP430F2131 and two
MSP430F1232 microcontrollers run a program that
writes zeros to the data segment of their flash memory.
We increased the microcontroller’s operating voltage
in 10 mV steps, and used the monitoring platform to
compute the byte error rates over 50 runs.

Hamming weight: In an erased (i.e., having value 1)
flash cell, writing a 1 is always error free because no
change to the cell is necessary. However, setting a cell to
0 might fail if there is not enough charge accumulated in
that cell. Our hypothesis is that, the lower the Hamming
weight (number of 1s in the binary representation) of a
number, the higher the probability of error when writing
that number to flash at low voltage.

1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94
0

20

40

60

80

100

Voltage (V)

E
rr

o
r

ra
te

 (
%

)

2131 (A)

2131 (B)

1232 (A)

1232 (B)

Figure 3: Flash write error rates decrease as volt-
age increases. This trend holds for all the chips
(MSP430F2131 and MSP430F1232) we tested, though
error rates differ even between chips of the same model.

Based on per-byte Hamming weight, there are nine
equivalence classes of integers that can be represented in
one byte. The weight-8 equivalence class has only one
member, 255, which can always be written to an erased
flash cell without error. The other extreme case is the
weight-0 equivalence class, containing only 0s, that re-
quires all eight bits to transition to 0. Figure 4 shows the
byte error rate for all nine equivalence classes, measured
via the following experiment.

0 1 2 3 4 5 6 7 8
0

50

100

Hamming weight

Er
ro

r r
at

e(
%

)

Figure 4: As the Hamming weight (number of 1s in the
binary representation) of a number increases, the error
rate of low-voltage flash write declines. The data corre-
sponds to a MSP430F2131 running at 1.84 V.

Experiment: At 1.84 V, a MSP430F2131 runs a pro-
gram that writes numbers from the same equivalence
class to one block (64 bytes) of flash memory. We used
the monitoring platform to compute the average byte er-
ror rate of flash writes for each of the nine equivalence
classes over 50 runs.

Corollary: To exploit the fact that the Hamming
weight of a number affects probability of error when it
is written to flash, one can transform numbers into num-
bers with greater Hamming weights before writing them
to flash memory.

Wear-out history: Flash memory has a limited life-
time (about 105 cycles of erasures) after which the erase
operations fail to reliably reset the bits to 1. We sus-
pect that the more flash memory is erased (worn-out), the

4

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 51

Intended 00001100 00001101 00001110 00010100 00100111 10100100(Binary)
Written 11101101 01011111 11111111 11111111 00101111 10101111

Hamming distance 4 3 5 6 1 3

Table 2: Erroneous flash writes at low voltage. Insufficient electrical charge may result in some bits failing to transition
from 1 (the initial state) to 0.

lower its error rate of setting bits to 0 would become4.
Figure 5 shows a heat map of bit error rate for three
blocks of flash memory (192 bytes) on an MSP430F2131
microprocessor. Lighter colors in the heat map represent
higher error rates. The disproportionately dark color of
the middle block is due to more frequent erasure of that
block compared to the other two blocks.

Figure 5: Worn-out flash memory blocks are biased to-
ward ease of writing zeros. Lighter color represents
higher average number of errors over 50 trials. The mid-
dle block has been write/erase cycled 6,000 times. The
other two blocks are minimally used.

Experiment: A MSP430F2131 runs a program that
writes zeros to all three blocks of its flash memory. The
MSP430 is first worn out such that one block has 6,000
write/erase cycles and two blocks have minimal previous
usage. We used the monitoring platform to compute the
average error rate for all bits in the three blocks of mem-
ory over 50 trials.

Corollary: Wear-out history affects error rate, so stor-
ing data in more than one location might help decrease
the error rate, especially if those locations are in different
blocks of memory.

Permutation of 0s: Two numbers belonging to the
same Hamming-weight equivalence class can have dif-
ferent permutations of 0 bits. We tested to see if the er-
ror rate depends on the permutation of 0s in one byte
of data. For example, the numbers 240, 15, 170, and
71 all have four 0s in their binary representation but in

4This counterintuitive hypothesis is consistent with the notion that
flash erasures (settings bits to 1) become harder with wear out.

different places (240 has 0s in the right nibble, and 15
has all of its 0s in its left nibble, etc.). The result of
the experiment shows a similar byte error rate with mean
of 39.85± 4.29% for numbers in the same equivalence
class. The small standard deviation (4.29%) shows that
the permutation of 0s does not significantly affect the er-
ror rate and therefore we do not consider this factor in
our design directions.

Experiment: A MSP430F2131 runs a program that cy-
cles through eight numbers from the same Hamming-
weight equivalence class, writing them to 192 consec-
utive bytes of flash memory. We used the monitoring
platform to compute the average error rates for each of
the 192 bytes over 50 trials.

Neighbor cells: Another factor that might affect the
error rate of storage in a flash cell at low voltage is the
values of neighboring cells. However, our results suggest
that a cell’s error rate does not appear to depend on the
values stored in neighboring cells (Figure 6).

1.820 1.825 1.830 1.835 1.840
0

20

40

60

80

Voltage (V)

Er
ro

r r
at

e
of

 L
SB

 (%
)

data=xxxxxx00, H−Weight(data)=4
data=xxxxxx10, H−Weight(data)=4

Figure 6: Error rate of a cell is not noticeably influ-
enced by the value of its neighbor. The graph shows that
the value of the second LSB does not greatly affect the
error rate of the LSB. The bars show the error rate of
the LSB for writing numbers from the same Hamming-
weight equivalence class whose two LSBs are set to ei-
ther 00 (dark bars) or to 10 (light bars).

Experiment: In order to determine if the error rate of
a cell is affected by its neighbor, we consider all num-
bers from the same Hamming-weight equivalence class
whose two Least Significant Bits (LSBs) are set to either
00 (case 1) or 10 (case 2). An example of case 1 is num-
ber 60 (0b00111100) and an example of case 2 is number
30 (0b00011110). This experiment fixes the Hamming
weight variable and changes the neighbor value of the

5

52 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

LSB to be 0 or 1. We deem a write erroneous if the LSB
is not set to 0. The experiment was done for a Hamming
weight of four and it was repeated for five voltage levels
in the interval of 1.82 V to 1.84 V with steps of 5 mV.
The error rate for any voltage above 1.84 V was close to
0% and for any voltage below 1.82 was close to 100%.
We used the monitoring platform to compute the average
error rates of case 1 and case 2 for each of the voltage
levels over 50 trials.

2.4 Accumulative Memory Behavior

It is helpful to understand a few details of the electri-
cal nature of flash memory in order to appreciate the
expected behavior of conventional digital abstractions
when layered above embedded flash memory. Each flash
memory cell is a floating-gate (FG) transistor made up
of a source, drain, control gate, and floating gate. The
floating gate is separated from the source and drain by an
insulating oxide layer that makes it difficult for electrons
to travel into or out of the gate. Flash cells rely on this
oxide to maintain logical state in the absence of power,
making the memory non-volatile [27].

To write a memory cell (which has an erased value of
1), the control circuitry applies a high field to the source.
The application of this field greatly increases the proba-
bility that electrons in the floating gate will tunnel to the
source. If a sufficient number of electrons tunnel to the
source, the cell is subsequently read as a 0. To erase a
cell (restoring a 1), the control circuitry applies a high
field to both the source and drain. This field energizes
the electrons currently stored near the source, allowing
them to jump the oxide barrier to the floating gate where
they are once again trapped [27].

Not all electrons must transition in order for a write
or erase operation to be successful. The operation only
needs to change the state of some majority of the elec-
trons so that subsequent read operations detect sufficient
charge to discern the intended value. Lowering the ap-
plied voltage (and thus the field strength) lowers the
probability of state change for each electron but, as noted
earlier, electrons that do transition will remain in place.

A low-power storage scheme can benefit from this ac-
cumulative property by repeating writes to the same cell.
Each write operation will increase the chance of success
by forcing some number of state transitions. In other
words, a failed write is still progress.

3 Design of a Low-Voltage Storage
This section presents our design for a software system
that enables reliable flash memory writes at low voltage.
We first present a model that captures the basic character-
istics and behavior of flash memory. We then set design
goals with that model under consideration. We introduce
three methods for reliable flash storage, which we refer to

as in-place writes, multiple-place writes, and RS-Berger
codes. Each method aims to meet our design goals for
reliable non-volatile storage.

3.1 Modeling Low-Voltage Flash Memory

A NOR flash memory has a set of n cells that are initially
set to 1. We represent the state of the cells by c1, . . . ,cn;
the value of ci can be 0 or 1. A cell can be set to 0 using
a write operation. The 1 → 0 transition might fail at low
voltage while the 1 → 1 will obviously succeed. Flash
memory at low voltage, where errors occur only in one
direction, can be modeled as a Z-channel [19].

Flash memory is a write-once memory [31] and once
a cell is set to 0 (i.e., once it is programmed), it cannot be
changed back to 1 without using an erase operation. In
flash memory, cells are organized by blocks, and an erase
operation resets an entire block of cells. Block erasures
are costly in terms of time and energy and they cause
wear to flash cells.

Operations: There are two operations in this model:
(1) An update operation that changes a subset of cells
to 0 to represent a value, and (2) A decoding operation
that maps cell states (i.e., memory state) to a value. Up-
dating a variable means changing the values of c1, . . . ,cn
to c′1, . . . ,c

′
n. Assuming no erase operation occurs, and

therefore no bits are reset to 1 after being set to 0, we
have ∀i ∈ {1, . . . ,n},ci ≥ c′i after an update. If the update
operation is performed when operating voltage is below
the nominal minimum required for flash memory, the up-
date operation may not be error free.

3.2 Design Goals

Our storage techniques, which aim to provide reliable
storage for low-power devices, are designed with the fol-
lowing metrics in mind:

• Error rate: The first and foremost design goal is to
minimize the error rate to provide applications with
reliable non-volatile storage.

• Energy consumption: The energy consumed to
achieve an acceptably low error rate should not ex-
ceed the expected energy savings gained by running
at a lower voltage.

• Delay: We define delay as the difference between
the execution time to reliably store data at a low
voltage and to store the same data at a high voltage.
The delay caused by the storage technique should
be reasonably small.

3.3 Proposed Methods

Toward the design goals discussed previously, we pro-
pose methods to deal with errors caused by using flash
memory at low voltage.

6

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 53

3.3.1 In-Place Writes

Since the transition of a 1 to a 0 in a NOR flash memory
at low voltage is stochastic rather than guaranteed, the
in-place writes method repeats the write of each byte (to
the same memory location) more than once if necessary,
up to a threshold number of attempts. Algorithm 1 gives
the details for ENCODE and DECODE procedures for in-
place writes.

Algorithm 1 The encoding and decoding algorithms for
in-place writes method to store data to address by re-
peating the writes up to threshold a number of attempts
if necessary.

ENCODE(data,address, threshold)
1 WRITE TO FLASH(data,address)
2 result ← READ FROM FLASH(address)
3 repeat ← 1
4 while (result �= data) AND (repeat < threshold)
5 do WRITE TO FLASH(data,address)
6 result ← READ FROM FLASH(address)
7 repeat ← repeat+1

DECODE(address)
1 result ← READ FROM FLASH(address)
2 return result

The reason in-place writes decrease the error rate is
that, as explained in Section 2.4, each write attempt in
the same memory location increases the accumulated
charge and therefore raises the probability of storing the
intended bit sequence successfully.

3.3.2 Multiple-Place Writes

Another approach to increase the reliability of flash
writes at low voltage is to write a value to more than one
location in flash memory if necessary up to a threshold
number of locations. Later, to retrieve the stored data,
the multiple-place writes method reads the data from the
specified address and several other addresses associated
with it, then returns the bitwise AND of all of the stored
values. Algorithm 2 details ENCODE and DECODE pro-
cedures of the multiple-place writes method. Writing a
value to more than one memory location increases the
probability of storing it successfully in the flash mem-
ory.

The reason the multiple-place writes approach can de-
crease the error rate is as follows: All cells of flash mem-
ory are initially set to 1. An error means that writing a 0
has failed and a bit cell ci has remained untouched (log-
ical 1) although it was intended to be set to 0. If the cell
write in one of the locations has not failed, and cell ci is 0

Algorithm 2 The encoding and decoding algorithms for
multiple-place writes method to store data to address by
repeating the writes up to a threshold number of loca-
tions if necessary. The distance between each of these
associated locations is offset.

ENCODE(data,addr, threshold,offset)
1 WRITE TO FLASH(data,addr)
2 result ← READ FROM FLASH(addr)
3 repeat ← 1
4 while (result �= data) and (repeat < threshold)
5 do phy addr ← addr + (repeat × offset)
6 WRITE TO FLASH(data,phy addr)
7 n result ← READ FROM FLASH(phy addr)
8 result ← result & n result
9 repeat ← repeat+1

DECODE(addr, threshold,offset)
1 for i ← 0 to (threshold−1)
2 do phy ← addr + (i × offset)
3 n result ← READ FROM FLASH(phy)
4 result ← result & n result
5 return result

in at least one location, getting the AND of the read val-
ues from all locations will make cell ci = 0 in the AND
result. The case of writing a 1 to a cell does not cause an
error since it means changing a cell from 1 to 1.

3.3.3 RS-Berger Codes

Our third method to provide reliable flash memory at low
voltage involves data coding. We use the concatenation
of Reed-Solomon [29] and Berger [29] codes—which we
call RS-Berger codes—to detect and correct errors at read
time. Reed-Solomon is a widely used error-correcting
code that can correct twice as many erasures as errors.
Therefore, if the locations of errors are known, an RS
code’s error-correcting capacity is improved twofold.

To detect the location of errors and therefore improve
the efficiency of the RS code, we use a Berger code, an
error-detecting code for asymmetric channels. As previ-
ously mentioned (Section 3.1), flash memory at low volt-
age can be modeled as a Z-channel for which a Berger
code is suitable. A Berger codeword consists of two
parts: k information bits and �log2(k + 1)� check bits.
The check bits of the Berger codeword represents the
number of zeros in the k information bits. The Berger
code can detect all zero-to-one errors, because the num-
ber of zeros in the information-bit component will al-
ways be less than the number represented by the check-
bit component.

7

54 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

To represent RS-Berger codewords, we use a matrix
in which each row is an RS codeword except for the last
row which includes the Berger check bits of the RS code-
words. In other words, each cell in the last row of the
matrix is the sum of the number of zeros in the corre-
sponding cells in all other rows.

When encoding the data, we first use RS code to gen-
erate n codewords (rows of the matrix) and then we apply
a Berger code to compute the check bits for each symbol
for all codewords (each column of the matrix).

When decoding data, we first use the Berger decoder
to check whether or not each column is erroneous. If
one entry in the column is erroneous, we consider all the
symbols in the column erasures; otherwise, all the sym-
bols in the column are considered correct. Then, once
the error locations are known, we apply RS decoding to
correct the erroneous sequences row by row.

Algorithm 3 The encoding and decoding algorithms for
RS-Berger codes write method. t is the maximum num-
ber of errors RS-Berger code can correct.

ENCODE(data1,..,N ,n)
1 for i ← 1 to N
2 do CWi ← RS ENCODE(datai,n)
3 WRITE TO FLASH(CWi,addressi)
4 for i ← 1 to n
5 do for j ← 1 to N
6 do symi,j ←CWj(i)
7 chki ← BERGER ENCODE(symi,(1,..,N))
8 WRITE TO FLASH(chki,addressN+1 + i-1)

DECODE(addr1,..,(N+1),n, t)
1 for i ← 1 to N
2 do chki ← READ FROM FLASH(addrN+1+i-1)
3 for i ← 1 to N
4 do CWi ← READ FROM FLASH(addri)
5 for j ← 1 to n
6 do symi,j ← CWi(j)
7 errors ←{}
8 for i ← 1 to n
9 do err ← BERGER DECODE(symi,(1,..,N),chki)

10 if err = 0
11 then errors ← errors∪{i}
12 if |errors| ≤ t
13 then for i ← 1 to N
14 do resulti ← RS DECODE(CWi,errors)
15 return result
16 else return “fail to correct errors”

4 Evaluation
Our storage techniques are designed for the resource lim-
itations of low-power devices. In this section, we first
evaluate the suitability of the three methods proposed in
Section 3.3 for low-power devices; we then evaluate the
hypothesis that for CPU-bound workloads, operating at
low voltage and managing errors is more energy efficient
than fixing the operating voltage to the maximum of all
the components’ nominal minimum voltages.

Summary of results: For a sensor monitoring appli-
cation that reads 256 data samples from flash memory,
aggregates data, and stores the results in flash memory,
use of in-place writes at 1.8 V reduces the energy con-
sumption up to 34% versus running the same applica-
tion at 2.2 V (minimum voltage requirement for the flash
memory). This sensing application models a common
workload for both wireless sensor nodes and RFID-scale
devices.

Experimental setup: We used a consistent experi-
mental setup to measure the energy consumption and ex-
ecution time of each program. Using an oscilloscope, we
measured the voltage of a small resistor in series with a
MSP430 microcontroller programmed with a task (e.g.,
a flash write). The integration of the current (voltage di-
vided by the resistance) over the execution time of the
task multiplied by the operating voltage of the device
gives the energy consumption of that task (Energy =R

I(t) dt ×V). To facilitate precise identification of the
task on the oscilloscope, the microcontroller toggled a
GPIO pin immediately before and after the task.

4.1 Comparison of the Proposed Storage Methods

The workload used to measure the performance of each
of the proposed methods is the storage of accelerome-
ter traces—generated using the Intel WISP 4.1’s 10-bit
ADC sensor—to flash memory. The input trace is a se-
ries of three-dimensional 16-bit samples containing ten
bits of information. We used a simple data compression
method to store more data in the available flash memory.
The compression method involved reading four samples
of data, preparing the first byte of each sample to be
stored in flash memory, then combining the remaining
two bits of each sample into one byte of data. Using
this compression scheme, we reduced every four samples
(eight bytes) to five bytes.

The maximum number of write attempts for both in-
place writes and multiple-place methods were set to
two. The RS-Berger codes used three codewords of size
38 bytes (32 bytes data and 6 bytes parity). These set-
tings enable all three methods to fit their data in 192 bytes
of flash memory. Table 3 shows the energy consump-
tion and time taken for the same workload under each
method. Both in-place writes and multiple-place writes
consume less energy and finish more quickly at 1.9 V

8

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 55

than at 1.8 V. Both of these methods are feedback based
and repeat writes if they detect errors. Because there is a
lower chance of error at 1.9 V, fewer rewrites are required
than at 1.8 V, so less energy and time are required.

The in-place writes method slightly outperforms the
multiple-place writes method at both voltage levels be-
cause its decoding procedure is less CPU intensive. In-
place writes method has the best Error Correction Rate
(ECR in Table 3) of all. The multiple-place writes
method seems to be the most suitable when there are
some memory cells that are hard to program and there-
fore rewriting in those cells is not helpful (Figure 5
gives an example of such case). Compared to RS-Berger
codes that always guarantee that a certain number of er-
rors can be corrected, the in-place writes and multiple-
place writes methods are less reliable—they offer no
such guarantees. Therefore, for applications with a hard
reliability requirement, RS-Berger codes may be more
suitable if the application knows the error rate in advance
and is willing to incur extra computational costs for RS-
Berger encoding and decoding.

Method V Time (ms) E (µJ) ECR
In-place 1.8 24.16 59 96%
M-place 1.8 25.00 63 84%

RS-B 1.8 334.45 160 0%
In-place 1.9 15.43 38 100%
M-place 1.9 16.85 40̄ 100%

RS-B 1.9 334.73 180 100%

Table 3: Performance comparison of the proposed meth-
ods at 1.8 V and 1.9 V. Error Correction Rate (ECR)
shows the effectiveness of the methods.

Error Correction Rate: As Table 3 illustrates, the
two methods that do not use coding—in-place writes and
multiple-place writes—incur similar energy consump-
tion costs. We now compare the effectiveness of these
two approaches with respect to the error correction rate.

Figure 7 and Figure 8 demonstrate that flash storage
reliability improves as we increase the number of re-
peated writes/places at five different voltage levels (all
below the nominal minimum voltage for flash writes).

Experiment: Using our automated testbed, the test
platform runs a program that writes zeros to 192 consec-
utive bytes of flash memory (using in-place writes and
multiple-place writes methods in two different experi-
ments). We increase the maximum number of repeated
writes from one to ten, one unit at a time. The moni-
toring platform counts the number of incorrectly stored
bytes (those that are not set to zero after the experiment).
The experiment was repeated for five different voltages
(1.86 V–1.90 V).

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of sequential in−place writes

Pe
rc

en
ta

ge
 o

f i
nc

or
re

ct
 b

yt
es

 (%
) 1.86 V

1.87 V
1.88 V
1.89 V
1.90 V

Figure 7: Reliability improvement using in-place writes
over five different voltages.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of sequential multiple−place writes

P
e

rc
e

n
ta

g
e

 o
f

in
c
o

rr
e

c
t

b
y
te

s
 (

%
)

1.86 V

1.87 V

1.88 V

1.89 V

1.90 V

Figure 8: Reliability improvement using multiple-place
writes over five different voltages.

Figure 9 compares the error rate of the in-place and
multiple-place write methods. We choose the same max-
imum number of repeated writes for both approaches. As
the graph shows, the in-place writes method improves
the error rate more dramatically. We attribute this phe-
nomenon to the fact that electrons accumulate in flash
cells with each programming attempt. Figure 9 also al-
lows us to evaluate hybrids of the in-place writes and
multiple-place writes methods. For example, choosing
one place to write the value and repeating the write up
to three times (up to three writes in total) works better
than repeating the write up to twice in two places (up to
four writes in total). This graph offers evidence that a
pure in-place writes approach works better than a hybrid
approach or a pure multiple-place writes approach. How-
ever, we do not conclude that the in-place writes method
always outperforms the multiple-place writes. A winning
case for multiple-place writes is when a flash memory
has unbalanced blocks (different error rates), for exam-
ple, the chip shown in Figure 5. While multiple-place
writes method requires more space, it could provide a
more reliable storage compared to in-place writes.

9

56 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Figure 9: The in-place writes method reduces the error
rate more effectively than multiple-place writes and a hy-
brid of both methods.

4.2 Half-wits Versus Wits in Practice

To evaluate our storage schemes, we consider three test
cases representing CPU operations, flash read opera-
tions, and flash write operations.

The RC5 [30] test case, a CPU-only workload, is a
commonly used encryption algorithm that can cope with
the resource limitations of low-power devices [8, 18].
RC5 was implemented with a 32-bit word size, 18 rounds,
and 16 bytes of secret key.

The retrieve and store test cases are both I/O-
bound tasks. One reads and the other one writes 192
bytes of data from/to flash memory. CPU-bound opera-
tions in these test cases are minimal (essentially only a
loop that calls a function to flash memory). The store

program uses in-place writes with a maximum number
of three (re)writes to deal with errors. Because flash read
operations are fundamentally simpler than flash write op-
erations, flash reads are reliable at low voltage.

We run each of the three test cases on a MSP430F2131
microcontroller at four different voltages that are all in
the operating range of this microcontroller (1.8 V–3.5 V).
Two voltage levels are below the recommended thresh-
old for flash memory: 1.8 V and 1.9 V. Two voltage lev-
els are at and above the recommended threshold: 2.2 V
and 3.0 V. The microcontroller is set to work at its high-
est possible clock rate for each voltage level in order
to gain the best energy performance. Figure 10 com-
pares the average energy consumption over five trials of
each test case at each voltage. By running at 1.8 V (be-
low the nominal minimum voltage for flash writes on
the MSP430F2131), the microcontroller consumes 48%
and 33% less energy to finish the RC5 and retrieve test
cases respectively. However, our storage schemes do not
seem to be beneficial for flash-write-intensive tasks (the
store test case).

To evaluate the end-to-end performance of our stor-
age methods, we have tested a sensor-monitoring appli-
cation that is CPU-intensive and can benefit from a low-

RC5 Retrieve Store
0

50

100

150

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n In−place @1.8V
In−place @1.9V
2.2V
3.0V

Figure 10: Micro-benchmarks: CPU (RC5), read
(retrieve), and write (store) energy consumption
measured at four different voltage levels. Although the
RC5 and retrieve test cases consume less energy at low
voltage, this is not the case for the store test case (a
write-intensive application) as the savings due to running
the chip at low voltage does not compensate for the en-
ergy cost required to correct errors.

voltage storage. This application reads from flash mem-
ory 256 accelerometer samples (each ten bits), computes
the maximum, minimum, mean, and standard deviation
of the samples, and stores the aggregate information in
flash memory. This monitoring application is a blend of
CPU and I/O, but it is still a CPU-intensive workload. Ta-
ble 4 shows that providing the system with a low-voltage
storage mechanism via our methods helps to decrease the
task’s total energy consumption by 34%.

4.3 Finding a Crossover Point

We can empirically find the point at which the energy
saved on computation compensates for the added cost
of repeated flash writes. We compare a workload exe-
cuted at 2.2 V to the same one running at 1.8 V using
the in-place writes scheme with the threshold k set to 2.
We make the worst-case assumption that all data must be
written to flash twice (no bits change on the first attempt).
The time spent on flash writes while running at 1.8 V is

Method In-place In-place None None
1.8 V 1.9 V 2.2 V 3.0 V

Clock rate 6 MHz 6 MHz 8 MHz 14 MHz
Energy(µJ) 270 30̄0 410 760
Time(ms) 151.15 151.32 113.24 64.72

Table 4: Energy consumption and execution time for the
accelerometer sensor application. At voltages below the
recommended (1.8 V and 1.9 V), in-place writes method
with a threshold of two is used.

10

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 57

then twice the time spent when operating at 2.2 V. We
also assume that the clock rate of the system is set to the
highest specified for the CPU at each voltage. Specifi-
cally, the clock rate would be set to 6 MHz at 1.8 V and
to 8 MHz at 2.2 V.

We empirically determined the power consumption
of CPU and flash writes with 1.8 V and 2.2 V voltage
supplies. PC 1.8 = 1.8 mW , PC 2.2 = 3.4 mW , PF 1.8 =
3.7 mW , and PF 2.2 = 5.8 mW . The variables TC and TF
are the time spent in computation and on flash memory
respectively. With these assumptions, we can write the
following inequality to determine whether a given work-
load is likely to result in reduced energy consumption:

Energy1.8 ≤ Energy2.2 ⇒
PC 1.8 ×TC 1.8 +PF 1.8 × k×TF 1.8 ≤

PC 2.2 ×TC 2.2 +PF 2.2 ×TF 2.2 ⇒
PC 1.8 × 8MHz

6MHz ×TC 2.2+PF 1.8 × k× 8MHz
6MHz ×TF 2.2 ≤

PC 2.2 ×TC 2.2 +PF 2.2 ×TF 2.2

The solution with k = 2 is TC 2.2 ≥ 4×TF 2.2. There-
fore, in-place writes are competitive over normal flash
writes when the time spent on computation is at least four
times greater than the time spent on flash writes.

5 Improvements and Alternatives
This section describes several complementary ways to
further decrease the energy requirements of our schemes.

Hardware. One could add an adjustable voltage
regulator and about a dozen other analog components
such that software could toggle a GPIO for discrete dy-
namic voltage scaling. A feedback loop that dynamically
adjusts a voltage supply could help identify the mini-
mum voltage at which no write errors are detected, but
such boundaries can vary with temperature and wear-out.
Thus, our coding algorithms would remain helpful to
cope with potential errors. Our work seeks to avoid hard-
ware modification that would require additional compo-
nents or design changes to a Printed Circuit Board (PCB)
because embedded applications are often cost sensitive.
Changing the PCB layout may require a manufacturer
to flush its supply chain of parts typically manufactured
in high volume. If an inexpensive, software-only ap-
proach with minimal disturbance to manufacturing can
lead to significant savings in energy consumption, then
it is hard to financially justify an expensive hardware ap-
proach that offers only comparable performance.

Sign bits and storing complements. As discussed in
Section 2.3, one of the major factors influencing the error
rate is the Hamming weight of a number. One way to im-
prove the performance of the low-voltage storage meth-
ods is to store numbers with greater Hamming weights
(weight ≥ 4) in flash memory. If a number is lightweight
(weight < 4), the complement of the number would be

0 20 40 60 80 100 120 140 160
−200

−100

0

100

200

Time (s)

Vo
lta

ge
 (m

v)

Figure 11: ECG data stored in flash memory at 1.89 V
(the same chip from Figure 2) improved by using a sign
bit. The light-colored bars show the difference between
the ECG stored at low voltage and the original ECG data.

stored and a sign bit would be set for future data ac-
cess. An array of sign bits can be stored separately from
the data to avoid disturbing word alignment. A previous
work [26] uses a similar technique for multi-level cell
(MLC) flash memories with four levels; their techniques
result in a significant decrease of energy consumption.
Figure 11 shows that using the sign-bit scheme decreases
the error rate at low voltage for the same ECG data used
in Section 2. For this specific example, out of 168 bytes
of ECG data, 160 bytes are overweight and therefore us-
ing the sign-bit scheme greatly decreased the error rate.
The sign-bit approach involves very lightweight compu-
tation (counting the number of ones) and increases the
number of writes by a factor of one-eighth. Therefore,
the effect of this improvement on energy consumption
and delay should be comparatively small.

Memory mapping table. Another method to exploit
the fact that numbers with greater Hamming weights
have a lower probability of error is to map the most fre-
quently used numbers in the user’s data to the heavier
numbers. The solution we suggest is to preprocess the
data to sort numbers based on their frequency of use.
A simple memory mapping table would map the most
frequent numbers to the heaviest numbers. Such a table
could be preloaded in flash memory so that storing the
table would not consume energy at run time. Use of a
memory mapping table would only increase the number
of reads and would not increase the number of writes.
Therefore, the energy consumption overhead and the de-
lay should be smaller than the sign bit method.

An ideal, unrealizable scheme. We initially tried to
set the voltage to a level lower than recommended but
high enough to avoid errors. This method could not be
realized for two reasons: finding a voltage that satisfies
this condition requires a large number of experiments per
chip—error rate varies chip by chip (Figure 3), and the
error rate of flash writes varies depending on its lifespan

11

58 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

and its environment. We found that the byte error rate of
MSP430F2131 that is 63% at 1.83 V at 25◦C becomes
negligible when the temperature goes up to 39◦C.

6 Related Work
Storage for low-power embedded devices: Recent
research focuses on optimizing use of off-chip flash
memory. Off-chip memory allows for special features
and larger memories than found on microcontrollers,
but introduces additional costs for components. Micro-
hash [38] is a memory index structure tailored for sen-
sor devices with a large external flash memory. Mathur
et al. [23] perform an extensive study of available flash
memory candidates for sensor devices and demonstrate
that an off-chip parallel NAND flash memory decreases
the energy consumption of storage. Considering the off-
chip NAND flash memory as the best candidate for sen-
sor devices, Agrawal et al. [1] propose a method that al-
lows sensor devices to exploit their flash memory while
adapting to different amount of RAM. However, our
storage schemes are designed for already deployed low-
power devices that use on-chip flash memory. Moreover,
while devices at the scale of sensor nodes might switch to
block-grained, large off-chip flash memory, RFID-scale
platforms might not benefit from this transition because
of their challenging resource limitations to drive I/O.

Energy proportionality: Our approaches share the
philosophy that energy consumption should scale pro-
portionally to utilization or error rates rather than pro-
portional to a worst-case scenario. Blaauw et al. [6] re-
duce power consumption by lowering the operating volt-
age of a pipelined CPU. Certain pipeline stages may pro-
duce incorrect computation that require recomputation,
but the errors can be made rare to allow better scalabil-
ity of power consumption. Misailovic et al. [25] demon-
strate that the programs whose loops performs fewer it-
erations cause tolerable errors while their execution time
becomes shorter. Weddle et al. [37] introduce PARAID,
a scheme that scales power based on the user demand
while maintaining the reliability of the system. Their
present work also tries to scale power based on the uti-
lization of flash memory without losing storage reliabil-
ity. Our approaches share this philosophy of scaling per-
formance with utilization. Our performance metric is en-
ergy consumption, writes to flash memory represent our
utilization, and energy-efficient error correction is our
coping mechanism.

Error correction codes for storage: Most previously
published flash error correction codes [9, 11, 14] are de-
signed for NAND flash memory. Chen et al. [10] men-
tion that NOR flash normally does not require error cor-
rection. These techniques consider neither the asymme-
try in low-voltage flash memory nor the resource limi-

tations of low-power embedded devices. Many previous
codes [4, 16, 40, 35] leverage the fact that each cell of
MLC flash memory represents more than one bit of in-
formation. But the fact that single-level cells (SLC) are
more suitable for embedded devices, in addition to the
occurrence of errors in low-voltage conditions, requires
a reconsideration of these codes for SLCs at low voltage.
Zemor et al. [39] introduce error-correcting WOM codes
for flash memory. They suggest codes that are able to
correct up to one error when the flash memory is given
enough voltage. This work does not account for errors
that occur at low voltage. Godard et al. [12] propose hier-
archical code correction and reliability management for
NOR flash memory. This work considers on-chip ECCs
such as Hamming and parity codes to correct the errors
in NOR flash memory.

7 Conclusions and Future Work
The high voltage requirement of on-chip flash memory
is a barrier to reducing the total energy consumption of
low-power devices. This work examines the main fac-
tors affecting the behavior of flash memory at low volt-
age. Based on our observations of flash memory behav-
ior at low voltage, we proposed three storage schemes—
in-place writes, multiple-place writes, and RS-Berger
codes—that aim to make flash memory available and re-
liable at low voltage while tolerating the resource limi-
tations of low-power devices. Our evaluation shows that
in-place writes can save 34% of energy consumption for
a sensing workload on the MSP430 microcontroller.

Future work includes finding more energy-efficient
coding schemes to combat flash write errors caused by
low voltage. Currently, the system cannot take full ad-
vantage of dynamic voltage scaling. Another plan is to
introduce benchmarks for the storage systems of low-
power devices. The standard benchmarks used to eval-
uate the storage systems designed for desktop computers
are not immediately applicable to the low-power domain.

Acknowledgments
This material is supported by a Sloan Research Fel-
lowship and the NSF under CAREER Award CCF-
0747415, CNS-0627476 (prime), CNS-0627529, CA-
REER Award CNS-0845874, CNS-0923313, and ECCS-
0802107. Any opinions, findings, and conclusions ex-
pressed in this material are those of the authors and do
not necessarily reflect the views of the NSF.

We thank Shane Clark, Wendy Cooper, Marc Liber-
atore, and Benjamin Ransford for feedback on drafts;
Joshua Smith and Alanson Sample at Intel Labs Seat-
tle for providing the WISP over the last three years; and
our shepherd Brian Noble and the anonymous reviewers
for their detailed feedback and guidance. Portions of this
work are patent pending in the United States.

12

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 59

References
[1] D. Agrawal, B. Li, Z. Cao, D. Ganesan, Y. Diao, and P. Shenoy.

Exploiting the interplay between memory and flash storage in em-
bedded sensor devices. In Proceedings of the 16th IEEE Confer-
ence on Embedded and Real-time Computing Systems (RTCSA),
pages 227–236, 2010.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci.
Wireless sensor networks: a survey. Computer Networks,
38(4):393–422, 2002.

[3] Atmel AVR Solutions. ATmega128L.
http://www.atmel.com/atmel/acrobat/doc2467.pdf.

[4] A. Barg and A. Mazumdar. Codes in permutations and error cor-
rection for rank modulation. IEEE Transactions on Information
Theory, 56(7):3158–3165, 2010.

[5] J. Berger. A note on error detection codes for asymmetric chan-
nels. Information and Control, 4(1):68–73, 1961.

[6] D. Blaauw and S. Das. CPU, heal thyself. IEEE Spectrum,
46(8):40–56, 2009.

[7] M. Buettner, B. Greenstein, A. Sample, J. R. Smith, and
D. Wetherall. Revisiting smart dust with RFID sensor networks.
In Proceedings of the 7th ACM Workshop on Hot Topics in Net-
works (HotNets-VII), October 2008.

[8] H.-J. Chae, D. J. Yeager, J. R. Smith, and K. Fu. Maximalist
cryptography and computation on the WISP UHF RFID tag. In
Proceedings of the Conference on RFID Security, July 2007.

[9] B. Chen, X. Zhang, and Z. Wang. Error correction for multi-
level NAND flash memory using Reed-Solomon codes. In IEEE
Workshop on Signal Processing Systems (SiPS 2008), pages 94–
99, Oct. 2008.

[10] S. Chen. What types of ECC should be used on flash memory?
Application Note for SPANSION, 2007.

[11] M. Fujino and V. Moshnyaga. An efficient Hamming distance
comparator for low-power applications. In 9th International Con-
ference on Electronics, Circuits and Systems, volume 2, pages
641–644, 2002.

[12] B. Godard, J.-M. Daga, L. Torres, and G. Sassatelli. Hierarchical
code correction and reliability management in embedded NOR
flash memories. In Proceedings of the 2008 13th European Test
Symposium, pages 84–90, 2008.

[13] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Haus-
dorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B.
Moody, C.-K. Peng, and H. E. Stanley. PhysioBank,
PhysioToolkit, and PhysioNet: Components of a new re-
search resource for complex physiologic signals. Circula-
tion, 101(23):e215–e220, 2000. Circulation Electronic Pages:
http://circ.ahajournals.org/cgi/content/full/101/23/e215.

[14] S. Gregori, A. Cabrini, O. Khouri, and G. Torelli. On-chip error
correcting techniques for new-generation flash memories. Pro-
ceedings of the IEEE, 91(4):602–616, April 2003.

[15] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck. Rank modu-
lation for flash memories. In IEEE International Symposium on
Information Theory (ISIT), pages 1731–1735, 2008.

[16] A. Jiang, M. Schwartz, and J. Bruck. Correcting charge-
constrained errors in the rank-modulation scheme. IEEE Trans-
actions on Information Theory, 56(5):2112–2120, 2010.

[17] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century chal-
lenges: mobile networking for “Smart Dust”. In Proceedings of
the 5th Annual ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom), pages 271–278, 1999.

[18] C. Karlof, N. Sastry, and D. Wagner. TinySec: A link layer se-
curity architecture for wireless sensor networks. In Proceedings
of the Second ACM Conference on Embedded Networked Sensor
Systems (SenSys), 2004.

[19] T. Klove. Error correcting codes for the asymmetric channel.
Technical report, Informatics, University of Bergen, 1995.

[20] B. P. L. Lo, S. Thiemjarus, R. King, and G. zhong Yang. Body
sensor network - a wireless sensor platform for pervasive health-
care monitoring. In Adjunct Proceedings of the 3rd International
Conference on Pervasive Computing (PERVASIVE), pages 77–
80, 2005.

[21] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. An-
derson. Wireless sensor networks for habitat monitoring. In Pro-
ceedings of the 1st ACM International Workshop on Wireless Sen-
sor Networks and Applications, pages 88–97, 2002.

[22] D. Malan, T. Fulford-jones, M. Welsh, and S. Moulton. Code-
blue: An ad hoc sensor network infrastructure for emergency
medical care. In International Workshop on Wearable and Im-
plantable Body Sensor Networks, 2004.

[23] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Ultra-low
power data storage for sensor networks. In Proceedings of the 5th
ACM/IEEE International Conference on Information Processing
in Sensor Networks (IPSN), pages 374–381, 2006.

[24] Microchip. 32-bit PIC MCUs.
http://www.microchip.com/en US/family/pic32/.

[25] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Qual-
ity of service profiling. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering (ICSE), pages
25–34, 2010.

[26] V. Papirla and C. Chakrabarti. Energy-aware error control coding
for flash memories. In Proceedings of the 46th Annual Design Au-
tomation Conference (DAC), pages 658–663. ACM/EDAC/IEEE,
2009.

[27] P. Pavan, R. Bez, P. Olivo, and E. Zanoni. Flash memory cells-an
overview. Proceedings of the IEEE, 85(8):1248–1271, Aug 1997.

[28] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-
low power wireless research. In Proceedings of the Fourth Inter-
national Conference on Information Processing in Sensor Net-
works: Special track on Platform Tools and Design Methods for
Network Embedded Sensors (IPSN/SPOTS), April 2005.

[29] I. S. Reed and G. Solomon. Polynomial codes over certain finite
fields. Journal of the Society for Industrial and Applied Mathe-
matics, 8(2):300–304, 1960.

[30] R. L. Rivest. The RC5 encryption algorithm. In B. Preneel,
editor, Fast Software Encryption, pages 86–96. Springer, 1995.
(Proceedings Second International Workshop, Dec. 1994, Leu-
ven, Belgium).

[31] R. L. Rivest and A. Shamir. How to reuse a write-once memory.
Information and Control, 55:1–19, 1982.

[32] M. Salajegheh, S. Clark, B. Ransford, K. Fu, and A. Juels. CCCP:
Secure remote storage for computational RFIDs. In Proceedings
of the 18th USENIX Security Symposium, August 2009.

[33] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and
J. R. Smith. Design of an RFID-based battery-free programmable
sensing platform. In IEEE Transactions on Instrumentation and
Measurement, 2008.

[34] V. Shnayder, B.-r. Chen, K. Lorincz, T. R. F. F. Jones, and
M. Welsh. Sensor networks for medical care. In Proceedings
of the 3rd ACM Conference on Embedded Networked Sensor Sys-
tems (SenSys), pages 314–314, 2005.

[35] I. Tamo and M. Schwartz. Correcting limited-magnitude errors in
the rank-modulation scheme. IEEE Transaction on Information
Theory, 56(6):2551–2560, 2010.

13

60 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

[36] Texas Instruments Incorporated. MSP430 Ultra-Low Power Mi-
crocontrollers. http://www.ti.com/msp430.

[37] C. Weddle, M. Oldham, J. Qian, A.-I. A. Wang, P. Reiher, and
G. Kuenning. PARAID: A gear-shifting power-aware RAID.
ACM Transactions on Storage (TOS), 3(3):Article 13:1–33, 2007.

[38] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos, and
W. A. Najjar. Microhash: An efficient index structure for fash-
based sensor devices. In Proceedings of the 4th USENIX Confer-
ence on File and Storage Technologies, pages 31–44, 2005.

[39] G. Zemor and G. D. Cohen. Error-correcting WOM-codes. IEEE
Transactions on Information Theory, 37(3):730–734, May 1991.

[40] F. Zhang, H. D. Pster, and A. Jiang. LDPC codes for rank modu-
lation in flash memories. In Proc. IEEE International Symposium
on Information Theory (ISIT), 2010.

14

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 61

Consistent and Durable Data Structures for
Non-Volatile Byte-Addressable Memory

Shivaram Venkataraman†∗, Niraj Tolia‡, Parthasarathy Ranganathan†, and Roy H. Campbell∗
†HP Labs, Palo Alto, ‡Maginatics, and ∗University of Illinois, Urbana-Champaign

Abstract

The predicted shift to non-volatile, byte-addressable
memory (e.g., Phase Change Memory and Memristor),
the growth of “big data”, and the subsequent emergence
of frameworks such as memcached and NoSQL systems
require us to rethink the design of data stores. To de-
rive the maximum performance from these new mem-
ory technologies, this paper proposes the use of single-
level data stores. For these systems, where no distinc-
tion is made between a volatile and a persistent copy of
data, we present Consistent and Durable Data Structures
(CDDSs) that, on current hardware, allows programmers
to safely exploit the low-latency and non-volatile as-
pects of new memory technologies. CDDSs use version-
ing to allow atomic updates without requiring logging.
The same versioning scheme also enables rollback for
failure recovery. When compared to a memory-backed
Berkeley DB B-Tree, our prototype-based results show
that a CDDS B-Tree can increase put and get through-
put by 74% and 138%. When compared to Cassandra,
a two-level data store, Tembo, a CDDS B-Tree enabled
distributed Key-Value system, increases throughput by
up to 250%–286%.

1 Introduction

Recent architecture trends and our conversations with
memory vendors show that DRAM density scaling is fac-
ing significant challenges and will hit a scalability wall
beyond 40nm [26, 33, 34]. Additionally, power con-
straints will also limit the amount of DRAM installed in
future systems [5, 19]. To support next generation sys-
tems, including large memory-backed data stores such
as memcached [18] and RAMCloud [38], technologies
such as Phase Change Memory [40] and Memristor [48]
hold promise as DRAM replacements. Described in Sec-
tion 2, these memories offer latencies that are compara-
ble to DRAM and are orders of magnitude faster than ei-

ther disk or flash. Not only are they byte-addressable and
low-latency like DRAM but, they are also non-volatile.

Projected cost [19] and power-efficiency characteris-
tics of Non-Volatile Byte-addressable Memory (NVBM)
lead us to believe that it can replace both disk and mem-
ory in data stores (e.g., memcached, database systems,
NoSQL systems, etc.) but not through legacy inter-
faces (e.g., block interfaces or file systems). First, the
overhead of PCI accesses or system calls will dominate
NVBM’s sub-microsecond access latencies. More im-
portantly, these interfaces impose a two-level logical sep-
aration of data, differentiating between in-memory and
on-disk copies. Traditional data stores have to both up-
date the in-memory data and, for durability, sync the data
to disk with the help of a write-ahead log. Not only does
this data movement use extra power [5] and reduce per-
formance for low-latency NVBM, the logical separation
also reduces the usable capacity of an NVBM system.

Instead, we propose a single-level NVBM hierarchy
where no distinction is made between a volatile and a
persistent copy of data. In particular, we propose the use
of Consistent and Durable Data Structures (CDDSs) to
store data, a design that allows for the creation of log-
less systems on non-volatile memory without processor
modifications. Described in Section 3, these data struc-
tures allow mutations to be safely performed directly
(using loads and stores) on the single copy of the data
and metadata. We have architected CDDSs to use ver-
sioning. Independent of the update size, versioning al-
lows the CDDS to atomically move from one consis-
tent state to the next, without the extra writes required
by logging or shadow paging. Failure recovery simply
restores the data structure to the most recent consistent
version. Further, while complex processor changes to
support NVBM have been proposed [14], we show how
primitives to provide durability and consistency can be
created using existing processors.

We have implemented a CDDS B-Tree because of its
non-trivial implementation complexity and widespread

62 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

use in storage systems. Our evaluation, presented in
Section 4, shows that a CDDS B-Tree can increase put
and get throughput by 74% and 138% when compared
to a memory-backed Berkeley DB B-Tree. Tembo1, our
Key-Value (KV) store described in Section 3.5, was cre-
ated by integrating this CDDS B-Tree into a widely-used
open-source KV system. Using the Yahoo Cloud Serv-
ing Benchmark [15], we observed that Tembo increases
throughput by up to 250%–286% when compared to
memory-backed Cassandra, a two-level data store.

2 Background and Related Work

2.1 Hardware Non-Volatile Memory

Significant changes are expected in the memory indus-
try. Non-volatile flash memories have seen widespread
adoption in consumer electronics and are starting to gain
adoption in the enterprise market [20]. Recently, new
NVBM memory technologies (e.g., PCM, Memristor,
and STTRAM) have been demonstrated that significantly
improve latency and energy efficiency compared to flash.

As an illustration, we discuss Phase Change Mem-
ory (PCM) [40], a promising NVBM technology. PCM
is a non-volatile memory built out of Chalcogenide-
based materials (e.g., alloys of germanium, antimony,
or tellurium). Unlike DRAM and flash that record data
through charge storage, PCM uses distinct phase change
material states (corresponding to resistances) to store val-
ues. Specifically, when heated to a high temperature for
an extended period of time, the materials crystallize and
reduce their resistance. To reset the resistance, a current
large enough to melt the phase change material is applied
for a short period and then abruptly cut-off to quench the
material into the amorphous phase. The two resistance
states correspond to a ‘0’ and ‘1’, but, by varying the
pulse width of the reset current, one can partially crystal-
lize the phase change material and modify the resistance
to an intermediate value between the ‘0’ and ‘1’ resis-
tances. This range of resistances enables multiple bits
per cell, and the projected availability of these MLC de-
signs is 2012 [25].

Table 1 summarizes key attributes of potential stor-
age alternatives in the next decade, with projected data
from recent publications, technology trends, and direct
industry communication. These trends suggest that fu-
ture non-volatile memories such as PCM or Memris-
tors can be viable DRAM replacements, achieving com-
petitive speeds with much lower power consumption,
and with non-volatility properties similar to disk but
without the power overhead. Additionally, a number
of recent studies have identified a slowing of DRAM

1Swahili for elephant, an animal anecdotally known for its memory.

growth [25, 26, 30, 33, 34, 39, 55] due to scaling chal-
lenges for charge-based memories. In conjunction with
DRAM’s power inefficiencies [5, 19], these trends can
potentially accelerate the adoption of NVBM memories.

NVBM technologies have traditionally been limited
by density and endurance, but recent trends suggest that
these limitations can be addressed. Increased density can
be achieved within a single-die through multi-level de-
signs, and, potentially, multiple-layers per die. At a sin-
gle chip level, 3D die stacking using through-silicon vias
(TSVs) for inter-die communication can further increase
density. PCM and Memristor also offer higher endurance
than flash (108 writes/cell compared to 105 writes/cell
for flash). Optimizations at the technology, circuit, and
systems levels have been shown to further address en-
durance issues, and more improvements are likely as the
technologies mature and gain widespread adoption.

These trends, combined with the attributes summa-
rized in Table 1, suggest that technologies like PCM and
Memristors can be used to provide a single “unified data-
store” layer - an assumption underpinning the system ar-
chitecture in our paper. Specifically, we assume a stor-
age system layer that provides disk-like functionality but
with memory-like performance characteristics and im-
proved energy efficiency. This layer is persistent and
byte-addressable. Additionally, to best take advantage
of the low-latency features of these emerging technolo-
gies, non-volatile memory is assumed to be accessed off
the memory bus. Like other systems [12, 14], we also as-
sume that the hardware can perform atomic 8 byte writes.

While our assumed architecture is future-looking, it
must be pointed out that many of these assumptions are
being validated individually. For example, PCM sam-
ples are already available (e.g., from Numonyx) and
an HP/Hynix collaboration [22] has been announced
to bring Memristor to market. In addition, aggressive
capacity roadmaps with multi-level cells and stacking
have been discussed by major memory vendors. Finally,
previously announced products have also allowed non-
volatile memory, albeit flash, to be accessed through the
memory bus [46].

2.2 File Systems

Traditional disk-based file systems are also faced with
the problem of performing atomic updates to data struc-
tures. File systems like WAFL [23] and ZFS [49] use
shadowing to perform atomic updates. Failure recovery
in these systems is implemented by restoring the file sys-
tem to a consistent snapshot that is taken periodically.
These snapshots are created by shadowing, where every
change to a block creates a new copy of the block. Re-
cently, Rodeh [42] presented a B-Tree construction that
can provide efficient support for shadowing and this tech-

2

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 63

Technology Density Read/Write Latency Read/Write Energy Endurance
um2/bit ns pJ/bit writes/bit

HDD 0.00006 3,000,000 3,000,000 2,500 2,500 ∞
Flash SSD (SLC) 0.00210 25,000 200,000 250 250 105

DRAM (DIMM) 0.00380 55 55 24 24 1018

PCM 0.00580 48 150 2 20 108

Memristor 0.00580 100 100 2 2 108

Table 1: Non-Volatile Memory Characteristics: 2015 Projections

nique has been used in the design of BTRFS [37]. Failure
recovery in a CDDS uses a similar notion of restoring
the data structure to the most recent consistent version.
However the versioning scheme used in a CDDS results
in fewer data-copies when compared to shadowing.

2.3 Non-Volatile Memory-based Systems
The use of non-volatile memory to improve performance
is not new. eNVy [54] designed a non-volatile main
memory storage system using flash. eNVy, however, ac-
cessed memory on a page-granularity basis and could not
distinguish between temporary and permanent data. The
Rio File Cache [11, 32] used battery-backed DRAM to
emulate NVBM but it did not account for persistent data
residing in volatile CPU caches. Recently there have
been many efforts [21] to optimize data structures for
flash memory based systems. FD-Tree [31] and Buffer-
Hash [2] are examples of write-optimized data structures
designed to overcome high-latency of random writes,
while FAWN [3] presents an energy efficient system de-
sign for clusters using flash memory. However, design
choices that have been influenced by flash limitations
(e.g., block addressing and high-latency random writes)
render these systems suboptimal for NVBM.

Qureshi et al. [39] have also investigated combining
PCM and DRAM into a hybrid main-memory system
but do not use the non-volatile features of PCM. While
our work assumes that NVBM wear-leveling happens
at a lower layer [55], it is worth noting that versioning
can help wear-leveling as frequently written locations are
aged out and replaced by new versions. Most closely re-
lated is the work on NVTM [12] and BPFS [14]. NVTM,
a more general system than CDDS, adds STM-based [44]
durability to non-volatile memory. However, it requires
adoption of an STM-based programming model. Fur-
ther, because NVTM only uses a metadata log, it cannot
guarantee failure atomicity. BPFS, a PCM-based file sys-
tem, also proposes a single-level store. However, unlike
CDDS’s exclusive use of existing processor primitives,
BPFS depends on extensive hardware modifications to
provide correctness and durability. Further, unlike the
data structure interface proposed in this work, BPFS im-
plements a file system interface. While this is transparent
to legacy applications, the system-call overheads reduce
NVBM’s low-latency benefits.

2.4 Data Store Trends
The growth of “big data” [1] and the corresponding need
for scalable analytics has driven the creation of a num-
ber of different data stores today. Best exemplified by
NoSQL systems [9], the throughput and latency require-
ments of large web services, social networks, and social
media-based applications have been driving the design
of next-generation data stores. In terms of storage, high-
performance systems have started shifting from mag-
netic disks to flash over the last decade. Even more
recently, this shift has accelerated to the use of large
memory-backed data stores. Examples of the latter in-
clude memcached [18] clusters over 200 TB in size [28],
memory-backed systems such as RAMCloud [38], in-
memory databases [47, 52], and NoSQL systems such
as Redis [41]. As DRAM is volatile, these systems pro-
vide data durability using backend databases (e.g., mem-
cached/MySQL), on-disk logs (e.g., RAMCloud), or, for
systems with relaxed durability semantics, via periodic
checkpoints. We expect that these systems will easily
transition from being DRAM-based with separate persis-
tent storage to being NVBM-based.

3 Design and Implementation

As mentioned previously, we expect NVBM to be ex-
posed across a memory bus and not via a legacy disk
interface. Using the PCI interface (256 ns latency [24])
or even a kernel-based syscall API (89.2 and 76.4 ns for
POSIX read/write) would add significant overhead
to NVBM’s access latencies (50–150 ns). Further, given
the performance and energy cost of moving data, we be-
lieve that all data should reside in a single-level store
where no distinction is made between volatile and persis-
tent storage and all updates are performed in-place. We
therefore propose that data access should use userspace
libraries and APIs that map data into the process’s ad-
dress space.

However, the same properties that allow systems to
take full advantage of NVBM’s performance proper-
ties also introduce challenges. In particular, one of the
biggest obstacles is that current processors do not pro-
vide primitives to order memory writes. Combined with
the fact that the memory controller can reorder writes (at
a cache line granularity), current mechanisms for updat-

3

64 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

ing data structures are likely to cause corruption in the
face of power or software failures. For example, assume
that a hash table insert requires the write of a new hash
table object and is followed by a pointer write linking
the new object to the hash table. A reordered write could
propagate the pointer to main memory before the object
and a failure at this stage would cause the pointer to link
to an undefined memory region. Processor modifications
for ordering can be complex [14], do not show up on
vendor roadmaps, and will likely be preceded by NVBM
availability.

To address these issues, our design and implemen-
tation focuses on three different layers. First, in Sec-
tion 3.1, we describe how we implement ordering and
flushing of data on existing processors. However, this
low-level primitive is not sufficient for atomic updates
larger than 8 bytes. In addition, we therefore also re-
quire versioning CDDSs, whose design principles are
described in Section 3.2. After discussing our CDDS B-
Tree implementation in Section 3.3 and some of the open
opportunities and challenges with CDDS data structures
in Section 3.4, Section 3.5 describes Tembo, the system
resulting from the integration of our CDDS B-Tree into
a distributed Key-Value system.

3.1 Flushing Data on Current Processors

As mentioned earlier, today’s processors have no mecha-
nism for preventing memory writes from reaching mem-
ory and doing so for arbitrarily large updates would be
infeasible. Similarly, there is no guarantee that writes
will not be reordered by either the processor or by the
memory controller. While processors support a mfence
instruction, it only provides write visibility and does not
guarantee that all memory writes are propagated to mem-
ory (NVBM in this case) or that the ordering of writes is
maintained. While cache contents can be flushed using
the wbinvd instruction, it is a high-overhead operation
(multiple ms per invocation) and flushes the instruction
cache and other unrelated cached data. While it is pos-
sible to mark specific memory regions as write-through,
this impacts write throughput as all stores have to wait
for the data to reach main memory.

To address this problem, we use a combination of
tracking recently written data and use of the mfence
and clflush instructions. clflush is an instruction
that invalidates the cache line containing a given mem-
ory address from all levels of the cache hierarchy, across
multiple processors. If the cache line is dirty (i.e., it has
uncommitted data), it is written to memory before inval-
idation. The clflush instruction is also ordered by the
mfence instruction. Therefore, to commit a series of
memory writes, we first execute an mfence as a barrier
to them, execute a clflush on every cacheline of all

modified memory regions that need to be committed to
persistent memory, and then execute another mfence.
In this paper, we refer to this instruction sequence as a
flush. As microbenchmarks in Section 4.2 show, us-
ing flush will be acceptable for most workloads.

While this description and tracking dirty memory
might seem complex, this was easy to implement in prac-
tice and can be abstracted away by macros or helper
functions. In particular, for data structures, all up-
dates occur behind an API and therefore the process of
flushing data to non-volatile memory is hidden from
the programmer. Using the simplified hash table example
described above, the implementation would first write
the object and flush it. Only after this would it write
the pointer value and then flush again. This two-step
process is transparent to the user as it occurs inside the
insert method.

Finally, one should note that while flush is neces-
sary for durability and consistency, it is not sufficient by
itself. If any metadata update (e.g., rebalancing a tree)
requires an atomic update greater than the 8 byte atomic
write provided by the hardware, a failure could leave it
in an inconsistent state. We therefore need the versioning
approach described below in Sections 3.2 and 3.3.

3.2 CDDS Overview
Given the challenges highlighted at the beginning of Sec-
tion 3, an ideal data store for non-volatile memory must
have the following properties:
• Durable: The data store should be durable. A fail-

stop failure should not lose committed data.
• Consistent: The data store should remain consis-

tent after every update operation. If a failure occurs
during an update, the data store must be restored to
a consistent state before further updates are applied.

• Scalable: The data store should scale to arbitrarily-
large sizes. When compared to traditional data
stores, any space, performance, or complexity over-
head should be minimal.

• Easy-to-Program: Using the data store should not
introduce undue complexity for programmers or un-
reasonable limitations to its use.

We believe it is possible to meet the above properties
by storing data in Consistent and Durable Data Struc-
tures (CDDSs), i.e., hardened versions of conventional
data structures currently used with volatile memory. The
ideas used in constructing a CDDS are applicable to a
wide variety of linked data structures and, in this paper,
we implement a CDDS B-Tree because of its non-trivial
implementation complexity and widespread use in stor-
age systems. We would like to note that the design and
implementation of a CDDS only addresses physical con-
sistency, i.e., ensuring that the data structure is readable

4

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 65

99
[1,6)

99
[6,-)

20
[4,6)

99
[1,4)

99
[4,6)

5
[4,6)

10
[5,6)

20
[4,6)

5
[2,4)

20
[3,4)

99
[1,4)

40
[4,-)

99
[4,-)

10
[6,-)

20
[6,-)

99
[6,-)

5
[6,-)

8
[7,-)

10
[6,-)

13
[9,-)

15
[6,8)

20
[6,-)

Live entry

Dead entry

Key[
Start

Version , End
Version

)

Figure 1: Example of a CDDS B-Tree

and never left in a corrupt state. Higher-level layers con-
trol logical consistency, i.e., ensuring that the data stored
in the data structure is valid and matches external in-
tegrity constraints. Similarly, while our current system
implements a simple concurrency control scheme, we do
not mandate concurrency control to provide isolation as
it might be more efficient to do it at a higher layer.

A CDDS is built by maintaining a limited number of
versions of the data structure with the constraint that an
update should not weaken the structural integrity of an
older version and that updates are atomic. This version-
ing scheme allows a CDDS to provide consistency with-
out the additional overhead of logging or shadowing. A
CDDS thus provides a guarantee that a failure between
operations will never leave the data in an inconsistent
state. As a CDDS never acknowledges completion of
an update without safely committing it to non-volatile
memory, it also ensures that there is no silent data loss.

3.2.1 Versioning for Durability

Internally, a CDDS maintains the following properties:

• There exists a version number for the most recent
consistent version. This is used by any thread which
wishes to read from the data structure.

• Every update to the data structure results in the cre-
ation of a new version.

• During the update operation, modifications ensure
that existing data representing older versions are
never overwritten. Such modifications are per-
formed by either using atomic operations or copy-
on-write style changes.

• After all the modifications for an update have been
made persistent, the most recent consistent version
number is updated atomically.

3.2.2 Garbage Collection

Along with support for multiple versions, a CDDS also
tracks versions of the data structure that are being ac-
cessed. Knowing the oldest version which has a non-zero
reference count has two benefits. First, we can garbage
collect older versions of the data structure. Garbage col-
lection (GC) is run in the background and helps limit the

space utilization by eliminating data that will not be ref-
erenced in the future. Second, knowing the oldest active
version can also improve performance by enabling in-
telligent space reuse in a CDDS. When creating a new
entry, the CDDS can proactively reclaim the space used
by older inactive versions.

3.2.3 Failure Recovery

Insert or delete operations may be interrupted due to
operating system crashes or power failures. By defini-
tion, the most recent consistent version of the data struc-
ture should be accessible on recovery. However, an in-
progress update needs to be removed as it belongs to an
uncommitted version. We handle failures in a CDDS
by using a ‘forward garbage collection’ procedure dur-
ing recovery. This process involves discarding all up-
date operations which were executed after the most re-
cent consistent version. New entries created can be dis-
carded while older entries with in-progress update oper-
ations are reverted.

3.3 CDDS B-Trees
As an example of a CDDS, we selected the B-Tree [13]
data structure because of its widespread use in databases,
file systems, and storage systems. This section dis-
cusses the design and implementation of a consistent and
durable version of a B-Tree. Our B-Tree modifications2

have been heavily inspired by previous work on multi-
version data structures [4, 50]. However, our focus on
durability required changes to the design and impacted
our implementation. We also do not retain all previous
versions of the data structure and can therefore optimize
updates.

In a CDDS B-Tree node, shown in Figure 1, the key
and value stored in a B-Tree entry is augmented with a
start and end version number, represented by unsigned
64-bit integers. A B-Tree node is considered ‘live’ if it
has at least one live entry. In turn, an entry is considered
‘live’ if it does not have an end version (displayed as a
‘−’ in the figure). To bound space utilization, in addition
to ensuring that a minimum number of entries in a B-Tree
node are used, we also bound the minimum number of

2In reality, our B-Tree is a B+ Tree with values only stored in leaves.

5

66 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Algorithm 1: CDDS B-Tree Lookup
Input: k: key, r: root
Output: val: value
begin lookup(k, r)1

v ← current version2
n ← r3
while is inner node(n) do4

entry num ← find(k, n, v)5
n ← n[entry num].child6

entry num ← find(k, n, v)7
return n[entry num].value8

end9

begin find(k, n, v)10
l ← 011
h ← get num entries(n)12
while l < h do // Binary Serch13

m ← (l +h)/214
if k ≤ n[m].key then15

h ← m−116

else l ← m+117

while h < get num entries(n) do18
if n[h].start ≤ v then19

if n[h].end > v ‖ n[h].end = 0 then20
break21

h ← h+122

return h23
end24

live entries in each node. Thus, while the CDDS B-Tree
API is identical to normal B-Trees, the implementation
differs significantly. In the rest of this section, we use the
lookup, insert, and delete operations to illustrate how the
CDDS B-Tree design guarantees consistency and dura-
bility3.

3.3.1 Lookup

We first briefly describe the lookup algorithm, shown in
Algorithm 1. For ease of explanation and brevity, the
pseudocode in this and following algorithms does not in-
clude all of the design details. The algorithm uses the
find function to recurse down the tree (lines 4–6) until
it finds the leaf node with the correct key and value.

Consider a lookup for the key 10 in the CDDS B-Tree
shown in Figure 1. After determining the most current
version (version 9, line 2), we start from the root node
and pick the rightmost entry with key 99 as it is the next
largest valid key. Similarly in the next level, we follow
the link from the leftmost entry and finally retrieve the
value for 10 from the leaf node.

Our implementation currently optimizes lookup per-
formance by ordering node entries by key first and
then by the start version number. This involves extra
writes during inserts to shift entries but improves read
performance by enabling a binary search within nodes

3A longer technical report [51] presents more details on all CDDS
B-Tree operations and their corresponding implementations.

Algorithm 2: CDDS B-Tree Insertion
Input: k: key, r: root
begin insert key(k, r)1

v ← current version2
v′ ← v+13
// Recurse to leaf node (n)
y ← get num entries(n)4
if y = node size then // Node Full5

if entry num = can reuse version(n,y) then6
n[entry num].key ← k7
n[entry num].start ← v′8
n[entry num].end ← 09
flush(n[entry num])10

else11
split insert(n, k, v′)12
// Update inner nodes

else13
n[y].key ← k14
n[y].start ← v′15
n[y].end ← 016
flush(n[y])17

current version ← v′18
flush(current version)19

end20

begin split insert(n, k, v)21
l ← num live entries(n)22
ml ← min live entries23
if l > 4∗ml then24

nn1 ← new node25
nn2 ← new node26
for i = 1 to l/2 do27

insert(nn1,n[i].key,v)28

for i = l/2+1 to l do29
insert(nn2,n[i].key,v)30

if k < n[l/2].key then31
insert(nn1,k,v)32

else insert(nn2,k,v)33
flush(nn1,nn2)34

else35
nn ← new node36
for i = 1 to l do37

insert(nn,n[i].key,v)38

insert(nn,k,v)39
flush(nn)40

for i = 1 to l do41
n[i].end ← v42

flush(n)43
end44

(lines 13–17 in find). While we have an alternate im-
plementation that optimizes writes by not ordering keys
at the cost of higher lookup latencies, we do not use it
as our target workloads are read-intensive. Finally, once
we detect the right index in the node, we ensure that we
are returning a version that was valid for v, the requested
version number (lines 18–22).

6

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 67

3.3.2 Insertion

The algorithm for inserting a key into a CDDS B-Tree
is shown in Algorithm 2. Our implementation of the
algorithm uses the flush operation (described in Sec-
tion 3.1) to perform atomic operations on a cacheline.
Consider the case where a key, 12, is inserted into the
B-Tree shown in Figure 1. First, an algorithm similar
to lookup is used to find the leaf node that contains the
key range that 12 belongs to. In this case, the right-most
leaf node is selected. As shown in lines 2–3, the cur-
rent consistent version is read and a new version number
is generated. As the leaf node is full, we first use the
can reuse version function to check if an existing
dead entry can be reused. In this case, the entry with key
15 died at version 8 and is reused. To reuse a slot we
first remove the key from the node and shift the entries
to maintain them in sorted order. Now we insert the new
key and again shift entries as required. For each key shift,
we ensure that the data is first flushed to another slot
before it is overwritten. This ensures that the safety prop-
erties specified in Section 3.2.1 are not violated. While
not described in the algorithm, if an empty entry was de-
tected in the node, it would be used and the order of the
keys, as specified in Section 3.3.1, would be maintained.

If no free or dead entry was found, a split insert,
similar to a traditional B-Tree split, would be performed.
split insert is a copy-on-write style operation in
which existing entries are copied before making a mod-
ification. As an example, consider the node shown in
Figure 2, where the key 40 is being inserted. We only
need to preserve the ‘live’ entries for further updates and
split insert creates one or two new nodes based on
the number of live entries present. Note that setting the
end version (lines 41–42) is the only change made to the
existing leaf node. This ensures that older data versions
are not affected by failures. In this case, two new nodes
are created at the end of the split.

The inner nodes are now updated with links to the
newly created leaf nodes and the parent entries of the
now-dead nodes are also marked as dead. A similar
procedure is followed for inserting entries into the inner
nodes. When the root node of a tree overflows, we split
the node using the split insert function and create
one or two new nodes. We then create a new root node
with links to the old root and to the newly created split-
nodes. The pointer to the root node is updated atomically
to ensure safety.

Once all the changes have been flushed to persistent
storage, the current consistent version is update atomi-
cally (lines 18–19). At this point, the update has been
successfully committed to the NVBM and failures will
not result in the update being lost.

5
[2,-)

20
[3,-)

99
[1,-)

40
[4,-)

5
[2,4)

20
[3,4)

99
[1,4)

5
[4,-)

20
[4,-)

40
[4,-)

99
[4,-)

Insert

Figure 2: CDDS node split during insertion
Algorithm 3: CDDS B-Tree Deletion

Input: k: key, r: root
begin delete(k, r)1

v ← current version2
v′ ← v+13
// Recurse to leaf node (n)
y ← find entry(n, k)4
n[y].end ← v′5
l ← num live entries(n)6
if l = ml then // Underflow7

s ← pick sibling(n)8
ls ← num live entries(s)9
if ls > 3×ml then10

copy from sibling(n, s, v′)11

else merge with sibling(n, s, v′)12
// Update inner nodes

else flush(n[y])13
current version ← v′14
flush(current version)15

end16

begin merge with sibling(n, s, v)17
y ← get num entries(s)18
if y < 4×ml then19

for i = 1 to ml do20
insert(s,n[i].key,v)21
n[i].end ← v22

else23
nn ← new node24
ls ← num live entries(s)25
for i = 1 to ls do26

insert(nn,s[i].key,v)27
s[i].end ← v28

for i = 1 to ml do29
insert(nn,n[i].key,v)30
n[i].end ← v31

flush(nn)32

flush(n,s)33
end34

begin copy from sibling(n, s, v)35
// Omitted for brevity

end36

3.3.3 Deletion

Deleting an entry is conceptually simple as it simply in-
volves setting the end version number for the given key.
It does not require deleting any data as that is handled
by GC. However, in order to bound the number of live
blocks in the B-Tree and improve space utilization, we
shift live entries if the number of live entries per node
reaches ml , a threshold defined in Section 3.3.6. The only
exception is the root node as, due to a lack of siblings,
shifting within the same level is not feasible. However,

7

68 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

5
[4,-)

10
[5,-)

20
[4,8)

30
[7,9)

40
[4,-)

99
[4,-)

Merge

5
[4,10)

10
[5,10)

20
[4,8)

30
[7,9)

40
[4,10)

99
[4,10)

5
[10,-)

40
[10,-)

99
[10,-)

Figure 3: CDDS node merge during deletion

10
[6,-)

20
[6,-)

99
[6,-)

5
[6,-)

8
[7,-)

10
[6,-)

13
[9,-)

15
[6,8)

20
[6,-)

40
[4,-)

99
[4,-)

Figure 4: CDDS B-Tree after Garbage Collection

as described in Section 3.3.4, if the root only contains
one live entry, the child will be promoted.

As shown in Algorithm 3, we first check if the sibling
has at least 3×ml live entries and, if so, we copy ml live
entries from the sibling to form a new node. As the leaf
has ml live entries, the new node will have 2×ml live
entries. If that is not the case, we check if the sibling
has enough space to copy the live entries. Otherwise,
as shown in Figure 3, we merge the two nodes to create
a new node containing the live entries from the leaf and
sibling nodes. The number of live entries in the new node
will be ≥ 2×ml . The inner nodes are updated with point-
ers to the newly created nodes and, after the changes have
been flushed to persistent memory, the current consistent
version is incremented.

3.3.4 Garbage Collection

As shown in Section 3.3.3, the size of the B-Tree does
not decrease when keys are deleted and can increase
due to the creation of new nodes. To reduce the space
overhead, we therefore use a periodic GC procedure,
currently implemented using a mark-and-sweep garbage
collector [8]. The GC procedure first selects the latest
version number that can be safely garbage collected. It
then starts from the root of the B-Tree and deletes nodes
which contain dead and unreferenced entries by inval-
idating the parent pointer to the deleted node. If the
root node contains only one live entry after garbage col-
lection, the child pointed to by the entry is promoted.
This helps reduce the height of the B-Tree. As seen in
the transformation of Figure 1 to the reduced-height tree
shown in Figure 4, only live nodes are present after GC.

3.3.5 Failure Recovery

The recovery procedure for the B-Tree is similar to
garbage collection. In this case, nodes newer than the
more recent consistent version are removed and older
nodes are recursively analyzed for partial updates. The
recovery function performs a physical ‘undo’ of these

updates and ensures that the tree is physically and log-
ically identical to the most recent consistent version.
While our current recovery implementation scans the en-
tire data structure, the recovery process is fast as it op-
erates at memory bandwidth speeds and only needs to
verify CDDS metadata.

3.3.6 Space Analysis

In the CDDS B-Tree, space utilization can be character-
ized by the number of live blocks required to store N
key-value pairs. Since the values are only stored in the
leaf nodes, we analyze the maximum number of live leaf
nodes present in the tree. In the CDDS B-Tree, a new
node is created by an insert or delete operation. As de-
scribed in Sections 3.3.2 and 3.3.3, the minimum number
of live entries in new nodes is 2×ml .

When the number of live entries in a node reaches ml ,
it is either merged with a sibling node or its live entries
are copied to a new node. Hence, the number of live
entries in a node is > ml . Therefore, in a B-Tree with
N live keys, the maximum number of live leaf nodes is
bound by O(N

ml
). Choosing ml as k

5 , where k is the size of
a B-Tree node, the maximum number of live leaf nodes
is O(5N

k).
For each live leaf node, there is a corresponding en-

try in the parent node. Since the number of live en-
tries in an inner node is also > ml , the number of parent

nodes required is O
(

5N
k

ml

)
= O(N

(k
5)2). Extending this,

we can see that the height of the CDDS B-Tree is bound
by O(log k

5
N). This also bounds the time for all B-Tree

operations.

3.4 CDDS Discussion

Apart from the CDDS B-Tree operations described
above, the implementation also supports additional fea-
tures including iterators and range scans. We believe that
CDDS versioning also lends itself to other powerful fea-
tures such as instant snapshots, rollback for programmer
recovery, and integrated NVBM wear-leveling. We hope
to explore these issues in our future work.

We also do not anticipate the design of a CDDS
preventing the implementation of different concurrency
schemes. Our current CDDS B-Tree implementation
uses a multiple-reader, single-writer model. However,
the use of versioning lends itself to more complex con-
currency control schemes including multi-version con-
currency control (MVCC) [6]. While beyond the scope
of this paper, exploring different concurrency control
schemes for CDDSs is a part of our future work.

CDDS-based systems currently depend on virtual
memory mechanisms to provide fault-isolation and like

8

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 69

other services, it depends on the OS for safety. There-
fore, while unlikely, placing NVBM on the memory bus
can expose it to accidental writes from rogue DMAs.
In contrast, the narrow traditional block device interface
makes it harder to accidentally corrupt data. We believe
that hardware memory protection, similar to IOMMUs,
will be required to address this problem. Given that we
map data into an application’s address space, stray writes
from a buggy application could also destroy data. While
this is no different from current applications that mmap
their data, we are developing lightweight persistent heaps
that use virtual memory protection with a RVM-style
API [43] to provide improved data safety.

Finally, apart from multi-version data structures [4,
50], CDDSs have also been influenced by Persistent Data
Structures (PDSs) [17]. The “Persistent” in PDS does
not actually denote durability on persistent storage but,
instead, represents immutable data structures where an
update always yields a new data structure copy and never
modifies previous versions. The CDDS B-Tree presented
above is a weakened form of semi-persistent data struc-
tures. We modify previous versions of the data struc-
ture for efficiency but are guaranteed to recover from
failure and rollback to a consistent state. However, the
PDS concepts are applicable, in theory, to all linked data
structures. Using PDS-style techniques, we have imple-
mented a proof-of-concept CDDS hash table and, as ev-
idenced by previous work for functional programming
languages [35], we are confident that CDDS versioning
techniques can be extended to a wide range of data struc-
tures.

3.5 Tembo: A CDDS Key-Value Store

We created Tembo, a CDDS Key-Value (KV) store, to
evaluate the effectiveness of a CDDS-based data store.
The system involves the integration of the CDDS-based
B-Tree described in Section 3.3 into Redis [41], a widely
used event-driven KV store. As our contribution is not
based around the design of this KV system, we only
briefly describe Tembo in this section. As shown in Sec-
tion 4.4, the integration effort was minor and leads us to
believe that retrofitting CDDS into existing applications
will be straightforward.

The base architecture of Redis is well suited for a
CDDS as it retains the entire data set in RAM. This also
allows an unmodified Redis to serve as an appropriate
performance baseline. While persistence in the original
system was provided by a write-ahead append-only log,
this is eliminated in Tembo because of the CDDS B-Tree
integration. For fault-tolerance, Tembo provides master-
slave replication with support for hierarchical replication
trees where a slave can act as the master for other repli-

10
0

10
2

10
4

10
6

10
8

0

0.5

1

1.5

2

x 10
7

Object Size (bytes)

C
a
c
h
e
lin

e
 F

lu
s
h
e
s
/s

e
c

Figure 5: Flushes/second

10
0

10
2

10
4

10
6

10
8

0

0.5

1

1.5

2
x 10

8

Object Size (bytes)

S
N

P
_
R

E
S

P
O

N
S

E
_
R

E
M

O
T

E
_
H

O
M

E

Figure 6: Cache Snooping

cas. Consistent hashing [27] is used by client libraries to
distribute data in a Tembo cluster.

4 Evaluation

In this section, we evaluate our design choices in build-
ing Consistent and Durable Data Structures. First, we
measure the overhead associated with techniques used to
achieve durability on existing processors. We then com-
pare the CDDS B-tree to Berkeley DB and against log-
based schemes. After briefly discussing CDDS imple-
mentation and integration complexity, we present results
from a multi-node distributed experiment where we use
the Yahoo Cloud Serving Benchmark (YCSB) [15].

4.1 Evaluation Setup

As NVBM is not commercially available yet, we used
DRAM-based servers. While others [14] have shown
that DRAM-based results are a good predictor of NVBM
performance, as a part of our ongoing work, we aim
to run micro-architectural simulations to confirm this
within the context of our work. Our testbed consisted
of 15 servers with two Intel Xeon Quad-Core 2.67 GHz
(X5550) processors and 48 GB RAM each. The ma-
chines were connected via a full-bisection Gigabit Eth-
ernet network. Each processor has 128 KB L1, 256 KB
L2, and 8 MB L3 caches. While each server contained
8 300 GB 10K SAS drives, unless specified, all experi-
ments were run directly on RAM or on a ramdisk. We
used the Ubuntu 10.04 Linux distribution and the 2.6.32-
24 64-bit kernel.

4.2 Flush Performance

To accurately capture the performance of the flush
operation defined in Section 3.1, we used the “Mult-
CallFlushLRU” methodology [53]. The experiment al-
locates 64 MB of memory and subdivides it into equally-
sized cache-aligned objects. Object sizes ranged from
64 bytes to 64 MB. We write to every cache line in an
object, flush the entire object, and then repeat the pro-
cess with the next object. For improved timing accuracy,
we stride over the memory region multiple times.

9

70 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

Put Get Del

T
hr

ou
g

hp
ut

 (
O

ps
/s

ec
)

Operation Type

BDB
CDDS

CDDS - Volatile
BDB - Volatile

Mean of 5 trials. Max. standard deviation: 2.2% of the mean.

Figure 7: Berkeley DB Comparison

Remembering that each flush is a number of
clflushes bracketed by mfences on both sides, Fig-
ure 5 shows the number of clflushes executed per sec-
ond. Flushing small objects sees the worst performance
(∼12M cacheline flushes/sec for 64 byte objects). For
larger objects (256 bytes–8 MB), the performance ranges
from ∼16M–20M cacheline flushes/sec.

We also observed an unexpected drop in performance
for large objects (>8 MB). Our analysis showed that
this was due to the cache coherency protocol. Large
objects are likely to be evicted from the L3 cache be-
fore they are explicitly flushed. A subsequent clflush
would miss in the local cache and cause a high-latency
“snoop” request that checks the second off-socket pro-
cessor for the given cache line. As measured by the
UNC SNP RESP TO REMOTE HOME.I STATE per-
formance counter, seen in Figure 6, the second socket
shows a corresponding spike in requests for cache lines
that it does not contain. To verify this, we physically re-
moved a processor and observed that the anomaly disap-
peared4. Further, as we could not replicate this slowdown
on AMD platforms, we believe that cache-coherency
protocol modifications can address this anomaly.

Overall, the results show that we can flush 0.72–
1.19 GB/s on current processors. For applications with-
out networking, Section 4.3 shows that future hardware
support can help but applications using flush can still
outperform applications that use file system sync calls.
Distributed applications are more likely to encounter net-
work bottlenecks before flush becomes an overhead.

4.3 API Microbenchmarks

This section compares the CDDS B-Tree performance
for puts, gets, and deletes to Berkeley DB’s (BDB) B-
Tree implementation [36]. For this experiment, we in-
sert, fetch, and then delete 1 million key-value tuples

4We did not have physical access to the experimental testbed and
ran the processor removal experiment on a different dual-socket Intel
Xeon (X5570) machine.

Lines of Code
Original STX B-Tree 2,110
CDDS Modifications 1,902

Redis (v2.0.0-rc4) 18,539
Tembo Modifications 321

Table 2: Lines of Code Modified

into each system. After each operation, we flush the
CPU cache to eliminate any variance due to cache con-
tents. Keys and values are 25 and 2048 bytes large. The
single-threaded benchmark driver runs in the same ad-
dress space as BDB and CDDS. BDB’s cache size was
set to 8 GB and could hold the entire data set in memory.
Further, we configure BDB to maintain its log files on an
in-memory partition.

We run both CDDS and BDB (v4.8) in durable and
volatile modes. For BDB volatile mode, we turn transac-
tions and logging off. For CDDS volatile mode, we turn
flushing off. Both systems in volatile mode can lose
or corrupt data and would not be used where durability is
required. We only present the volatile results to highlight
predicted performance if hardware support was available
and to discuss CDDS design tradeoffs.

The results, displayed in Figure 7, show that, for
memory-backed BDB in durable mode, the CDDS B-
Tree improves throughout by 74%, 138%, and 503% for
puts, gets, and deletes respectively. These gains come
from not using a log (extra writes) or the file system in-
terface (system call overhead). CDDS delete improve-
ment is larger than puts and gets because we do not delete
data immediately but simply mark it as dead and use GC
to free unreferenced memory. In results not presented
here, reducing the value size, and therefore the log size,
improves BDB performance but CDDS always performs
better.

If zero-overhead epoch-based hardware support [14]
was available, the CDDS volatile numbers show that per-
formance of puts and deletes would increase by 80% and
27% as flushes would never be on the critical path. We
do not observe any significant change for gets as the only
difference between the volatile and durable CDDS is that
the flush operations are converted into a noop.

We also notice that while volatile BDB throughput is
lower than durable CDDS for gets and dels by 52% and
41%, it is higher by 56% for puts. Puts are slower for the
CDDS B-Tree because of the work required to maintain
key ordering (described in Section 3.3.1), GC overhead,
and a slightly higher height due to nodes with a mixture
of live and dead entries. Volatile BDB throughput is also
higher than durable BDB but lower than volatile CDDS
for all operations.

Finally, to measure versioning overhead, we compared
the volatile CDDS B-Tree to a normal B-Tree [7]. While
not presented in Figure 7, volatile CDDS’s performance

10

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 71

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

256 1024 4096

T
hr

ou
g

hp
ut

 (
In

se
rt

s/
se

c)

Value Size (bytes)

STX B-Tree Logging
Redis (Hashtable) Logging
CDDS B-Tree Versioning

Mean of 5 trials. Max. standard deviation: 6.7% of the mean.

Figure 8: Versioning vs. Logging

was lower than the in-memory B-Tree by 24%, 13%, and
39% for puts, gets, and dels. This difference is similar to
other performance-optimized versioned B-trees [45].

4.4 Implementation Effort
The CDDS B-Tree started with the STX C++ B-Tree [7]
implementation but, as measured by sloccount and
shown in Table 2, the addition of versioning and NVBM
durability replaced 90% of the code. While the API
remained the same, the internal implementation differs
substantially. The integration with Redis to create Tembo
was simpler and only changed 1.7% of code and took
less than a day to integrate. Since the CDDS B-Tree
implements an interface similar to an STL Sorted Con-
tainer, we believe that integration with other systems
should also be simple. Overall, our experiences show
that while the initial implementation complexity is mod-
erately high, this only needs to be done once for a given
data structure. The subsequent integration into legacy or
new systems is straightforward.

4.5 Tembo Versioning vs. Redis Logging
Apart from the B-Tree specific logging performed by
BDB in Section 4.3, we also wanted to compare CDDS
versioning when integrated into Tembo to the write-
ahead log used by Redis in fully-durable mode. Redis
uses a hashtable and, as it is hard to compare hashta-
bles and tree-based data structures, we also replaced the
hashtable with the STX B-Tree. In this single-node ex-
periment, we used 6 Tembo or Redis data stores and 2
clients5. The write-ahead log for the Redis server was
stored on an in-memory partition mounted as tmpfs and
did not use the hard disk. Each client performed 1M in-
serts over the loopback interface.

The results, presented in Figure 8, show that as the
value size is increased, Tembo performs up to 30% better

5Being event-driven, both Redis and Tembo are single-threaded.
Therefore one data store (or client) is run per core in this experiment.

 0

 50000

 100000

 150000

 200000

 0 5 10 15 20 25 30

T
hr

ou
g

hp
ut

 (
O

ps
/s

ec
)

Client Threads

Tembo
Cassandra/Mem/Volatile
Cassandra/Mem/Durable
Cassandra/Disk/Durable

Mean of 5 trials. Max. standard deviation: 7.8% of the mean.

Figure 9: YCSB: SessionStore

than Redis integrated with the STX B-Tree. While Re-
dis updates the in-memory data copy and also writes to
the append-only log, Tembo only updates a single copy.
While hashtable-based Redis is faster than Tembo for
256 byte values because of faster lookups, even with the
disadvantage of a tree-based structure, Tembo’s perfor-
mance is almost equivalent for 1 KB values and is 15%
faster for 4 KB values.

The results presented in this section are lower than the
improvements in Section 4.3 because of network latency
overhead. The fsync implementation in tmpfs also
does not explicitly flush modified cache lines to mem-
ory and is therefore biased against Tembo. We are work-
ing on modifications to the file system that will enable a
fairer comparison. Finally, some of the overhead is due
to maintaining ordering properties in the CDDS-based
B-Tree to support range scans - a feature not used in the
current implementation of Tembo.

4.6 End-to-End Comparison

For an end-to-end test, we used YCSB, a framework for
evaluating the performance of Key-Value, NoSQL, and
cloud storage systems [15]. In this experiment, we used
13 servers for the cluster and 2 servers as the clients.
We extended YCSB to support Tembo, and present re-
sults from two of YCSB’s workloads. Workload-A, re-
ferred to as SessionStore in this section, contains a 50:50
read:update mix and is representative of tracking recent
actions in an online user’s session. Workload-D, referred
to as StatusUpdates, has a 95:5 read:insert mix. It rep-
resents people updating their online status (e.g., Twitter
tweets or Facebook wall updates) and other users reading
them. Both workloads execute 2M operations on values
consisting of 10 columns with 100 byte fields.

We compare Tembo to Cassandra (v0.6.1) [29],
a distributed data store that borrows concepts from
BigTable [10] and Dynamo [16]. We used three differ-
ent Cassandra configurations in this experiment. The

11

72 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

 0

 50000

 100000

 150000

 200000

 0 5 10 15 20 25 30

T
hr

ou
g

hp
ut

 (
O

ps
/s

ec
)

Client Threads

Tembo
Cassandra/Mem/Volatile
Cassandra/Mem/Durable
Cassandra/Disk/Durable

Mean of 5 trials. Max. standard deviation: 8.1% of the mean.

Figure 10: YCSB: StatusUpdates

first two used a ramdisk for storage but the first (Cassan-
dra/Mem/Durable) flushed its commit log before every
update while the second (Cassandra/Mem/Volatile) only
flushed the log every 10 seconds. For completeness, we
also configured Cassandra to use a disk as the backing
store (Cassandra/Disk/Durable).

Figure 9 presents the aggregate throughput for the
SessionStore benchmark. With 30 client threads,
Tembo’s throughput was 286% higher than memory-
backed durable Cassandra. Given Tembo and Cas-
sandra’s different design and implementation choices,
the experiment shows the overheads of Cassandra’s in-
memory “memtables,” on-disk “SSTables,” and a write-
ahead log, vs. Tembo’s single-level store. Disk-backed
Cassandra’s throughput was only 22–44% lower than the
memory-backed durable configuration. The large num-
ber of disks in our experimental setup and a 512 MB
battery-backed disk controller cache were responsible
for this better-than-expected disk performance. On a
different machine with fewer disks and a smaller con-
troller cache, disk-backed Cassandra bottlenecked with
10 client threads.

Figure 10 shows that, for the StatusUpdates workload,
Tembo’s throughput is up to 250% higher than memory-
backed durable Cassandra. Tembo’s improvement is
slightly lower than the SessionStore benchmark because
StatusUpdates insert operations update all 10 columns
for each value, while the SessionStore only selects one
random column to update. Finally, as the entire data set
can be cached in memory and inserts represent only 5%
of this workload, the different Cassandra configurations
have similar performance.

5 Conclusion and Future Work

Given the impending shift to non-volatile byte-
addressable memory, this work has presented Consistent
and Durable Data Structures (CDDSs), an architecture
that, without processor modifications, allows for the cre-

ation of log-less storage systems on NVBM. Our results
show that redesigning systems to support single-level
data stores will be critical in meeting the high-throughput
requirements of emerging applications.

We are currently also working on extending this work
in a number of directions. First, we plan on leverag-
ing the inbuilt CDDS versioning to support multi-version
concurrency control. We also aim to explore the use of
relaxed consistency to further optimize performance as
well as integration with virtual memory to provide bet-
ter safety against stray application writes. Finally, we
are investigating the integration of CDDS versioning and
wear-leveling for better performance.

Acknowledgments

We would like to thank the anonymous reviewers and
our shepherd Michael A. Kozuch for their valuable feed-
back. We would also like to thank Jichuan Chang, An-
tonio Lain, Jeff Mogul, Craig Soules, and Robert E. Tar-
jan for their feedback on earlier drafts of this paper. We
would also like to thank Krishnan Narayan and Eric Wu
for their help with our experimental infrastructure.

References

[1] The data deluge. The Economist, 394(8671):11,
Feb. 2010.

[2] A. Anand, C. Muthukrishnan, S. Kappes,
A. Akella, and S. Nath. Cheap and large cams
for high performance data-intensive networked
systems. In Proceedings of the 7th Symposium on
Networked Systems Design and Implementation
(NSDI ’10), pages 433–448, San Jose, CA, Apr.
2010.

[3] D. G. Andersen, J. Franklin, M. Kaminsky,
A. Phanishayee, L. Tan, and V. Vasudevan. FAWN:
A fast array of wimpy nodes. In Proceedings of the
22nd ACM Symposium on Operating Systems Prin-
ciples (SOSP 2009), pages 1–14, Big Sky, MT, Oct.
2009.

[4] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and
P. Widmayer. An asymptotically optimal multi-
version b-tree. The VLDB Journal, 5(4):264–275,
1996.

[5] K. Bergman, S. Borkar, D. Campbell, W. Carlson,
W. Dally, M. Denneau, P. Franzon, W. Harrod,
J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas,
M. Richards, A. Scarpelli, S. Scott, A. Snavely,
T. Sterling, R. S. Williams, K. Yelick, K. Bergman,
S. Borkar, D. Campbell, W. Carlson, W. Dally,

12

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 73

M. Denneau, P. Franzon, W. Harrod, J. Hiller,
S. Keckler, D. Klein, P. Kogge, R. S. Williams, and
K. Yelick. Exascale computing study: Technology
challenges in achieving exascale systems, 2008.
DARPA IPTO, ExaScale Computing Study, http:
//users.ece.gatech.edu/mrichard/
ExascaleComputingStudyReports/ECS_
reports.htm.

[6] P. A. Bernstein and N. Goodman. Concurrency con-
trol in distributed database systems. ACM Comput-
ing Surveys, 13(2):185–221, 1981.

[7] T. Bingmann. STX B+ Tree, Sept. 2008. http:
//idlebox.net/2007/stx-btree/.

[8] H.-J. Boehm and M. Weiser. Garbage collection in
an uncooperative environment. Software: Practices
and Experience, 18(9):807–820, 1988.

[9] R. Cattell. High performance data stores.
http://www.cattell.net/datastores/
Datastores.pdf, Apr. 2010.

[10] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh,
D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R. E. Gruber. Bigtable: A distributed storage
system for structured data. ACM Transactions on
Computer Systems (TOCS), 26(2):1–26, 2008.

[11] P. M. Chen, W. T. Ng, S. Chandra, C. M. Ay-
cock, G. Rajamani, and D. E. Lowell. The rio
file cache: Surviving operating system crashes. In
Proceedings of the 7th International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS VII), pages 74–
83, Cambridge, MA, Oct. 1996.

[12] J. Coburn, A. Caulfield, L. Grupp, A. Akel, and
S. Swanson. NVTM: A transactional interface for
next-generation non-volatile memories. Technical
Report CS2009-0948, University of California, San
Diego, Sept. 2009.

[13] D. Comer. Ubiquitous b-tree. ACM Computing Sur-
veys (CSUR), 11(2):121–137, 1979.

[14] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. C.
Lee, D. Burger, and D. Coetzee. Better I/O through
byte-addressable, persistent memory. In Proceed-
ings of the 22nd ACM Symposium on Operating
Systems Principles (SOSP), pages 133–146, Big
Sky, MT, Oct. 2009.

[15] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakr-
ishnan, and R. Sears. Benchmarking cloud serv-
ing systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing (SoCC ’10),
pages 143–154, Indianapolis, IN, June 2010.

[16] G. DeCandia, D. Hastorun, M. Jampani, G. Kaku-
lapati, A. Lakshman, A. Pilchin, S. Sivasubrama-
nian, P. Vosshall, and W. Vogels. Dynamo: Ama-
zon’s highly available key-value store. In Proceed-
ings of 21st ACM SIGOPS Symposium on Operat-
ing Systems Principles (SOSP ’07), pages 205–220,
Stevenson, WA, 2007.

[17] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E.
Tarjan. Making data structures persistent. Journal
of Computer and System Sciences, 38(1):86–124,
1989.

[18] B. Fitzpatrick. Distributed caching with mem-
cached. Linux Journal, 2004(124):5, 2004.

[19] R. F. Freitas and W. W. Wilcke. Storage-class mem-
ory: The next storage system technology. IBM
Journal of Research and Development, 52(4):439–
447, 2008.

[20] FusionIO, Sept. 2010. http://www.
fusionio.com/.

[21] E. Gal and S. Toledo. Algorithms and data struc-
tures for flash memories. ACM Computing Surveys,
37:138–163, June 2005.

[22] Hewlett-Packard Development Company. HP
Collaborates with Hynix to Bring the Mem-
ristor to Market in Next-generation Memory,
Aug. 2010. http://www.hp.com/hpinfo/
newsroom/press/2010/100831c.html.

[23] D. Hitz, J. Lau, and M. Malcolm. File system de-
sign for an nfs file server appliance. In Proceedings
of the USENIX Winter 1994 Technical Conference,
pages 19–19, San Francisco, California, 1994.

[24] B. Holden. Latency comparison between hyper-
transport and pci-express in communications sys-
tems. Whitepaper, Nov. 2006.

[25] International Technology Roadmap for Semicon-
ductors, 2009. http://www.itrs.net/
Links/2009ITRS/Home2009.htm.

[26] International Technology Roadmap for
Semiconductors: Process integration, De-
vices, and Structures, 2007. http:
//www.itrs.net/Links/2007ITRS/
2007_Chapters/2007_PIDS.pdf.

[27] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent hashing and
random trees: Distributed caching protocols for re-
lieving hot spots on the world wide web. In Pro-
ceedings of the 29th Annual ACM Symposium on

13

74 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Theory of Computing (STOC ’97), pages 654–663,
El Paso, TX, 1997.

[28] M. Kwiatkowski. memcache@facebook,
Apr. 2010. QCon Beijing 2010 Enter-
prise Software Development Conference.
http://www.qconbeijing.com/
download/marc-facebook.pdf.

[29] A. Lakshman and P. Malik. Cassandra: A decen-
tralized structured storage system. ACM SIGOPS
Operating Systems Review, 44(2):35–40, 2010.

[30] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Ar-
chitecting phase change memory as a scalable dram
alternative. In Proceedings of the 36th Annual In-
ternational Symposium on Computer Architecture
(ISCA ’09), pages 2–13, Austin, TX, 2009.

[31] Y. Li, B. He, Q. Luo, and K. Yi. Tree index-
ing on flash disks. In Proceedings of the 25th
IEEE International Conference on Data Engineer-
ing (ICDE), pages 1303–1306, Washington, DC,
USA, Apr. 2009.

[32] D. E. Lowell and P. M. Chen. Free transactions with
rio vista. In Proceedings of the 16th ACM Sym-
posium on Operating Systems Principles (SOSP),
pages 92–101, St. Malo, France, Oct. 1997.

[33] J. A. Mandelman, R. H. Dennard, G. B. Bron-
ner, J. K. DeBrosse, R. Divakaruni, Y. Li, and
C. J. Radens. Challenges and future directions
for the scaling of dynamic random-access memory
(DRAM). IBM Journal of Research and Develop-
ment, 46(2-3):187–212, 2002.

[34] W. Mueller, G. Aichmayr, W. Bergner, E. Erben,
T. Hecht, C. Kapteyn, A. Kersch, S. Kudelka,
F. Lau, J. Luetzen, A. Orth, J. Nuetzel,
T. Schloesser, A. Scholz, U. Schroeder, A. Sieck,
A. Spitzer, M. Strasser, P.-F. Wang, S. Wege, and
R. Weis. Challenges for the DRAM cell scaling
to 40nm. In IEEE International Electron Devices
Meeting, pages 339–342, May 2005.

[35] C. Okasaki. Purely Functional Data Structures.
Cambridge University Press, July 1999. ISBN
0521663504.

[36] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley
DB. In Proceedings of the FREENIX Track: 1999
USENIX Annual Technical Conference, pages 183–
191, Monterey, CA, June 1999.

[37] Oracle Corporation. BTRFS, June 2009. http:
//btrfs.wiki.kernel.org.

[38] J. K. Ousterhout, P. Agrawal, D. Erickson,
C. Kozyrakis, J. Leverich, D. Mazières, S. Mi-
tra, A. Narayanan, M. Rosenblum, S. M. Rum-
ble, E. Stratmann, and R. Stutsman. The case for
RAMClouds: Scalable high-performance storage
entirely in DRAM. ACM SIGOPS Operating Sys-
tems Review, 43:92–105, January 2010.

[39] M. K. Qureshi, V. Srinivasan, and J. A. Rivers.
Scalable high performance main memory system
using phase-change memory technology. In Pro-
ceedings of the 36th International Symposium on
Computer Architecture (ISCA 2009), pages 24–33,
Austin, TX, June 2009.

[40] S. Raoux, G. W. Burr., M. J. Breitwisch., C. T.
Rettner., Y.-C. Chen, R. M. Shelby, M. Salinga,
D. Krebs, S.-H. Chen, H.-L. Lung, and C. Lam.
Phase-change random access memory: a scalable
technology. IBM Journal of Research and Devel-
opment, 52(4):465–479, 2008.

[41] Redis, Sept. 2010. http://code.google.
com/p/redis/.

[42] O. Rodeh. B-trees, shadowing, and clones. ACM
Transactions on Storage (TOS), 3:2:1–2:27, Febru-
ary 2008.

[43] M. Satyanarayanan, H. H. Mashburn, P. Kumar,
D. C. Steere, and J. J. Kistler. Lightweight recover-
able virtual memory. ACM Transactions on Com-
puter Systems, 12(1):33–57, 1994.

[44] N. Shavit and D. Touitou. Software transactional
memory. In Proceedings of the 14th Annual ACM
Symposium on Principles of Distributed Computing
(PODC), pages 204–213, Ottawa, Canada, Aug.
1995.

[45] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and
G. R. Ganger. Metadata efficiency in versioning file
systems. In Proceedings of the 2nd USENIX Con-
ference on File and Storage Technologies (FAST
’03), pages 43–58, San Francisco, CA, Mar. 2003.

[46] Spansion, Inc. Using spansion ecoram to improve
tco and power consumption in internet data centers,
2008. http://www.spansion.com/jp/
About/Documents/Spansion_EcoRAM_
Architecture_J.pdf.

[47] M. Stonebraker, S. Madden, D. J. Abadi, S. Hari-
zopoulos, N. Hachem, and P. Helland. The end of
an architectural era (its time for a complete rewrite).
In Proceedings of the 33rd International Confer-
ence on Very Large Data Bases (VLDB ’07), pages
1150–1160, Vienna, Austria, Sept. 2007.

14

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 75

[48] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S.
Williams. The missing memristor found. Nature,
453(7191):80–83, May 2008.

[49] Sun Microsystems. ZFS, Nov. 2005.
http://www.opensolaris.org/os/
community/zfs/.

[50] P. J. Varman and R. M. Verma. An efficient mul-
tiversion access structure. IEEE Transactions on
Knowledge and Data Engineering, 9(3):391–409,
1997.

[51] S. Venkataraman and N. Tolia. Consistent
and durable data structures for non-volatile byte-
addressable memory. Technical Report HPL-2010-
110, HP Labs, Palo Alto, CA, Sept. 2010.

[52] VoltDB, Sept. 2010. http://www.voltdb.
com/.

[53] R. C. Whaley and A. M. Castaldo. Achieving accu-
rate and context-sensitive timing for code optimiza-
tion. Software – Practice and Experience, 38(15):
1621–1642, 2008.

[54] M. Wu and W. Zwaenepoel. eNVy: A non-volatile,
main memory storage system. In Proceedings of
the 6th International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems (ASPLOS VI), pages 86–97, San Jose,
CA, Oct. 1994.

[55] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A
durable and energy efficient main memory using
phase change memory technology. In Proceed-
ings of the 36th International Symposium on Com-
puter Architecture (ISCA), pages 14–23, Austin,
TX, June 2009.

15

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 77

CAFTL: A Content-Aware Flash Translation Layer Enhancing the Lifespan

of Flash Memory based Solid State Drives

Feng Chen∗ Tian Luo Xiaodong Zhang

Dept. of Computer Science & Engineering

The Ohio State University

Columbus, OH 43210, USA

{fchen,luot,zhang}@cse.ohio-state.edu

Abstract

Although Flash Memory based Solid State Drive (SSD)

exhibits high performance and low power consumption,

a critical concern is its limited lifespan along with the

associated reliability issues. In this paper, we propose to

build a Content-Aware Flash Translation Layer (CAFTL)

to enhance the endurance of SSDs at the device level.

With no need of any semantic information from the host,

CAFTL can effectively reduce write traffic to flash mem-

ory by removing unnecessary duplicate writes and can

also substantially extend available free flash memory

space by coalescing redundant data in SSDs, which fur-

ther improves the efficiency of garbage collection and

wear-leveling. In order to retain high data access per-

formance, we have also designed a set of acceleration

techniques to reduce the runtime overhead and mini-

mize the performance impact caused by extra computa-

tional cost. Our experimental results show that our solu-

tion can effectively identify up to 86.2% of the duplicate

writes, which translates to a write traffic reduction of up

to 24.2% and extends the flash space by a factor of up

to 31.2%. Meanwhile, CAFTL only incurs a minimized

performance overhead by a factor of up to 0.5%.

1 Introduction

The limited lifespan is the Achilles’ heel of Flash Mem-

ory based Solid State Drives (SSDs). On one hand, SSDs

built on semiconductor chips without any moving parts

have exhibited many unique technical merits compared

with hard disk drives (HDDs), particularly high random

access performance and low power consumption. On the

other hand, the limited lifespan of SSDs, which are built

on flash memories with limited erase/program cycles, is

still one of the most critical concerns that seriously hin-

der a wide deployment of SSDs in reliability-sensitive

environments, such as data centers [10]. Although SSD

manufacturers often claim that SSDs can sustain rou-

tine usage for years, the technical concerns about the en-

durance issues of SSDs still remain high. This is mainly

∗Currently working at the Intel Labs in Hillsboro, OR.

due to three not-so-well-known reasons. First, as bit den-

sity increases, flash memory chips become more afford-

able but, at the same time, less reliable and less durable.

In the last two years, for high-density flash devices, we

have seen a sharp drop of erase/program cycle ratings

from ten thousand to five thousand cycles [7]. As tech-

nology scaling continues, this situation could become

even worse. Second, traditional redundancy solutions

such as RAID, which have been widely used for battling

disk failures, are considered less effective for SSDs, be-

cause of the high probability of correlated device failures

in SSD-based RAID [9]. Finally, although some prior

research work [13, 22, 33] has presented empirical and

modeling-based studies on the lifespan of flash memo-

ries and USB flash drives, both positive and negative re-

sults have been reported. In fact, as a recent report from

Google® points out, “endurance and retention (of SSDs)

not yet proven in the field” [10].

All these aforesaid issues explain why commercial

users hesitate to perform a large-scale deployment of

SSDs in production systems and why integrating SSDs

into commercial systems is proceeding such “painfully

slowly” [10]. In order to integrate such a “frustrating

technology”, which comeswith equally outstandingmer-

its and limits, into the existing storage hierarchy timely

and reliably, solutions for effectively improving the lifes-

pan of SSDs are highly desirable. In this paper, we pro-

pose such a solution from a unique and viable angle.

1.1 Background of SSDs
1.1.1 Flash memory and SSD internals

NAND flash memory is the basic building block of most

SSDs on the market. A flash memory package is usu-

ally composed of one or multiple dies (chips). Each die

is segmented into multiple planes, and a plane is further

divided into thousands (e.g. 2048) of erase blocks. An

erase block usually consists of 64-128 pages. Each page

has a data area (e.g. 4KB) and a spare area (a.k.a. meta-

data area). Flash memories support three major opera-

tions. Read and write (a.k.a. program) are performed in

units of pages, and erase, which clears all the pages in an

erase block, must be conducted in erase blocks.

78 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Flash memory has three critical technical constraints:

(1) No in-place overwrite – the whole erase block must

be erased before writing (programming) any page in this

block. (2)No randomwrites – the pages in an erase block

must be written sequentially. (3) Limited erase/program

cycles – an erase block can wear out after a certain num-

ber of erase/program cycles (typically 10,000-100,000).

As a critical component in the SSD design, the Flash

Translation Layer (FTL) is implemented in the SSD con-

troller to emulate a hard disk drive by exposing an array

of logical block addresses (LBAs) to the host. In order

to address the aforesaid three constraints, the FTL de-

signers have developed several sophisticated techniques:

(1) Indirect mapping – A mapping table is maintained

to track the dynamic mapping between logical block ad-

dresses (LBAs) and physical block addresses (PBAs).

(2) Log-like write mechanism – Each write to a logical

page only invalidates the previously occupied physical

page, and the new content data is appended sequentially

in a clean erase block, like a log, which is similar to the

log-structured file system [41]. (3) Garbage collection

– A garbage collector (GC) is launched periodically to

recycle invalidated physical pages, consolidate the valid

pages into a new erase block, and clean the old erase

block. (4) Wear-leveling – Since writes are often con-

centrated on a subset of data, which may cause some

blocks to wear out earlier than the others, a wear-leveling

mechanism tracks and shuffles hot/cold data to even out

writes in flash memory. (5) Over-provisioning – In or-

der to assist garbage collection and wear-leveling, SSD

manufacturers usually include a certain amount of over-

provisioned spare flash memory space in addition to the

host-usable SSD capacity.

1.1.2 The lifespan of SSDs

As flash memory has a limited number of erase/program

cycles, the lifespan of SSDs is naturally constrained. In

essence, the lifespan of SSDs is a function of three fac-

tors: (1) The amount of incoming write traffic – The less

data written into an SSD, the longer the lifespan would

be. In fact, the SSD manufacturers often advise commer-

cial users, whose systems undergo intensive write traffic

(e.g. an email server), to purchase more expensive high-

end SSDs. (2) The size of over-provisioned flash space

– A larger over-provisioned flash space provides more

available clean flash pages in the allocation pool that can

be used without triggering a garbage collection. Aggres-

sive over-provisioning can effectively reduce the average

number of writes over all flash pages, which in turn im-

proves the endurance of SSDs. For example, the high-

end Intel® X25-E SSD is aggressively over-provisioned

with about 8GB flash space, which is 25% of the labeled

SSD capacity (32GB) [25]. (3) The efficiency of garbage

collection and wear-leveling mechanisms – Having been

extensively researched, the garbage collection and wear-

leveling policies can significantly impact the lifespan of

SSDs. For example, static wear-leveling, which swaps

active blocks with randomly chosen inactive blocks, per-

forms better in endurance than dynamic wear-leveling,

which only swaps active blocks [13].

Most previous research work [21] focuses on the third

factor, garbage collection and wear-leveling policies. A

survey [21] summarizes these techniques. In contrast,

little study has been conducted on the other two aspects.

This may be because incoming write traffic is normally

believed to be workload dependent, which cannot be

changed at the device level, and the over-provisioning

of flash space is designated at the manufacturing process

and cannot be excessively large (due to the production

cost). In this paper we will show that even at the SSD

device level, we can still effectively extend the SSD lifes-

pan by reducing the amount of incoming write traffic and

squeezing available flash memory space during runtime,

which has not been considered before. This goal can be

achieved based on our observation of a widely existing

phenomenon – data duplication.

1.2 Data Duplication is Common

In file systems data duplication is very common. For ex-

ample, kernel developers can have multiple versions of

Linux source code for different projects. Users can cre-

ate/delete the same files multiple times. Another exam-

ple is word editing tools, which often automatically save

a copy of documents every few minutes, and the content

of these copies can be almost identical.

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
e

rc
e

n
ta

g
e

 o
f

T
o

ta
l
B

lo
c
k
s
 (

%
)

Servers (1−4); Experimental (5−11); Office (12−15)

Duplicate blks
Zero blks

Figure 1: The percentage of redundant data in disks.

To make a case here, we have studied 15 disks in-

stalled on 5 machines in the Department of Computer

Science and Engineering at the Ohio State University.

Three file systems can be found in these disks, namely

Ext2, Ext3, and NTFS. The disks are used in different en-

vironments, 4 disks from Database/Web Servers, 7 disks

from Experimental Systems for kernel development, and

the other 4 disks from Office Systems. We slice the disk

space into 4KB blocks and use the SHA-1 hash func-

tion [1] to calculate a 160-bit hash value for each block.

We can identify duplicate blocks by comparing the hash

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 79

values. Figure 1 shows the duplication rates (i.e. the

percentage of duplicate blocks in total blocks).

In Figure 1, we find that the duplication rate ranges

from 7.9% to 85.9% across the 15 disks. We also find

that in only one disk with NTFS, the duplicate blocks

are dominated by ‘zero’ blocks. The duplicate blocks

on the other disks are mostly non-zero blocks, which

means that these duplicate blocks contain ‘meaningful’

data. Considering the fact that a typical SSD has an over-

provisioned space of only 1-20% of the flash memory

space, removing the duplicate data, which accounts for

7.9-85.9% of the SSD capacity, can substantially extend

the available flash space that can be used for garbage col-

lection and wear-leveling. If this effort is successful, we

can raise the performance comparable to that of high-end

SSDs with no need of extra flash space.

 0

 5

 10

 15

 20

 25

 30

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2P
e

rc
e

n
ta

g
e

 o
f

D
u

p
lic

a
te

 W
ri
te

s
 (

%
)

d − desktop; h − hadoop; t − transaction

Figure 2: The perc. of duplicate writes in workloads.

Besides the static analysis of the data redundancy in

storage, we have also collected I/O traces and analyzed

the data accesses of 11 workloads from three categories

(see more details in Section 4). For each workload, we

modified the Linux kernel by intercepting each I/O re-

quest and calculating a hash value for each requested

block. We analyzed the I/O traces off-line. Figure 2

shows the percentage of the duplicate writes in each

workload. We can find that 5.8-28.1% of the writes are

duplicated. This finding suggests that if we remove these

duplicate writes, we can effectively reduce the write traf-

fic into flash medium, which directly improves the en-

durance accordingly, not to mention the indirect effect of

reducing the number of extra writes caused by less fre-

quently triggered garbage collections.

1.3 Making FTL Content Aware

Based on the above observations and analysis, we pro-

pose a Content-Aware Flash Translation Layer (CAFTL)

to integrate the functionality of eliminating duplicate

writes and redundant data into SSDs to enhance the lifes-

pan at the device level.

CAFTL intercepts incoming write requests at the SSD

device level and uses a collision-free cryptographic hash

function to generate fingerprints summarizing the con-

tent of updated data. By querying a fingerprint store,

which maintains the fingerprints of resident data in the

SSD, CAFTL can accurately and safely eliminate dupli-

cate writes to flash medium. CAFTL also uses a two-

level mapping mechanism to coalesce redundant data,

which effectively extends available flash space and im-

proves GC efficiency. In order to minimize the perfor-

mance impact caused by computing hash values, we have

also designed a set of acceleration methods to speed up

fingerprinting. With these techniques, CAFTL can effec-

tively reduce write traffic to flash, extend available flash

space, while retaining high data access performance.

CAFTL is an augmentation, rather than a complete re-

placement, to the existing FTL designs. Being content-

aware, CAFTL is orthogonal to the other FTL policies,

such as the well researched garbage collection and wear-

leveling policies. In fact, the existing mechanisms in the

SSDs provide much needed facilities for CAFTL and

make it a perfect fit in the existing SSD architecture.

For example, the indirect mapping mechanism naturally

makes associating multiple logical pages to one physical

page easy to implement; the periodic scanning process

for garbage collection and wear-leveling can also carry

out an out-of-line deduplication asynchronously; the log-

like write mechanismmakes it possible to re-validate the

‘deleted’ data without re-writing the same content; and

finally, the semiconductor nature of flash memory makes

reading randomly remapped data free of high latencies.

CAFTL is also backward compatible and portable.

Running at the device level as a part of SSD firmware,

CAFTL does not need to change the standard host/device

interface for passing any extra information from the

upper-level components (e.g. file system) to the device.

All of the design of CAFTL is isolated at the device level

and hidden from users. This guarantees CAFTL as a

drop-in solution, which is highly desirable in practice.

1.4 Our Contributions

We have made the following contributions in this paper:

(1) We have studied data duplications in file systems and

various workloads, and assessed the viability of improv-

ing endurance of SSDs through deduplication. (2) We

have carefully designed a content-aware FTL to extend

the SSD lifespan by removing duplicate writes (up to

24.2%) and redundant data (up to 31.2%) with minimal

overhead. To the best of our knowledge, this is the first

study using effective deduplication in SSDs. (3) We have

also designed a set of techniques to accelerate the in-line

deduplication in SSD devices, which are particularly ef-

fective with small on-device buffer spaces (e.g. 2MB)

and make performance overhead nearly negligible. (4)

We have implemented CAFTL in the DiskSim simula-

tor and comprehensively evaluated its performance and

shown the effectiveness of improving the SSD lifespan

through extensive trace-driven simulations.

80 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

The rest of this paper is organized as follows. In Sec-

tion 2, we discuss the unique challenges in the design of

CAFTL. Section 3 introduces the design of CAFTL and

our acceleration methods. We present our performance

evaluation in Section 4. Section 5 gives the related work.

The last section discusses and concludes this paper.

2 Technical Challenges

CAFTL shares the same principle of removing data re-

dundancy with Content-Addressable Storage (CAS), e.g.

[11,24,30,45,47],which is designed for backup/archival

systems. However, we cannot simply borrow CAS poli-

cies in our design due to four unique and unaddressed

challenges: (1) Limited resources – CAFTL is designed

for running in an SSD device with limited memory space

and computing power, rather than running on a dedi-

cated powerful enterprise server. (2) Relatively lower re-

dundancy – CAFTL mostly handles regular file system

workloads, which have an impressive but much lower

duplication rate than that of backup streams with high

redundancy (often 10 times or even higher). (3) Lack of

semantic hints – CAFTL works at the device level and

only sees a sequence of logical blocks without any se-

mantic hints from host file systems. (4) Low overhead

requirement – CAFTL must retain high data access per-

formance for regular workloads, while this is a less strin-

gent requirement in backup systems that can run during

out-of-office hours.

All of these unique requirements make deduplication

particularly challenging in SSDs and it requires non-

trivial efforts to address them in the CAFTL design.

3 The Design of CAFTL

The design of CAFTL aims to reach the following three

critical objectives.

• Reducing unnecessary write traffic – By examining the

data of incoming write requests, we can detect and re-

move duplicate writes in-line, so that we can effec-

tively filter unnecessary writes into flash memory and

directly improve the lifespan of SSDs.

• Extending available flash space – By leveraging the

indirect mapping framework in SSDs, we canmap log-

ical pages sharing the same content to the same phys-

ical page. The saved space can be used for GC and

wear-leveling, which indirectly improves the lifespan.

• Retaining access performance – A critical requirement

to make CAFTL truly effective in practice is to avoid

significant negative performance impacts. We must

minimize runtime overhead and retain high data ac-

cess performance.

3.1 Overview of CAFTL

CAFTL eliminates duplicate writes and redundant data

through a combination of both in-line and out-of-line

(a.k.a post-processing or out-of-band) deduplication. In-

line deduplication refers to the case where CAFTL

proactively examines the incoming data and cancels du-

plicate writes before committing a write request to flash.

As a ‘best-effort’ solution, CAFTL does not guarantee

that all duplicate writes can be examined and removed

immediately (e.g. it can be disabled for performance pur-

poses). Thus CAFTL also periodically scans the flash

memory and coalesces redundant data out of line.

Figure 3: An illustration of CAFTL architecture.

Figure 3 illustrates the process of handling a write re-

quest in CAFTL – When a write request is received at

the SSD, (1) the incoming data is first temporarily main-

tained in the on-device buffer; (2) each updated page in

the buffer is later computed a hash value, also called fin-

gerprint, by a hash engine, which can be a dedicated

processor or simply a part of the controller logic; (3)

each fingerprint is looked up against a fingerprint store,

which maintains the fingerprints of data already stored in

the flash memory; (4) if a match is found, which means

that a residing data unit holds the same content, the map-

ping tables, which translate the host-viewable logical ad-

dresses to the physical flash addresses, are updated by

mapping it to the physical location of the residing data,

and correspondingly the write to flash is canceled; (5)

if no match is found, the write is performed to the flash

memory as a regular write.

3.2 Hashing and Fingerprint Store

CAFTL attempts to identify and remove duplicate writes

and redundant data. A byte-by-byte comparison is exces-

sively slow. A common practice is to use a cryptographic

hash function, e.g. SHA-1 [1] or MD5 [40], to compute a

collision-free hash value as a fingerprint. Duplicate data

can be determined by comparing fingerprints. Here we

explain how we produce and manage fingerprints.

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 81

3.2.1 Choosing hashing units

CAFTL uses a chunk-based deduplication approach. Un-

like most CAS systems, which often use more compli-

cated variable-sized chunking, CAFTL adopts a fixed-

sized chunking approach for two reasons. First, the

variable-sized chunking is designed for segmenting a

long I/O stream. In CAFTL, we handle a sequence of

individual requests, whose size can be very small (a few

kilobytes) and vary significantly. Thus variable-sized

chunking is inappropriate for CAFTL. Second, the basic

operation unit in flash is a page (e.g. 4KB), and the inter-

nal management policies in SSDs, such as the mapping

policy, are also designed in units of pages. Thus, using

pages as the fixed-sized chunks for hashing is a natural

choice and also avoids unnecessary complexity.

3.2.2 Hash function and fingerprints

In order to identify duplicate data, a collision-free hash

function is used for summarizing the content of pages.

We use the SHA-1 [1], a widely used cryptographic hash

function, and rely on its collision-resistant properties to

index and compare pages. For each page, we calculate

a 160-bit hash value as its fingerprint and store it as the

page’s metadata in flash. The SHA-1 hash function has

been proven computationally infeasible to find two dis-

tinct inputs hashing to the same value [32]. We can safely

determine if two pages are identical using fingerprints.

3.2.3 The fingerprint store

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35 40 45 50

P
e

rc
e

n
ta

g
e

 o
f

T
o

ta
l
F

in
g

e
rp

ri
n

ts
 (

%
)

Duplication Level

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Figure 4: The CDF figure of duplicate fingerprints.

In order to locate quickly the physical page with a spe-

cific fingerprint, CAFTL manages an in-memory struc-

ture, called Fingerprint Store. Apparently, keeping all

fingerprints and related information (25 bytes each) in

memory is too costly and unnecessary. We have stud-

ied the distribution of fingerprints in the 15 disks and

we plot a Cumulative Distribution Function (CDF) fig-

ure in Figure 4. We can see that the distribution of dupli-

cated fingerprints is skewed – only 10-20% of the finger-

prints are highly duplicated (more than 2). This finding

provides two implications. First, most fingerprints are

unique and never have a chance to match any queried

fingerprint. Second, a complete search in the fingerprint

store would incur high lookup latencies, and even worse,

most lookups eventually turn out to be useless (no match

found). Thus, we should only store and search in the

most likely-to-be-duplicated fingerprints in memory.

We first logically partition the hash value space into

N segments. For a given fingerprint, f , we can map it

to segment (f mod N), and the random nature of the

hash function guarantees an even distribution of finger-

prints among the segments. Each segment contains a list

of buckets. Each bucket is a 4KB page in memory and

consists of multiple entries, each of which is a key-value

pair, {fingerprint, (location, reference)}. The 160-bit fin-
gerprint indexes the entry; the 32-bit location denotes

where we can find the data, either the PBA of a physi-

cal flash page or the VBA of a secondary mapping entry

(see Section 3.3); the 8-bit reference denotes the hotness

of this fingerprint (i.e. the number of referencing logical

pages). The entries in each bucket are sorted in the as-

cending order of their fingerprint values to facilitate a fast

in-bucket binary search. The total numbers of buckets

and segments are designated by the SSD manufacturers.

The fingerprint store maintains the most highly refer-

enced fingerprints in memory. During the SSD startup

time, after the mapping tables are built up (to be dis-

cussed in Section 3.3), the fingerprint store is also recon-

structed by scanning the mapping tables and the meta-

data in flash to load the key value pairs of {fingerprint,
(location, reference)} into memory. Initially no bucket

is allocated in the fingerprint store. Upon inserting a fin-

gerprint, an empty bucket is allocated and linked into a

bucket list of the corresponding segment. This bucket

holds the fingerprints inserted into the corresponding

segment until the bucket is filled up, then we allocate

another bucket. We continue to allocate buckets in this

way until there are no more free buckets available. If that

happens, the newly inserted fingerprint will replace the

fingerprint with the smallest reference counter (i.e. the

coldest one) in the bucket, unless its reference counter is

smaller than any of the resident fingerprints. Note that

we choose the inserting bucket in a round-robin manner

to ensure a relatively even distribution of hot/cold finger-

prints across the buckets in a segment. It is also worth

mentioning here that a 8-bit reference counter is suffi-

ciently large for distinguishing the hot fingerprints, be-

cause most fingerprints have a reference counter smaller

than 255 (see Figure 4). We consider fingerprints with

a reference counter larger than 255 as highly referenced

and do not further distinguish their difference in hotness.

In this way, we can include the most highly referenced

fingerprints in memory. Although we may miss some

opportunities of identifying the duplicates whose finger-

prints are not resident in memory, this probability is con-

sidered low (as shown in Figure 4), and we are not pursu-

82 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

ing a perfect in-line deduplication. Our out-of-line scan-

ning can still identify these duplicates later.

Searching a fingerprint can be very simple. We com-

pute the mapping segment number and scan the corre-

sponding list of buckets one by one. In each bucket,

we use binary search to speed up the in-bucket lookup.

However, for a segment with a large set of buckets,

this method is still improvable. We have designed three

optimization techniques to further accelerate fingerprint

lookups. (1) RangeCheck – before performing the binary

search in a bucket, we first compare the fingerprint with

the smallest and the largest fingerprints in the buckets. If

the fingerprint is out of the range, we quickly skip over

this bucket. (2) Hotness-based Reorganization – the fin-

gerprints in the linked buckets can be reorganized in the

descending order of their reference counters. This moves

the hot fingerprints closer to the list head and potentially

reduces the number of the scanned buckets. (3) Bucket-

level Binary Search – the fingerprints across the buckets

can be reorganized in the ascending order of the finger-

print values by using a merge sort. For each segment

we maintain an array of pointers to the buckets in the

list. We can perform a binary search at the bucket level

by recursively selecting the bucket in the middle to do a

Range Check. In this way we can quickly locate the tar-

get bucket and skip over most buckets. Although reorga-

nizing the fingerprints requires performing an additional

merge sort, our experiments show that these optimiza-

tions can significantly reduce the number of comparisons

of fingerprint values. In Section 4.3.3 we will show and

compare the effectiveness of the three techniques.

3.3 Indirect Mapping

Indirect mapping is a core mechanism in the SSD archi-

tecture. SSDs expose an array of logical block addresses

(LBAs) to the host, and internally, a mapping table is

maintained to track the physical block address (PBA) to

which each LBA is mapped. For CAFTL, the existing

indirect mapping mechanism in SSDs provides a basic

framework for deduplication and avoids rebuilding the

whole infrastructure from scratch.

On the other hand, the existing 1-to-1mappingmecha-

nism in SSDs cannot be directly used for CAFTL, which

is essentially N-to-1 mapping, because of two new chal-

lenges. (1) When a physical page is relocated to an-

other place (e.g. in garbage collection), we must be able

to identify quickly all the logical pages mapped to this

physical page and update their mapping entries to point

to the new location. (2) Since a physical page could be

shared by multiple logical pages, it cannot be recycled

by the garbage collector until all the referencing logical

pages are demapped from it, which means that we must

track the number of referencing logical pages.

3.3.1 Two-level indirect mapping

Figure 5: An illustration of the indirect mapping.

We have designed a new indirect mapping mechanism

to address these aforementioned issues. As shown in Fig-

ure 5, a conventional FTL uses a one-level indirect map-

ping, from LBAs to PBAs. In CAFTL, we create another

indirect mapping level, called Virtual Block Addresses

(VBAs). A VBA is essentially a pseudo address name

to represent a set of LBAs mapped to the same PBA.

In this two-level indirect mapping structure, we can lo-

cate the physical page for a logical page either through

LBA→PBA or LBA→VBA→PBA.

We maintain a primary mapping table and a secondary

mapping table in memory. The primary mapping table

maps a LBA to either a PBA, if the logical page is unique,

or a VBA, if it is a duplicate page. We differentiate PBAs

and VBAs by using the most significant bit in the 32-bit

page address. For a page size of 4KB, using the remain-

ing 31 bits can address 8,192 GB storage space, which is

sufficiently large for an SSD. The secondary mapping ta-

ble maps a VBA to a PBA. Each entry is indexed by the

VBA and has two fields, {PBA, reference}. The 32-bit

PBA denotes the physical flash page, and the 32-bit ref-

erence tracks the exact number of logical pages mapped

to the physical page. Only physical pages without any

reference can be recycled for garbage collection.

This two-level indirect mapping mechanism has sev-

eral merits. First, it significantly simplifies the reverse

updates to the mapping of duplicate logical pages. When

relocating a physical page during GC, we can use its

associated VBA to quickly locate and update the sec-

ondary mapping table by mapping the VBA to the new

location (PBA), which avoids exhaustively searching for

all the referencing LBAs in the huge primary mapping

table. Second, the secondary mapping table can be

very small. Since CAFTL handles regular file system

workloads, most logical pages are unique and directly

mapped through the primary table. We can also ap-

ply an approach similar to DFTL [23] to further re-

duce the memory demand by selectively maintaining the

most frequently accessed entries of the mapping tables in

memory. Finally, this incurs minimal additional lookup

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 83

overhead. For unique pages, it performs identically to

conventional FTLs; for duplicate pages, only one extra

memory access is needed for the lookup operation.

3.3.2 The mapping tables in flash

The mapping relationship is also maintained in flash

memory. We keep an in-flash copy of the primary and

secondary mapping tables along with a journal in ded-

icated flash space in SSD. Both in-flash structures are

organized as a list of linked physical flash pages. When

updating the in-memory tables (e.g. remapping a LBA

to a new location), the update record is logged into a

small in-memory buffer. When the buffer is filled, the

log records are appended to the in-flash journal. If power

failure happens, a capacitor (e.g. a SuperCap [46]) can

provide sufficient current to flush the unwritten logs into

the journal and secure the critical mapping structures in

persistent storage. Periodically the in-memory tables are

synced into flash and the journal is reinitialized. Dur-

ing the startup time, the in-flash tables are first loaded

into memory and the logged updates in the journal are

applied to reconstruct the mapping tables.

3.3.3 The metadata pages in flash

Unlike much prior work, which writes the metadata (e.g.

LBA and fingerprint) in the spare area of physical flash

pages, we reserve a dedicated number of flash pages, also

called metadata pages, to store the metadata, and keep a

metadata page array for tracking PBAs of the metadata

pages. The spare area of a physical page is only used for

storing the Error Correction Code (ECC) checksum. If

each physical page is associated with 24 bytes of meta-

data (a 160-bit fingerprint and a 32-bit LBA/VBA), for a

32GB SSDwith 4KB flash pages, we need about 0.6% of

the flash space for storing metadata and a 192KB meta-

data page array. In this way, we can detach the data pages

and the metadata pages, which allows us to manage flex-

ibly the metadata for physical flash pages.

3.4 Acceleration Methods

Fingerprinting is the key bottleneck of the in-line dedu-

plication in CAFTL, especially when the on-device

buffer size is limited. Here we present three effective

techniques to reduce its negative performance impact.

3.4.1 Sampling for hashing

In file system workloads, as we discussed previously, du-

plicate writes are not a ‘common case’ as in backup sys-

tems. This means that most timewe spend on fingerprint-

ing is not useful at all. Thus, we selectively pick only one

page as a sample page for fingerprinting, and we use this

sample fingerprint to query the fingerprint store to see if

we can find a match there. If this is true, the whole write

request is very likely to be a duplicate, and we can further

compute fingerprints for the other pages to confirm that.

Otherwise, we assume the whole request would not be a

duplicate and abort fingerprinting at the earliest time. In

this way, we can significantly reduce the hashing cost.

The key issue here is which page should be chosen as

the sample page. It is particularly challenging in CAFTL,

since CAFTL only sees a sequence of blocks and cannot

leverage any file-level semantic hints (e.g. [11]). We pro-

pose to use Content-based Sampling – We select the first

four bytes, called sample bytes, from each page in a re-

quest, and we concatenate the four bytes into a 32-bit

numeric value. We compare these values and the page

with the largest value is the sample page. The rationale

behind this is that if two requests carry similar content,

the pages with the largest sample bytes in two requests

would be very likely to be the same, too. We deliberately

avoid selecting the sample pages based on hash values

(e.g. [11, 30]), because in CAFTL, hashing itself incurs

high latency. Thus relying on hash values for sampling is

undesirable, so we directly pick sample pages based on

their unprocessed content data. We have also examined

choosing other bytes (Figure 6) as the sample bytes and

found that using the first four bytes performs constantly

well across different workloads.

Figure 6: An illustration of four choices of sample bytes.

In our implementation of sampling, we divide the se-

quence of pages in a write request into several sampling

units (e.g. 32 pages), and we pick one sample page from

each unit. We also note that sampling could affect dedu-

plication – the larger a sampling unit is, the better per-

formance but the lower deduplication rate would be. We

will study the effect of unit sizes in Section 4.4.1.

3.4.2 Light-weight pre-hashing

 0

 20

 40

 60

 80

 100

160bits 80bits 64bits 32bits 24bits 16bits

C
o

n
d

e
n

s
e

 R
a

te
 (

%
)

Hash Bits

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Figure 7: Condense rates vs. hash bits.
Computing a light-weight hash function often incurs

lower computational cost. For example, producing a 32-

bit CRC32 hash value is over 10 times faster than com-

84 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

puting a 160-bit SHA-1 hash value. More importantly,

our study shows that reducing the hash strength would

not incur a significant increase of false positives for a

typical SSD capacity. We can see in Figure 7 that us-

ing only 32 bits can achieve nearly the same condense

rate as using 160 bits. Plus, many SSDs integrate a ded-

icated ECC engine to compute checksum and detect er-

rors, which can also be leveraged to speed up hashing.

We propose a technique, called light-weight pre-

hashing. We maintain an extra 32-bit CRC32 hash value

for each fingerprint in the fingerprint store. For a page,

we first compute a CRC32 hash value and query the fin-

gerprint store. If a match is found, which means the page

is very likely to be a duplicate, then we use the SHA-

1 hash function to generate a fingerprint and confirm it

in the fingerprint store; otherwise, we abort the high-

cost SHA-1 fingerprinting immediately and perform the

write to flash. Although maintaining CRC32 hash val-

ues demands more fingerprint store space, the significant

performance benefit well justifies it, as shown in Sec-

tion 4.4.2. We have also considered using a Bloom fil-

ter [12] for pre-screening, like in the DataDomain® file

system [47], but found it inapplicable to CAFTL, be-

cause it requires multiple hashings and the summary vec-

tor cannot be updated when a fingerprint is removed.

3.4.3 Dynamic switches

In some extreme cases, incoming requests may wait for

available buffer space to be released by previous re-

quests. CAFTL provides dynamic switch as the last line

of defense for performance protection in such cases.

We set a high watermark and a low watermark to turn

the in-line deduplication off and on, respectively. If the

percentage of the occupied cache space hits a high water-

mark (95%), we disable the in-line deduplication to flush

writes quickly to flash and release buffer space. Once

the low watermark (50%) is hit, we re-enable the in-line

deduplication. Although this remedy solution would re-

duce the deduplication rate, we still can perform out-of-

line deduplication at a later time, so it is an acceptable

tradeoff for retaining high performance.

3.5 Out-of-line Deduplication

As mentioned previously, CAFTL does not pursue a per-

fect in-line deduplication, and an internal routine is pe-

riodically launched to perform out-of-line fingerprinting

and out-of-line deduplication during the device idle time.

Out-of-line fingerprinting is simple. We scan the

metadata page array (Section 3.3.3) to find physical

pages not yet fingerprinted. If one such a page is found,

we read the page out, compute the fingerprint, and up-

date its metadata. To avoid unnecessarily scanning the

metadata of pages already fingerprinted, we use one bit

in an entry of the metadata page array to denote if all of

the fingerprints in the corresponding metadata page have

already been computed, and we skip over such pages.

Out-of-line deduplication is more complicated due to

thememory space constraint. We adopt a solution similar

to the widely used external merge sort [39] in database

systems. Supposing we have M fingerprints in total and

the available memory space can accommodate N finger-

prints, where M > N. We scan the metadata page array

from the beginning, each time N fingerprints are loaded

and sorted in memory, and temporarily stored in flash,

then we load and sort the next N fingerprints, and so on.

This process is repeated for K times (K = �M
N
�) until all

the fingerprints are processed. Then we can merge sort

these K blocks of fingerprints in memory and identify the

duplicate fingerprints.

Out-of-line fingerprinting and deduplication can be

performed together with the GC process or indepen-

dently. Since there is no harm in leaving duplicate or un-

fingerprinted pages in flash, these operations can be per-

formed during idle period and immediately aborted upon

incoming requests, and the perceivable performance im-

pact to foreground jobs is minimal.

4 Performance Evaluation

4.1 Experimental Systems

We have implemented and evaluated our design of

CAFTL based on a comprehensive trace-driven simula-

tion. In this section we will introduce our simulator, trace

collection, and system configurations.

4.1.1 SSD Simulator

CAFTL is a device-level design running in the SSD con-

troller. We have implemented it in a sophisticated SSD

simulator based on the Microsoft® Research SSD exten-

sion [5] for the DiskSim simulation environment [14].

This extension was also used in prior work [6].

The Microsoft extension is well modularized and im-

plements the major components of FTL, such as the indi-

rect mapping, garbage collection and wear-leveling poli-

cies, and others. Since the current version lacks an on-

device buffer, which is becoming a standard component

in recent generations of SSDs, we augmented the current

implementation and included a shared buffer for han-

dling incoming read and write requests. When a write

request is received at the SSD, it is first buffered in the

cache, and the SSD immediately reports completion to

the host. Data processing and flash operations are con-

ducted asynchronously in the background [16]. A read

request returns back to the host once the data is loaded

from flash into the buffer. We should note that this simu-

lator follows a general FTL design [6], and the actual im-

plementations of the SSD on the market can have other

specific features.

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 85

4.1.2 SSD Configurations

Description Configuration

Flash Page Size 4KB

Pages per Block 64

Blocks per Plane 2048

Planes per Package 8

of Packages 10

Mapping policy Full striping

Over-provisioning 15%

Garbage Collection Threshold 5%

Table 1: Configurations of the SSD simulator.

In our experiments, we use the default configurations

from the SSD extension, unless denoted otherwise. Table

1 gives a list of the major config parameters.

Description Latency

Flash Read/Write/Erase 25 µs/200µs/1.5ms

SHA-1 hashing (4KB) 47,548 cycles

CRC32 hashing (4KB) 4,120 cycles

Table 2: Latencies configured in the SSD simulator.

Table 2 gives the parameters of latencies used in our

experiments. For the flash memory, we use the default la-

tencies in our experiments. For the hashing latencies, we

first cross compile the hash function code to the ARM®

platform and run it on the SimpleScalar-ARM simula-

tor [4] to extract the total number of cycles for executing

a hash function. We assume a processor similar to ARM®

Cortex R4 [8] on the device, which is specifically de-

signed for high-performance embedded devices, includ-

ing storage. Based on its datasheet, the ARM processor

has a frequency from 304MHz to 934MHz [8], and we

can estimate the latency for hashing a 4KB page by divid-

ing the number of cycles by the processor frequency. It

is also worth mentioning here that according to our com-

munications with SSD manufacturer [3], high-frequency

(600+ MHz) processors, such as the Cortex processor,

are becoming increasingly normal in high-speed storage

devices. Leveraging such abundant computing power on

storage devices can be a research topic for further inves-

tigation.

4.1.3 Workloads and trace collection

We have selected 11 workloads from three representative

categories and collected their data access traces.

• Desktop (d1,d2) – Typical office workloads, e.g. In-

ternet surfing, emailing, word editing, etc. The work-

loads run for 12 and 19 hours, respectively, and feature

irregular idle intervals and small reads and writes.

• Hadoop (h1-h7)–We execute seven TPC-H data ware-

house queries (Query 1,6,11,14,15,16,20) with scale

factor of 1 on a Hadoop distributed system platform

[2]. These workloads run for 2-40 minutes and gener-

ate intensive large writes of temp data.

• Transaction (t1,t2) –We execute TPC-Cworkloads (1-

3 warehouses, 10 terminals) for transaction processing

on PostgreSQL 8.4.3 database system. The two work-

loads run for 30 minutes and 4 hours, respectively, and

feature intensive write operations.

The traces are collected on a DELL® Dimension 3100

workstation with an Intel® Pentium™4 3.0GHz proces-

sor, a 3GB main memory, and a 160GB 7,200 RPM

Seagate® hard disk drive. We use Ubuntu 9.10 with the

Ext3 file system. We modified the Linux kernel 2.6.32

source code to intercept each I/O request and compute a

SHA-1 hash value as a fingerprint for each 4KB page of

the request. These fingerprints, together with other re-

quest information (e.g. offset, type), are transferred to

another machine via netconsole [35]. This avoids the

possible interference caused by tracing. The collected

trace files are analyzed offline and used to drive the sim-

ulator for our experimental evaluation.

4.2 Effectiveness of Deduplication

CAFTL intends to remove duplicate writes and extend

flash space. In this section, we perform two sets of ex-

periments to show the effectiveness of deduplication in

CAFTL. In both experiments, we use an SSD with a

934MHz processor and a 16MB buffer.

4.2.1 Removing duplicate writes

CAFTL identifies and removes duplicate writes via in-

line deduplication. Denoting the total number of pages

requested to be written as n, and the total number of

pages being actually written into flash medium as m, the

deduplication rate is defined as n−m
n

. Figure 8 shows

the deduplication rate of the 11 workloads running on

CAFTL. In this figure, offline refers to the optimal case,

where the traces are examined and deduplicated offline.

We also show CAFTL without sampling and with a sam-

pling unit size of 128KB (32 pages), denoted as no-

sampling and 128KB, respectively.

 0

 5

 10

 15

 20

 25

 30

 35

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2

P
e

rc
.

o
f

R
e

m
o

v
e

d
 W

ri
te

s
 (

%
)

d − desktop; h − hadoop; t − transaction

offline
no−sampling
128KB

Figure 8: Perc. of removed duplicate writes.

86 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

As we see in Figure 8, duplication is highly work-

load dependent. Across the 11 workloads, the rate of

duplicate writes in the workloads ranges from 5.8% (t1)

to 28.1% (h6). CAFTL can achieve deduplication rates

from 4.6% (t1) to 24.2% (h6) with no sampling. Com-

pared with the optimal case (offline), CAFTL identifies

up to 86.2% of the duplicate writes in offline. We also can

see that with a larger sampling unit (128KB), CAFTL

achieves a lower but reasonable deduplication rate. In

Section 4.4.1, we will give more detailed analysis on the

effect of sampling unit sizes.

4.2.2 Extending flash space

 0

 5

 10

 15

 20

 25

 30

 35

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2

P
e

rc
.

o
f

S
a

v
e

 F
la

s
h

 S
p

a
c
e

 (
%

)

d − desktop; h − hadoop; t − transaction

no−sampling
128KB

Figure 9: Perc. of extended flash space.

Besides directly removing duplicate writes to the flash

memory, CAFTL also reduces the amount of occupied

flash memory space and increases the number of avail-

able clean erase blocks for garbage collection and wear-

leveling. Figure 9 shows the percentage of extended flash

space in units of erase blocks, compared to the baseline

case (without CAFTL). We show CAFTL without sam-

pling (no-sampling) and with sampling (128KB).

As shown in Figure 9, CAFTL can save up to 31.2%

(h1) of the occupied flash blocks for the 11 workloads.

The worst cases are h2 and h5, in which no space saving

is observed. This is because the two workloads are rela-

tively smaller, the total number of occupied erase blocks

is only 176. Although the number of pages being written

is reduced by 16.6% (h2) and 15% (h5), the saved space

in units of erase blocks is very small.

4.3 Performance Impact

To make CAFTL truly effective in practice, we must

retain high performance and minimize negative impact.

Here we study three key factors affecting performance,

cache size, hashing speed, and fingerprint searching.

The acceleration methods are not applied in experiments.

4.3.1 Cache size

In Figure 10, we show the percentage of the increase

of average read/write latencies with various cache sizes

(2MB to 16MB). We compare CAFTL with the baseline

case (without CAFTL). In the experiments, we config-

ure an SSD with a 934MHz processor. We can see that

with a small cache space (2MB), the read and write la-

tencies can increase by a factor of up to 34% (t1). With a

moderate cache size (8MB), the latency increases are re-

duced to less than 4.5%. With a 16MB cache, a rather

standard size, the latency increases become negligible

(less than 0.5%). For some workloads (d2, h3, h5, h7,

t1, t2), we can even see a slight performance improve-

ment (0.2-0.5%), because CAFTL removes unnecessary

writes, which reduces the probability of being blocked

by an in-progress flash write operation. In this case we

see a negative performance impact with a small cache

space, and we will show how to mitigate such a problem

through our acceleration methods in Section 4.4.

4.3.2 Hashing speed

Computing fingerprints is time consuming and affects ac-

cess performance. The hashing speed depends on the ca-

pability of processors. Using a more powerful processor

can effectively reduce the latency for digesting pages and

generating fingerprints. To study the performance im-

pact caused by hashing speed, we vary the processor fre-

quency from 304MHz to 934MHz, based on the Cortex

datasheet [8]. We configure an SSD with a 16MB cache

space and show the increase of read latencies compared

to the baseline case (without CAFTL) in Figure 11. We

did not observe an increase of write latencies, since most

writes are absorbed in the buffer.

 0

 20

 40

 60

 80

 100

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2

R
e

a
d

 L
a

te
n

c
y
 I

n
c
re

a
s
e

 (
%

)

d − desktop; h − hadoop; t − transaction

304MHz
392MHz
619MHz
934MHz

Figure 11: Perf. impact of hashing Speeds.

In Figure 11, we can see that most workloads are

insensitive to hashing speed. With a 304MHz proces-

sor, the performance overhead is less than 8.5% (t2),

which has more intensive larger writes. At 934MHz,

the performance overhead is merely observable (up to

0.5%). There are two reasons. First, the 16MB on-device

buffer absorbs most incoming writes and provides a suf-

ficient space for accommodating incoming reads. Sec-

ond, the incoming read requests are given a higher pri-

ority than writes, which reduces noticeable delays in the

critical path. These optimizations make reads insensitive

to hashing speed and reduces noticeable latencies. Also

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 87

 0

 20

 40

 60

 80

 100

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2

R
e
a
d
 L

a
te

n
c
y
 I
n
c
re

a
s
e
 (

%
)

Read (d − desktop; h − hadoop; t − transaction)

2MB
4MB
8MB
16MB

 0

 20

 40

 60

 80

 100

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2

W
ri
te

 L
a
te

n
c
y
 I
n
c
re

a
s
e
 (

%
)

Write (d − desktop; h − hadoop; t − transaction)

2MB
4MB
8MB
16MB

Figure 10: Performance impact of cache sizes (2-16MB).

note that if a dedicated hashing engine is used on the de-

vice, the hashing latency could be further reduced.

4.3.3 Fingerprint searching

 0

 20

 40

 60

 80

 100

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2P
e
rc

.
o
f
R

e
d
u
c
e
d
 C

o
m

p
a
ri
s
o
n
s
 (

%
)

d − desktop; h − hadoop; t − transaction

Range Check (RC)
Hotness−based Reorg w/ RC
Bucket−level Binary Search w/ RC

Figure 12: Optimizations on fingerprint searching.

We have proposed three techniques to accelerate fin-

gerprint searching. Figure 12 shows the percentage

of reduced fingerprint comparisons compared with the

baseline case. We configure the fingerprint store with

256 segments to hold the fingerprints for each work-

load. We can see that using Range Check can effec-

tively reduce the comparisons of fingerprints by up to

23.7% (t2). However,Hotness-based Reorganization can

provide little further improvement (less than 1%), be-

cause it essentially accelerates lookups for fingerprints

that are duplicated, which is relatively an uncommon

case. As expected, Bucket-level Binary Search can sig-

nificantly reduce the average number of comparisons

for each lookup. In d2, for example, Bucket-level Bi-

nary Search can effectively reduce the average number

of comparisons by a factor of 85.5%. Thus we would

suggest applying Bucket-level Binary Search and Range

Check to speed up fingerprint lookups.

4.4 Acceleration Methods

With a small on-device buffer, the high computational

latency caused by hashing could be significant and per-

ceived by the users. We have developed three techniques

to accelerate fingerprinting. In this section, we will show

the effectiveness of each individual technique and then

show the effects in aggregate. We configure an SSD with

a 934MHz processor and a small 2MB buffer.

4.4.1 Sampling

 0

 5

 10

 15

 20

 25

 30

 35

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2

D
e

d
u

p
lic

a
ti
o

n
 R

a
te

 (
%

)

d − desktop; h − hadoop; t − transaction

no−sampling
8KB
16KB
32KB
64KB
128KB

Figure 14: Dedup. with Sampling

As shown in Figure 13 and Figure 14, sampling can

significantly improve performance. With the increase

of sampling unit size, fewer fingerprints need to be cal-

culated, which translates into a manifold reduction of

observed read and write latencies. For example, h7

achieves a speedup by a factor of 94.1 times for reads and

3.5 times for writes, because of the significantly reduced

waiting time for the buffer. Meanwhile, the deduplica-

tion rate is only reduced from 18% to 15.4%. Consider-

ing such a significant speedup, the minor loss of dedupli-

cation rate is acceptable. The maximum speedup, 110.6

times (read), is observed in t1, and its deduplication rate

drops from 4.6% to 1.3%. This is mostly because for

workloads with low duplication rate, the probability of

sampling right pages is also relatively low.

4.4.2 Light-weight pre-hashing

Light-weight pre-hashing uses a fast CRC32 hash func-

tion to filter most unlikely-to-be-duplicated pages before

performing high-cost fingerprinting. Figure 15 shows the

speedup of reads and writes by using CRC32 for pre-

hashing, compared with CAFTL without pre-hashing.

Only pre-hashing is enabled here. We can see that in

the best case (t1), pre-hashing can reduce the latencies

by a factor of up to 148.3 times for reads and 3.9 times

for writes. This is because, as mentioned previously,

88 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

 0

 20

 40

 60

 80

 100

 120

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2R
e

a
d

 R
e

s
p

o
n

s
e

 T
im

e
 S

p
e

e
d

u
p

 (
x
)

Read (d − desktop; h − hadoop; t − transaction)

8KB
16KB
32KB
64KB
128KB

 0

 1

 2

 3

 4

 5

 6

 7

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2W
ri
te

 R
e
s
p
o
n
s
e
 T

im
e
 S

p
e
e
d
u
p
 (

x
)

Write (d − desktop; h − hadoop; t − transaction)

8KB
16KB
32KB
64KB
128KB

Figure 13: Performance speedup with Sampling (unit size: 8-128KB).

 0

 20

 40

 60

 80

 100

 120

 140

 160

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2

S
p

e
e

d
u

p
 (

x
)

d − desktop; h − hadoop; t − transaction

Read
Write

Figure 15: Speedup with pre-hashing.

this workload is write intensive and has a long waiting

queue, which makes the queuing effect particularly sig-

nificant. Similar to sampling, writes receive relatively

smaller benefit, because the buffer absorbs the writes

with low latency and diminishes the effect of speeding

up writes. Meanwhile, we also found negligible differ-

ence in deduplication rates, which is consistent with our

analysis shown in Figure 7.

4.4.3 Dynamic switch

 0

 50

 100

 150

 200

 250

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2

S
p

e
e

d
u

p
 (

x
)

d − desktop; h − hadoop; t − transaction

Read
Write

Figure 16: Speedup with dynamic switch.

CAFTL also provides dynamic switch to dynamically

turn on/off the in-line deduplication, depending on the

usage of the on-device buffer. We configure the high

watermark as 95% (off) and the low watermark as 50%

(on). Figure 16 shows the speedup of reads and writes

in the workloads. Again, t1 receives the most significant

performance speedup by a factor of 200.6 times. Some

workloads (h1-h5) receive no benefits, because they are

less I/O intensive. For the other workloads, we can ob-

serve a speedup of 2.1 times to 94.6 times.

4.4.4 Putting it all together

 0

 10

 20

 30

 40

 50

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2

P
e

rc
e

n
ta

g
e

 (
%

)

d − desktop; h − hadoop; t − transaction

Increase of Read Latencies
Increase of Write Latencies
Dedupcation Rate

Figure 17: Three acceleration tech. combined

In Figure 17, we enable all the three acceleration tech-

niques and show the increase of read and write latencies,

compared with the baseline case (without CAFTL), and

the corresponding deduplication rate. We can see that by

combining all the three techniques, we can almost com-

pletely remove the performance overhead with only a

2MB on-device buffer. In the meantime, we can achieve

a deduplication rate of up to 19.9%.

5 Other Related Work

Flash memory based SSDs have received a lot of in-

terest in both academia and industry. There is a large

body of research work on flash memory and SSDs (e.g.

[6,9,13,15–18,20,23,26–29,31,34,37,38,42,44]). Con-

cerning lifespan issues, most early work focuses on de-

signing garbage collection and wear-leveling policies. A

survey [21] summarizes these techniques. Here we only

present the papers most related to this work.

Recently Grupp et al. [22] have presented an empiri-

cal study on the performance, power, and reliability of

flash memories. Their results show that flash memories,

particularly MLC devices, exhibit significant error rates

after or even before reaching the rated lifetime, which

makes using high density SSDs in commercial systems a

difficult choice. Another report [13] has studied the write

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 89

endurance of USB flash drives with a more optimistic

conclusion that the endurance of flash memory chips

is better than expected, but whole-device endurance is

closely related to the FTL designs. A modeling based

study on the endurance issues has also been presented

in [33]. These studies provide much needed information

about the lifespan of flash memory and small-size flash

devices. However, so far the endurance of state-of-the-

art SSDs has not yet been proven in the field [10].

Early studies on SSDs mainly focus on performance.

Some recent studies have begun to look at reliability is-

sues. Differential RAID [9] tries to improve reliability

of an SSD-based RAID storage by distributing parity

unevenly across SSDs to reduce the probability of cor-

related multi-device failure. Griffin [42] extends SSD

lifetime by maintaining a log-structured HDD cache and

migrating cached data periodically. A recent work [36]

considers write cycles in addition to storage space as a

constrained resource in depletable storage systems and

suggests attribute depletion to users in systems like cloud

computing. ChunkStash [19] uses flash memory to speed

up index lookups for inline storage deduplication. An-

other work [43] proposes to integrate phase changemem-

ory into SSDs to improve the performance, energy con-

sumption, and also lifetime. Our study has made its

unique contributions to enhancing the lifespan of SSDs

by removing duplicate writes and coalescing redundant

data at the device level, as a more general solution.

6 Conclusion and Discussions

Enhancing the SSD lifespan is crucial to a wide deploy-

ment of SSDs in commercial systems. In this paper, we

have proposed a solution, called CAFTL, and shown that

by removing duplicate writes and coalescing redundant

data, we can effectively enhance the lifespan of SSDs

while retaining high data access performance.

A potential concern about CAFTL is the volatility of

the on-device RAM buffer – the buffered data could be

lost upon power failure. However, this concern is not

new to SSDs. A hard disk drive also has an on-device

buffer, but it provides users an option (e.g. using sdparm

tool) to flexibly enable/disable the buffer on their needs.

Similarly, if needed, the users can choose to disable the

in-line deduplication and the buffer in an SSD, and the

out-of-line deduplication can still be effective.

Although we have striven to minimize memory usage,

CAFTL demands more space for storing fingerprints and

the secondary mapping table, compared with traditional

FTLs. According to our communications with SSDman-

ufacturer [3], memory actually only accounts for a small

percentage of the total production cost, and the most

expensive component is flash memory. Thus we con-

sider this tradeoff is worthwhile to extend available flash

space, and SSD lifespan. If budget allows, we would

suggest maintaining the fingerprint store fully in mem-

ory, which not only improves deduplication rate but also

simplifies designs.

Further improvements are also possible. One is to re-

lax the stringent “one-time programming” requirement.

According to the specification, each flash page in a clean

erase block should be programmed (written) only once.

In practice, flash chips can allow multiple programs to

a page and the risk of “program disturb” is fairly low

[7]. We can leverage this feature to simplify many de-

signs. For example, we can write multiple versions of

LBA/VBA and fingerprints into the spare area of a phys-

ical page, which can largely remove the need for meta-

data pages. Another consideration is to integrate a byte-

addressable persistent memory (e.g. PCM) into the SSDs

to maintain the metadata, which can remove much de-

sign complexity. We are also considering the addition of

on-line compression into SSDs to better utilize the high-

speed processor on the device. This can further extend

available flash space but may require more changes to

the FTL design, which will be our future work.

As SSD technology becomes increasingly mature and

delivers satisfactory performance, we believe, the en-

durance issue of SSDs, particularly high-density MLC

SSDs, opens many new research opportunities and

should receive more attention from researchers.

Acknowledgments

We are grateful to our shepherd Dr. Christos Karamano-

lis fromVMware® and the anonymous reviewers for their

constructive comments. We also thank our colleague Bill

Bynum for reading this paper and his suggestions. This

research was partially supported by the NSF under grants

CCF-0620152, CCF-072380, and CCF-0913150.

References

[1] FIPS 180-1, Secure Hash Standard, April 1995.

[2] Hadoop. http://hadoop.apache.org/, 2010.

[3] Personal communications with an SSD architect, 2010.

[4] SimpleScalar 4.0. http://www.simplescalar.com/v4test.html,

2010.

[5] SSD extension for DiskSim simulation environment.

http://research.microsoft.com/en-us/downloads/b41019e2-

1d2b-44d8-b512-ba35ab814cd4/, 2010.

[6] AGRAWAL, N., PRABHAKARAN, V., WOBBER, T., DAVIS,

J. D., MANASSE, M., AND PANIGRAHY, R. Design tradeoffs

for SSD performance. In Proceedings of USENIX’08 (Boston,

MA, June 2008).

[7] ANDERSEN, D. G., AND SWANSON, S. Rethinking flash in the

data center. In IEEE Micro (July/Aug 2010).

[8] ARM. Cortex R4. http://www.arm.com/products/

processors/cortex-r/cortex-r4.php, 2010.

[9] BALAKRISHNAN, M., KADAV, A., PRABHAKARAN, V., AND

MALKHI, D. Differential RAID: Rethinking RAID for SSD Reli-

ability. In Proceedings of EuroSys’10 (Paris, France, April 2010).

90 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

[10] BARROSO, L. A. Warehouse-scale computing. In Keynote in the

SIGMOD’10 conference (Indianapolis, IN, June 2010).

[11] BHAGWAT, D., ESHGHI, K., LONG, D. D. E., AND LILLIB-

RIDGE, M. Extreme binning: Scalable, parallel deduplication for

chunk-based file backup. In Proceedings of MASCOTS’09 (Lon-

don, UK, September 2009).

[12] BLOOM, B. H. Space/time trade-offs in hash coding with allow-

able errors. In Communications of the ACM (1970), vol. 13(7),

pp. 422–426.

[13] BOBOILA, S., AND DESNOYERS, P. Write endurance in flash

drives: Measurements and analysis. In Proceedings of FAST’10

(San Jose, CA, February 2010).

[14] BUCY, J., SCHINDLER, J., SCHLOSSER, S., AND GANGER, G.

DiskSim 4.0. http://www.pdl.cmu.edu/DiskSim, 2010.

[15] CHEN, F., JIANG, S., AND ZHANG, X. SmartSaver: Turning

flash drive into a disk energy saver for mobile computers. In

Proceedings of ISLPED’06 (Tegernsee, Germany, October 2006).

[16] CHEN, F., KOUFATY, D. A., AND ZHANG, X. Understand-

ing intrinsic characteristics and system implications of flash

memory based solid state drives. In Proceedings of SIGMET-

RICS/Performance’09 (Seattle, WA, June 2009).

[17] CHEN, F., LEE, R., AND ZHANG, X. Essential roles of exploit-

ing internal parallelism of flash memory based solid state drives

in high-speed data processing. In Proceedings of HPCA’11 (San

Antonio, TX, Feb 2011).

[18] CHEN, S. FlashLogging: Exploiting flash devices for syn-

chronous logging performance. In Proceedings of SIGMOD’09

(Providence, RI, June 2009).

[19] DEBNATH, B., SENGUPTA, S., AND LI, J. ChunkStash: Speed-

ing up inline storage deduplication using flash memory. In Pro-

ceedings of USENIX’10 (Boston, MA, June 2010).

[20] DIRIK, C., AND JACOB, B. The performance of PC solid-state

disks (SSDs) as a function of bandwidth, concurrency, device,

architecture, and system organization. In Proceedings of ISCA’09

(Austin, TX, June 2009).

[21] GAL, E., AND TOLEDO, S. Algorithms and data structures for

flash memories. In ACMComputing Survey’05 (2005), vol. 37(2),

pp. 138–163.

[22] GRUPP, L. M., CAULFIELD, A. M., COBURN, J., SWANSON,

S., YAAKOBI, E., SIEGEL, P. H., AND WOLF, J. K. Character-

izing flash memory: Anomalies, observations, and applications.

In Proceedings of MICRO’09 (New York, NY, December 2009).

[23] GUPTA, A., KIM, Y., AND URGAONKAR, B. DFTL: a flash

translation layer employing demand-based selective caching of

page-level address mappings. In Proceedings of ASPLOS’09

(Washington, D.C., March 2009).

[24] GUPTA, D., LEE, S., VRABLE, M., SAVAGE, S., SNOEREN,

A. C., VARGHESE, G., VOELKER, G. M., AND VAHDAT, A.

Difference Engine: Harnessing memory redundancy in virtual

machines. In Proceedings of OSDI’08 (San Diego, CA, 2008).

[25] INTEL. Intel X25-E extreme SATA solid-state drive.

http://www.intel.com/design/flash/nand/extreme, 2008.

[26] JOSEPHSON, W. K., BONGO, L. A., FLYNN, D., AND LI, K.

DFS: A file system for virtualized flash storage. In Proceedings

of FAST’10 (San Jose, CA, February 2010).

[27] KAWAGUCHI, A., NISHIOKA, S., AND MOTODA, H. A flash-

memory based file system. In Proceedings of USENIX Winter

(New Orleans, LA, Jan 1995), pp. 155–164.

[28] KIM, H., AND AHN, S. BPLRU: A buffer management scheme

for improving random writes in flash storage. In Proceedings of

FAST’08 (San Jose, CA, February 2008).

[29] LEE, S., AND MOON, B. Design of flash-based DBMS: An in-

page logging approach. In Proceedings of SIGMOD’07 (Beijing,

China, June 2007).

[30] LILLIBRIDGE,M., ESHGHI, K., BHAGWAT, D., DEOLALIKAR,

V., TREZISE, G., AND CAMBLE, P. Sparse indexing: Large

scale, inline deduplication using sampling and locality. In Pro-

ceedings of FAST’09 (San Jose, CA, 2009).

[31] MAKATOS, T., KLONATOS, Y., MARAZAKIS, M., FLOURIS,

M. D., AND BILAS, A. Using transparent compression to im-

prove SSD-based I/O caches. In Proceedings of EuroSys’10

(Paris, France, April 2010).

[32] MENEZES, A. J., V. OORSCHOT, P. C., AND VANSTONE, S. A.

Handbook of applied cryptography. In CRC Press (1996).

[33] MOHAN, V., SIDDIQUA, T., GURUMURTHI, S., AND STAN,

M. R. How I learned to stop worrying and love flash endurance.

In Proceedings of HotStorage’10 (Boston, MA, June 2010).

[34] NARAYANAN, D., THERESKA, E., DONNELLY, A., ELNIKETY,

S., AND ROWSTRON, A. Migrating enterprise storage to SSDs:

analysis of tradeoffs. In Proceedings of EuroSys’09 (Nuremberg,

Germany, March 2009).

[35] NETCONSOLE. http://www.kernel.org/doc/Documentation/ net-

working/netconsole.txt, 2010.

[36] PRABHAKARAN, V., BALAKRISHNAN, M., DAVIS, J. D., AND

WOBBER, T. Depletable storage systems. In Proceedings of

HotStorage’10 (Boston, MA, June 2010).

[37] PRABHAKARAN, V., RODEHEFFEER, T. L., AND ZHOU, L.

Transactional flash. In Proceedings of OSDI’08 (San Diego, CA,

December 2008).

[38] PRITCHETT, T., AND THOTTETHODI, M. SieveStore: A highly-

selective, ensemble-level disk cache for cost-performance. In

Proceedings of ISCA’10 (Saint-Malo, France, June 2010).

[39] RAMAKRISHNAN, R., AND GEHRKE, J. Database managment

systems. McGraw-Hill, 2030.

[40] RIVEST, R. The MD5 message-digest algorithm.

http://www.ietf.org/rfc/rfc1321.txt, April 1992.

[41] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and

implementation of a log-structured file system. In ACM Transac-

tions on Computer Systems (1992), vol. 10(1):26-52.

[42] SOUNDARARAJAN, G., PRABHAKARAN, V., BALAKRISHNAN,

M., AND WOBBER, T. Extending SSD lifetimes with disk-based

write caches. In Proceedings of FAST’10 (San Jose, CA, February

2010).

[43] SUN, G., JOO, Y., CHEN, Y., NIU, D., XIE, Y., CHEN, Y.,

AND LI, H. A hybrid solid-state storage architecture for the per-

formance, energy consumption, and lifetime improvement. In

Proceedings of HPCA’10 (Bangalore, India, Jan 2010).

[44] TSIROGIANNIS, D., HARIZOPOULOS, S., AND SHAH, M. A.

Query processing techniques for solid state drives. In Proceed-

ings of SIGMOD’09 (Providence, RI, June 2009).

[45] UNGUREANU, C., ATKIN, B., ARANYA, A., GOKHALE, S.,

RAGO, S., CALKOWSKI, G., DUBNICKI, C., AND BOHRA,

A. HydraFS: A high-throughput file system for the HYDRAstor

content-addressable storage system. In Proceedings of FAST’10

(San Jose, CA, 2010).

[46] WIKIPEDIA. Battery or supercap. http://en.wikipedia.org/wiki/

Solid-state-drive#Battery or SuperCap, 2010.

[47] ZHU, B., LI, K., AND PATTERSON, H. Avoiding the disk bottle-

neck in the data domain deduplication file system. In Proceedings

of FAST’08 (San Jose, CA, 2008).

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 91

Leveraging Value Locality in Optimizing NAND Flash-based SSDs

Aayush Gupta, Raghav Pisolkar, Bhuvan Urgaonkar, and Anand Sivasubramaniam
{axg354,rvp116,bhuvan,anand}@cse.psu.edu

Department of Computer Science and Engineering
The Pennsylvania State University, University Park 16802, PA

Abstract: NAND flash-based solid-state drives (SSDs)
are increasingly being deployed in storage systems at dif-
ferent levels such as buffer-caches and even secondary
storage. However, the poor reliability and performance
offered by these SSDs for write-intensive workloads con-
tinues to be their key shortcoming. Several solutions
based on traditionally popular notions of temporal and
spatial locality help reduce write traffic for SSDs. How-
ever, another form of locality - value locality - has re-
mained completely unexplored. Value locality implies
that certain data items (i.e., “values,” not just logical ad-
dresses) are likely to be accessed preferentially. Given
evidence for the presence of significant value locality
in real-world workloads, we design CA-SSD which em-
ploys content-addressable storage (CAS) to exploit such
locality. Our CA-SSD design employs enhancements
primarily in the flash translation layer (FTL) with min-
imal additional hardware, suggesting its feasibility. Us-
ing three real-world workloads with content information,
we devise statistical characterizations of two aspects of
value locality - value popularity and temporal value lo-
cality - that form the foundation of CA-SSD. We observe
that CA-SSD is able to reduce average response times by
about 59-84% compared to traditional SSDs. Even for
workloads with little or no value locality, CA-SSD con-
tinues to offer comparable performance to a traditional
SSD. Our findings advocate adoption of CAS in SSDs,
paving the way for a new generation of these devices.

1 Introduction and Motivation

NAND flash-based SSDs offer several advantages over
magnetic hard disks: lower access latencies, lower power
consumption, lack of noise, and higher robustness to
vibrations and temperature. Several researchers have
explored the performance benefits of employing these
SSDs, either as complete replacements for magnetic
drives or in supplementary roles (e.g., caches) [23].
Whereas a number of other non-volatile memory tech-

nologies - phase-change, ferroelectric, and magnetic
RAM - exist at different levels of maturity and offer
similar benefits, cost/feasibility projections suggest that
NAND flash (simply flash, henceforth) is likely to be at
the forefront of these significant changes in storage for
the next decade [17]. Another trend from EMC sug-
gests that SSD prices will continue to fall to the extent
of becoming cheaper than 15K RPM HDDs by 2017 [7].
Thus, exploring ways to further improve flash technol-
ogy and its use in designing better storage systems will
continue to be worthwhile pursuits in the coming years.
Flash is a unique memory technology due to the sen-
sitivity of its reliability and performance to write traf-
fic. A flash page (the granularity of reads/writes) must
be erased before it may be written. Erases occur at the
granularity of blocks which contain multiple pages. Fur-
thermore, blocks become unreliable after 5K-100K erase
operations [38, 39, 37]. This erase-before-write property
of flash necessitates out-of-place updates to prevent the
relatively high latency of erases from affecting the per-
formance of writes. These out-of-place updates create
invalid pages that contain older versions of data requir-
ing garbage collection. This further exacerbates the re-
liability/performance concerns by introducing additional
write operations. Techniques that reduce the number of
writes to SSDs are, therefore, desirable and have received
a lot of attention. Existing approaches for write reduction
have relied on exploiting the presence of (i) temporal lo-
cality (e.g., buffering writes within file system/SSD/other
media to eliminate duplicate writes to flash [24, 46, 45]),
and/or (ii) spatial locality (e.g., coalescing multiple sub-
page writes into fewer page writes [30]) within work-
loads. However, there is yet another dimension of lo-
cality - value locality - that has remained unexplored for
flash SSDs. The presence of value locality in a work-
load means that it preferentially accesses certain content
(i.e., values) over others. This property facilitates data
de-duplication (storing only one copy of each unique
value), which is especially attractive for SSDs as it nat-

1

92 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

urally offers the write reduction that these devices can
benefit from: a SSD employing such data de-duplication
need not do an additional write of a value that it has al-
ready stored. This benefit applies even if the two writes
belong to entirely different logical addresses and even in
the absence of any temporal/spatial correlation between
these two writes. Data de-duplication can also reduce
read traffic, with additional performance benefits.
Content addressable storage (CAS) is a popular de-
duplication technique which operates on data by dividing
it into non-intersecting chunks, and employing a crypto-
graphic hash to represent each chunk. By storing only
unique hashes (and their corresponding data chunks), du-
plicate chunks in data are removed. Hashing can result
in collisions where different data blocks can be mapped
to the same value. However, it has been shown that
such collisions are practically unlikely, with probabili-
ties in the range 10−9 − 10−17 [40, 42] for MD5 and
SHA-1. Additionally, techniques to further reduce this
probability to as low as 10−46 have been shown to be
feasible [40, 43]. Thus, consistent with most CAS re-
search [12, 42, 35], we also assume hash functions to
be collision-resistant. CAS has been extensively used in
archival and backup systems [42, 43, 14], but its bene-
fits specific to SSDs have not been explored. Whereas
SSDs could benefit from existing host-level (e.g., file
system [47]) implementations of CAS, thereby reducing
I/O traffic, there is significant motivation to realize this
functionality within the device itself. It allows incorpora-
tion of value locality without requiring any modifications
to the upper layers (filesystem, block layer etc.), thus al-
lowing quick adoption in existing systems. Several SSD
optimizations that rely upon information about flash data
layout are better implemented within the SSD. For ex-
ample, garbage collection efficiency can be improved by
using data placement policies which reduce overheads of
copying valid pages. Also, scalability of a CAS-based
scheme crucially depends on its ability to carry out fast
calculations/look-ups of hashes. This can be achieved by
using dedicated hardware such as that increasingly avail-
able in SSDs (e.g., those with Full Disk Encryption ca-
pabilities [5, 44, 41]), relieving the host of these compu-
tational overheads.

Key Choices and Challenges: A number of interest-
ing design choices and challenges arise when designing
a SSD that employs CAS for its internal data manage-
ment. First, in order to maintain compatibility with ex-
isting storage software, we choose that our SSD continue
to expose its existing block interface. Modifications to
the SSD interface such as nameless writes [11] can po-
tentially benefit CA-SSD but require changes to the up-
per layers. Second, employing CAS necessitates sev-
eral enhancements to the data structures maintained by

our SSD’s flash translation layer (FTL). This increased
“meta-data” puts additional pressure on the scarce on-
SSD RAM and must be managed carefully. Third, data
de-duplication renders ineffective existing mechanisms
employed by the FTL to recover its meta-data after power
failures. Existing FTLs store information about the logi-
cal address (LPN) stored on a flash page in a special re-
gion called the out-of-band area (OOB) within the page
itself. Due to de-duplication with CAS, a given page
may correspond to multiple LPNs (different LPNs may
contain the same content) , and thus, its OOB area can-
not be used as before. Fourth, with CAS the notion of
when a page becomes invalid changes - a page should
now be invalidated only when all the LPNs having that
content have written a “different content” - implying a
re-consideration of the design of the garbage collector.
Finally, whereas we design our SSD to exploit value lo-
cality whenever present, we would like it not to exhibit
degraded performance or reliability than a state-of-the-
art SSD in the absence of such locality.

Research Contributions: Wemake the following con-
tributions in this paper.

• We propose CA-SSD, a flash solid-state drive that
employs CAS for internal data management and ad-
dresses all the concerns outlined above. We demon-
strate how CA-SSD functionality can be achieved
mostly by modifying the FTL and with minimal
support in the form of additional hardware com-
pared to traditional SSDs. This additional hardware
is similar to that already present in many state-of-
the-art SSDs.

• We identify and characterize salient aspects of value
locality- value popularity and temporal value local-
ity and design CA-SSD algorithms to exploit them.

• Using three real-world workloads with content in-
formation, we evaluate the efficacy of CA-SSD by
simulations. We observe that CA-SSD is able to re-
duce the average response times by about 59–84%
for these workloads. Additionally, from 10 real-
world traces, we synthesize workloads with differ-
ent degrees of value locality. We find that CA-SSD
consistently outperforms traditional SSD with even
small degrees of locality and offers comparable per-
formance when there is little or no value locality.

The rest of this paper is organized as follows. In Sec-
tion 2 we provide an overview of the design of our CA-
SSD comparing it to traditional SSDs. We discuss key
aspects of value locality that affect CA-SSD design in
Section 3. We design CA-SSD using insights gained in
Section 4 and evaluate it in Section 5. Finally, we present
related work in Section 6 and conclude in Section 7.

2

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 93

2 Overview of Our CA-SSD

Type

Data Unit Access Time Lifetime
Page (Bytes) Block Read Write Erase Write/Erase
Data OOB (Bytes) (us) (us) (ms) (cycles)

SLC1 2048 64 128K+4K 25 200 1.5 100K
SLC2 4096 128 256K+8K 25 500 1.5 100K
MLC 4096 224 512K+28K 60 800 2.5 5K

Table 1: SLC & MLC NAND Flash characteristics [38, 39,
37]. SLC1/SLC2 represent SLC SSDs with different page
sizes. Read/write latencies are at the granularity of pages while
erase latencies are for blocks.

In this section, we describe how a flash-based SSD
works and provide an overview of the changes to imple-
ment our CA-SSD.

2.1 Flash Solid-State Drives: A Primer
Figure 1(a) presents the key components of a traditional
NAND flash-based SSD. In addition to the read and write
operations which are performed at the granularity of a
page, flash also provides an erase operation which is
performed at the granularity of a block (composed of
64-128 pages). The coarser spatial granularity of erases
makes them significantly slower than reads/writes. Fur-
thermore, there is an asymmetry in read and write la-
tencies, with writes being slower than reads. Blocks are
further arranged in planes which can allow simultane-
ous operations through multi-plane commands thus im-
proving performance [10]. In this paper, we only con-
sider a single plane and our ideas and results apply read-
ily to multiple planes. A page must first be erased be-
fore it can be written. The erase-before-write property of
flash memory necessitates out-of-place updates to pre-
vent the relatively high latency of erases from affecting
the performance of updates. These out-of-place updates
result in invalidation of older versions of pages requir-
ing Garbage Collection (GC) to reclaim certain invalid
pages in order to create room for newer writes. At a high
level, GC operates by erasing certain blocks after relo-
cating any valid pages within them to new pages. A fi-
nal characteristic concerns the lifetime of flash memory,
which is limited by the number of erase operations on its
cells. Each block typically has a lifetime of 5K(MLC) or
100K(SLC) erase operations. Wear leveling (WL) tech-
niques [20, 22, 32] are employed by the FTL to maintain
similar lifetime for all the blocks. Table 1 presents repre-
sentative values for the operational latencies, page/block
sizes, and lifetime for two main flash technologies (SLC
and MLC) [38, 39, 37]. We consider SLC-based flash in
this work, although our ideas apply equally to MLC.
The Flash Translation Layer (FTL) is a software layer
that helps in emulating an SSD as a block device by hid-

ing the erase-before-write characteristics of flash mem-
ory. The FTL consists of three main logical compo-
nents: (i) a Mapping Unit that performs data placement
and translation of logical-physical addresses, (ii) the GC,
and (iii) the WL. A key data structure maintained by the
FTL is a Mapping Table which stores address transla-
tions. Upon receiving a write/update request for a logical
page the FTL: (i) chooses an erased physical page where
it writes this data, (ii) invalidates the previous version (if
any) of the page in question, and (iii) updates its map-
ping table to reflect this change. The Mapping Table is
typically stored on SSD’s RAM to allow fast translation1.

2.2 SSD Enhancements for CAS
In Figure 1(b), we present the additional compo-
nents/functionality (compared to a traditional drive) re-
quired by CA-SSD. For both devices, we also show the
steps involved in processing requests coming from the
block device driver to help understand the difference in
their operation. We refer to the FTL in CA-SSD as CA-
FTL. Read requests are handled identically in both the
SSDs and so we only focus on write requests. Whereas a
traditional SSD requires all writes to be sent to physical
pages, CA-SSD returns a write request without requiring
flash page writes if hashes, representing their content, are
found in RAM. We require four key enhancements to a
traditional SSD to achieve this functionality.
(i) Hashing Unit: CA-FTL requires the ability to com-

pute/compare content hashes such that these operations
only degrade the CA-SSD performance to a negligible
(or tolerable) extent. To ensure this, we propose to em-
ploy a dedicated co-processor to implement our hash-
ing unit. Recently, manufacturers like OCZ [5], Sam-
sung [44] and pureSilicon [41] have developed high per-
formance SSDs with on-board cryptographic processors,
suggesting that the desired fast hashing is feasible.
(ii) Additional Meta-data: Mapping Unit must main-

tain additional data structures for CAS that puts addi-
tional pressure on the on-SSD RAM. These structures
represent CA-FTL’s meta-data (to be distinguished from
the meta-data for software such as the file system) and
the portion of on-SSD RAM used for storing it is re-
ferred as the meta-data cache. We describe these data
structures and space-efficient ways of managing them in
Section 4.1.
(iii) Persistent Meta-data Store: Our CA-SSD de-

sign necessitates a re-consideration of the mechanism
for recovering the contents of the meta-data cache after
a power failure. When writing a physical page (PPN),
a traditional FTL also stores the logical page number
(LPN) in a special-purpose part of the PPN called the
1An SSD typically has a small SRAM and a larger DRAM cache

whose size is in the range 64-512 MB for an SSD with capacity 256-
1024 GB [1, 6]. We ignore this distinction in our discussion.

3

94 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Figure 1: Components of a CA-SSD compared to traditional SSD. CA-SSD has two new hardware elements: (i) a
hashing co-processor and (ii) a battery-backed RAM (BB-RAM). Furthermore, CA-SSD stores hashes instead of LPN
in the page OOB area. Also shown is a comparison of how writes are handled in the two devices. (a) Traditional SSD:
(1-2) On receiving a write request from device driver, SSD controller issues a flash page write. (3-4) On completion,
the Mapping Table in the volatile RAM is updated and driver is notified of request completion. (b) CA-SSD: (1-2) On
receiving a write request, the SSD controller sends the content to the hash co-processor for hash computation. (3-4)
The returned hash is then looked up in the Mapping Table in the BB-RAM. (5-6(a)) On a hit, the mapping structures
are updated and the request completes. (5-9(b)) On a miss, a flash page write is performed, mapping structures are
updated and the request is completed.

out-of-band (OOB) area, which is typically 64-224 B in
size. After a power failure, these entries in the OOB
are used to reconstruct the LPN-to-PPN mappings. In
CA-FTL, multiple LPNs may contain the same value and
hence correspond to the same PPN. The OOB area may
not have enough room for all these LPNs. Furthermore, a
value can be associated with a changing set of LPNs over
its lifetime, requiring multiple writes to the same OOB
area, with corresponding erase/copying operations. We
address this difficulty by requiring that CA-FTL’s Map-
ping Table be kept in a fast persistent storage in the first
place, without any need to store a copy on flash. Storing
a copy on flash would result in large number of meta-
data writes on flash increasing the number of flash page
writes. An alternative approach could be to perform peri-
odic check-pointing of Mapping Table instead of imme-
diate writes on flash to reduce the number of meta-data
writes, thereby providing weaker guarantees on meta-
data consistency. In order to provide consistency guaran-
tees similar to existing SSDs without impacting the over-
all performance, we employ persistent battery-backed
RAM. We indicate this as BB-RAM in Figure 1(b).
Write caches based on such battery-backed DRAM are
commonly used in RAID controllers [3]. Even SSDman-
ufacturers have started providing battery-backed DRAM
as a standard feature to deal with power failures [5, 4].
Such SSDs with both battery-backed DRAM as well as
on-board cryptographic processors have similar perfor-
mance and costs as compared to traditional SSDs [5]
mitigating performance and cost concerns for CA-SSD.
Recent work has considered employing other persistent
media (e.g., PCM [45] and even hard disk [46]) for SSD

write optimizations, and exploring such alternatives for
CA-SSD meta-data cache is part of future work.
(iv) Re-design of GC: CAS results in a change to GC.

In conventional FTLs, each update results in the invalida-
tion of a page requiring an eventual erase operation. But
CA-FTL only needs to invalidate a page when no LPN
points to the value in that page. This redefines the way
garbage is created and distributed in blocks impacting the
efficiency of GC. We study these issues in Section 4.2.
We do not modify WL policy in this work and assume
CA-SSD continues to employ the default WL.

3 Value Locality Characterization

We describe two aspects of value locality (VL) that have
performance/lifetime implications for a CA-SSD. We
propose ways to express these aspects statistically and
discuss their implications for possible improvements in
CA-SSD. Throughout our discussion, we employ three
workload traces [26] described in Table 2 to present ex-
amples of our VL characterization. homes represents a
file server of the home directories of a research group
in FIU’s CIS department. A major source of content
similarity in this workload can be attributed to work
done by different members of the group on copies of
same software codes, technical documents etc. present
in their directories. mail has been collected from the
e-mail server of the same department containing simi-
lar mailing-list emails and circulated attachments result-
ing in content similarity across user INBOXes. Finally,
web is their Web server workload consisting of virtual
machines hosting an online course management system

4

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 95

0 0.5 1 1.5 2 2.5 3
x 105

0

0.2

0.4

0.6

0.8

1

Values

C
um

ul
at

iv
e

Fr
ac

tio
n

of
 A

cc
es

se
s

Write
Read

0 2 4 6 8
x 105

0

0.2

0.4

0.6

0.8

1

Values

C
um

ul
at

iv
e

Fr
ac

tio
n

of
 A

cc
es

se
s

Write
Read

0 0.5 1 1.5 2 2.5 3
x 105

0

0.2

0.4

0.6

0.8

1

Values

C
um

ul
at

iv
e

Fr
ac

tio
n

of
 A

cc
es

se
s

Write
Read

(a) web (b) mail (c) homes

Figure 2: Value popularity in real-world workloads (1 day traces). The x-axis consists of unique values sorted accord-
ing to their read or write popularity. That is, a given point on the x-axis might correspond to different values for reads
and writes. We also show the number of unique values that correspond to 50% of all write requests.

Size % Req. Unique Request (%) Seq.
Workload (GB)Writes (mill.) Write Read %
web 1.95 77.01 3.8 42.35 32.05 83.8
mail 4.22 77.32 3.6 7.83 80.85 94.7
homes 3.02 96.76 4.4 66.37 80.75 70.8

Table 2: Workload statistics. Workload duration varies
from 1 day (mail) to 7 days (web,homes). Size repre-
sents the total number of unique LPNs accessed in the
trace over the mentioned duration and hence represents a
compacted trace without any intermediate non-accessed
LPNs (The SSD size chosen for evaluation is 4GB for
homes & web and 6GB for mail). The logical address
space exposed to the file-system is much larger [26].
Unique Request denotes the fraction of write(read) re-
quests which write(read) unique 4KB chunks. Requests
are deemed sequential(seq.) if they access consecutive
LPNs.

and email access portal. These workloads are primar-
ily write-dominant, especially homes, which has about
97% write requests. Individual requests in these work-
loads are of size 4KB, along with a 16B hash(MD5) of
the contents.

Value Popularity (VP): The most straightforward
characterization of VL represents the popularity (num-
ber of occurrences) of each unique value, for both reads
and writes separately. The VL for writes and reads have
different implications for CA-SSD: whereas the former
captures reduction in write traffic offered by caching
the corresponding (value, LPN, physical page) informa-
tion in the meta-data cache, the latter captures reduc-
tion in reads due to caching the corresponding content
in the content cache. Table 2 shows the high VP ex-
hibited by real-world workloads. For instance, mail has
only 7.83% unique write requests, representing a huge

potential for de-duplicating the remaining 2.63 million
writes. Similarly, web and homes can provide 57.65%
and 33.63% write reductions respectively, improving the
performance and lifetime of SSDs substantially. Further-
more, only a small fraction of writes in these workloads
are due to same values being written at the same lo-
cations. For example, about 8% overall writes in mail
and homes are due to same LPN writing the same con-
tent successively. A majority of duplicate writes are at-
tributed to same content being written to different lo-
cations requiring sophisticated CAS-based scheme for
de-duplication. In Figure 2, we present VP (as CDFs)
for reads and writes for the three workloads. A given
point on the x-axis can correspond to different values for
reads/writes.
The following insights and observations emerge from

our definition and these statistics. First, all these work-
loads exhibit significant skewness in VP, i.e, a small frac-
tion of total values account for large number of accesses.
For example, the fraction of total unique values that ac-
count for 50% of the overall writes are 14.44%, 8.84%,
and 29.99% for homes, mail and web respectively(shown
by dotted lines). Therefore, pinning these values in
the meta-data cache can offer write traffic reduction of
35.56%, 41.16%, and 20.01%, respectively. Similar
benefits apply for reads upon caching the most popu-
lar (value, content) pairs in the content cache. Second,
we find that these workloads exhibit different degrees
of value popularity (e.g., homes has higher VP for reads
than mail, while mail has higher VP for writes) implying
different degrees of potential benefits for reads/writes.

Temporal Value Locality (TVL): The presence of
TVL in a workload implies that if a certain value (as
opposed to LPN) is accessed now, it is likely to be ac-
cessed again in the near future, not necessarily by the
same LPN. We distinguish TVL for writes and reads to
be able to differentiate benefits that could be obtained

5

96 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

0 0.5 1 1.5 2 2.5 3
x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position in LRU Queue

C
um

ul
at

iv
e

Fr
ac

tio
n

of
 W

rit
e

R
eq

ue
st

s

Value
LPN

0 500 1000 1500
0

0.2

0.4

0.6

0.8

0 1 2 3 4 5
x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position in LRU Queue

C
um

ul
at

iv
e

Fr
ac

tio
n

of
 W

rit
e

R
eq

ue
st

s

Value
LPN

0 2 4 6 8
x 104

0

0.2

0.4

0.6

0.8

0 0.5 1 1.5 2 2.5 3
x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position in LRU Queue

C
um

ul
at

iv
e

Fr
ac

tio
n

of
 W

rit
e

R
eq

ue
st

s

Value
LPN

0 5000 10000 15000
0

0.2

0.4

0.6

0.8

(a) web (b) mail (c) homes

Figure 3: Temporal value locality and temporal locality(labeled LPN) for writes in real-world workloads (1 day traces).
We show the meta-data cache size that can contribute to 90% of the total writes.

from the use of meta-data vs. content caches. We mod-
ify a standard way of characterizing LPN-based temporal
locality for representing TVL [21]. For each workload,
assuming the meta-data cache to be managed as a queue
with a least-recently-used (LRU) eviction policy for val-
ues, we present CDFs of number of writes of the value
at the (i + 1)st(i ≥ 0) location within the LRU queue in
Figure 3.

1 2 4 8 16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1

Cache Size (x 1K hashes)

M
is

s
ra

te
 o

f p
op

ul
ar

 v
al

ue
s

Homes(1)
Mail(1)
Web(1)
Homes(2)
Web(2)
Mail(2)

Figure 4: Cache miss rate for popular values. The num-
ber in brackets represent the length of the trace in number
of days. Note that popular values denotes the minimum
number of values which account for 50% of accesses in
the workload. The cache size on the X-axis (logscale) is
in terms of 1K hashes.

Implications for writes: The presence of TVL for writes
implies that even a small meta-data cache could achieve
high hit rates to provide write reduction. For example,
the maximum size of the meta-data cache required for
storing all the values in the 1 day trace of homes is around
7.5MB (each entry in this cache requires 28B for stor-
ing the hashing structures as we explain in Section 4.1).
However, 90% of writes for homes are satisfied within
11046 positions in the LRU queue requiring only about
600KB in the meta-data cache, thus reducing the space

requirements by about 96%. Even mail which shows
lesser TVL provides savings of approximately 65% for
achieving 90% hit rate.
Clearly the size of meta-data cache affects these gains.

Figure 4 shows the miss rate for popular value lookups
done for writes as a function of different sizes of this
cache. Additionally, we use portions of the workloads
over 1-day and 2-day periods and find that TVL sustains
over this duration. We find that for our workloads, a
LRU cache based on TVL is able to hold popular val-
ues, thus offering an easy way to implement a technique
that can recognize VP. Whereas in our workloads, TVL
and skewness in VP occur together, generally speaking,
these could be mutually exclusive. For example, it may
be the case that for a workload with high TVL, all val-
ues are equally popular, i.e., have comparable number
of write accesses, thus displaying low skewness in VP.
Alternately, a workload with high skewness(in VP) can
exhibit low TVL if the popular values have a long time
gap between successive accesses. We design CA-SSD
so that it can exploit these properties whenever present,
but not experience degraded performance (compared to a
regular SSD) when these are absent.
Implications for reads: We observe higher TVL than
temporal locality even for reads suggesting that, for these
workloads, a value-based content cache is likely to out-
perform one using LPNs and offer reduction in read traf-
fic to the SSD. Similar observation was made in [26] for
developing a content based cache for improving I/O per-
formance in the context of HDD-based storage.
Finally, one could also consider a notion of spatial

value locality (SVL). The principal of spatial locality, as
used conventionally, can be stated as follows: if (con-
tent corresponding to) a logical address X is accessed
now, addresses in the neighborhood of X are likely to
be accessed in the near future. SVL emerges from a
generalized take on what the neighborhood or proxim-
ity of a data item means. It posits that a given value,
even when part of different logical data items, is likely

6

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 97

to see similarities among the values in its neighborhood.
Stated another way, spatial value locality hypothesizes
that there might exist positive correlations among cer-
tain values in terms of their closeness with respect to
their addresses within (possibly multiple) logical data
objects. SVL has been used for handling disk bottleneck
for meta-data management in CAS systems for backup
applications by prefetching key-value pairs which are ac-
cessed together [48]. For SSDs, it can provide additional
benefits for reads when sub-page level chunks are used.
We do not explore SVL or other optimizations for reads
in this work and leave it as part of our future work.

4 Design of CA-FTL

We develop the CA-FTL mapping unit and GC based on
the issues discussed in Section 2. We assume a CAS
chunk unit to be equal to the flash page size.

4.1 The CA-FTL Mapping Unit
Address Translation and Meta-data Management:
As discussed in Section 2, CA-FTL requires additional
data structures for maintaining information about hashes
and their relationship with LPNs. Figure 5(b) shows the
data structures we employ to realize CA-FTL’s Mapping
Unit. We assume address translations to be kept at the
granularity of a page. Such page-level mappings have
been shown to be desirable and scalable in recent re-
search [16, 25]. First, similar to existing FTLs, we have a
table called LPT which stores translations between LPNs
to PPNs. Each entry requires 4B for storing the LPN and
another 4B for PPN. Thus, the maximum space needed
for LPT in a 4GB SSD is 8MB (for 100% flash utiliza-
tion). Second, an inverted LPT (iLPT) stores the list
of LPNs that correspond to the same value and thus the
same PPN. The iLPT is used to keep track of valid val-
ues. If the LPN list for a PPN is empty, it signifies that
no LPN stores the value present in that PPN and the page
should be invalidated. The iLPT is queried during GC
and WL for updating the LPT whenever the PPN stor-
ing a value changes. Third, we use a hash-to-PPN table
(HPT) to store hash to PPN mappings that is looked up
on a write request to decide whether the write is for an
existing value (no flash write needed) or a new value (re-
quires a flash write). Entries are inserted or updated in
the HPT upon (i) a write request with a new value or (ii)
a page write due to GC/WL, respectively. Page invalida-
tions result in removal of entries. Each hash is 16-20B
long depending on the hashing algorithm used (16B for
MD5 and 20B for SHA1) whereas a PPN is 4B long. For
a 4GB SSD, the maximum space needed for the HPT
is 20-24MB since the maximum number of PPNs it can
store is 1M. All further discussion is in context withMD5

hashes present in the available real-world workloads but
our ideas apply readily for SHA1 hashes also. Fourth,
we employ an inverted HPT (iHPT) which maps PPNs
to hashes by storing the addresses of the corresponding
HPT entries. It stores the same number of valid entries as
HPT.When a flash page is invalidated, iHPT provides the
address of the corresponding HPT entry to be removed
without incurring an OOB read.
Let us now understand how to deal with space over-

heads of these data structures. (i) Gupta et al. [16]
have proposed page based FTL which exploits tempo-
ral locality in workloads to reduce the LPT space re-
quirements. As shown in Figure 3, real-world work-
loads also demonstrate significant temporal locality apart
from TVL. Thus, we can utilize variants of page-based
FTLs to reduce the space requirements by only storing
a subset of the LPT/iLPT in our BB-RAM. (ii) Since
the HPT/iHPT’s space needs can be prohibitively large
(recall that on a 4GB flash, they require up to 28MB of
RAM), we are forced to only store a subset. Given our
findings about the presence of TVL in workloads, we im-
plement the HPT as a cache of hash-to-PPN mappings
employing a LRU eviction policy for writes of values.
The size of this cache could be chosen by CA-FTL based
on how much RAM it can afford to use for meta-data
storage. When all of this cache is occupied, to insert a
new entry we discard the least-recently-used entry from
the HPT and the iHPT. A salient aspect of our strategy
is that, unlike a traditional LRU-based queue, we do not
maintain the remainder of the HPT/iHPT (which does not
fit in RAM) on another storage medium (e.g., the flash
medium itself). On an entry’s eviction from the meta-
data cache, we simply discard it. This saves us potential
flash page writes (write-back of evicted dirty entries) and
reads (mapping entry lookup on a HPT/iHPT miss). This
scheme trades off reduction in RAM occupied for meta-
data for a reduction in the degree of data de-duplication
achieved, since some values may be re-written upon HPT
misses. Our findings on TVL in real workloads in Sec-
tion 3 suggest that such misses are likely to be rare even
for nominal cache sizes. This is shown in Figure 4 where
a cache size of 1.75MB (for storing 64K hashes) yields
miss rates less than 7% for mail. For web and homes,
these miss rates are even smaller, being 0.4% and 4%,
respectively. Thus, most of the discarded entries corre-
spond to less popular values which have low write fre-
quency and less impact on de-duplication efficiency. In
Section 5, we evaluate the performance of CA-SSD with
different meta-data cache sizes. Data/meta-data con-
sistency is not impacted due to this scheme since the
LPT which stores the LPN-to-PPN mappings required
for managing consistency (explained earlier in Section
2.2) is managed independent of this strategy. Further-
more, BB-RAM is only needed for persistent storage of

7

98 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Figure 5: (a) Flowchart depicting how writes are handled by CA-FTL. val represents the content to be written. (b)
Example of write requests: (1) Write request (L3,V3) to a new LPN L3 with a new value V3 results in a flash page
write (P3). Entries are added to all four data structures. (2) Update (L2,V1) results in a HPT hit for H1, the entry
is moved to the head of LRU queue(based on TVL) in HPT. L2 is then added to the the LPN list for P1 in the iLPT
and removed from P2’s list. Since P2’s list (in the iLPT) is now empty, the flash page (P2) is invalidated and the
corresponding entries in HPT and iHPT are removed. (Note that iHPT only stores the address of the corresponding
HPT entry and not the complete hash.)

LPT whereas other mapping structures can be stored on
volatile RAM without impacting consistency.

Handling Read/Write Requests: Read requests in
CA-FTL are handled similar to traditional FTLs. LPT
is looked up to locate the PPN storing the value and its
contents are returned to the upper layers. The flowchart
in Figure 5(a) describes the handling the write/update re-
quests in CA-FTL. On receiving a write request, the hash
of the value for each LPN comprising the request is cal-
culated and the HPT is then looked up with this hash. A
miss is deemed to indicate request for a new value and
a flash page write is issued. If the HPT is fully occu-
pied, the least recently used entry is discarded and the
new (hash, PPN) entry is inserted at the head of the LRU
queue based on TVL. Corresponding updates are made
in the iHPT also. Finally, the LPT and the iLPT are up-
dated. On a hit in the HPT, the entry is moved to the head
of the LRU queue and LPT/iLPT are updated. Further-
more, update requests may result in LPN storing a differ-
ent value, requiring modifications to the mapping entries
for the LPN’s earlier value. If the LPN list in iLPT for the
PPN corresponding to the LPN’s earlier value is empty,
the entry and the physical page on flash are invalidated.
Finally, the HPT/iHPT entries for this PPN are also re-
moved (Note that the eviction strategy may have already

discarded the HPT/iHPT entries, hence not requiring an
explicit removal). Figure 5(b) gives examples describ-
ing the handling of writes in CA-FTL including relevant
meta-data cache management.

4.2 Garbage Collection in CA-FTL
Unlike conventional SSDs where all writes are prop-
agated to flash, CA-SSD only requires one write per
unique value (Wunique) except in the case of meta-data
cache misses (due to limited cache size) where some
duplicate values (Wdup) may also be written. Writes
may also be needed for values which have been invali-
dated/erased (when no LPN points to them) and are re-
born (Wreborn) due to subsequent write requests. Similar
to conventional SSDs, the final component is GC writes
(Wgc) which depends on the number of GC invocations
as well as the number of valid pages copied upon each
such invocation. Therefore, the total writes for a CA-
SSD can be expressed as a sum of these components:
Wtotal = Wunique + Wdup + Wreborn + Wgc.
In traditional SSDs, every LPN update results in inval-
idation of the PPN containing the previous LPN version.
CA-SSD only invalidates pages when the value in them
becomes dead in the sense of no LPN being associated
with it any longer. Thus, garbage is likely to be gener-

8

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 99

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Valid Pages Copied per Block erase

C
um

ul
at

iv
e

Fr
ac

tio
n

of
 B

lo
ck

 E
ra

se
s

CAS
NonCAS

CAS NonCAS
0

10

20

30

40

Av
er

ag
e

pa
ge

 c
op

y/
er

as
e

Figure 6: Cumulative distribution of valid pages in
blocks erased during GC in web workload.

ated at a slower rate in CA-SSD. This coupled with the
reduction in write traffic to flash due to de-duplication
decreases the number of GC invocations for the same
GC policy as in a traditional SSD. The other aspect is the
number of pages copied during GC. As shown in Figure 6
for web, the valid content in the victim blocks is much
lower in CA-SSD as compared to that in traditional SSD.
The average number of pages copied per block decreases
from 33.20 to 8.21, a reduction of about 75.27% with
CA-SSD. This is primarily due to data de-duplication
which reduces the amount of total valid content stored
on flash, in turn increasing the fraction of invalid pages
in victims. These observations lead us to conclude that
existing GCmechanisms should work well even in a CA-
SSD. We evaluate the impact of our choice in Section 5.

5 Experimental Evaluation

5.1 Experimental Setup
We simulate both traditional and CA-SSDs using SSD
simulator [10] which has been integrated into Disksim-
4.0 [19]. The SSD simulator is capable of simulating
both SLC and MLC SSDs with multiple planes and dies.
As described in Section 2, we use SLC SSDs with extra
large pages(SLC2) and single plane in this study (refer
to Table 1 for SSD properties). We have modified the
Disksim interface to use block-based traces with content
hashes. We have implemented the FTL for our CA-SSD
(CA-FTL) with the meta-data cache manintained using
LRU eviction based on TVL. We simulate the hashing
unit in CA-SSD by modeling the overheads (32µs [18])
of performing hash calculation along with their impact
on the queueing delays at the SSD controller. Note that
this is a conservative estimate and the hash calculation
overheads are likely to be much lower in CA-SSD (As
discussed in Section 2.2, SSDs with crypto-units have re-

ported similar performance to traditional SSDs [5]). As
explained earlier, we do not simulate read caching in ei-
ther traditional or CA-SSD.

5.2 Real-world Traces
We first focus on the three real workload traces that were
found to exhibit high VL in Section 3. Figure 7(a) shows
the mean response time comparing the standard SSD
with two CA-SSD configurations: (i) sufficient capac-
ity in its RAM to store HPT/iHPT and (ii) capacity to
store only a fixed number of hashes in RAM. For exam-
ple, storing 128K hashes in HPT/iHPT requires 3.5MB.
We also present mean response times for other meta-data
cache configurations. We note the tremendous perfor-
mance benefits obtained with our CA-SSD compared to
the traditional SSD and the benefits directly correlate to
the value locality/popularity in writes. For instance, the
mail workload, which in Figure 2(b) demonstrates the
highest VP of the three for writes, shows a 84% reduc-
tion in response time with CA-SSD compared to the tra-
ditional SSD. The reductions are substantial for homes
and web as well, which show 59% and 65% improve-
ments in response times.
In order to understand these benefits further, we break

down the write traffic into those that are (a) directly im-
posed by the workload and (b) additional writes imposed
due to GC when valid pages need to be copied across
blocks. The number of writes in each category is shown
in Figure 7(b) for the traditional SSD and our CA-SSD.
Overall, the reductions in write traffic for CA-SSD are
77%, 93% and 70% for web,mail and homes, respec-
tively over a traditional SSD. We see significant reduc-
tions in writes of both categories. The drop in category
(a) is intuititve to follow given the value popularity in
the workloads. Additionally, there is significant reduc-
tion in category (b) writes as well - 94%, 100% and 87%
for web, mail , and homes, respectively. In fact, in per-
centage terms, these GCwrite reductions overshadow the
category (a) reductions. Note that GC overhead is a func-
tion of the amount of garbage in the flash, and the distri-
bution of this garbage across the blocks. Since a page
in CA-SSD is treated as invalid only when all the LPNs
having that content have written a “different value,” it
is less likely to be marked as garbage compared to a
traditional SSD where “any” (including the prior identi-
cal) LPN write necessitates a page invalidation. Further-
more, the decrease in the amount of valid content on the
SSD due to de-duplication directly reduces pages copied
during GC. All these reasons contribute to the substan-
tial benefits that CA-SSD experiences in lower induced
writes/copies compared to a traditional SSD. In fact, for
the mail workload we observe no GC writes since the to-
tal number of unique values seen for this workload fits

9

100 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

10

15

20

25

30

R
es

po
ns

e
Ti

m
e

(m
s)

NON CAS
CAS(infinite)
CAS(16K)
CAS(64K)
CAS(128K)

0

5

10

web mail home

R
es

po
ns

e
Ti

m
e

(m
s)

Workloads

To
ta

lW
rit

es
(in

M
illi

on
s)

GC writes
Workload Writes

To
ta

lW
rit

es
(in

M
illi

on
s)

Workloads
web mail home

100

150

200

250

N
um

be
ro

fe
ra

se
s

(in
th

ou
sa

nd
s) NON CAS

CAS(infinite)
CAS(16K)
CAS(64K)
CAS(128K)

0

50

100

web mail homes

N
um

be
ro

fe
ra

se
s

(in
th

ou
sa

nd
s)

Workloads

(a) Response Time (b) Total Writes (c) Block Erases

Figure 7: Performance of CA-SSD vs traditional SSDs. (b)The reborn writes fraction is extremely low and hence
not shown. The bars for each workload should be read in the following order: NonCAS, CAS(infinite), CAS(16K),
CAS(128K), CAS(256K). Note that CAS(x) represents the meta-data cache size in terms of number of hashes(x) it
can store. For response times, we also present the standard deviation, and observe that CA-SSD offers reduction in the
variance in addition to the average.

within the chosen SSD size without triggering GC.

Another important characteristic is the lifetime of
SSD which depends on the write-erase cycles of blocks.
Higher incoming write traffic results in higher block
erases, reducing the useful lifetime of SSD. Write reduc-
tion benefits from CA-SSD on both workload and GC
writes directly translate into reduced block erases. As
shown in Figure 7(c), the number of block erases in mail
reduces from 47819 to 2876, more than 15-fold decrease.
Similarly, homes and web experience 70% and 77% re-
ductions in block erases, respectively.

In Figure 7, we showed results for CA-SSD with both
unlimited RAM capacity to store the HPT/iHPT, as well
as finite capacities of 16K, 128K, and 256K entries that
require about 450KB, 3.5MB and 7MB of space respec-
tively. Even for meta-data cache capacities less than
1MB, CA-SSD shows significant improvements over tra-
ditional SSD. For example, the mean response time for
homes decreases by about 7ms (for 16K hashes) in CA-
SSD as compared to traditional SSD whereas the block
erases reduce by 65%. As we had seen in Section 3, mail
shows lower TVL for writes and hence requires a larger
meta-data cache to exploit CA-SSD benefits. However,
we note that beyond 128K entries, we observe close to
the infinite CA-SSD behavior for all workloads, reiter-
ating the observations made in Section 3 regarding the
ability to hold a substantial portion of the working set
of the meta-data in these workloads within a relatively
small space because of presence of TVL. 3.5MB of RAM
is a relatively small amount of space to support in to-
day’s SSDs - for instance, a 1TB [6] SSD has 512MB of
DRAM which can be used for storing the meta-data. Re-
gardless of the actual amount of available space to store
this meta-data, CA-SSD can avail of whatever space is
allocated to it, and as we will show in the next subsec-
tion, even “complete absence of value locality” makes

CA-SSD only slightly worse than a traditional SSD.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

zipf parameter(a)

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

Non CAS
web
mail
homes
financial
cello99
proxy
hm
ts
mds
src1

Figure 8: Impact of VL. zipf parameter on X-axis repre-
sents the extent of VP skewness in the workload. Higher
zipf paramter indicates higher skewness in VP. The aver-
age response times on Y-axis are normalized with respect
to average response times for traditional SSDs. Note
that these response times are for unlimited cache-space.
We observe similar response times for meta-data cache
which can store 128K hashes.

5.3 Impact of Value Locality on CA-SSD

We next conduct a more extensive analysis of the impact
of value locality on CA-SSD performance to demonstrate
that it is beneficial across a broad spectrum of work-
load behaviors and not just for the three real workloads
used above which exhibit good value locality. One dif-
ficulty in considering a wide range of workloads is the
lack of real workload traces for which content of each
write is made available in the trace (most traces con-
tain just the timestamp, address and size fields). On
the other hand, considering a purely synthetic workload,

10

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 101

Workload Description Size Requests %
(GB) (in mill.) Writes

financial OLTP 0.50 6.50 79.60
cello99 HP-UX OS 0.46 0.44 70.79
proxy Proxy server 0.33 2.44 95.64
hm H/W Monitor 2.43 11.11 54.74
ts Terminal Server 0.91 4.17 74.06
mds Media Server 3.09 2.89 70.46
src1 Source Control 1.47 5.00 93.73

Table 3: Workload description. Apart from the above 7
workloads, we use mail, web, and homes that were de-
scribed in Section 3. The workload size represents the
total number of unique logical addresses(LPNs) accessed
in the trace. The logical address space exposed to the file
system can be much larger.

may mandate assumptions on parameters - such as ar-
rival rate, sequentiality, temporal locality, etc. - over and
beyond those pertaining to value locality. Instead, we
pick a set of 10 real workload traces(refer to Table 2
and Table 3) that have been studied in prior literature
- financial from UMass [8], cello99 from HP Labs [2],
proxy,hm,ts,mds and src1 from MSR [9] including the
three workloads(homes,web and mail) from FIU [26] .
We use the arrival times, block addresses and sizes from
these traces, and only synthesize the “content”(v) for
the blocks using a zipf distribution, given as: P (vi) =

Cvi
−a, where, C = 1/

N∑
i=1

v
−a
i , N is the total unique

values in the workload and a is the zipf parameter rep-
resenting the skewness in value popularity. Many prior
studies [13] have shown content popularity can be char-
acterized by this distribution. Furthermore, we vary
the exponent(a) characterizing the distribution from 0
(which corresponds to no VP) to 1.0 (which corresponds
to a very highly skewed VP behavior). In the experi-
ments, we use this zipf probability distribution to pick a
value for each incoming request. This exercises only the
popularity of values and ignores the spatial and tempo-
ral dimensions of value locality, and can thus be viewed
as a pessimistic evaluation of CA-SSD since any spa-
tial/temporal VL will only benefit it further (and not af-
fect the performance of a traditional SSD which only re-
lies on LPN-based spatial/temporal locality). Figure 8
shows mean response times for these workloads on CA-
SSD normalized with respect to traditional SSD response
times. Similar to results in Section 5.2, as VP increases,
the response times for these workloads decreases. Fur-
thermore, even when VP is low, the response times for
CA-SSD and traditional SSDs are comparable. We ob-
serve that when the workloads show no VP (a=0.0), the

average response time of CA-SSD only increases by at-
most 10% (for src1). This is primarily due to the over-
heads of the hashing unit for write requests which we
have chosen conservatively. Thus, we expect the average
response time to be lower with a more aggressive esti-
mate (If needed, one could even explore the possibility of
dynamically turning off CAS in CA-SSD in complete ab-
sence of VL). On the other hand, for high VP (a = 1.0),
we see tremendous benefits with CA-SSD. We observe
around 25 times reduction in average response times for
financial trace and on average all workloads show an im-
provement of about 74%. Furthermore, the number of
values which account for 50% of the write requests in
hm workload decreases from 4.5M for no VP (a = 0.0)
to 1.3M for moderate VP (a = 0.4), a reduction of ap-
proximately 71%. This clearly illustrates that the ben-
efits accrued through VP specifically and value locality
in general, strengthen the case for adoption of content
addressability in SSDs, paving the way for a new gener-
ation of SSDs.

6 Related Work
Value Locality/Content Addressability: CAS has
been extensively used in archival and backup systems
such as Venti [42], Foundation [43], Pastiche [14] etc for
space savings , Internet suspend/resume [27], LBFS [35]
for saving network bandwidth file system and buffer
cache design [35, 47, 34], etc. Some recent work has
evaluated real-world workloads and demonstrated signif-
icant value locality which bodes well for CA-SSD [26,
36]. However, to the best of our knowledge, this paper is
the first to focus on issues that arise when designing an
SSD that uses CAS internally.

Meta-data Management for CAS: The scalability of
a system employing CAS depends on careful manage-
ment of CAS related meta-data. Larger-sized chunks
help in reducing the amount of meta-data to be stored
while smaller chunks provide good duplicate elimina-
tion. Pasta [33], Pastiche [14], REBL [29] and Foun-
dation [43] have explored more complex chunking meth-
ods. Bimodal chunking attempts to combine the benefits
of two different chunk sizes [28] CA-SSD could bene-
fit from all of these techniques and evaluating the bene-
fits of different/variable chunk sizes is part of our future
work. Sparse indexing divides the incoming data stream
into large segments which are then de-duplicated against
a few similar segments found using sampling [31]. Like
sparse indexing, the degree of de-duplication in CA-SSD
depends on the available meta-data cache space. Re-
searchers have developed CAS meta-data management
techniques which utilize HDD/SSDs for storing chunk
indexes [48, 15]. These techniques utilize spatial lo-
cality in data segments for reducing index lookups by

11

102 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

pre-fetching meta-data in RAM. Unlike these techniques,
CA-SSD does away with index lookups on HDD/SSD
and utilizes TVL for reducing meta-data misses.

7 Conclusion

Given evidence for the presence of significant VL in real-
world workloads, we designed CA-SSD which employed
CAS for its internal data management. Using three real-
world workloads with content information, we devised
statistical characterizations of two aspects of VL - value
popularity and temporal VL - that formed the foundation
of CA-SSD. The design of CA-SSD presented us with
interesting choices and challenges related to exploiting
VL for write reduction and maintaining meta-data con-
sistency under constrained cache space. Using several
real-world workloads, we conducted an extensive eval-
uation of CA-SSD. We found significant improvements
(59-84%) in average response times. Even for workloads
with little or no value locality, we observed that CA-SSD
continued to offer comparable performance to a tradi-
tional SSD.

Acknowledgments

We would like to express our gratitude to our shep-
herd Ohad Rodeh of IBM Almaden Research Center
and the anonymous reviewers for their detailed com-
ments that helped us improve the quality of our paper.
This research was supported in part by NSF grants CCF-
0811670, CNS-0720456, CNS-0615097, and CAREER
award CNS-0953541.

References
[1] 64MB Cache on SSD. http://www.tomshardware.com/

news/A-DATA-OCZ-64MB-Cache,7263.html.
[2] HP Labs. Tools and Traces. http://tesla.hpl.hp.com/

public_software.
[3] HPMemory Smart Array Controller. http://www1.hp.com.
[4] Intel’s 3rd Generation X25-M SSD Specs Revealed.

http://www.anandtech.com/show/3965/
intels-3rd-generation-x25m-ssd-specs%
-revealed.

[5] OCZ Vertex 2 EX Series SATA II 2.5” SSD. http://www.
ocztechnology.com.

[6] OCZ Z-Drive R2 e88 PCI-Express SSD. http://www.
ocztechnology.com.

[7] Raw Drive Capacity Cost Trends. http:
//wikibon.org/w/images/a/a4/
EMCRawDriveCapacityCostTrends.jpg.

[8] UMass Trace Repository, 2007. http://traces.cs.
umass.edu.

[9] SNIA. IOTTA repository, January 2009. http://iotta.
snia.org/.

[10] AGRAWAL, N., PRABHAKARAN, V., WOBBER, T., DAVIS,
J. D., MANASSE, M. S., AND PANIGRAHY, R. Design Tradeoffs
for SSD Performance. In ATC 08: Proceedings of the USENIX
Annual Technical Conference (2008).

[11] ARPACI-DUSSEAU, A., ARPACI-DUSSEAU, R. H., AND PRAB-
HAKARAN, V. Removing The Costs Of Indirection in Flash-
based SSDs with Nameless Writes. In HotStorage 10: Proceed-
ings of the 2nd Workshop on Hot Topics in Storage and File Sys-
tems (2010).

[12] BLACK, J. Compare-by-hash: a reasoned analysis. In ATC ’06:
Proceedings of the USENIX ’06 Annual Technical Conference
(2006).

[13] CHERVENAK, A. L. Challenges for tertiary storage in multime-
dia servers. Parallel Computing (1998).

[14] COX, L. P., MURRAY, C. D., AND NOBLE, B. D. Pastiche:
Making Backup Cheap and Easy. In OSDI ’02: Proceedings of
the 5th symposium on Operating systems design and implemen-
tation (2002).

[15] DEBNATH, B., SENGUPTA, S., AND LI, J. ChunkStash: Speed-
ing up Inline Storage Deduplication using Flash Memory. In
ATC’10: Proceedings of the USENIX 2010 Annual Technical
Conference (2010).

[16] GUPTA, A., KIM, Y., AND URGAONKAR, B. DFTL: a flash
translation layer employing demand-based selective caching of
page-level address mappings. In ASPLOS ’09: Proceeding of the
14th international conference on Architectural support for pro-
gramming languages and operating systems (2009).

[17] HANDY, J. PCM becomes a reality, 2009. http://www.
objective-analysis.com.

[18] HELION. Fast hashing cores. http://www.heliontech.
com/fast_hash.htm.

[19] JOHN S. BUCY, J. S., SCHLOSSER, S. W., AND GANGER,
G. R. The DiskSim Simulation Environment Version 4.0 Refer-
ence Manual. http://www.pdl.cmu.edu/DiskSim/.

[20] JUNG, D., CHAE, Y.-H., JO, H., KIM, J.-S., AND LEE, J.
A group-based wear-leveling algorithm for large-capacity flash
memory storage systems. In CASES ’07: Proceedings of the
2007 International Conference on Compilers, Architecture, and
Synthesis for Embedded systems (2007).

[21] KAREDLA, R., LOVE, J. S., AND WHERRY, B. G. Caching
strategies to improve disk system performance. Computer 27, 3
(1994), 38–46.

[22] KAWAGUCHI, A., NISHIOKA, S., AND MOTODA, H. A flash-
memory based file system. In TCON’95: Proceedings of the
USENIX 1995 Technical Conference (1995).

[23] KGIL, T., ANDMUDGE, T. N. FlashCache: a NAND flash mem-
ory file cache for low power web servers. In CASES 06: Proceed-
ings of the 2006 International Conference on Compilers, Archi-
tecture, and Synthesis for Embedded Systems (2006).

[24] KIM, H., AND AHN, S. BPLRU: A buffer management scheme
for improving random writes in flash storage. In FAST’08: Pro-
ceedings of the 6th USENIX Conference on File and Storage
Technologies (2008).

[25] KIM, J. K., LEE, H. G., CHOI, S., AND BAHNG, K. I. A PRAM
and NAND flash hybrid architecture for high-performance em-
bedded storage subsystems. In EMSOFT 2008: Proceedings of
the 8th ACM & IEEE International conference on Embedded soft-
ware (2008).

[26] KOLLER, R., AND RANGASWAMI, R. I/O Deduplication: Utiliz-
ing Content Similarity to Improve I/O Performance. In FAST’10:
Proceedings of the 8th USENIX Conference on File and Storage
Technologies (2010).

12

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 103

[27] KOZUCH, M., AND SATYANARAYANAN, M. Internet sus-
pend/resume. In WMCSA ’02: Proceedings of the Fourth
IEEE Workshop on Mobile Computing Systems and Applications
(2002).

[28] KRUUS, E., UNGUREANU, C., AND DUBNICKI, C. Bimodal
Content Defined Chunking for Backup Streams. In FAST’10:
Proceedings of the 8th USENIX Conference on File and Storage
Technologies (2010).

[29] KULKARNI, P., DOUGLIS, F., LAVOIE, J., AND TRACEY, J. M.
Redundancy elimination within large collections of files. In ATC
’04: Proceedings of the USENIX Annual Technical Conference
(2004).

[30] LEE, S.-W., AND MOON, B. Design of flash-based DBMS: an
in-page logging approach. In SIGMOD ’07: Proceedings of the
2007 ACM SIGMOD international conference on Management of
data (2007).

[31] LILLIBRIDGE, M., ESHGHI, K., BHAGWAT, D., DEOLALIKAR,
V., TREZISE, G., AND CAMBLE, P. Sparse indexing: large scale,
inline deduplication using sampling and locality. In FAST ’09:
Proccedings of the 7th USENIX conference on File and storage
technologies (2009).

[32] LOFGREN, K. M. J., NORMAN, R. D., THELIN, G. B., AND
GUPTA, A. Wear leveling techniques for flash EEPROM sys-
tems. In United States Patent, No 6850443 (2005).

[33] MORETON, T. D., PRATT, I. A., AND HARRIS, T. L. Stor-
age, Mutability and Naming in Pasta. In Revised Papers from the
NETWORKING 2002 Workshops on Web Engineering and Peer-
to-Peer Computing (2002).

[34] MORREY, C. B., AND GRUNWALD, D. Content-Based Block
Caching. In MSST 06: 23rd IEEE, 14th NASA Goddard Confer-
ence on Mass Storage Systems and Technologies (2006).

[35] MUTHITACHAROEN, A., CHEN, B., AND MAZIÈRES, D. A
low-bandwidth network file system. In SOSP ’01: Proceedings
of the 18th ACM Symposium on Operating systems principles
(2001).

[36] NATH, P., URGAONKAR, B., AND SIVASUBRAMANIAM, A.
Evaluating the Usefulness of Content-Addressable Storage for
High-Performance Data-Intensive Applications. In HPDC 08:
Proceedings of the ACM/IEEE International Symposium on High
Performance Distributed Computing (Jun 2008).

[37] NUMONYX MEMORY SOLUTIONS. 16-Gbit MLC NAND
flash memories. http://numonyx.com/Documents/
Datasheets/NAND16GW3D2B.pdf.

[38] NUMONYX MEMORY SOLUTIONS. 2-Gbit SLC NAND
flash memories. http://numonyx.com/Documents/
Datasheets/NAND02G-BxD.pdf.

[39] NUMONYX MEMORY SOLUTIONS. 64-Gbit SLC NAND
flash memories. http://numonyx.com/Documents/
Datasheets/NAND64GW3FGA.pdf.

[40] PRIMMER, R., AND HALLUIN, C. D. Collision and preimage
resistance of the centera content address. Tech. rep., 2005.

[41] PURESILICON. Puresi 1TB SSD with hardware based encryp-
tion. http://www.marketwire.com.

[42] QUINLAN, S., AND DORWARD, S. Venti: A new approach
to archival data storage. In FAST ’02: Proceedings of the 1st
USENIX Conference on File and Storage Technologies (2002).

[43] RHEA, S., COX, R., AND PESTEREV, A. Fast, inexpensive
content-addressed storage in foundation. In ATC’08: Proceed-
ings of the USENIX 2008 Annual Technical Conference (2008).

[44] SAMSUNG. Samsung self encrypting ssd.
"http://www.engadget.com/2009/04/16/
samsung-comes-clean-with-self-encry%
pting-ssds.

[45] SMULLEN, C. W., COFFMAN, J., AND GURUMURTHI, S. Ac-
celerating enterprise solid-state disks with non-volatile merge
caching. In IGCC’10: Proceedings of the 1st International Con-
ference on Green Computin (2010).

[46] SOUNDARARAJAN, G., PRABHAKARAN, V., BALAKRISHNAN,
M., AND WOBBER, T. Extending SSD Lifetimes with Disk-
BasedWrite Caches. In FAST 10: Proceedings of the 8th USENIX
Conference on File and Storage Technologies, 2010 (2010).

[47] VILAYANNUR, M., NATH, P., AND SIVASUBRAMANIAM, A.
Providing Tunable Consistency For a Parallel File Store. In
FAST05: Proceedings of the 4th conference on USENIX Confer-
ence on File and Storage Technologies (2005).

[48] ZHU, B., LI, K., AND PATTERSON, H. Avoiding the disk bottle-
neck in the data domain deduplication file system. In FAST’08:
Proceedings of the 6th USENIX Conference on File and Storage
Technologies (2008).

13

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 105

Reliably Erasing Data From Flash-Based Solid State Drives

Michael Wei∗, Laura M. Grupp∗, Frederick E. Spada†, Steven Swanson∗
∗Department of Computer Science and Engineering, University of California, San Diego

†Center for Magnetic Recording and Research, University of California, San Diego

Abstract
Reliably erasing data from storage media (sanitizing the
media) is a critical component of secure data manage-
ment. While sanitizing entire disks and individual files is
well-understood for hard drives, flash-based solid state
disks have a very different internal architecture, so it
is unclear whether hard drive techniques will work for
SSDs as well.

We empirically evaluate the effectiveness of hard
drive-oriented techniques and of the SSDs’ built-in san-
itization commands by extracting raw data from the
SSD’s flash chips after applying these techniques and
commands. Our results lead to three conclusions:
First, built-in commands are effective, but manufactur-
ers sometimes implement them incorrectly. Second,
overwriting the entire visible address space of an SSD
twice is usually, but not always, sufficient to sanitize the
drive. Third, none of the existing hard drive-oriented
techniques for individual file sanitization are effective on
SSDs.

This third conclusion leads us to develop flash trans-
lation layer extensions that exploit the details of flash
memory’s behavior to efficiently support file sanitization.
Overall, we find that reliable SSD sanitization requires
built-in, verifiable sanitize operations.

1 Introduction
As users, corporations, and government agencies store
more data in digital media, managing that data and access
to it becomes increasingly important. Reliably remov-
ing data from persistent storage is an essential aspect of
this management process, and several techniques that re-
liably delete data from hard disks are available as built-in
ATA or SCSI commands, software tools, and government
standards.

These techniques provide effective means of sanitiz-
ing hard disk drives (HDDs) – either individual files they
store or the drive in their entirety. Software methods typ-
ically involve overwriting all or part of the drive multiple

times with patterns specifically designed to obscure any
remnant data. The ATA and SCSI command sets include
“secure erase” commands that should sanitize an entire
disk. Physical destruction and degaussing are also effec-
tive.

Flash-based solid-state drives (SSDs) differ from hard
drives in both the technology they use to store data (flash
chips vs. magnetic disks) and the algorithms they use
to manage and access that data. SSDs maintain a layer
of indirection between the logical block addresses that
computer systems use to access data and the raw flash
addresses that identify physical storage. The layer of in-
direction enhances SSD performance and reliability by
hiding flash memory’s idiosyncratic interface and man-
aging its limited lifetime, but it can also produce copies
of the data that are invisible to the user but that a sophis-
ticated attacker can recover.

The differences between SSDs and hard drives make it
uncertain whether techniques and commands developed
for hard drives willl be effective on SSDs. We have de-
veloped a procedure to determine whether a sanitization
procedure is effective on an SSDs: We write a structured
data pattern to the drive, apply the sanitization technique,
dismantle the drive, and extract the raw data directly
from the flash chips using a custom flash testing system.

We tested ATA commands for sanitizing an entire
SSD, software techniques to do the same, and software
techniques for sanitizing individual files. We find that
while most implementations of the ATA commands are
correct, others contain serious bugs that can, in some
cases, result in all the data remaining intact on the drive.
Our data shows software-based full-disk techniques are
usually, but not always, effective, and we have found evi-
dence that the data pattern used may impact the effective-
ness of overwriting. Single-file sanitization techniques,
however, consistently fail to remove data from the SSD.

Enabling single-file sanitization requires changes to
the flash translation layer that manages the mapping be-
tween logical and physical addresses. We have devel-

106 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

oped three mechanisms to support single-file sanitization
and implemented them in a simulated SSD. The mecha-
nisms rely on a detailed understanding of flash memory’s
behavior beyond what datasheets typically supply. The
techniques can either sacrifice a small amount of perfor-
mance for continuous sanitization or they can preserve
common case performance and support sanitization on
demand.

We conclude that the complexity of SSDs relative to
hard drives requires that they provide built-in sanitiza-
tion commands. Our tests show that since manufacturers
do not always implement these commands correctly, the
commands should be verifiable as well. Current and pro-
posed ATA and SCSI standards provide no mechanism
for verification and the current trend toward encrypting
SSDs makes verification even harder.

The remainder of this paper is organized as follows:
Section 2 describes the sanitization problem in detail.
Section 3 presents our verification methodology and re-
sults for existing hard disk-oriented techniques. Sec-
tion 4 describes our FTL extensions to support single-file
sanitization, and Section 5 presents our conclusions.

2 Sanitizing SSDs
The ability to reliably erase data from a storage device
is critical to maintaining the security of that data. This
paper identifies and develops effective methods for eras-
ing data from solid-state drives (SSDs). Before we can
address these goals, however, we must understand what
it means to sanitize storage. This section establishes
that definition while briefly describing techniques used
to erase hard drives. Then, it explains why those tech-
niques may not apply to SSDs.

2.1 Defining “sanitized”
In this work, we use the term “sanitize” to describe the
process of erasing all or part of a storage device so that
the data it contained is difficult or impossible to recover.
Below we describe five different levels of sanitization
storage can undergo. We will use these terms to catego-
rize and evaluate the sanitization techniques in Sections 3
and 4.

The first level is logical sanitization. Data in log-
ically sanitized storage is not recoverable via standard
hardware interfaces such as standard ATA or SCSI com-
mands. Users can logically sanitize an entire hard drive
or an individual file by overwriting all or part of the
drive, respectively. Logical sanitization corresponds
to “clearing” as defined in NIST 800-88 [25], one of
several documents from governments around the world
[11, 26, 9, 13, 17, 10] that provide guidance for data de-
struction.

The next level is digital sanitization. It is not possible
to recover data from digitally sanitized storage via any

digital means, including undocumented drive commands
or subversion of the device’s controller or firmware. On
disks, overwriting and then deleting a file suffices for
both logical and digital sanitization with the caveat that
overwriting may not digitally sanitize bad blocks that the
drive has retired from use. As we shall see, the complex-
ity of SSDs makes digitally sanitizing them more com-
plicated.

The next level of sanitization is analog sanitization.
Analog sanitization degrades the analog signal that en-
codes the data so that reconstructing the signal is effec-
tively impossible even with the most advanced sensing
equipment and expertise. NIST 800-88 refers to analog
sanitization as “purging.”

An alternative approach to overwriting or otherwise
obliterating bits is to cryptographically sanitize storage.
Here, the drive uses a cryptographic key to encrypt and
decrypt incoming and outgoing data. To sanitize the
drive, the user issues a command to sanitize the storage
that holds the key. The effectiveness of cryptographic
sanitization relies on the security of the encryption sys-
tem used (e.g., AES [24]), and upon the designer’s abil-
ity to eliminate “side channel” attacks that might allow
an adversary to extract the key or otherwise bypass the
encryption.

The correct choice of sanitization level for a partic-
ular application depends on the sensitivity of the data
and the means and expertise of the expected adversary.
Many government standards [11, 26, 9, 13, 17, 10] and
secure erase software programs use multiple overwrites
to erase data on hard drives. As a result many individuals
and companies rely on software-based overwrite tech-
niques for disposing of data. To our knowledge (based
on working closely with several government agencies),
no one has ever publicly demonstrated bulk recovery of
data from an HDD after such erasure, so this confidence
is probably well-placed.1.

2.2 SSD challenges
The internals of an SSD differ in almost every respect
from a hard drive, so assuming that the erasure tech-
niques that work for hard drives will also work for SSDs
is dangerous.

SSDs use flash memory to store data. Flash memory is
divided into pages and blocks. Program operations apply
to pages and can only change 1s to 0s. Erase operations
apply to blocks and set all the bits in a block to 1. As a
result, in-place update is not possible. There are typically
64-256 pages in a block (see Table 5).

A flash translation layer (FTL) [15] manages the map-
ping between logical block addresses (LBAs) that are
visible via the ATA or SCSI interface and physical pages

1Of course, there may have been non-public demonstration.

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 107

of flash memory. Because of the mismatch in granular-
ity between erase operations and program operations in
flash, in-place update of the sector at an LBA is not pos-
sible.

Instead, to modify a sector, the FTL will write the new
contents for the sector to another location and update the
map so that the new data appears at the target LBA. As a
result, the old version of the data remains in digital form
in the flash memory. We refer to these “left over” data as
digital remnants.

Since in-place updates are not possible in SSDs, the
overwrite-based erasure techniques that work well for
hard drives may not work properly for SSDs. Those
techniques assume that overwriting a portion of the LBA
space results in overwriting the same physical media that
stored the original data. Overwriting data on an SSD re-
sults in logical sanitization (i.e., the data is not retrievable
via the SATA or SCSI interface) but not digital sanitiza-
tion.

Analog sanitization is more complex for SSDs than for
hard drives as well. Gutmann [20, 19] examines the prob-
lem of data remnants in flash, DRAM, SRAM, and EEP-
ROM, and recently, so-called “cold boot” attacks [21] re-
covered data from powered-down DRAM devices. The
analysis in these papers suggests that verifying analog
sanitization in memories is challenging because there are
many mechanisms that can imprint remnant data on the
devices.

The simplest of these is that the voltage level on an
erased flash cell’s floating gate may vary depending on
the value it held before the erase command. Multi-level
cell devices (MLC), which store more than one bit per
floating gate, already provide stringent control the volt-
age in an erased cell, and our conversations with industry
[1] suggest that a single erasure may be sufficient. For
devices that store a single bit per cell (SLC) a single era-
sure may not suffice. We do not address analog erasure
further in this work.

The quantity of digital remnant data in an SSD can be
quite large. The SSDs we tested contain between 6 and
25% more physical flash storage than they advertise as
their logical capacity. Figure 1 demonstrates the exis-
tence of the remnants in an SSD. We created 1000 small
files on an SSD, dismantled the drive, and searched for
the files’ contents. The SSD contained up to 16 stale
copies of some of the files. The FTL created the copies
during garbage collection and out-of-place updates.

Complicating matters further, many drives encrypt
data and some appear to compress data as well to im-
prove write performance: one of our drives rumored to
use compression is 25% faster for writes of highly com-
pressible data than incompressible data. This adds an
additional level of complexity not present in hard drives.

Unless the drive is encrypted, recovering remnant data

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000

N
um

be
r

of
 c

op
ie

s

File number

Figure 1: Multiple copies This graph shows The FTL
duplicating files up to 16 times. The graph exhibits a
spiking pattern which is probably due to the page-level
management by the FTL.

Figure 2: Ming the Merciless Our custom FPGA-based
flash testing hardware provides direct access to flash
chips without interference from an FTL.

from the flash is not difficult. Figure 2 shows the FPGA-
based hardware we built to extract remnants. It cost
$1000 to build, but a simpler, microcontroller-based ver-
sion would cost as little as $200, and would require only
a moderate amount of technical skill to construct.

These differences between hard drives and SSDs po-
tentially lead to a dangerous disconnect between user
expectations and the drive’s actual behavior: An SSD’s
owner might apply a hard drive-centric sanitization tech-
nique under the misguided belief that it will render the
data essentially irrecoverable. In truth, data may remain
on the drive and require only moderate sophistication to
extract. The next section quantifies this risk by applying
commonly-used hard drive-oriented techniques to SSDs
and attempting to recover the “deleted” data.

108 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

“Magic” Header (8 bytes)

 Generation # (8 bytes)

 LBA (8 bytes)

 Iteration # (8 bytes)

 Bit Pattern (44 bytes)

 Checksum (4 bytes)

 GUID (8 bytes)

Fingerprint 0 (88 bytes)

Fingerprint 1 (88 bytes)

Fingerprint 2 (88 bytes)

Fingerprint 3 (88 bytes)

 Padding (72 bytes)

Fingerprint 4 (88 bytes)

512-Byte ATA Sector 88-byte �ngerprint

Figure 3: Fingerprint structure The easily-identified
fingerprint simplifies the task of identifying and recon-
structing remnant data.

3 Existing techniques
This section describes our procedure for testing sanitiza-
tion techniques and then uses it to determine how well
hard drive sanitization techniques work for SSDs. We
consider both sanitizing an entire drive at once and se-
lectively sanitizing individual files. Then we briefly dis-
cuss our findings in relation to government standards for
sanitizing flash media.

3.1 Validation methodology
Our method for verifying digital sanitization operations
uses the lowest-level digital interface to the data in an
SSD: the pins of the individual flash chips.

To verify a sanitization operation, we write an iden-
tifiable data pattern called a fingerprint (Figure 3) to the
SSD and then apply the sanitization technique under test.
The fingerprint makes it easy to identify remnant digi-
tal data on the flash chips. It includes a sequence num-
ber that is unique across all fingerprints, byte patterns to
help in identifying and reassembling fingerprints, and a
checksum. It also includes an identifier that we use to
identify different sets of fingerprints. For instance, all
the fingerprints written as part of one overwrite pass or
to a particular file will have the same identifier. Each
fingerprint is 88 bytes long and repeats fives times in a
512-byte ATA sector.

Once we have applied the fingerprint and sanitized the
drive, we dismantle it. We use the flash testing system
in Figure 2 to extract raw data from its flash chips. The
testing system uses an FPGA running a Linux software
stack to provide direct access to the flash chips.

Finally, we assemble the fingerprints and analyze them
to determine if the sanitization was successful. SSDs
vary in how they spread and store data across flash chips:
some interleave bytes between chips (e.g., odd bytes on
one chip and even bytes on another) and others invert
data before writing. The fingerprint’s regularity makes
it easy to identify and reassemble them, despite these
complications. Counting the number of fingerprints that
remain and categorizing them by their IDs allows us to

SSD Ctlr # SECURITY SEC. ERASE
& Type ERASE UNIT UNIT ENH

A 1-MLC Not Supported Not Supported
B 2-SLC Failed∗ Not Supported
C 1-MLC Failed† Not Supported
D 3-MLC Failed† Not Supported
E 4-MLC Encrypted‡ Encrypted‡
F 5-MLC Success Success
G 6-MLC Success Success
H 7-MLC Success Success
I 8-MLC Success Success

J� 9-TLC Not Supported Not Supported
K� 10-MLC Not Supported Not Supported
L� 11-MLC Not Supported Not Supported
∗Drive reported success but all data remained on drive
†Sanitization only successful under certain conditions
‡Drive encrypted, unable to verify if keys were deleted

�USB mass storage device does not support ATA security [30]

Table 1: Built-in ATA sanitize commands Support for
built-in ATA security commands varied among drives,
and three of the drives tested did not properly execute
a sanitize command it reported to support.

measure the sanitization’s effectiveness.

3.2 Whole-drive sanitization
We evaluate three different techniques for sanitizing an
entire SSD: issuing a built-in sanitize command, repeat-
edly writing over the drive using normal IO operations,
and degaussing the drive. Then we briefly discuss lever-
aging encryption to sanitize SSDs.

3.2.1 Built-in sanitize commands

Most modern drives have built-in sanitize commands that
instruct on-board firmware to run a sanitization proto-
col on the drive. Since the manufacturer has full knowl-
edge of the drive’s design, these techniques should be
very reliable. However, implementing these commands
is optional in the drive specification standards. For in-
stance, removable USB drives do not support them as
they are not supported under the USB Mass Storage De-
vice class [30].

The ATA security command set specifies an “ERASE
UNIT” command that erases all user-accessible areas on
the drive by writing all binary zeros or ones [3]. There is
also an enhanced “ERASE UNIT ENH” command that
writes a vendor-defined pattern (presumably because the
vendor knows the best pattern to eliminate analog rem-
nants). The new ACS-2 specification [4], which is still
in draft at the time of this writing, specifies a “BLOCK
ERASE” command that is part of its SANITIZE feature
set. It instructs a drive to perform a block erase on all
memory blocks containing user data even if they are not
user-accessible.

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 109

We collected 12 different SSDs and determined if they
supported the security and sanitize feature sets. If the
SSD supported the command, we verified effectiveness
by writing a fingerprint to the entire drive several times
and then issuing the command. Overwriting several
times fills as much of the over-provision area as possi-
ble with fingerprint data.

Support and implementation of the built in commands
varied across vendors and firmware revisions (Table 1).
Of the 12 drives we tested, none supported the ACS-2
“SANITIZE BLOCK ERASE” command. This is not
surprising, since the standard is not yet final. Eight of the
drives reported that they supported the ATA SECURITY
feature set. One of these encrypts data, so we could not
verify if the sanitization was successful. Of the remain-
ing seven, only four executed the “ERASE UNIT” com-
mand reliably.

Drive B’s behavior is the most disturbing: it reported
that sanitization was successful, but all the data remained
intact. In fact, the filesystem was still mountable. Two
more drives suffered a bug that prevented the ERASE
UNIT command from working unless the drive firmware
was recently reset, otherwise the command would only
erase the first LBA. However, they accurately reported
that the command failed.

The wide variance among the drives leads us to con-
clude that each implementation of the security com-
mands must be individually tested before it can be trusted
to properly sanitize the drive.

In addition to the standard commands, several drive
manufacturers also provide special utilities that issue
non-standard erasure commands. We did not test these
commands, but we expect that results would be similar
to those for the ATA commands: most would work cor-
rectly but some may be buggy. Regardless, we feel these
non-standard commands are of limited use: the typical
user may not know which model of SSD they own, let
alone have the wherewithal to download specialized util-
ities for them. In addition, the usefulness of the utility
depends on the manufacture keeping it up-to-date and
available online. Standardized commands should work
correctly almost indefinitely.

3.2.2 Overwrite techniques

The second sanitization method is to use normal IO com-
mands to overwrite each logical block address on the
drive. Repeated software overwrite is at the heart of
many disk sanitization standards [11, 26, 9, 13, 17, 10]
and tools [23, 8, 16, 5]. All of the standards and tools
we have examined use a similar approach: They sequen-
tially overwrite the entire drive with between 1 and 35 bit
patterns. The US Air Force System Instruction 5020 [2]
is typical: It first fills the drive with binary zeros, then
binary ones, and finally an arbitrary character. The data

SSD Seq. 20 Pass Rand. 20 Pass
Init: Seq. Rand. Seq. Rand.
A >20 N/A∗ N/A∗ N/A∗
B 1 N/A∗ N/A∗ N/A∗
C 2 2 2 2
D 2 2 N/A∗ N/A∗
F 2 121 hr.� 121 hr.� 121 hr.�
J 2 70 hr.� 70 hr.� 70 hr.�
K 2 140 hr.� 140 hr.� 140 hr.�
L 2 58 hr.� 58 hr.� 58 hr.�

∗Insufficient drives to perform test
� Test took too long to perform, time for single pass indicated.

Table 2: Whole-disk software overwrite. The number
in each column indicates the number of passes needed to
erase data on the drive. Drives G through I encrypt, so
we could not conclude anything about the success of the
techniques.

is then read back to confirm that only the character is
present.

The varied bit patterns aim to switch as many of the
physical bits on the drive as possible and, therefore, make
it more difficult to recover the data via analog means.

Bit patterns are potentially important for SSDs as well,
but for different reasons. Since some SSDs compress
data before storing, they will write fewer bits to the flash
if the data is highly compressible. This suggests that
for maximum effectiveness, SSD overwrite procedures
should use random data. However, only one of the drives
we tested (Drive G) appeared to use compression, and
since it also encrypts data we could not verify sanitiza-
tion.

Since our focus is on digital erasure, the bit patterns
are not relevant for drives that store unencrypted, un-
compressed data. This means we can evaluate overwrite
techniques in general by simply overwriting a drive with
many generations of fingerprints, extracting its contents,
and counting the number of generations still present on
the drive. If k generations remain, and the first genera-
tion is completely erased, then k passes are sufficient to
erase the drive.

The complexity of SSD FTLs means that the usage
history before the overwrite passes may impact the ef-
fectiveness of the technique. To account for this, we pre-
pared SSDs by writing the first pass of data either se-
quentially or randomly. Then, we performed 20 sequen-
tial overwrites. For the random writes, we wrote every
LBA exactly once, but in a pseudo-random order.

Table 2 shows the results for the eight non-encrypting
drives we tested. The numbers indicate how many gen-
erations of data were necessary to erase the drive. For
some drives, random writes were prohibitively slow, tak-
ing as long as 121 hours for a single pass, so we do not

110 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

perform the random write test on these drives. In most
cases, overwriting the entire disk twice was sufficient to
sanitize the disk, regardless of the previous state of the
drive. There were three exceptions: about 1% (1 GB)
of the data remained on Drive A after twenty passes. We
also tested a commercial implementation of the four-pass
5220.22-M standard [12] on Drive C. For the sequential
initialization case, it removed all the data, but with ran-
dom initialization, a single fingerprint remained. Since
our testing procedure destroys the drive, we did not per-
form some test combinations.

Overall, the results for overwriting are poor: while
overwriting appears to be effective in some cases across a
wide range of drives, it is clearly not universally reliable.
It seems unlikely that an individual or organization ex-
pending the effort to sanitize a device would be satisfied
with this level of performance.

3.2.3 Degaussing

We also evaluated degaussing as a method for erasing
SSDs. Degaussing is a fast, effective means of destroy-
ing hard drives, since it removes the disks low-level for-
matting (along with all the data) and damages the drive
motor. The mechanism flash memories use to store data
is not magnetism-based, so we did not expect the de-
gausser to erase the flash cells directly. However, the
strong alternating magnetic fields that the degausser pro-
duces will induce powerful eddy currents in chip’s metal
layers. These currents may damage the chips, leaving
them unreadable.

We degaussed individual flash chips written with our
fingerprint rather than entire SSDs. We used seven chips
(marked with † in Table 5) that covered SLC, MLC and
TLC (triple-level cell) devices across a range of process
generation feature sizes. The degausser was a Security,
Inc. HD-3D hard drive degausser that has been evalu-
ated for the NSA and can thoroughly sanitize modern
hard drives. It degaussed the chips by applying a rotating
14,000 gauss field co-planar to the chips and an 8,000
gauss perpendicular alternating field. In all cases, the
data remained intact.

3.2.4 Encryption

Many recently-introduced SSDs encrypt data by default,
because it provides increased security. It also provides a
quick means to sanitize the device, since deleting the en-
cryption key will, in theory, render the data on the drive
irretrievable. Drive E takes this approach.

The advantage of this approach is that it is very fast:
The sanitization command takes less than a second for
Drive E. The danger, however, is that it relies on the con-
troller to properly sanitize the internal storage location
that holds the encryption key and any other derived val-
ues that might be useful in cryptanalysis. Given the bugs

we found in some implementations of secure erase com-
mands, it is unduly optimistic to assume that SSD ven-
dors will properly sanitize the key store. Further, there is
no way verify that erasure has occurred (e.g., by disman-
tling the drive).

A hybrid approach called SAFE [29] can provide both
speed and verifiability. SAFE sanitizes the key store and
then performs an erase on each block in a flash storage
array. When the erase is finished, the drive enters a “ver-
ifiable” state. In this state, it is possible to dismantle the
drive and verify that the erasure portion of the sanitiza-
tion process was successful.

3.3 Single-file sanitization
Sanitizing single files while leaving the rest of the data
in the drive intact is important for maintaining data se-
curity in drives that are still in use. For instance, users
may wish to destroy data such as encryption keys, finan-
cial records, or legal documents when they are no longer
needed. Furthermore, for systems such as personal com-
puters and cell phone where the operating system, pro-
grams, and user data all reside on the same SSD, sani-
tizing single files is the only sanitization option that will
leave the system in a usable state.

Erasing a file is a more delicate operation than eras-
ing the entire drive. It requires erasing data from one
or more ranges of LBAs while leaving the rest of the
drive’s contents untouched. Neither hard disks nor SSDs
include specialized commands to erase specific regions
of the drive2.

Many software utilities [14, 5, 28, 23] attempt to san-
itize individual files. All of them use the same approach
as the software-based full-disk erasure tools: they over-
write the file multiple times with multiple bit patterns and
then delete it. Other programs will repeatedly overwrite
the free space (i.e., space that the file system has not allo-
cated to a file) on the drive to securely erase any deleted
files.

We test 13 protocols, published as a variety of gov-
ernment standards, as well as commercial software de-
signed to erase single files. To reduce the number of
drives needed to tests these techniques, we tested multi-
ple techniques simultaneously on one drive. We format-
ted the drive under windows and filled a series of 1 GB
files with different fingerprints. We then applied one era-
sure technique to each file, disassembled the drive, and
searched for the fingerprints.

Because we applied multiple techniques to the drive at
once, the techniques may interact: If the first technique
leaves data behind, a later technique might overwrite it.
However, the amount of data we recover from each file

2The ACS-2 draft standard [4] provide a “TRIM” command that
informs drive that a range of LBAs is no longer in use, but this does not
have any reliable effect on data security.

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 111

Overwrite operation Data recovered
SSDs USB

Filesystem delete 4.3 - 91.3% 99.4%
Gutmann [19] 0.8 - 4.3% 71.7%

Gutmann “Lite” [19] 0.02 - 8.7% 84.9%
US DoD 5220.22-M (7) [11] 0.01 - 4.1% 0.0 - 8.9%
RCMP TSSIT OPS-II [26] 0.01 - 9.0% 0.0 - 23.5%

Schneier 7 Pass [27] 1.7 - 8.0% 0.0 - 16.2%
German VSITR [9] 5.3 - 5.7% 0.0 - 9.3%

US DoD 5220.22-M (4) [11] 5.6 - 6.5% 0.0 - 11.5%
British HMG IS5 (Enh.) [14] 4.3 - 7.6% 0.0 - 34.7%

US Air Force 5020 [2] 5.8 - 7.3% 0.0 - 63.5%
US Army AR380-19 [6] 6.91 - 7.07% 1.1%

Russian GOST P50739-95 [14] 7.07 - 13.86% 1.1%
British HMG IS5 (Base.) [14] 6.3 - 58.3% 0.6%

Pseudorandom Data [14] 6.16 - 75.7% 1.1%
Mac OS X Sec. Erase Trash [5] 67.0% 9.8%

Table 3: Single-file overwriting. None of the protocols
tested successfully sanitized the SSDs or the USB drive
in all cases. The ranges represent multiple experiments
with the same algorithm (see text).

Drive Overwrites Free Space Recovered
C (SSD) 100× 20 MB 87%

C 100× 19,800 MB 79%
C 100× + defrag. 20 MB 86%

L (USB key) 100× 6 MB 64%
L 100× 500 MB 53%
L 100× + defrag. 6 MB 62%

Table 4: Free space overwriting Free space overwrit-
ing left most of the data on the drive, even with varying
amounts of free space. Defragmenting the data had only
a small effect on the data left over (1%).

is a lower bound on amount left after the technique com-
pleted. To moderate this effect, we ran the experiment
three times, applying the techniques in different orders.
One protocol, described in 1996 by Gutmann [19], in-
cludes 35 passes and had a very large effect on mea-
surements for protocols run immediately before it, so we
measured its effectiveness on its own drive.

All single-file overwrite sanitization protocols failed
(Table 3): between 4% and 75% of the files’ contents
remained on the SATA SSDs. USB drives performed no
better: between 0.57% and 84.9% of the data remained.

Next, we tried overwriting the free space on the drive.
In order to simulate a used drive, we filled the drive
with small (4 KB) and large files (512 KB+). Then, we
deleted all the small files and overwrote the free space
100 times. Table 4 shows that regardless of the amount
of free space on the drive, overwriting free space was not
successful. Finally, we tried defragmenting the drive,
reasoning that rearranging the files in the file system
might encourage the FTL to reuse more physical storage
locations. The table shows this was also ineffective.

3.4 Sanitization standards
Although many government standards provide guidance
on storage sanitization, only one [25] (that we are aware
of) provides guidance specifically for SSDs and that is
limited to “USB Removable Disks.” Most standards,
however, provide separate guidance for magnetic media
and flash memory.

For magnetic media such as hard disks, the standards
are consistent: overwrite the drive a number of times,
execute the built-in secure erase command and destroy
the drive, or degauss the drive. For flash memory, how-
ever, the standards do not agree. For example, NIST 800-
88 [25] suggests overwriting the drive, Air Force Sys-
tem Security Instruction 5020 suggests ‘[using] the erase
procedures provided by the manufacturer” [2], and the
DSS Clearing & Sanitization matrix [11] suggests “per-
form[ing] a full chip erase per manufacturer’s datasheet.”

None of these solutions are satisfactory: Our data
shows that overwriting is ineffective and that the “erase
procedures provided by the manufacturer” may not work
properly in all cases. The final suggestion to perform a
chip erase seems to apply to chips rather than drives, and
it is easy to imagine it being interpreted incorrectly or
applied to SSDs inappropriately. Should the user consult
the chip manufacturer, the controller manufacturer, or the
drive manufacturer for guidance on sanitization?

We conclude that the complexity of SSDs relative to
hard drives requires that they provide built-in sanitiza-
tion commands. Since our tests show that manufacturers
do not always implement these commands correctly, they
should be verifiable as well. Current and proposed ATA
and SCSI standards provide no mechanism for verifica-
tion and the current trend toward encrypting SSDs makes
verification even harder.

Built-in commands for whole disk sanitization appear
to be effective, if implemented correctly. However, no
drives provide support for sanitizing a single file in iso-
lation. The next section explores how an FTL might sup-
port this operation.

4 Erasing files
The software-only techniques for sanitizing a single file
we evaluated in Section 3 failed because FTL complexity
makes it difficult to reliably access a particular physical
storage location. Circumventing this problem requires
changes in the FTL. Previous work in this area [22] used
encryption to support sanitizing individual files in a file
system custom built for flash memory. This approach
makes recovery from file system corruption difficult and
it does not apply to generic SSDs.

This section describes FTL support for sanitizing ar-
bitrary regions of an SSD’s logical block address space.
The extensions we describe leverage detailed measure-
ments of flash memory characteristics. We briefly de-

112 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Chip Name Max Tech Cap. Page Pages Blocks Planes Dies Die
Cycles Node (Gb) Size (B) /Block /Plane /Die Cap (Gb)

C-TLC16† � 43nm 16 8192 � 8192 � 1 16
B-MLC32-4∗ 5,000 34 nm 128 4096 256 2048 2 4 32
B-MLC32-1∗ 5,000 34 nm 32 4096 256 2048 2 1 32
F-MLC16∗ 5,000 41 nm 16 4096 128 2048 2 1 16
A-MLC16∗ 10,000 � 16 4096 128 2048 2 1 16
B-MLC16∗ 10,000 50 nm 32 4096 128 2048 2 2 16
C-MLC16† � � 32 4096 � � � 2 16
D-MLC16∗ 10,000 � 32 4096 128 4096 1 2 16
E-MLC16†∗ TBD � 64 4096 128 2048 2 4 16
B-MLC8∗ 10,000 72 nm 8 2048 128 4096 1 1 8
E-MLC4∗ 10,000 � 8 4096 128 1024 1 2 4
E-SLC8†∗ 100,000 � 16 4096 64 2048 2 2 8
A-SLC8∗ 100,000 � 8 2048 64 4096 2 1 8
A-SLC4∗ 100,000 � 4 2048 64 4096 1 1 4
B-SLC2∗ 100,000 50 nm 2 2048 64 2048 1 1 2
B-SLC4∗ 100,000 72 nm 4 2048 64 2048 2 1 4
E-SLC4∗ 100,000 � 8 2048 64 4096 1 2 4
A-SLC2∗ 100,000 � 2 2048 64 1024 2 1 2

∗Chips tested for data scrubbing. †Chips tested for degaussing. � No data available

Table 5: Flash Chip Parameters. Each name encodes the manufacturer, cell type and die capacity in Gbits. Parame-
ters are drawn from datasheets where available. We studied 18 chips from 6 manufacturers.

scribe our baseline FTL and the details of flash behav-
ior that our technique relies upon. Then, we present and
evaluate three ways an FTL can support single-file sani-
tization.

4.1 The flash translation layer
We use the FTL described in [7] as a starting point. The
FTL is page-based, which means that LBAs map to in-
dividual pages rather than blocks. It uses log-structured
writes, filling up one block with write data as it arrives,
before moving on to another. As it writes new data for
an LBA, the old version of the data becomes invalid but
remains in the array (i.e., it becomes remnant data).

When a block is full, the FTL must locate a new,
erased block to continue writing. It keeps a pool of
erased blocks for this purpose. If the FTL starts to
run short of erased blocks, further incoming accesses
will stall while it performs garbage collection by con-
solidating valid data and freeing up additional blocks.
Once its supply of empty blocks is replenished, it re-
sumes processing requests. During idle periods, it per-
forms garbage collection in the background, so blocking
is rarely needed.

To rebuild the map on startup, the FTL stores a reverse
map (from physical address to LBA) in a distributed fash-

ion. When the FTL writes data to a page, the FTL writes
the corresponding LBA to the page’s out-of-band sec-
tion. To accelerate the start-up scan, the FTL stores a
summary of this information for the entire block in the
block’s last page. This complete reverse map will also
enable efficiently locating all copies of an LBA’s data in
our scan-based scrub technique (See Section 4.4).

4.2 Scrubbing LBAs
Sanitizing an individual LBA is difficult because the
flash page it resides in may be part of a block that con-
tains useful data. Since flash only supports erasure at the
block level, it is not possible to erase the LBA’s contents
in isolation without incurring the high cost of copying the
entire contents of the block (except the page containing
the target LBA) and erasing it.

However, programming individual pages is possible,
so an alternative would be to re-program the page to turn
all the remaining 1s into 0s. We call this scrubbing the
page. A scrubbing FTL could remove remnant data by
scrubbing pages that contain stale copies of data in the
flash array, or it could prevent their creation by scrubbing
the page that contained the previous version whenever it
wrote a new one.

The catch with scrubbing is that manufacturer

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 113

Erase Block
Program

Random Data

For all pages
in the Block

Scrub Randomly
Selected Page

Read All Pages
for Errors

Figure 4: Testing data scrubbing To determine whether
flash devices can support scrubbing we programmed
them with random data, randomly scrubbed pages one
at a time, and then checked for errors.

datasheets require programming the pages within a block
in order to reduce the impact of program disturb effects
that can increase error rates. Scrubbing would violate
this requirement. However, previous work [18] shows
that the impact of reprogramming varies widely between
pages and between flash devices, and that, in some cases,
reprogramming (or scrubbing) pages would have no ef-
fect.

To test this hypothesis, we use our flash testing board
to scrub pages on 16 of the chips in Table 5 and measure
the impact on error rate. The chips span six manufac-
turers, five technology nodes and include both MLC and
SLC chips.

Figure 4 describes the test we ran. First, we erase the
block and program random data to each of its pages to
represent user data. Then, we scrub the pages in ran-
dom order. After each scrub we read all pages in the
block to check for errors. Flash blocks are independent,
so checking for errors only within the block is sufficient.
We repeated the test across 16 blocks spread across each
chip.

The results showed that, for SLC devices, scrubbing
did not cause any errors at all. This means that the num-
ber scrubs that are acceptable – the scrub budget – for
SLC chips is equal to the number of pages in a block.

For MLC devices determining the scrub budget is
more complicated. First, scrubbing one page invariably
caused severe corruption in exactly one other page. This
occurred because each transistor in an MLC array holds
two bits that belong to different pages, and scrubbing one
page reliably corrupts the other. Fortunately, it is easy to
determine the paired page layout in all the chips we have
tested, and the location of the paired page of a given page
is fixed for a particular chip model. The paired page ef-

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 16 32 48 64

Lo
g(

B
it

E
rr

or
 R

at
e)

Number of Reprograms

B-MLC32-4
B-MLC32-1

F-MLC16
A-MLC16
B-MLC16
D-MLC16
E-MLC16

B-MLC8
E-MLC4

Typical BER

Figure 5: Behavior under data scrubbing Scrubbing
causes more errors in some chips than others, resulting
in wide variation of scrub budgets for MLC devices.

fect means that the FTL must scrub both pages in a pair
at the same time, relocating the data in the page that was
not the primary target of the scrub.

Figure 5 shows bit error rates for MLC devices as a
function of scrub count, but excluding errors in paired
pages. The data show that for three of the nine chips we
tested, scrubbing caused errors in the unscrubbed data in
the block. For five of the remaining devices errors start to
appear after between 2 and 46 scrubs. The final chip, B-
MLC32-1, showed errors without any scrubbing. For all
the chips that showed errors, error rates increase steeply
with more scrubbing (the vertical axis is a log scale).

It may be possible to reduce the impact of scrubbing
(and, therefore, increase the scrub budget) by carefully
measuring the location of errors caused by scrubbing a
particular page. Program disturb effects are strongest
between physically adjacent cells, so the distribution of
scrubs should affect the errors they cause. As a result,
whether scrubbing page is safe would depend on which
other pages the FTL has scrubbed in the block, not the
number of scrubs.

The data in the figure also show that denser flash de-
vices are less amenable to scrubbing. The chips that
showed no errors (B-MLC16, D-MLC16, and B-MLC8)
are 50 nm or 70 nm devices, while the chips with the
lowest scrub budgets (F-MLC16, B-MLC32-4, and B-
MLC32-1) are 34 or 41 nm devices.

4.3 Sanitizing files in the FTL
The next step is to use scrubbing to add file sanitization
support to our FTL. We consider three different methods
that make different trade-offs between performance and
data security – immediate scrubbing, background scrub-
bing, and scan-based scrubbing.

114 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Name Total Accesses Reads Description
Patch 64 GB 83% Applies patches to the Linux kernel from version 2.6.0 to 2.6.29
OLTP 34 GB 80% Real-time processing of SQL transactions

Berkeley-DB Btree 34 GB 34% Transactional updates to a B+tree key/value store
Financial 17 GB 15% Live OLTP trace for financial transactions.

Build 5.5 GB 94% Compilation of the Linux 2.6 kernel
Software devel. 1.1 GB 65% 24 hour trace of a software development work station.

Swap 800 MB 84% Virtual memory trace for desktop applications.

Table 6: Benchmark and application traces We use traces from eight benchmarks and workloads to evaluate scrub-
bing.

These methods will eliminate all remnants in the
drive’s spare area (i.e., that are not reachable via a log-
ical block address). As a result, if a file system does
not create remnants on a normal hard drive (e.g., if the
file system overwrite a file’s LBAs when it performs a
delete), it will not create remnants when running on our
FTL.

Immediate scrubbing provides the highest level of se-
curity: write operations do not complete until the scrub-
bing is finished – that is, until FTL has scrubbed the page
that contained the old version of the LBA’s contents. In
most cases, the performance impact will be minimal be-
cause the FTL can perform the scrub and the program in
parallel.

When the FTL exceeds the scrub budget for a block,
it must copy the contents of the block’s valid pages to a
new block and then erase the block before the operation
can complete. As a result, small scrub budgets (as we
saw for some MLC devices) can degrade performance.
We measure this effect below.

Background scrubbing provides better performance by
allowing writes to complete and then performing the
scrubbing in the background. This results in a brief win-
dow when remnant data remains on the drive. Back-
ground scrubbing can still degrade performance because
the scrub operations will compete with other requests for
access to the flash.

Scan-based scrubbing incurs no performance overhead
on normal write operations but adds a command to sani-
tize a range of LBAs by overwriting the current contents
of the LBAs with zero and then scrubbing any storage
that previously held data for the LBAs. This technique
exploits the reverse (physical to logical) address map
that the SSD stores to reconstruct the logical-to-physical
map.

To execute a scan-based scrubbing command, the FTL
reads the summary page from each block and checks if
any of the pages in the block hold a copy of an LBA that
the scrub command targets. If it does, the FTL scrubs
that page. If it exceeds the scrub budget, the FTL will
need to relocate the block’s contents.

We also considered an SSD command that would ap-
ply scrubbing to specific write operations that the op-
erating system or file system marked as “sanitizing.”
However, immediate and background scrubbing work by
guaranteeing that only one valid copy of an LBA exists
by always scrubbing old version when writing the new
version. Applying scrubbing to only a subset of writes
would violate this invariant and allow the creation of
remnants that a single scrub could not remove.

4.4 Results
To understand the performance impact of our scrubbing
techniques, we implemented them in a trace-based FTL
simulator. The simulator implements the baseline FTL
described above and includes detailed modeling of com-
mand latencies (based on measurements of the chips in
Table 5) and garbage collection overheads. For these ex-
periments we used E-SLC8 to collect SLC data and F-
MLC16 to for MLC data. We simulate a small, 16 GB
SSD with 15% spare area to ensure that the FTL does
frequent garbage collection even on the shorter traces.

Table 6 summarizes the eight traces we used in our
experiments. They cover a wide range of applications
from web-based services to software development to
databases. We ran each trace on our simulator and report
the latency of each FTL-level page-sized access and trace
run time. Since the traces include information about
when each the application performed each IO, the change
in trace run-time corresponds to application-level perfor-
mance changes.

Immediate and background scrubbing Figure 6
compares the write latency for immediate and back-
ground scrubbing on SLC and MLC devices. For MLC,
we varied the number of scrubs allowed before the FTL
must copy out the contents of the block. The figure nor-
malizes the data to the baseline configuration that does
not perform scrubbing or provide any protection against
remnant data.

For SLC-based SSDs, immediate scrubbing causes no
decrease in performance, because scrubs frequently exe-
cute in parallel with the normal write access.

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 115

1

10

100

1000

Financial Software Devel. Patch OLTP Build Berkeley−DB Btree Swap Harm. Mean

lo
g

R
el

at
iv

e
W

rit
e

La
te

nc
y

Background MLC Scrub 0 Background MLC Scrub 16 Background MLC Scrub 64 Background SLC Scrub
Immediate MLC Scrub 0 Immediate MLC Scrub 16 Immediate MLC Scrub 64 Immediate SLC Scrub

Figure 6: Immediate and background scrubbing performance For chips that can withstand at least 64 scrub opera-
tions, both background and immediate scrubbing can prevent the creation of data remnants with minimal performance
impact. For SLC devices (which can support unlimited scrubbing), background scrubbing has almost no effect and
immediate scrubbing increases write latency by about 2×.

In MLC devices, the cost of immediate scrubbing can
be very high if the chip can tolerate only a few scrubs be-
fore an erase. For 16 scrubs, operation latency increases
by 6.4× on average and total runtime increases by up to
11.0×, depending on the application. For 64 scrubs, the
cost drops to 2.0× and 3.2×, respectively.

However, even a small scrub budget reduces latency
significantly compared relying on using erases (and the
associated copy operations) to prevent remnants. Tm-
plementing immediate sanitization with just erase com-
mands increases operation latency by 130× on average
(as shown by the “Scrub 0” data in Figure 5).

If the application allows time for background opera-
tions (e.g., Build, Swap and Dev), background scrub-
bing with a scrub budget of 16 or 64 has a negligible ef-
fect on performance. However, when the application is-
sues many requests in quick succession (e.g., OLTP and
BDB), scrubbing in the background strains the garbage
collection system and write latencies increase by 126×
for 16 scrubs and 85× for 64 scrubs. In contrast, slow-
down for immediate scrubbing range from just 1.9 to
2.0× for a scrub budget of 64 and from 4.1 to 7.9× for
16 scrubs.

Scrubbing also increases the number of erases re-
quired and, therefore, speeds up program/erase-induced
wear out. Our results for MLC devices show that scrub-
bing increased wear by 5.1× for 16 scrubs per block and
2.0× with 64 scrubs per block. Depending on the appli-
cation, the increased wear for chips that can tolerate only
a few scrubs may or may not be acceptable. Scrubbing
SLC devices does not require additional erase operations.

Finally, scrubbing may impact the long-term integrity
of data stored in the SSD in two ways. First, although
manufactures guarantee that data in brand new flash de-
vices will remain intact for at least 10 years, as the chip
ages data retention time drops. As a result, the increase
in wear that scrubbing causes will reduce data retention
time over the lifetime of the SSD. Second, even when
scrubbing does not cause errors immediately, it may af-
fect the analog state of other cells, making it more likely
that they give rise to errors later. Figure 6 demonstrates
the analog nature of the effect: B-MLC32-4 shows errors
that come and go for eight scrubs.

Overall, both immediate and background scrubbing
are useful options for SLC-based SSDs and for MLC-
based drives that can tolerate at least 64 scrubs per block.
For smaller scrub budgets, both the increase in wear
and the increase in write latency make these techniques
costly. Below, we describe another approach to sanitiz-
ing files that does not incur these costs.

Scan-based scrubbing Figure 7 measures the latency
for a scan-based scrubbing operation in our FTL. We ran
each trace to completion and then issued a scrub com-
mand to 1 GB worth of LBAs from the middle of the de-
vice. The amount of scrubbing that the chips can tolerate
affects performance here as well: scrubbing can reduce
the scan time by as much as 47%. However, even for the
case where we must use only erase commands (MLC-
scrub-0), the operation takes a maximum of 22 seconds.
This latency breaks down into two parts – the time re-
quired to scan the summary pages in each block (0.64 s

116 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

P
at

ch

O
LT

P

B
D

B
 B

tr
ee

Fi
na

nc
ia

l

B
ui

ld

S
of

t.
D

ev
.

S
w

ap

A
ve

ra
ge

S
ca

n−
ba

se
d

sc
ru

b
La

te
nc

y
(s

)

0

4

8

12

16

20

24 SLC
MLC scrub 0
MLC scrub 16
MLC scrub 64

Figure 7: Scan-based scrubbing latency The time to
scrub 1 GB varies with the number of scrubs each block
can withstand, but in all cases the operation takes less
than 30 seconds.

for our SLC SSD and 1.3 s for MLC) and the time to per-
form the scrubbing operations and the resulting garbage
collection. The summary scan time will scale with SSD
size, but the scrubbing and garbage collection time are
primarily a function of the size of the target LBA region.
As a result, scan-based scrubbing even on large drives
will be quick (e.g., ∼62 s for a 512 GB drive).

5 Conclusion
Sanitizing storage media to reliably destroy data is an
essential aspect of overall data security. We have em-
pirically measured the effectiveness of hard drive-centric
sanitization techniques on flash-based SSDs. For san-
itizing entire disks, built-in sanitize commands are ef-
fective when implemented correctly, and software tech-
niques work most, but not all, of the time. We found that
none of the available software techniques for sanitizing
individual files were effective. To remedy this problem,
we described and evaluated three simple extensions to an
existing FTL that make file sanitization fast and effec-
tive. Overall, we conclude that the increased complexity
of SSDs relative to hard drives requires that SSDs pro-
vide verifiable sanitization operations.

Acknowledgements
The authors would like to thank Jack Sampson for his
useful comments. This work was supported in part by
NSF award 1029783.

References
[1] M. Abraham. NAND flash security. In Special

Pre-Conference Workshop on Flash Security, Au-
gust 2010.

[2] U. S. Air Force. Air Force System Security Instruc-
tion 5020, 1998.

[3] American National Standard of Accredited Stan-
dards Committee X3T13. Information Technology
- AT Attachment-3 Interface, January 1997.

[4] American National Standard of Accredited Stan-
dards INCITS T13. Information Technology -
ATA/ATAPI Command Set - 2, June 2010.

[5] Apple Inc. Mac OS X 10.6, 2009.
[6] U. S. Army. Army Regulation 380-19, 1998.
[7] A. Birrell, M. Isard, C. Thacker, and T. Wobber.

A design for high-performance flash disks. Tech-
nical Report MSR-TR-2005-176, Microsoft Re-
search, December 2005.

[8] Blancco Oy Ltd. Blancco PC Edition 4.10.1. http:
//www.blancco.com.

[9] Bundesamts fr Sicherheit in der Informationstech-
nik. Richtlinien zum Geheimschutz von Ver-
schlusssachen beim Einsatz von Informationstech-
nik, December 2004.

[10] A. Defence Signals Directorate. Government Infor-
mation Security Manual (ISM), 2006.

[11] U. S. Defense Security Services. Clearing and San-
itization Matrix, June 2007.

[12] U. S. Department of Defense. 5220.22-M Na-
tional Industrial Security Program Operating Man-
ual, January 1995.

[13] U. S. Dept. of the Navy. NAVSO P-5239-08 Net-
work Security Officer Guidebook, March 1996.

[14] Eraser. http://eraser.heidi.ie/.
[15] E. Gal and S. Toledo. Algorithms and data struc-

tures for flash memories. ACM Comput. Surv.,
37(2):138–163, 2005.

[16] GEEP EDS LLC. Darik’s Boot and Nuke
(“DBAN”). http://www.dban.org/.

[17] N. Z. Government Communications Security Bu-
reau. Security of Information NZSIT 402, Feburary
2008.

[18] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swan-
son, E. Yaakobi, P. H. Siegel, and J. K. Wolf. Char-
acterizing flash memory: Anomalies, observations
and applications. In MICRO’09: Proceedings of ...,
New York, NY, USA, 2009. ACM, IEEE.

[19] P. Gutmann. Secure deletion of data from magnetic
and solid-state memory. In SSYM’96: Proceedings
of the 6th conference on USENIX Security Sympo-
sium, Focusing on Applications of Cryptography,
pages 8–8, Berkeley, CA, USA, 1996. USENIX As-
sociation.

[20] P. Gutmann. Data remanence in semiconductor de-
vices. In SSYM’01: Proceedings of the 10th confer-
ence on USENIX Security Symposium, pages 4–4,
Berkeley, CA, USA, 2001. USENIX Association.

[21] J. A. Halderman, S. D. Schoen, N. Heninger,

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 117

W. Clarkson, W. Paul, J. A. Calandrino, A. J. Feld-
man, J. Appelbaum, and E. W. Felten. Lest we
remember: cold-boot attacks on encryption keys.
Commun. ACM, 52(5):91–98, 2009.

[22] J. Lee, J. Heo, Y. Cho, J. Hong, and S. Y. Shin.
Secure deletion for nand flash file system. In SAC
’08: Proceedings of the 2008 ACM symposium on
Applied computing, pages 1710–1714, New York,
NY, USA, 2008. ACM.

[23] LSoft Technologies Inc. Active@ KillDisk. http:
//www.killdisk.com/.

[24] U. S. National Institute of Standards and Technol-
ogy. Advanced Encryption Standard (AES) (FIPS
PUB 197), November 2001.

[25] U. S. National Institute of Standards and Technol-
ogy. Special Publication 800-88: Guidelines for
Media Sanitization, September 2006.

[26] Royal Canadian Mounted Police. G2-003, Hard
Drive Secure Information Removal and Destruction
Guidelines, October 2003.

[27] B. Schneier. Applied cryptography (2nd ed.): pro-
tocols, algorithms, and source code in C. John Wi-
ley & Sons, Inc., New York, NY, USA, 1995.

[28] secure rm. http://srm.sourceforge.net/.
[29] S. Swanson and M. Wei. Safe: Fast, verifiable sani-

tization for ssds. http://nvsl.ucsd.edu/sanitize/, Oc-
tober 2010.

[30] USB Implementers Forum. Universal Serial
Bus Mass Storage Class Specification Overview,
September 2008.

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 119

A Scheduling Framework that Makes any Disk Schedulers
Non-work-conserving solely based on Request Characteristics

Yuehai Xu
ECE Department

Wayne State University
Detroit, MI 48202, USA

yhxu@wayne.edu

Song Jiang
ECE Department

Wayne State University
Detroit, MI 48202, USA
sjiang@eng.wayne.edu

Abstract
Exploiting spatial locality is critical for a disk scheduler to
achieve high throughput. Because of the high cost of disk
head seeks and the non-preemptible nature of request ser-
vice, state-of-the-art disk schedulers consider the locality
of both pending and future requests. Though schedulers
adopting the approach, such as the anticipatory scheduler,
show substantial performance advantages, they need to
know from which processes requests are issued to evaluate
locality. This approach is not effective when the knowl-
edge about processes is not available (e.g., in virtual ma-
chine environment, network or parallel file systems, and
SAN) or the locality exhibited on a disk region is not solely
determined by individual processes (e.g., in the case of co-
operative process groups and disk array where requested
data are striped).

We propose a light-weight disk scheduling framework
that does not require any process knowledge for analyzing
request locality. Solely based on requests’ own characteris-
tics the framework can make any work-conserving sched-
uler non-work-conserving, i.e., able to take future requests
as dispatching candidates, to fully exploit locality. Addi-
tionally, we show how to effectively extend the framework
to the disk array environment. Our design, Stream Schedul-
ing, is prototyped in the Linux kernel 2.6.31. With ex-
tensive experiments of representative benchmarks, and in
various environments such as the Xen virtual machine and
the PVFS parallel file system, we show that the proposed
scheduling framework can improve their performance by
up to 3.2 times.

1 Introduction
While the hard disk has maintained exponential growth in
capacity as a function of time, and sustained improvement
in peak throughput, its random access performance, which
is mainly determined by disk seek time, is increasingly a
bottleneck. This makes the disk scheduler, which aims to

minimize disk seeks by exploiting spatial locality in the
requests, increasingly important to disk performance.

1.1 Non-work-conserving Disk Scheduling
Traditionally a disk scheduler such as CSCAN and SPTF
chooses a request from those that have arrived and are
pending in its dispatch queue and dispatches it to the disk.
In a work-conserving mode, the scheduler must choose one
of the pending requests, if any, to dispatch, even if the
pending requests are far away from the current disk head
position. The rationale for non-work-conserving sched-
ulers, such as the anticipatory scheduler (AS) [16] and
Completely Fair Queuing (CFQ) [1], is that a request that
is soon to arrive might be much closer to the disk head
than the currently pending requests, in which case it may
be worthwhile to wait for the future request.1 If such a re-
quest does arrive soon and the benefit of avoiding the long-
distance disk seek outweighs the cost of idle waiting, the
decision to keep the disk head in place may be justified.
This is commonly observed when there are multiple pro-
cesses concurrently issuing synchronous requests. For a re-
quest synchronously issued by a process, the scheduler can
see its next request only after the request is served. Without
a short waiting period the spatial locality of requests from
such a process cannot be exploited. In this context the spa-
tial locality refers to the fact that nearby disk locations are
likely to be accessed by two consecutive requests within a
short period of time. A process has strong locality if soon
after its current request is completed, the scheduler will re-
ceive its next request for a location close to the current re-
quest. While the traditional scheduler selects a request for
dispatching only from currently pending requests, a non-
work-conserving scheduler, in essence, selects one from
currently pending requests and future requests to exploit
locality among synchronously issued requests.

1Descriptions of requests’ statuses, such as “currently pending” or
“future requests”, are relative to the time when a scheduling decision is
being made.

120 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

1.2 The Issues

To be effective, a non-work-conserving scheduler needs to
predict how long it will take for the next nearby request
to arrive—the strength of the process’s locality—with rea-
sonable accuracy, so that a decision can be whether to
wait, and if so, for how long. To this end, existing non-
work-conserving schedulers, such as AS and CFQ, group
requests according to their issuing processes, analyze lo-
cality for each group, and make predictions for each pro-
cess. While analyzing and utilizing locality in the context
of process is an intuitive and convenient choice, there are
three scenarios that challenge this practice.

First, if the requests to a limited disk region are from
multiple processes, the locality, which is the basis for any
scheduler to make scheduling decisions, is the result of
these processes’ combined I/O behaviors. This is espe-
cially the case when these processes coordinate to issue
their requests. To determine whether the disk head should
wait for a future request, the scheduler cares only about
the probability for a nearby request to appear quickly, re-
gardless of whether the request is from the same process.
Limiting locality analysis to each individual process may
underestimate the locality actually available to the sched-
uler and lose opportunity for seek reduction.

Second, in many important system settings process in-
formation is not available to the disk scheduler. For exam-
ple, in the virtual machine environment only the scheduler
in the host OS or VMM can actually dispatch I/O requests
to the disk, on behalf of guest VMs where processes run
and generate the requests. The scheduler in the host usu-
ally can only tell from which VM it receives a request but
cannot distinguish from which process on a VM the re-
quest is issued. When there are multiple processes running
on a VM, lack of such knowledge at the host would make
non-work-conserving host scheduler less effective. In dis-
tributed or parallel file systems such as NFS and PVFS, the
daemon at the file server receives requests from the clients
and passes them to the disk scheduler without telling it
which processes at the client side actually issued them.
For another example, the SAN system and hardware RAID
have internal disk schedulers that are critical to the sys-
tems’ efficiency. The system interface for through which
I/O requests are accepted usually does not include process
information about request source.

Third, one of assumptions made by non-work-
conserving schedulers is that it is solely the process that
determines how long it will take for its next request to be
issued. For this reason, thinktime, the time period between
two consecutive I/O calls of a process, is treated as an at-
tribute of the process and is estimated using the process’s
history information to predict when its next request will
arrive. However, if the disk is a member of a disk ar-
ray over which data are striped, the next several requests
from the process might go to other disks in the array and

may not be immediately scheduled for those disks. Conse-
quently, the timing for this disk to see its next request from
the process is determined not only by the process’s think-
times, but also by the data striping pattern on the array as
well as the scheduling decisions made at the other disks.
By mistaking the time period between two consecutive re-
quests from a process for the process’s thinktime, a disk’s
scheduler finds little opportunity for non-work-conserving
scheduling. However, the fact is that by coordinating the
scheduling of disks in the array, it is possible to reduce the
time period so that waiting for the next request can still be
beneficial.

1.3 The Challenges

To address these issues, we have to give up the assump-
tion on the availability of process information. Specially,
a scheduler is still expected to take future requests into
account when making scheduling decisions, even without
the process information, so that the most suitable request
among both currently pending requests and future requests
can be selected for dispatching. There are several critical
challenges in achieving this objective.

First, if locality were to be explicitly analyzed for pre-
dicting timing and location of the next request, we have to
group requests according to some criteria to track locality
for each group of requests. However, without process in-
formation, for any artificial grouping method it would be
hard to accurately predict whether a request would appear
whose locality is stronger than any of currently pending
requests. For example, a seemingly effective method is
to divide the disk into different regions, either evenly or
accordingly to request concentrations, and then track lo-
cality in each region. However, if the region were set too
small, one process’s synchronous requests could span mul-
tiple regions, which makes the arrival of the next request
in a region too late and thus the locality in each region too
weak. If the region were set too large, requests in a large
disk area would be included for locality tracking, making
the measured locality weak because of large inter-request
distance. In both cases the scheduler may lose the oppor-
tunity to schedule future requests. In addition, region size
may have to be dynamically adjusted according to chang-
ing request distribution on disk, making meaningful local-
ity analysis yet more difficult.

Second, locality is relative. When there are pending re-
quests relatively close to the current disk head, the sched-
uler must evaluate only the probability of requests of strong
locality, and the relatively remote requests become less rel-
evant. In contrast, if pending requests are relatively remote,
even some not-very-close requests need to be included for
locality analysis so as not to lose opportunity for higher
disk efficiency. Therefore one must determine which re-
quests should be included in an analysis adapting to the lo-

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 121

cations of pending requests. This would significantly add
to the complexity and cost of such algorithms.

Third, for data striped on a disk array, even if think-
times can be sufficiently short for I/O-intensive applica-
tions, the time gaps between two continuous requests seen
at each disk can be too large to be exploited by non-work-
conserving schedulers at individual disks. In this case the
challenge is whether it is possible to reduce the time gaps
by coordinating individual disks’ scheduling so that it be-
comes worthwhile for a disk to wait for a future request.
If the answer is yes, the question is how to know when
there is such a potential before taking action for the co-
ordination. As such an action usually entails postponing
service of other applications’ requests, it could cause ex-
cessive overhead and adversely affect performance if it did
not produce the expected saving in disk seek time.

1.4 Our Contributions

In this paper we propose a light-weight framework that
uses only requests’ characteristics, specifically requests’
arrival times and requested data locations, to turn any
work-conserving scheduler into a non-work-conserving
one. These request characteristics are readily available in
any storage system and are employed in almost all disk
schedulers. In summary, we make the following contribu-
tions.

First, instead of using the conventional method of di-
rect analysis of locality to make a prediction about future
requests, we propose to track the judicious actions, either
waiting for future requests or seeking to a pending request,
that should have been taken for greater disk efficiency. A
judicious action is the one that helps improve disk effi-
ciency, and may or may not have actually been taken in
the prior scheduling. After observing a consistent pattern
of judicious actions, our scheduling framework guides the
scheduler to follow the trend in making its next decision. In
the meantime, the framework retains the mechanism pro-
vided by the corresponding work-conserving scheduler for
avoiding long delay or even starvation in its request ser-
vice. The framework is simple, efficient, effective, and
minimally intrusive to the work-conserving scheduler.

Second, we propose an efficient scheme for non-work-
conserving scheduling for the disk array. To this end, we
create a virtual disk corresponding to a disk array and apply
our proposed framework on it to evaluate the potential ben-
efit of coordinating scheduling across the disks for a par-
ticular stream of requests. When the evaluation is positive,
coordinated scheduling of all disks is conducted to make it
possible for scheduling of future requests to be profitable.

Third, we have implemented and evaluated the schedul-
ing framework for single disks and for disk arrays, collec-
tively named stream scheduling, in the Linux 2.6.31 and
Linux software RAID MD. Our experiments on the proto-

type system with a variety of benchmarks demonstrate its
significant performance advantages.

Section 2 of this paper details the design of stream
scheduling. Section 3 presents an extensive experimental
evaluation. Section 4 describes related work, and Section
5 concludes.

2 The design of Stream Scheduling

While a non-work-conserving scheduler is designed to se-
lect one request of the lowest cost from currently pend-
ing requests and future requests, a key technique in the
scheduling is the effective comparison of costs for serv-
ing these two types of requests. Because future requests
are not available for immediate dispatching, the scheduler
keeps the disk idle for some period of time waiting for them
if it decides to schedule a future request. Accordingly the
cost for dispatching a future request is the sum of the wait
time and the request’s service time, while the cost of dis-
patching a pending request is just its service time. To effec-
tively implement a non-work-conserving scheduler, there
are two critical questions to answer: (1) how likely it is to
see a future request whose cost is lower than that of the
pending requests; and, (2) which future requests can be the
candidates for selection. The answer to the first question
determines whether a future request should be selected—
whether the disk should wait—and the answer to the sec-
ond question determines the threshold of the wait period
beyond which no requests would be qualified. In the pro-
posed framework it is the stream scheduling algorithm that
answers the two questions by taking three inputs, namely
request arrival time, arriving request location, and pending
request location.

When a scheduler is ready to dispatch a new request
the stream scheduling algorithm makes the decision on
whether or not to schedule a future request. If yes, it will
leave the disk waiting for an incoming request of relatively
strong locality. Otherwise, it will dispatch a pending re-
quest selected by the working-conserving scheduling algo-
rithm. As the stream scheduling algorithm makes its deci-
sions independently of the working-conserving scheduling
algorithm, the scheduling framework is applicable to any
working-conserving scheduling algorithms.

2.1 The Stream Scheduling Algorithm

We consider a decision to make the disk wait for future
requests a judicious one if there exists a future request
R such that wait time(R) + service time(R) <
service time(selected pending request), where
wait time(R) is the time period from the time when
the decision is made to the time when request R arrives,
service time(R) is the time spent to serve request R,
the first dispatched future request after the decision is

122 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

made, and service time(selected pending request)
is the service time for request selected by the work-
conserving scheduling algorithm when the decision is
made. If the inequality does not hold, the decision that
demands immediate dispatching of a pending request is a
judicious one. Note that the evaluation of the inequality
cannot be completed until a future request satisfying
the inequality actually arrives or until wait time(R) ≥
service time(selected pending request) becomes true.
To evaluate the inequality, the service time of a known
request can be estimated according to the distance between
the location of its requested data and current disk head
position, which can be considered to be the location of the
most recently served request [14, 16]. Therefore, no matter
whether request selected pending request is actually
dispatched, service time(selected pending request)
can be estimated.

In the inequality only
service time(selected pending request) is known
when the decision is being made, while wait time(R)
and service time(R) are unknown. Generally there
are two methods to predict whether the inequality will
hold. One is the method adopted by existing non-work-
conserving schedulers, which use wait times and service
times of previous requests that belong to the same process
to predict these two times for the next request from the
process, respectively. This method does not work when
the process information is unavailable, because we do not
know which previous requests and which future requests
should be included in the evaluation of the inequality. To
address the issue we propose the second method, which
identifies a series of recently served requests for which the
inequality held to form a so-called stream. A stream of
sufficient size indicates that it is likely that the inequality
would continue to hold and a judicious decision is to wait
for future requests.

Figure 1 illustrates how a stream is formed and how it
is used for request scheduling. The figure shows the ar-
rival and completion times of requests as well as the re-
quests’ positions on the disk in terms of their requested
data’s LBNs (Logical Block Numbers). When the sched-
uler is notified that a request is completed is the time for
the scheduler to select one request from currently pend-
ing requests and eligible future requests, or requests sat-
isfying the inequality. As we can see, the positions of
pending requests determine the eligibility of future re-
quests. This is what we expect. If there are nearby
pending requests, the criteria to schedule a future re-
quest must be more strict to make it profitable. Oth-
erwise, it may be affordable for the disk to wait for a
longer time and/or for a request with longer distance to
the recently completed request. We may not come to
a conclusion on whether a future request should be se-
lected, or whether the scheduling decision is judicious,

Pending request

Arrival of a request

Completion of a request

Time period serving other requests

Time period serving this request

Link showing relationship between
parent request and child request

TimeTime

LBNLBN

i

2 2 3 3
4 5 6

1

Request i

Figure 1: Illustration of forming a stream and using the stream
for scheduling. In the figure, the mushroom-shaped area ahead of
each completed request describes the inequality on the eligibility
of being a child request. The size of an area is determined by how
close its corresponding pending requests are from the completed
request. When a new request arrives in such an area, it becomes
the child of the completed request associated with the area and
extends the corresponding stream. As shown in the graph, the
arrival of request 2 in the area following request 1 extends the
stream to [1, 2]. When request 2 is completed, its area is cre-
ated and the arrival of request 3 in the area further extends the
stream to [1, 2, 3]. A stream cannot be established without new
requests arriving in the defined areas, as shown in the upper part
of the figure. In the lower part of the figure, before the stream
is established, the disk head must leave and then seek back to
serve its next request. When request 4 becomes a child request
and joins the the stream, the stream is established (assuming that
stream threshold is 4). After this, the disk keeps serving requests
in the stream (such as requests 5 and 6) for some period of time
for high I/O efficiency.

until service time(selected pending request) after the
decision is made. Note that the conclusion does not de-
pend on what the actual decision is. If later on we do
find a request arriving at a time and a position that sat-
isfy the inequality, this request is called the child of the
recently completed request. Therefore, for a request that
is highly likely to have a child, the scheduler should wait
for the child request, instead of immediately dispatching a
pending request. To predict whether a recently completed
request would have a child, we introduce the concept of
stream, which is a sequence of requests [R0, R1, ..., Rn−1]
that have arrived in time-ascending order. For any two ad-
jacent requests (Rk−1, Rk) in the stream, Rk is the child
of Rk−1. If the length of the stream is equal to or greater
than a predefined threshold stream threshold, the stream is
considered established.

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 123

The assumption we make in the stream scheduling algo-
rithm is that for an established stream [R0, R1, ..., Rn−1]
(n ≥ stream threshold), request Rn−1 is highly likely
to have its child request Rn extend the stream. The child
request is the first one that arrives after the completion of
Rn−1 and satisfies the inequality, and the the disk should
wait for the child request. This assumption is consistent
with those made by other non-work-conserving algorithms
to estimate thinktime and seek time of a process’s next
request. In addition, as we do not independently predict
these two times, we can take the relationship between
pending requests and future requests into account in the
assumption. A disk waiting for a child request will stay
idle for at most service time(selected pending request)
if there exist pending requests. The time when ser-
vice time(selected pending request) passes a request’s
completion time is called the request’s deadline. Af-
ter its deadline, it is not possible to find an eligible
request to be the request’s child. If the most recent
request in a stream fails to find its child request, the stream
aborts. Pseudo code for the algorithm is shown in Figure 2.

As shown in the pseudo code, when a request is com-
pleted it is possible for it to become a parent of a future re-
quest. So we insert the request into the parent-to-be queue
to see if it would have a child that turns it into a parent.
The queue is sorted by requests’ deadlines, and only re-
quests whose deadlines are not yet passed remain in the
queue. Therefore, the size of the queue is usually very
small. If the recently completed request is at the head of
an established stream, we let the disk wait for a future re-
quest and in the meantime activate a timer for the com-
pleted request. Note that the algorithm does not remember
every member of a stream. Instead, it only needs to keep
track of the most recent request of a stream as well as its
current length. When a new request arrives, we examine
requests in the parent-to-be queue to see if it can extend a
stream. If a request in the queue reaches its deadline with-
out seeing a new request as its child, the stream led by the
request is usually abandoned. One exception is that when
stream has been sufficiently long—when its size is larger
than stream threshold by a factor of tolerance factor, or
50% by default—we give the stream a second chance to
get extended. When the disk has kept serving a stream for
more than a threshold time period (stream time slice), the
disk will dispatch a selected pending request, instead of
waiting for a future child request in the stream (not shown
in the pseudo code). In our work, we leave the issue of
fairness to the external scheduler that has process infor-
mation, or to the local work-conserving scheduler, such as
the Deadline scheduler. When Deadline boosts the priority
for dispatching of requests that have waited for too long
the stream algorithm respects the decision by immediately
sending them to the disk.

/* Procedure invoked upon completion of request R*/
R.completion_time = current_time;
R.position = LBN of data requested by R;

/* ’selected_pending_request’ is the request selected
by the work-conserving algorithm */

R.service_time =calculate_service_time(R.position,
selected_pending_request.position);

R.deadline = R.completion_time + R.service_time;

/* insert R into the queue sorted by requests’
deadlines */

queue_of_parent_to_be <-- R;

/* If the stream is established, wait for a
potential child request */

if (R.stream_size >= stream_threshold) {
R.timer.timeout = R.service_time;
activate R.timer;

} else
dispatch selected_pending_request;

/* Procedure invoked upon arrival of request new_R*/
new_R.arrival_time = new_R’s arrival time;
new_R.position = LBN of data requested by new_R;

for each request R in ’queue_of_parent_to_be’ {
if (R.deadline < current_time)

remove R out of the queue;
if (new_R.arrival_time-R.completion_time+
calculate_service_time(R.position, new_R.position)
< R.service_time) {

/* new_R is R’s child */
if (R.stream_size >= stream_threshold) {

turn off R’s timer;
dispatch new_R;

}
new_R.stream_size = R.stream_size + 1;
remove R from queue_of_parent_to_be;

}
else

new_R.stream_size = 1;
}

/* Procedure invoked upon expiration of
request R’s timer */

if (R.stream_size >=
(1+tolerance_factor)*stream_threshold){

R.timer.timeout = R.service_time*tolerance_factor;
R.service_time *= (1+tolerance_factor);
R.deadline = R.completion_time + R.service_time;
R.stream_size = stream_threshold;
activate R.timer;

}
else

remove R out of ’queue_of_parent_to_be’;

Figure 2: Stream scheduling Algorithm. In the pseudo code,
function calculate service time(disk pos, req pos) is used to cal-
culate the service time when the disk head is at disk pos and the
requested data is at req pos, all in terms of LBNs. While we re-
member only the most recent member request of a stream and the
size of a stream, we treat the size as an attribute of the request,
denoted as R.stream size.

124 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

The forming of streams and scheduling of requests are
two independent procedures. That is, no matter what the
scheduling decision is, the stream’s development is not af-
fected. The forming of streams is determined by the ar-
rival and location of future requests, which usually do not
depend on whether the disk actually waits for a child re-
quest, though the time period between a request’s arrival
and its completion is determined by the scheduling deci-
sion. Therefore, the stream scheduling algorithm can be
used with any work-conserving scheduler. In addition, as
the size of the parent-to-be queue is small, the algorithm is
of low cost, specifically O(N), where N is the size of the
queue.

2.2 The Stream Scheduling Algorithm in a
Disk Array

The effectiveness of non-work-conserving scheduling al-
gorithms depends on the existence of locality in the re-
quests of a process or a stream. This locality can be suf-
ficiently strong to form an established stream when it is
presented to the entire storage system. However, when the
storage system consists of an array of disks where data
are striped, each disk only sees a subset of the requests
and the locality presented to individual disks can be much
weaker. As each disk has to be individually scheduled to
accommodate its specific data layout and request pattern,
instead of all disks being fully synchronized and using one
request scheduler [19, 8], it would be hard for each sched-
uler, on its own, to take advantage of the potential ben-
efit of non-work-conserving scheduling. As an example,
for a sequence of synchronous requests [R0, R1, ..., Rn−1],
which could be a stream if they were all served by a sin-
gle disk, let us assume that only requests Ri (i mod m =
k) reach disk k, where m is the number of disks in the ar-
ray (k = 0, 1, ...,m − 1). After serving R0, disk 0 would
not see Rm until R1, R2, ..., and Rm−1 have been served
by other disks, whose service times depend on their re-
spective scheduling decisions and could be significant if
long-distance seeks are involved. Even worse, when one
request has to access data spread on multiple disks, it is
not completed until the last piece of the data is served, and
the request’s service time can be long if the disks are not
coordinated to serve it quickly.

The time period between completion of a request and
arrival of the next request of a stream observed at one par-
ticular disk (such as completion of R0 and arrival of Rm at
disk 0 in the example) consists of two types of time com-
ponents. One is thinktime, or the time period from the
completion of one request to the arrival of the next one
of the stream observed by the disk array (such as comple-
tion of R0 and arrival of R1 in the example stream); an-
other is response time, or the time period from the arrival
to the completion of a request in the stream. A request’s

response time consists of its wait time and service time. To
enable non-work-conserving scheduling, we need to min-
imize the time period for a disk to see its potential child
request. While the involved thinktimes cannot be reduced
for synchronous requests, the response time can be reduced
by dedicating all disks to serving requests of a stream dur-
ing a certain time period through disk coordination.

As we do not have process information, we set up a disk-
array scheduler that treats the disk array as one big virtual
disk and uses the method described in the stream schedul-
ing algorithm to identify streams. The disk-array sched-
uler uses the array’s logical addresses for calculating ser-
vice times and uses pending requests on respective phys-
ical disks to evaluate the inequality for identifying child
requests. The stream threshold for established streams is
increased by m times, where m is the number of disks.
Once a stream is established in the virtual disk, which we
call a virtual stream, we attempt to find a stream on each
physical disk corresponding to the virtual stream, which
we call physical stream. Without dedicating all disks to
the virtual stream, there is little chance for a physical disk
to see its corresponding physical stream because of high
response times. However, forcing all disks to serve only
the virtual stream’s requests before knowing whether the
physical streams can be formed runs the risk of idling mul-
tiple disks for an excessively long time.

To address the challenge, we do not use a request’s ac-
tual arrival time to determine whether it can extend a phys-
ical stream at a physical disk, as this time might be sig-
nificantly reduced if all disks were dedicated to the corre-
sponding virtual stream. Instead, we use the arrival time
less the response times between the completed request and
the disk’s next request in the virtual stream (such as the
arrival time of Rm minus the sum of response times of re-
quests Ri (1 ≤ k ≤ m − 1) in the example stream). The
physical streams formed in this way represent the most
optimistic estimates on future requests’ arrival times, be-
cause the response times cannot be reduced to zero even
if all disks are dedicated to the virtual stream. Once the
array scheduler finds that physical streams have been es-
tablished on all the disks for a particular virtual stream, it
marks the virtual stream’s next request to each disk as ur-
gent so that it can be dispatched immediately to bring each
disk head to the corresponding physical stream. After this,
the array’s scheduler instructs each disk’s scheduler to use
their respective physical stream for non-work-conserving
scheduling and use the actual request arrival time to extend
the stream. In this way, the non-work-conserving schedul-
ing is certain to be cost-effective even though the physical
streams are initiated with optimistic estimates of request
arrival times. When a disk’s physical stream is broken be-
cause it fails to find its next child request, this phenomenon
usually cascades to other disks as it would cause other
disks’ streams to take longer time to see their respective

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 125

next requests. When the array’s scheduler observes broken
physical streams, it will mark the virtual stream as unus-
able. Note the scheduler will keep maintaining the virtual
stream to prevent a new stream from being formed and trig-
gering non-work-conserving scheduling on the disks once
again, which has been shown not to be cost effective. For
the disk array, instead of letting each disk decide how long
it continuously serves a physical stream, we let the array
scheduler determine the time period during which each
disk is supposed to serve its physical stream corresponding
to the virtual stream. In this way the serving of requests in
a virtual stream is fully coordinated across the disks.

3 Performance Evaluation

To evaluate the performance of the stream schedul-
ing framework, we implemented it in the Linux kernel
2.6.31.3, either as a wrapper of a work-conserving disk
scheduler to create a stream scheduler for individual disks,
or as a revised implementation of the Linux software RAID
mdadm for a disk array. In the experiments the CPU is an
Intel Core2 Duo with 2GB DRAM memory and the disks
are 7200RPM, 500GB Western Digital Caviar Blue SATA
II (WD5000AAKS) with a 16MB built-in cache. The disk
array has five disks connected to the host via a RAID card
(RocketRAID 2320).

3.1 Disk Schedulers in Linux

Currently there are four configurable disk scheduler mod-
ules in the Linux distributions, each implementing a com-
monly used scheduler: Noop, Deadline, AS (or Antic-
ipatory), and CFQ. Among them, Noop and Deadline
are work-conserving while the other two are non-work-
conserving. Noop simply dispatches a request as soon as
it is received and does nothing beyond merging contiguous
requests. Though it does not sound meaningful when the
scheduler is used for dispatching requests directly to the
hard disk, it is actually the preferred choice in other cases,
such as in guest VMs of virtual machines and the systems
using the SAN block device. This not only saves CPU cy-
cles but also allows the requests to reach the lower level
as early as possible, where a scheduler can see requests
from different guest VMs or hosts and know how data
are actually laid out on the disk(s) [32]. For this reason,
we include Noop in the evaluation. Deadline is a sched-
uler approximating CSCAN augmented with a deadline-
enforcement mechanism to prevent starvation. AS is a
deadline scheduler enhanced with the anticipatory capabil-
ity to wait for a future request that is of strong locality and
is issued by the same process. CFQ aims to fairly distribute
disk time among I/O-intensive processes and to bound re-
quest response time as Deadline does. As CFQ allows the

disk to be idle waiting for future requests, it is non-work-
conserving.

3.2 The Stream Scheduling in Linux

In the implementation we place Deadline in the stream
scheduling framework and turn it into a non-work-
conserving scheduler, the stream scheduler (SS). To
accommodate the starvation avoidance mechanism, the
stream scheduling algorithm respects the decision made
by Deadline about immediate dispatching of expired re-
quests by suspending its dedicated service to a stream. In
the evaluation we set stream threshold to be 4. We set
stream time slice to 124ms if not stated otherwise, that is,
a stream can be uninterruptedly served for at most 124ms
if there are other pending requests in the system. This set-
ting is consistent with that in AS for continuous requests
from one process. We will present results of a sensitivity
study on the parameter in Section 3.6.

Today’s hard disks store multiple requests pending in it
and enables its own scheduler such as NCQ for internal
scheduling. The disk will continue serving requests pend-
ing in it after it completes a request. This poses a challenge
to the implementation of the stream scheduling framework
because the location of the most recently completed re-
quest is not necessarily the disk head position when the re-
quest it will dispatch next gets served. For example, when
SS decides to idle the disk to wait for a future request by
suspending dispatching requests, it assumes that the disk
head will stay where it is. However, in a hard disk with
stored pending requests, the disk head may have sought to
another pending request scheduled by NCQ. To address the
issue, we make a customization of the SS algorithm. In the
kernel, there is a FIFO queue (struct request queue), into
which the disk scheduler dispatches its requests and from
which the disk driver takes requests to the disk hardware.
In other words, the actual service order will be basically
consistent to the order in which the requests stay in the
queue, assuming NCQ does not make a major change in the
order. Accordingly, the disk head position when the next
request is dispatched can be best indicated by the request
at the queue tail, or the most recently inserted request. For
this reason, SS makes a scheduling decision for the tail re-
quest when it is added into the queue, or considers it as
the completed request in the stream scheduling algorithm,
instead of for the actually completed request. If the deci-
sion is to wait for a future request, none of the currently
pending requests are allowed to get into the queue and the
corresponding timer will be activated at this time. In this
way, the assumption made by SS about the disk head loca-
tion still holds.

To estimate the service time of a request when the disk
head is at disk pos and the request is at req pos, all in terms
of LBNs (calculate service time(disk pos, req pos)), we

126 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

adopted a simple empirical method which has been widely
used for its effectiveness [25, 14, 16]. In this method,
requests of various distances between two adjacent ones
are sent to the disk and corresponding service times are
collected. A smooth curve is fit through the measured
[distance, time] data points and is used to represent cal-
culate service time() function. In addition, as CSCAN
prefers to serve requests in the forward direction, for the
same inter-request distance we increase the cost of back-
ward access by 50%.

3.3 Storage without Process Information

 0

 50

 100

 150

 200

 250

 300

 350

par-read grep TPC-H PostMark

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

ts
 (%

)

SS
AS

CFQ
Deadline

Noop

Figure 3: Performance of benchmarks par-read, grep, Post-
Mark, and TPC-H with different disk schedulers (SS, AS, CFQ,
Deadline, and Noop) when the process information of requests
is removed from the workloads. The performance is presented
as the schedulers’ percentage improvement over that of Noop.
For par-read and PostMark the performance is measured with
throughputs, which are 16.0MB/s and 815.9KB/s, respectively
for Noop. For grep and TPC-H the performance is measured
with execution times, which are 73.5s and 228.2s, respectively,
for Noop.

We first evaluate schedulers of storage systems for
which process information for requests is not available,
such as hardware RAID, SAN, and iSCSI connected stor-
age devices. As the devices usually use proprietary soft-
ware and their internal disk schedulers are not open-
sourced for instrumentation, we hide process context in-
formation from the schedulers, or equivalently we make
the schedulers believe that all requests are issued by the
same process. In this section, we discuss the experimen-
tal results for one disk, and leave those for disk arrays to
Section 3.5.

The benchmarks we use in this experiment are par-read,
grep, PostMark, and TPC-H. par-read is a microbench-
mark we wrote to study the impact of varying thinktime
on the schedulers’ performance. It creates four indepen-
dent processes, each reading a 1GB file using 4KB re-
quests in parallel. There is a 50GB gap between each two

adjacent files. By default the thinktime between consecu-
tive requests of a process is set to 0. grep is a Linux text
search program we run to look for a non-existent word in
the Linux 2.6.31 source code tree so that the entire direc-
tory tree is read. In the experiment we run two greps, each
reading one of two copies of the Linux directory with a
50GB gap between them. PostMark is to measure the per-
formance of an Internet server running e-mail, netnews, or
e-commerce applications, where random access of small
files is the dominant access pattern [26]. In the experi-
ment, we run four PostMark benchmarks (version 1.5.1),
each creating a data set consisting of 10,000 files whose
sizes are in the range between 0.5KB and 10KB. Each data
set is 50GB away from the next data set. TPC-H is a deci-
sion support benchmark that processes business-oriented
queries against a database system to examine large vol-
umes of data. In our experiment we use PostgreSQL 8.3.7
as the database server and use DBT3 1.5.0 to create ta-
bles in it. We choose the scale factor 1 to generate the
database and run query 19 against it. We run three TPC-H
instances, with a 50GB space gap between adjacent data
sets. Figure 3 shows the performance improvements of the
four schedulers (SS, AS, CFQ, and Deadline) over Noop
for the four benchmarks.

The experiments demonstrate that without process infor-
mation both AS and CFQ lose the performance advantages
they had enjoyed when they knew which requests are is-
sued by the same process. Each process in the benchmarks
synchronously issues its requests. For benchmarks grep
and PostMark, which issue random requests and generally
do not trigger prefetching in the operating system, the disk
scheduler can see at most one request from a process at
a time. Without seeing a nearby pending request, Dead-
line would dispatch a remote one and constantly move the
disk head between remote data sets. This causes its per-
formance to be as low as Noop. Without knowing which
process actually issues a request, AS and CFQ assume all
requests are from the same process and serve any pend-
ing requests when they see them, even if they are in dis-
tant regions. Consequently, they degenerate into work-
conserving schedulers such as Deadline. However, if we
let the information available to AS and CFQ in the exper-
iments, they would perform as well as SS (with a perfor-
mance difference less than 3%), demonstrating the impor-
tance of non-work-conserving scheduling.

Interestingly, the observations for random access can
also be made on the other two benchmarks issuing sequen-
tial requests, which triggers prefetching in the operating
system and allows the scheduler to see asynchronously is-
sued requests. The condition for a work-conserving sched-
uler to keep serving one process’s requests is to eliminate
quiet periods in the process’s I/O service, or the time period
during which the scheduler does not see any requests from
the process since last time when the scheduler attempts to

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 127

 0

 10

 20

 30

 40

 50

0 20 50 100 150 200

Th
ro

ug
hp

ut
 (M

B/
s)

Thinktime (us)

SS
AS

CFQ
Deadline

Noop

Figure 4: Throughputs of par-read with varying thinktimes, the
time period between two continuous requests issued by a process.

dispatch this process’s request. However, prefetching does
not eliminate quiet periods in the system for two reasons.
First, Linux maintains two readahead windows to prefetch
file data. Prefetch requests issued for one window are con-
tiguous and sent to the scheduler together. The scheduler
has a good chance to merge them into one request. Con-
sequently, the next prefetch request would not be triggered
and sent to the scheduler until this request is completed and
its data is consumed by the process. Second, as today’s
hard disks store multiple pending requests, a scheduling
decision may have to be made before the process’s request
is completed. At this moment, it is likely the process’s next
prefetch request has not been generated, creating a quiet
period. In both cases, Deadline, as well as AS and CFQ
when process information is unavailable, would schedule
other process’s request and thrash the disk head among
processes. While increasing the prefetch window can re-
duce number of quiet periods, they are unlikely to be fully
removed. While SS does not rely on process information,
its performance advantage is impressive with about 3.2X
throughput improvement over the other schedulers. If we
increase the thinktime, the performance improvement of
SS becomes increasingly small as their wait times become
larger (shown in Figure 4). When the thinktime is as large
as 200µs, the corresponding quiet periods increase to as
large as about 8.5ms, which causes streams to break and
accordingly causes SS to stop waiting for future requests
and behave like Deadline.

3.4 Storage with Inadequate Process Infor-
mation

Next we consider four benchmarks running in an envi-
ronment where the process information is inadequate or
misleading. To investigate how synchronization of I/O-
intensive threads affects behaviors of disk schedulers, we
wrote a microbenchmark called multi-threads, in which
there are four processes, each forking two threads. Each
thread reads a 40MB file in a strided pattern, reading the

 0

 50

 100

 150

 200

multi-
threads

mpi-
io-test

ProFTPD
 (1VM)

 ProFTPD
 (2VM)

TPC-H
 (1VM)

TPC-H
 (2VM)

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

ts
 (%

)

SS
AS

CFQ
Deadline

Noop

Figure 5: Performance of benchmarks multi-threads, PVFS,
ProFTPD, and TPC-H with different disk schedulers. ProFTPD
and TPC-H run either on one virtual machine or on two virtual
machines. The performance is presented as the schedulers’ per-
centage improvement over that of Noop. For multi-threads, TPC-
H(1VM), and TPC-H(2VM) the performance is measured with
execution times, which are 65.7s, 231.4s, and 332.0s, respec-
tively, with Noop. The performance of PVFS, ProFTPD(1VM),
and ProFTPD(2VM), is measured with throughputs, which are
132.0MB/s, 17.1MB/s, and 12.5MB/s, respectively, with Noop.

first 4KB of data of every 16KB segment from the begin-
ning to the end of the file. The distance between the two
files accessed by one process is 100MB, and the distance of
files read by adjacent processes is 50GB. Two threads of a
process synchronizes after each makes every five requests.
The performance improvements of the schedulers for the
benchmark over that of Noop are presented in Figure 5.
We can see that SS more than doubles the performance of
Deadline in terms of reduction of execution time. Unfortu-
nately AS and CFQ deliver performance even worse than
that of Noop. The reason is that the synchronization dis-
rupts their non-work-conserving scheduling, which is un-
necessarily tied to the process. For example, assuming that
two threads of a process are TA and TB , AS keeps serv-
ing requests from TA by anticipatory wait until TA reaches
a synchronization point. Then AS has to wait for about
4ms until its timer expires and then it starts to serves TB’s
requests, even though a TB’s request is pending nearby.
In Linux a thread is presented as a light-weight process.
Because the nearby pending request belongs to another
thread, AS does not immediately dispatch it. Instead it
suffers a long and unfruitful wait. In comparison, without
relying on the process information SS is not constrained by
the synchronization and dispatches any nearby requests.

PVFS is a parallel file system widely used in high-
performance computing clusters [9]. We run the mpi-
io-test program, an MPI-IO benchmark from the PVFS2
software package [30], on PVFS 2.8.2. The cluster has
four compute nodes and eight data servers, where files are
striped with a 64KB striping unit. Each data servers has

128 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

a SATA disk (Seagate Barracuda 7200.10) with NCQ en-
abled. We run four such programs, each reading a distinct
file with 10GB space in between. Each program has eight
MPI processes, two per compute node, to read or write one
10GB file. The processes take turns reading 64KB blocks
of data sequentially from a 1GB file. For a particular data
server, while requests from the same program have strong
locality and SS can exploit the locality and achieve an im-
provement of aggregate throughput for all four MPI pro-
grams by 87% over Deadline or Noop, AS and CFQ seri-
ously underperform (Figure 5). On each PVFS server there
is a daemon called pvfs2-server accepting requests from
compute nodes. To achieve asynchrony in its service, the
daemon maintains a pool of threads and uses any available
thread to dispatch its requests to the kernel. Consequently,
AS or CFQ see requests associated with essentially ran-
domly assigned thread numbers and can hardly recognize
the locality within requests from the same thread, which
leads to disk head thrashing among blocks of different files.

Xen is a virtual machine monitor that allows multiple
guest virtual machines (VMs) to run on it [3]. In Xen,
guest VMs send requests to their respective virtual block
devices, which use the blktap mechanism to pass the re-
quests to the kernel driver in the host VM, a privileged vir-
tual machine that does the actual dispatch of I/O requests to
disk. In the experiment we run two benchmarks, ProFTPD
1.3.1 and TPC-H, on Xen 4.0.1-rc6 to evaluate the disk
scheduler in the host VM while leaving the schedulers in
the guest VMs as Noop to quickly release requests into the
host VM. ProFTPD is an FTP server [28]. In the test, we
run a ProFTPD instance on each guest VM to serve four
clients simultaneously downloading four 300MB files, re-
spectively. There are 20GB space gaps between the files.
For TPC-H, we use the same experimental setting for each
guest VM as described in Section 3.3. From the exper-
imental results shown in Figure 5 we see that SS signif-
icantly improves throughput, while AS and CFQ exhibit
only limited, if any, improvements over Deadline and Noop
because of their lack of process information about requests
issued by processes on the same guest VM. When we run
two guest VMs, each of the same setting as that in the one-
VM scenario, AS and CFQ produce higher throughput im-
provement as they can differentiate requests from differ-
ent guest VMs and thus reduce long-distance seeks among
data requested by different VMs. Accordingly the relative
performance advantage of SS is reduced.

3.5 Storage with Disk Array

To evaluate the performance impact of disk schedulers on
the disk array, we select three benchmarks: par-read, TPC-
H, and PostMark, whose settings are the same as described
in Section 3.3, except that all files are striped over five disks
with a 64KB striping unit. The disk array is organized

 0

 50

 100

 150

 200

 250

 300

par-read TPC-H PostMark

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

ts
 (%

)

SS
AS

CFQ
Deadline

Noop

Figure 6: Performance of benchmarks par-read, TPC-H, and
PostMark, with different disk schedulers in a 5-disk array. The
performance is presented as the schedulers’ percentage improve-
ment over that of Noop. Performance of TPC-H is measured with
execution time, which is 104.6s with Noop. For par-read and
PostMark, it is measured with throughputs, which are 168.0MB/s
and 1.3MB/s, respectively, with Noop

as RAID0. We have also experimented with RAID5 and
obtained consistent results. To focus on the performance
challenges imposed by data striping on the disk array, we
do not hide process information in the test. The experimen-
tal results are presented in Figure 6, which shows that for
benchmarks of sequential access pattern, such as (par-read
and TPC-H), SS achieves impressive improvements, 114%
and 174% over that of Noop, respectively. Without op-
portunistic synchronization of the disks, the improvements
made by AS or CFQ are limited. For example, AS reduces
the execution time of TPC-H by only 25% while it can re-
duce the time by 72% when only one disk is used over
that of Deadline (see the measurement in Figure 3 for SS,
which produces about the same execution time as AS with
known process information). The throughput of par-read
with SS (361MB/s) approaches the peak throughput of the
RAID card (around 400MB/s). The sequential access pat-
tern with the help of aggressive prefetching in the RAID
is turned into streams on each physical disk in SS, which
helps eliminate disk thrashing. However, with the random
access pattern of PostMark, SS shows minimal improve-
ment as physical streams can hardly be formed.

3.6 Impact of Stream Scheduling on
Throughput and Response Time

SS achieves its performance advantage mostly through its
dedication of disk service to one stream of requests dur-
ing a certain period of time (stream time slice). By doing
so, potentially long distance disk seeks take place only be-
tween time slices. Therefore, increasing the time slice is
expected to reduce long-distance seeks and thus improve

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 129

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140

T
h

r
o

u
g

h
p

u
t

(
M

B
/s

)

Stream Time Slice (ms)

 (a)

Thinktime = 0us
Thinktime = 20us
Thinktime = 50us

Thinktime = 100us
Thinktime = 150us

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.5 1 1.5 2 2.5 3 3.5 4

 W
a
it

 t
im

e
 (

m
s
)

 Execution time (s)

 (b)

SS
Deadline

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5 3 3.5 4

 S
e
r
v

ic
e
 t

im
e
 (

m
s
)

 Execution time (s)

 (c)

SS
Deadline

Figure 7: Impact of streaming scheduling on throughput improvement and variation of request response time. (a) Throughputs
with varying stream time slices for benchmark par-read of different thinktimes. (b) Request wait times with SS of default time slice
(124ms) for par-read of 0 thinktime with SS and Deadline. (c) Request service times with SS of default time slice (124ms) for
par-read of 0 thinktime for SS and Deadline.

I/O throughput. However, requests that are pending but do
not belong to the currently served stream may experience
a longer pending period with increased time slice, which
can increase variation in response time. To study the ef-
fect of the time slice on throughput and response time,
we run benchmark par-read with an experimental setting
the same as described in Section 3.3. As shown in Fig-
ure 7(a), the throughput improves with the increasing time
slice. The more I/O intensive (with a smaller thinktime)
the program is, the larger the improvement. The through-
put improves quickly with I/O-intensive programs before
the time slice reaches 100ms. After that, further increas-
ing the slice yields only diminishing returns. This is why
SS uses the default time slice of 124ms, the same value as
adopted by Linux’s AS. With this time slice, we measure
two components of every request’s response time, namely
wait time and service time, during the execution of par-
read with zero thinktime, and show them for the first four
seconds of execution with SS and Deadline in Figure 7(b)
and Figure 7(c), respectively. Unsurprisingly, SS produces
some substantially large wait times (as large as 0.37s), as
it rotates its service among four streams with a 124ms
slice. Considering that Deadline’s default timeout period
for boosting request priority is 0.5s, these wait times are
deemed acceptable. Meanwhile, as each cycle of such ro-
tation produces only a few long wait times for synchronous
requests, the percentage of requests with long wait times
is very small and most requests have significantly reduced
wait times with SS (Figure 7(b)). Furthermore, the use of
a modest time slice in SS, which increases variation of re-
sponse time, is paid off with significantly reduced request
service time (Figure 7(c)) and improved disk efficiency.

4 Related Work
The effectiveness of disk scheduling is highly dependent
on the existence of request locality. For this reason, there

are many efforts to improve disk access locality. In the
high-performance computing field many optimizations are
made in the middleware to transform a large number of
small non-contiguous requests into a smaller number of
larger contiguous requests, including Data sieving [34],
Datatype I/O [6], and Collective I/O [34, 43]. Because lo-
cality is about requested data locations on disk, there are
many efforts to rearrange on-disk data layout to improve
spatial locality, including data relocation [15] or data repli-
cation, either within one disk [14, 4, 20] or across mul-
tiple disks [42]. In addition, compiler techniques can be
employed to improve locality by forming preferable I/O
access patterns for the disks as well as optimizing file
layouts matching known access patterns [18, 21]. How-
ever, the enhanced locality can be weakened or even lost
when there are multiple processes, each concurrently issu-
ing synchronous I/O requests. The locality can be recov-
ered by non-work-conserving disk schedulers, such as the
Anticipatory Scheduler [16]. Anticipatory scheduling has
been implemented in some popular Linux disk schedulers
including anticipatory [24] and (CFQ) [1].

The problem with the assumption by existing non-work-
conserving schedulers on the availability of process infor-
mation has been recognized in the literature, but effective
solutions have not yet been proposed. One scenario is that
the disk scheduler in the virtual machine monitor, such as
AS, does not know from which specific process running on
a guest virtual machine a request is issued. The Antfarm
facility can help infer process information for disk schedul-
ing by tracking activities of OS processes [17]. However,
application of the technique is limited in the virtual ma-
chine environment. In addition, effort must be expended to
implement the facility for each individual virtual machine
system and the system must be open for instrumentation
and patching. The difficulty caused by the lack of pro-
cess information has also been found with the AS sched-
uler deployed in the NFS server [11], where the proposed

130 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

approach is to use other access context information, such
as accessed files’ directory or owner, as hints to group re-
quests for scheduling. While this approach can make up for
the inadequacy to some extent, the hints may not be always
relevant in revealing on-disk locality to the scheduler and
could be misleading. A study of the Linux disk schedulers
found that AS or CFQ can underperform significantly even
when process information is available but multiple pro-
cesses cooperatively send synchronous requests, because
AS or CFQ may fail to find anticipation opportunity when
it attempts to attribute history access statistics to individ-
ual processes [36]. By identifying access streams for non-
work-conserving scheduling directly from the access loca-
tions, SS discards the requirement for process information
instead of looking for its possibly inadequate substitutes
with additional overhead in the OS or file systems.

The use of an I/O stream, or request sequence, to ana-
lyze and exploit access locality has been used before. Re-
garding I/O prefetching, though many sophisticated de-
signs have been proposed, such as those based on proba-
bility graph model [38], information-theoretic Lempel-Ziv
algorithm [7], or time series model [37], the stream-based
approach dominates the design of prefetching in the system
and has proven its effectiveness and efficiency [27, 41, 35].
Streams are also formed on the hard disk addresses to track
disk access history and enable on-disk prefecthing [12].
Another interesting work is a tool called C-Miner that uses
a data mining technique to find streams of disk block ac-
cess representing repeatable block sequences, which can
be used for initiating reliable prefetching [22]. While SS
also tries to form streams among requests to the disk, the
streams serve a different purpose. For prefetching, a well-
established stream will lead to prefetching of multiple data
blocks ahead of stream, while for SS the stream is main-
tained to determine whether the disk should wait for an
upcoming request. More importantly, the cost of using
streams in the aforementioned works can be much higher
than that for SS when stream members have to be remem-
bered for evaluation of stream quality, while SS needs only
to track the latest member of a stream.

Regarding scheduling in the disk array, the necessity of
coordinating requests has been widely recognized, espe-
cially for those with small striping units. When multiple
disks are involved to serve a request, “disks take differ-
ent amounts of time to position, the request must wait for
the slowest-positioning disk to transfer its data” [10]. A
possible solution is a synchronized interleaved disk sys-
tem that synchronizes disk spindles and serves one request
at a time in a disk array [19, 8]. However, for striping
unit size larger than one byte or for a number of disks in
a disk system beyond a certain limit, a fully synchronized
disk array could seriously hurt performance by limiting the
number of concurrently served requests [31]. The inter-
ference among requests from different processes caused

by uncoordinated disk access has been reported and ad-
dressed in the cluster-based storage environment by using a
timeslice-based co-scheduling method [40]. Though their
work is similar to ours in the coordination of some or all
disks and dedication of them to one process at a time, it
cannot be effectively used as a disk scheduler to exploit
spatial locality for higher performance. One reason is that
their work requires an offline-calculated scheduling plan
according to QoS specifications that does not adapt to the
workload dynamics. Another reason is that it does not eval-
uate the benefits of dedicated service to a process relative
to the cost of disk synchronization, and indiscriminately
applies the synchronization to all programs. In contrast, SS
dynamically evaluates the cost effectiveness of non-work-
conserving scheduling by tracking and validating streams
and opportunistically allows the disks to serve one virtual
stream at a time. A scheme using opportunistic synchro-
nization to reduce I/O interference among multiple MPI
programs accessing a cluster of data servers has been pro-
posed [44]. Without identifying streams, the scheme must
assume a file is accessed by only one program and the MPI
library and parallel file system must be instrumented to in-
fer the assumed relationship and make it available to the
scheduler. In contrast, SS provides a more general solution
not constrained by availability of process information.

5 Conclusions

We have described the design and implementation of
a stream scheduling framework that turns any work-
conserving disk scheduler into a non-work-conserving one,
even without process information available, to exploit lo-
cality embedded in the sequences of synchronous requests.
The framework can also opportunistically coordinate the
services at different disks of a disk array to recover and
exploit the locality weakened by file striping. The frame-
work has been prototyped in the Linux kernel, both as a
disk scheduler and as a software RAID scheduler. Exten-
sive experiments have demonstrated that SS can signifi-
cantly improve the performance of representative bench-
marks such as by TPC-H, PostMark, grep, FTP, as well as
MPI programs. In particular, SS shows its unique value
in environments where process information is unavailable,
such as block or file storage servers and virtual machines.

6 Acknowledgements

We thank Kei Davis, Xuechen Zhang, our shepherd Eliz-
abeth Varki, and the anonymous reviewers for their con-
structive comments that helped us to improve the paper.
This research is supported by U.S. NSF CAREER award
CCF-0845711.

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 131

References
[1] J. Axboe, “Completely Fair Queueing (CFQ) Scheduler,”

http://en.wikipedia.org/wiki/CFQ, 2010.

[2] D. Boutcher and A. Chandra, “Does Virtualization Make
Disk Scheduling Pass?,” ACM SIGOPS Operating Systems
Review, Vol. 44, Issue 1, 2010.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the
Art of Virtualization,” Proc. of the 19th ACM Symposium
on Operating Systems Principles, 2003.

[4] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Lip-
tak, R. Rangaswami, and V. Hristidis, “BORG: Block-
reORGanization for Self-optimizing Storage Systems,”
Proc. of the 7th USENIX Conferenece on File and Storage
Technologies, 2009.

[5] A. Ching, A. Choudhary, K. Coloma, and W. Liao, “Non-
contiguous I/O Accesses Through MPI-IO,” Proc. of IEEE
International Symposium on Cluster, Cloud, and Grid Com-
puting, 2003.

[6] A. Ching, A. Choudhary, W. Liao, R. Ross, and W. Gropp,
“Efficient Structured Data Access in Parallel File System,”
Proc. of IEEE International Conference on Cluster Com-
puting, 2003.

[7] K. M. Curewitz, P. Krishnan, and J. S. Vitter, “Practical
Prefetching via Data Compression,” ACM SIGMOD Record
Archive, Vol. 22, Issue 2, 1993.

[8] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson, “RAID: High-Performance, Reliable Secondary
Storage”, ACM Computing Surveys, Vol. 26, No. 2, 1994.

[9] P. Carns, W. Ligon III, R. Ross, and R. Thakur, “PVFS: A
Parallel File System For Linux Clusters”, Proc. of the 4th
Annual Linux Showcase and Conference, 2000.

[10] P. M. Chen and D. A. Patterson, “Maximizing Performance
in a Striped Disk Array,“ Proc. of 17th annual international
symposium on Computer Architecture, 1990.

[11] H. Chen, J. Xiong, and N. Sun, “A Novel Hint-based I/O
Mechanism for Centralized File Server of Cluster,” Proc.
of IEEE International Conference on Cluster Computing,
2008.

[12] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang,
“DiskSeen: Exploiting Disk Layout and Access History to
Enhance I/O Prefetch,” Proc. of USENIX Annual Technical
Conference, 2007.

[13] G. Peng and T. Chiueh, “Availability and Fairness Support
for Storage QoS Guarantee,” Proc. of IEEE International
Conference on Distributed Computing Systems Conference,
2008.

[14] H. Huang, W. Hung, and K. Shin, “FS2: Dynamic Data
Replication in Free Disk Space for Improving Disk Perfor-
mance and Energy Consumption”, Proc. of the 20th ACM
Symposium on Operating Systems Principles, 2005.

[15] W. Hsu, A. Smith, and H. Young, “The Automatic Improve-
ment of Locality in Storage Systems,” ACM Transactions
on Computer Systems, Vol. 23, Issue 4, 2005.

[16] S. Iyer and P. Druschel, “Anticipatory Scheduling: A Disk
Scheduling Framework to Overcome Deceptive Idleness in
Synchronous I/O,” Proc. of the 18th ACM Symposium on
Operating Systems Principles, 2001.

[17] S. T. Jones, A. C. Arpaci-dusseau, and R. H. Arpaci-
dusseau, “Antfarm: Tracking Processes in a Virtual Ma-
chine Environment,” Proc. of the USENIX Annual Technical
Conference, 2006.

[18] M. Kandemir and A. Choudhary, “Compiler-Directed I/O
Optimization,” Proc. of the 16th International Symposium
on Parallel and Distributed Processing, 2002.

[19] M.Y. Kim, “Synchronized Disk Interleaving,” IEEE Trans-
actions on Computers, Vol. C-35, No. 11, 1986.

[20] R. Koller and R. Rangaswami, “I/O Deduplication: Utiliz-
ing Content Similarity to Improve I/O Performance,” Proc.
of the 8th USENIX Conferenece on File and Storage Tech-
nologies, 2010.

[21] M. Kandemir, S. Son, and M. Karakoy, “Improving I/O Per-
formance of Applications through Compiler-Directed Code
Restructuring,” Proc. of 6th USENIX Conference on File
and Storage Technologies, 2008.

[22] Z. Li, Z. Chen, S. Srinivasan, and Y. Zhou, “C-Miner:
Mining Block Correlations in Storage Systems,” Proc. of
3rd USENIX Conference on File and Storage Technologies,
2004.

[23] E. K. Lee and R. H. Katz, “An Analytic Performance Model
of Disk Arrays and its Applications”, Tech. Rep. UCB/CSD
91/660, Univ. of California, Berkeley, Calif.

[24] A. Morton, “Linux: Anticipatory I/O Scheduler”,
http://kerneltrap.org/node/567

[25] F. Popovici, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Robust, Portable I/O Scheduling with the Disk
Mimic,” Proc. of the 2003 USENIX Annual Technical Con-
ference, 2003.

[26] “The PostMark Benchmark”,
www.freshports.org/benchmarks/postmark/, 2010.

[27] R. Pai, B. Pulavarty, and M. Cao, “Linux 2.6 Performance
Improvement through Readahead Optimization”, Proc. of
the Linux Symposium, 2004.

[28] “The ProFTPD Project”, http://www.proftpd.org/, 2010.

[29] A. E. Papathanasiou and M. L. Scott, “Aggressive Prefetch-
ing: An Idea Whose Time Has Come,” Proc. of the 10th
Workshop on Hot Topics in Operating Systems, 2005.

[30] PVFS, http://www.pvfs.org/. Online-document, 2010.

[31] A. L. N. Reddy and P. Banerjee, “An Evaluation of
Multiple-disk I/O Systems,” IEEE Transactions on Comput-
ers, Vol. 38, No.12, 1989.

[32] Red Hat, Inc., “Oracle 10g Server on Red Hat En-
terprise Linux 5 Deployment Recommendations,”
http://www.redhat.com/, 2008.

[33] E. Rosti, E. Smirni, G. Serazzi, Giuseppe, and L. Dowdy,
“Analysis of Non-Work-Conserving Processor Partitioning
Policies,” Proc. of the Workshop on Job Scheduling Strate-
gies for Parallel Processing, 1995.

132 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

[34] R. Thakur, W. Gropp, and E. Lusk, “Data Sieving and Col-
lective I/O in ROMIO,” Proc. of the 7th Symposium on the
Frontiers of Massively Parallel Computation, 1999.

[35] A. J. Smith, “Sequentiality and Prefetching in Database
Systems,” ACM Transactions on Database Systems, Vol. 3,
No. 3, 1978.

[36] S. Seelam, R. Romero, P. Teller, and B. Buros, “Enhance-
ments to Linux I/O Scheduling,” Proc. of the Linux Sympo-
sium, 2005.

[37] N. Tran and D. A. Reed, “Automatic ARIMA Time Series
Modeling for Adaptive I/O Prefetching,” IEEE Transactions
on Parallel and Distributed Systems, Vol. 15, Issue 4, 2004.

[38] V. Vellanki and A. Chervenak, “A Cost-Benefit Scheme
for High Performance Predictive Prefetching,” Proc. of the
ACM/IEEE conference on Supercomputing, 1999.

[39] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R.
Ganger, “Argon: Performance Insulation for Shared Stor-
age Servers,” Proc. of the 6th USENIX Conference on File
and Storage Technologies , 2007.

[40] M. Wachs and G. Ganger,“Co-scheduling of disk head time
in cluster-based storage,” Proc. of 28th International Sym-
posium on Reliable Distributed Systems, 2009.

[41] F Wu, H. Xi, and C. Xu, “On the Design of a New Linux
Readahead Framework,” ACM SIGOPS Operating System
Review, Vol. 42, No. 5, 2008.

[42] X. Zhang and S. Jiang, “InterferenceRemoval: Removing
Interference of Disk Access for MPI Programs through Data
Replication,” Proc. of International Conference on Super-
computing, 2010.

[43] X. Zhang, S. Jiang, and K. Davis, “Making Resonance a
Common Case: A High-Performance Implementation of
Collective I/O on Parallel File System,” Proc. of IEEE Inter-
national Parallel and Distributed Processing Symposium,
2009.

[44] X. Zhang, K. Davis, and S. Jiang,“IOrchestrator: Improving
the Performance of Multi-node I/O Systems via Inter-Server
Coordination,” Proc. of Supercomputing, 2010.

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 133

Improving throughput for small disk requests with proximal I/O

Jiri Schindler, Sandip Shete, Keith A. Smith
NetApp, Inc.

Abstract

This paper introduces proximal I/O, a new technique for

improving random disk I/O performance in file systems.

The key enabling technology for proximal I/O is the abil-

ity of disk drives to retire multiple I/Os, spread across

dozens of tracks, in a single revolution. Compared to

traditional update-in-place or write-anywhere file sys-

tems, this technique can provide a nearly seven-fold im-

provement in random I/O performance while maintain-

ing (near) sequential on-disk layout. This paper quan-

tifies proximal I/O performance and proposes a simple

data layout engine that uses a flash memory-based write

cache to aggregate random updates until they have suf-

ficient density to exploit proximal I/O. The results show

that with cache of just 1% of the overall disk-based stor-

age capacity, it is possible to service 5.3 user I/O requests

per revolution for random updates workload. On an aged

file system, the layout can sustain serial read bandwidth

within 3% of the best case. Despite using flash memory,

the overall system cost is just one third of that of a sys-

tem with the requisite number of spindles to achieve the

equivalent number of random I/O operations.

1 Introduction

This paper focuses on an important but neglected as-

pect of file system performance: workloads that mix ran-

dom writes with sequential reads to the same data. In

particular, serial reads after random writes (SRARW)

are common in many applications that are large con-

sumers of storage in enterprise environments. For exam-

ple, database systems typically acquire and update data

through online transactional processing (OLTP), which

is dominated by small writes, and subsequently read it in

bulk for other tasks, such as analysis or backup. SRARW

workloads are particularly problematic in large-scale de-

ployments, which are often spindle-limited and too large

to be moved to flash-based SSDs cost effectively.

Existing file system designs optimize either the serial

read access or the random writes in a SRARW work-

load, but do so at the expense of the other operation type.

At one end of the spectrum, write-anywhere file systems

such as the Sprite log-structured file system (LFS) [27]

and its descendants [19, 22, 3] are write optimized. They

batch small or random writes into larger sequential allo-

cations on disk, transforming updates of logically unre-

lated data into physically sequential I/O. However as they

age, their data layout becomes fragmented, scattering re-

lated data across the disk. Thus, logically sequential ac-

cess such as a database table scan leads to inefficient disk

I/O. We have measured access to physically fragmented

data at as little as 3% of the best-case serial read band-

width. (See results in Section 5.3.)

At the other end of the spectrum, update-in-place file

systems, such as FFS [21] and related designs [5, 32]

are optimized for serial read and write access. These

file systems attempt to allocate logically sequential data

to physically sequential disk locations, providing good

bandwidth for serial data access. However, this trans-

lates into inefficient non-sequential I/O, as destination

blocks are predetermined by past allocation decisions,

which are unlikely to be optimal in the face of random

updates. Moreover, when such systems keep older ver-

sions of the data, they must perform a variant of copy-

on-write [25], doubling the amount of inefficient random

write I/O. Database systems often decouple this ineffi-

cient back-end I/O from foreground processing through

the use of logging. The log then becomes a staging area

for asynchronous bulk updates to the database tables.

However, this technique alone does not mitigate the high

cost of random I/Os to the back-end of a storage system

that has limited I/O capacity.

To increase the back-end’s effective I/O capacity with-

out increasing disk (spindle) count, we introduce a new

type of disk access pattern that we term proximal I/O.

We demonstrate how proximal I/O leverages features of

current disk drives to retire in a single revolution several

I/Os scattered across dozens of tracks holding hundreds

of thousands of sectors (Section 2). We propose a new

data layout (Section 3), which shares the desired prop-

erties of existing copy-on-write, write-anywhere file sys-

tems that make random user writes efficient and allow for

snapshots with minimal I/O overhead.

Using a prototype implementation of our data layout (de-

tailed in Section 4), we show that with write cache sized

only at 1% of the overall storage capacity, we can ser-

vice 5.3 I/Os per revolution for workloads with random

updates, all the while maintaining data layout on a heav-

ily aged system that can deliver 97% of the bandwidth

achieved with the best-case scenario of physically se-

134 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

quential layout (Section 5). The 5.3 I/Os serviced per

revolution represent a 7× improvement over the cost of a

random disk I/O in traditional frame arrays with update-

in-place data layout. With RAID5 and non-volatile write

caches, they use four random disk I/Os at the back-end;

with copy-on-write snapshots, this number doubles. In

contrast, our approach uses about one disk I/O at the back

end for every user-level random update when both RAID

and copy-on-write are employed.

The primary contribution of this paper is the introduction

of a data layout strategy that combines a small amount

of flash memory with proximal I/O to efficiently service

random updates to sequentially-allocated on-disk data

without undermining on-disk locality. We provide effi-

ciency both in performance and cost, significantly im-

proving the performance of random writes at less than a

third of the cost per IOPS of a pure disk solution. Fi-

nally, we present the first study to quantify the behavior

of modern disk drives under proximal I/O access pattern.

2 Proximal I/O

Proximal I/O leverages the ability of modern disk drives

to execute multiple I/Os per single revolution scattered

across dozens of disk tracks. Given the 300-400 Gb/in2

aerial density of the magnetic media in currently ship-

ping disk drives, this translates to a range of hundreds of

thousands of logical blocks (LBNs)1. We describe the in-

terplay between seek-time profile and request scheduling

that make proximal I/O possible.

In the material presented here, we focus primarily on one

disk model (the Seagate Cheetah 15K.5, introduced to

the market in late 2007). However, both the 15,000 RPM

enterprise-class drives as well as the 7,200 RPM high-

capacity nearline drives, colloquially referred to by their

interfaces as respectively SCSI/FC and SATA drives, are

capable of proximal I/O. Our measurements of over 20

different models of both drive types, representing several

generations of the same family of drives and manufac-

tured by four different vendors confirm the observations

about proximal I/O described here.

2.1 Relevant technologies

Historically the seek profile, the plot of seek time as a

function of radial distance, has been described by a con-

tinuous curve with two components: for small distances,

one that is a square root of the cylinder distance and,

1The number of sectors per track (SPT) for recent 3.5” disk drives

ranges between 800 and 2800. edge. The 15,000 RPM enterprise-class

disks employing 65 mm platters have fewer SPT at their outer-most

track compared to the 95 mm platters in the 7,200 RPM disk drives [2].

for larger seek distances, one where seek time is a lin-

ear function of cylinder distance [28]. As observed by

Schlosser et al. [31], the seek profile of more recent disks

includes a third component: for very small seek distances

of less than C cylinders, the seek time is nearly constant

and is effectively equivalent to the track-switch time, or

the time needed for the head to settle on a track.

The surface-serpentine disk layout adopted by more re-

cent drives [1, 31] uses minimal seek time over a range of

tracks. After mapping the last LBN to a given track, the

disk firmware maps the next LBN to the adjacent track

on the same surface rather than to the same track on a

different surface. After mapping across C consecutive

tracks, the next logical LBN is mapped to a sector on

a track of a different surface C cylinders away. Thus,

when accessing sequential run of LBNs, the disk heads

will occasionally seek across the C cylinders to access

the next logically sequential LBN. Using a disk extrac-

tion tool [29], we determined C = 65, which covers the

range of 624,000 LBNs (1200 SPT × 65 cylinders ×8

surfaces) for the 300 GB Cheetah 15K.5 disk.

The Shortest-Positioning-Time-First (SPTF) request

scheduler [34] implemented in the disk firmware can ef-

fectively increase the throughput of serviced requests. It

reorders requests to minimize the total positioning time

(i.e., the sum of seek time and rotational latency) for each

I/O request in the queue. With sufficiently large number

of outstanding requests, it can lower the total positioning

cost (i.e., the sum of the seek time and rotational latency)

and service many more requests per unit of time [1].

2.2 Expressing request service time

Issuing only one request at a time to the disk negates the

benefits of the SPTF scheduler. The service time of a

small random request will then be equivalent to the sum

of average seek (equivalent to 1/3 of the full-strobe seek)

and rotational delay of 1/2 a revolution. For the Cheetah

15K.5 disk, this is is respectively 3.6 ms and 2 ms, re-

sulting in service time of 5.6 ms. For a 7,200 RPM West-

ern Digital RE3 nearline disk, the values are respectively

6.9 ms and 4.2 ms, yielding service time of 11.1 ms.

As these times for the two drives vary (by design) by a

factor of 2×, we will use instead a relative measure of

service time, here called OP, that lets us ignore the dif-

ferences between disk types and their generations. Thus,

1 OP is the service time for a small random disk request

or the measure of resources consumed when servicing a

random disk I/O.

Our enterprise-class disk has the capacity to service

about 180 I/Os per second, while the nearline disk only

90. These drives demonstrate a useful rule of thumb;

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 135

the average seek time of a disk is roughly equal to the

time for a full rotation. Thus, the seek component of an

OP is roughly 2/3 OP while the remaining portion is at-

tributed to the rotational latency of half a revolution. This

rule predicts that a disks can typically service 0.66 ran-

dom requests per revolution. Our two drives do slightly

better—0.71 for the enterprise-class disk and 0.75 for the

nearline disk. This trend has held across many disk gen-

erations with different rotational speeds and seek times.

2.3 Measurements

To quantify the benefits of proximal I/O, we measured

the per-request service time in a batch of requests, here

called a strand, under a variety of conditions. We chose

at random a location on the disk and controlled the span

of LBNs covered by the requests as well as the number

of requests in the strand issued simultaneously (i.e., the

disk queue depth). The measured response time for the

entire strand, listed in Table 1, is the sum of the service

times of the individual requests in the strand.

To service a strand of requests, the disk must first seek

to the general vicinity of the requests. Servicing the first

request in the strand thus incurs the cost of an average

seek in addition to some rotational latency. However, if

the requests are near each other, servicing the remaining

requests, incurs only some additional rotational latency

and potentially minimal seek/track switch, since all re-

quests in the strand are within C cylinders of each other.

As we batch all requests, the disk is free to reorder them.

Figure 1 shows the effective per-request service time as

the number of requests in the strand (and hence the queue

depth) increases, expressed both absolutely and in rela-

tive units of OPs. The graph compares three different

access modes. The track-approximate access limits the

LBN span to 1024, the approximate size of the disk’s

track, rounded down to the power of two. The prox-

imal access uses a span of 100,000 LBNs. The semi-

sequential access represents the best possible disk ac-

cess after sequential streaming [30] — the requests are

carefully chosen such that each request is positioned at

a different track and at an offset equivalent to the mini-

mal seek/track switch time. For semi-sequential access,

we need to know detailed disk drive parameters. On the

other hand, proximal I/O does not require the knowledge

of track switch time or precise track size (SPT).

We remark on the following trends. First, as the num-

ber of requests in the strand increases, the effective per-

request service time decreases from 1 OP to 0.39 OP for

a strand of 8 requests — a 2.5× improvement over the

case with one request per strand. Second, both track-

approximate and proximal mode are very similar, despite

the ten-fold difference in the LBN span. And third, the

Strand response time (ms)

Requests per strand 2 4 6 8

Semi-sequential 5.9 7.3 8.6 9.9

Track-approximate 7.4 10.8 13.9 17.0

Proximal READ 7.4 11.2 14.2 17.1

Proximal WRITE 8.6 12.9 16.8 20.4

Table 1: Comparison of strand response times for Seagate

Cheetah 15K.5. The mean service time of single READ request

is 5.6 ms. For WRITE, it is 5.8 ms due to extra write-settle time.

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8
 0

 0.2

 0.4

 0.6

 0.8

 1

A
v
g

.
P

e
r-

re
q

u
e

s
t

S
e

rv
ic

e
 T

im
e

 (
m

s
)

P
e

r-
re

q
u

e
s
t

C
o

s
t

(O
P

s
)

No. of I/Os in a Strand

Seagate Cheetah 15K.5 FC Disk (4 KB READs)

Proximal
Track-approximate
Semi-sequential

Figure 1: Per-request cost of small requests in a strand.

semi-sequential mode yields 0.23 OP for 8 requests per

strand compared to 0.39 OP of proximal mode — an ad-

ditional 1.7 times improvement. The results for WRITEs

(not shown here) exhibit a similar trend; the slightly

higher strand response time (see Table 1) is due to ad-

ditional write-settle time for track-to-track seeks.

2.4 Detailed model comparisons

Two hypotheses might explain why we do not see values

for proximal I/O that are closer to the semi-sequential

mode. First, with randomly chosen blocks, some of them

may land on the same track and the disk firmware opts

to prefetch the remainder of the track before servicing

other requests. Second, even without triggering prefetch-

ing, the random placement of the requests can cause extra

(missed) revolutions as we describe below.

The semi-sequential access carefully chooses the place-

ment of blocks so as to eliminate any rotational delays

between requests after a track switch. With randomly

chosen requests in proximal access, requests on different

tracks can have rotational offset that is smaller than the

time needed to switch tracks. The following paragraphs

help illustrate how the disk scheduler minimizes overall

rotational latency. They also show that it is the stochastic

nature of the request placement rather than an artifact of

the disk firmware causing the extra revolutions.

136 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5 6 7 8
 0

 0.2

 0.4

 0.6
A

v
g

.
P

e
r-

re
q

u
e

s
t

S
e

rv
ic

e
 T

im
e

 (
m

s
)

P
e

r-
re

q
u

e
s
t

C
o

s
t

(O
P

s
)

No. of Oustanding I/Os at the Disk

Proximal I/O with 8 Requests - Cheetah 15K.5 FC Disk (4 KB READs)

FIFO

-7.6%
-13.5%

-19.9% -21.0% -22.5%
-26.7%

-32.3%

Figure 2: Per-request service time for strand of 8 requests with

a varying number of READ requests outstanding at the drive.

The first point is equivalent to a FIFO scheduler. The percent-

ages next to the data points represent improvement relative to

the FIFO data point. The second graph compares the modeled

and the observed (measured) behavior.

To verify our hypothesis, we set up an experiment, whose

results are shown in Figure 2, where we fixed the number

of requests per strand to 8 and varied the number of re-

quests queued at the drive. With one request outstanding,

the requests are serviced in FIFO order. As the number

of outstanding requests increases, the disk scheduler can

choose a request with smaller rotational latency, yielding

a 32% reduction in per-request service time for a queue

depth of 8 requests. This result confirms that proximal

access effectively leverages the SPTF scheduler.

To obtain the expected number of revolutions needed to

service a strand of requests with proximal I/O, we de-

veloped an analytical model for computing the expected

strand response time and the probability distribution

of missing revolution(s) for proximal I/O access. The

model is based on the birthday paradox principle [33]

and works at a high level as follows. It divides the disk

into equally sized wedges or bins. When two requests

(on different tracks) fall into the same bin, the disk heads

cannot move fast enough to reach the second request in

time and will have to service it during the next revolu-

tion. Because of the high track switch time relative to

the revolution time (0.4–0.8 ms), there are only a few

bins (days in a month) available and several requests are

likely to fall into the same bin (i.e., having birthday on

the same day). See Appendix A for model details.

Figure 3 demonstrates the high accuracy of our model,

comparing the measured and modeled distributions of

the strand response times. The two curves labeled

Strands and Model are very similar with nearly identi-

cal distributions. The curve labeled FIFO corresponds to

measurements with one request outstanding at the disk

drive, which is the scenario described in Figure 2.

Time [ms]

0 5 10 15 20 25 30 35 40

P
D

F

0

Strands

Model

FIFO

Figure 3: Model-predicted vs. measured (observed) values.

2.5 Practical considerations

There are a few practical considerations for proximal I/O.

First, we discovered that the manner in which we issue

the requests in the strand is important. Issuing requests

in a random order and relying solely on the scheduler’s

ability to reorder them does not work. However, when

we issue the requests in ascending LBN, the scheduler

works as expected — it picks from the strand a request

with the lowest positioning cost, services it first, and re-

orders the remaining ones as necessary. Figure 4 shows

the effect of issuing requests in ascending LBN for two

different disk drives. The previously reported results in-

clude this workaround.

We attribute this limitation to two factors: the lack of

the embedded CPU power (especially for nearline drives)

and a firmware bug. We consulted disk manufactures

who acknowledged both factors. In one case, our inquiry

led to a fix in a subsequent firmware release. In prac-

tice, even with current limitations, pre-sorting requests

is not an issue. Second, to engage the request scheduler

properly, the strand must be issued to a non-empty disk

queue. Again, in practice this limitation is not a prob-

lem. In many deployed systems, disks are seldom idle;

they are busy servicing either client-generated workload

or a variety of background scanning and grooming tasks.

Third, we explored strands with at most 8 requests out-

standing, although deeper queues would likely result in

better results. This is again driven by a practical con-

sideration. Many commercial storage systems [20, 8, 9]

limit the number of pending requests to 4 or 8 to put a

bound on the response time of a time-critical request.

As a final remark note that our experiments assumed a

purely random workload, which we simulated by a uni-

form distribution of requests in the given range of LBNs.

We believe that workloads that have more locality (but

which are not sequential by nature) will benefit at least

as much (if not more) from using proximal I/O.

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 137

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

S
tr

a
n

d
 A

v
g

.
R

e
s
p

.
T

im
e

 (
m

s
)

No. of I/Os in a Strand

Seagate Cheetah 15K.5 FC Disk (4KB READs)

Full track
Proximal

Proximal sorted

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

S
tr

a
n

d
 A

v
g

.
R

e
s
p

.
T

im
e

 (
m

s
)

No. of I/Os in a Strand

Western Digital RE3 SATA Disk WD1002FBYS (4KB READs)

Full track
Proximal

Proximal sorted

Figure 4: The effects of sorting requests in ascending LBN order before issuing them to the disk. The full track data serves as a

reference of request scheduling efficiency and corresponds to reading approximately one full track. Same trends hold for WRITEs.

3 Data layout with proximal I/O

Previous section explained how proximal I/O can retire

several I/Os per revolution within the span of approxi-

mately 100 tracks or half a million LBNs. In this section

we describe the design principles for data layouts that

leverage the proximal I/O construct. For our discussion,

we will use the term block to designate the basic data

allocation unit in file systems (typically 4 KB) to distin-

guish them from sectors, or LBNs, which are typically

512 bytes and serve as the basic unit of disk I/O.

3.1 Increasing I/O density

We start by considering how to increase the density of

writes in the SRARW workload. The goal is to take a

stream of random requests and produce sequences of I/O

that will benefit from proximal I/O. As long as a storage

system can produce a batch of several, say eight, write re-

quests, and the data layout engine can place them within

the span of ≈ 100,000 blocks, each request will be ser-

viced in time equivalent to much less than one revolu-

tion and consume only 3.2 OP of resources (i.e., 0.4 OP

per request as shown in Figure 1) regardless of the pre-

vious position of the disk heads. In contrast, servicing

eight blocks randomly scattered across the entire media

will require 8 OP. Put differently, we need to find a way

to increase the effective I/O density instead of spreading

out a given batch of I/Os across the entire disk.

We use two complementary approaches to achieving the

necessary I/O density. First, we leverage indirection

when assigning data to their physical locations akin to

inodes in file systems that map file offset to a physical ad-

dress at the underlying storage. Write-anywhere systems

with no-overwrite semantics [19, 27] already take advan-

tage of this approach; random writes at the storage sys-

tem interface are mapped to the same segment (allocation

area) at the physical layer. Our technique expands on

this notion by allocating data to free space in the vicinity

of the previously written logically related data. Second,

when the I/O density of 6–8 requests within the zone of

effectiveness of proximal I/O is not enough, we comple-

ment the new type of write allocation described above

with the use of a staging area. With a large-enough stag-

ing area, one can selectively pick appropriate requests

and write-allocate them to achieve the required I/O den-

sity as determined by the disk technology.

Our approach contrasts with existing ones in several

ways. Traditional frame arrays that export logical vol-

umes composed of disk drives organized into a RAID

group typically do not have much flexibility in mapping

their blocks to the underlying devices. They stripe data in

a round-robin fashion across the constituent disks. Such

systems do not require any additional metadata; they can

compute the disk number and disk offset with simple

modulo and divide arithmetic. However, a given write

operation at the storage interface will land at a specific

location on the disk, negating the desire for decoupling

the front-end workload from the back-end. As a result,

they need much larger write caches to achieve the re-

quired write density compared to our approach.

A back-end system with hundreds of large-capacity near-

line disk drives, will require hundreds of GB of stag-

ing area. Using that much NV-RAM (i.e., some form

of battery-backed DRAM) would make the overall sys-

tem cost prohibitively high (although there are commer-

cial systems that offer such configurations [10, 9]). A

more cost-effective solution is to use Flash memory an

append-only log [23], at approximately 1/10th of the cost

per GB. Another possibility is to use a dedicated disk as

commercial relational database systems do for their log.

However, with disk-based staging area, we would re-

quire some additional DRAM to hold the data during the

138 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

destage operation to perform random reads from DRAM

rather than disk during destage operation.

3.2 Overwrites and snapshots

In contrast to purpose-built storage systems [4, 7, 14,

18]) that function as fixed-content repositories or that

handle specialized scientific workloads that write lots

of intermediate results, most writes in commercial sys-

tems are (logical) overwrites or updates rather than new

writes. For example, commercial databases and email

servers [11] update individual records within database

pages. New, or append-only, writes occur infrequently

as these systems typically pre-allocate their table space

by writing out empty (but non-zero) pages in bulk. Sim-

ilarly, writes to objects containing virtual machine disk

images create clones of a baseline golden image with rel-

atively few unique blocks.

Proximal I/O can also reduce the overhead of preserving

multiple versions of the same block, be it snapshots for

fast recovery after a crash or keeping diverging replicas

of original files. A storage system will turn an update into

a copy-on-write operation that will write data to a new lo-

cation. A write-anywhere file layout, for example, lends

itself to keeping snapshots with very little overhead, as in

WAFL [19]. Other systems, such as frame arrays, with

direct mapping of logical blocks to disk locations must

issue an extra I/O to preserve old block versions.

Both types of systems exhibit a similar shortcoming. A

version (the new one in case of WAFL and the old one

in case of frame arrays) of the data is put in a location

that is convenient for the system without considering the

semantic relationship to the original data. This can ad-

versely affect the efficiency of subsequent reads. Log-

ically related data may end up too far away from each

other, incurring high positioning cost when they are both

first written and then later on retrieved. Therefore, when

a data layout engine maintains physical proximity of log-

ically related data (be it a live version or a snapshot), it

can leverage proximal I/O for copy-on-write of data that

are updates in place from the client’s perspective.

Most storage systems use RAID to protect their data

against disk failures and grown media defects. The

RAID read-modify-write (RMW) operation is not prox-

imal I/O per se. However, we can combine copy-out

and RMW operations and leverage proximal I/O; we can

pipeline them such that we write out the just-read old

version of the data within the effective span of proximal

I/O in time before the disk spins around to write the new

version of the block. With enough flexibility in the data

layout, we can accomplish two RMW operations, that is

four media accesses, in time equivalent to slightly more

than one and a half revolution plus the initial seek.

3.3 Efficiency of reads

So far we have discussed proximal I/O in the context of

writes. However, it can also improve the efficiency of

subsequent reads. The careful placement of related ver-

sions of the data during writes allows the disk to collect

physically non-contiguous blocks with minimal position-

ing overhead for logically sequential access. Proximal

I/O can access both the current data as well as the snap-

shots with similar efficiency.

Systems that do not place logically related data near

each other are likely to perform differently depending on

which version of the data they access. For example, a

sequential table scan on an aged system may be less effi-

cient than one performed against a snapshot made earlier.

In contrast, when systems can place related data within

the span of blocks that can be serviced with proximal

I/O, they will likely exhibit much smaller variations in

performance regardless of the version/snapshot they are

reading. This is because both the old and new versions

of data blocks, as well as logically related unmodified

blocks will be in close proximity of each other, allowing

proximal I/O to read either old or new versions of the

data with high efficiency.

3.4 Summary of key design points

We summarize the key design points of a data layout en-

gine suited for proximal I/O:

1. Flexible mapping of object data to the physical on-

disk location is an effective mechanism for increas-

ing I/O density. Put differently, given a certain level

of “randomness” in the front-end workload, systems

with flexible per-block location pointers will need

smaller staging area compared to systems that use

rigid mapping of front-end blocks to on-disk physi-

cal locations.

2. The system needs to employ large-enough write

staging area to achieve the required I/O density

for the given front-end workload. Naturally, com-

pletely random workloads will require the largest

size. In practice, workloads are rarely purely ran-

dom — there are typically hot spots where rel-

atively small portion of the data is updated fre-

quently. These hotspots reduce the amount of stag-

ing area required for effective proximal I/O.

3. A data layout engine with built-in efficient copy-on-

write mechanism is well suited for proximal I/O;

only some adjustments will be necessary to marry

the constraints of proximal I/O with their already

existing mechanisms.

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 139

We conclude by examining the various access patterns

encountered by enterprise storage systems. In addition to

serial reads after random updates (SRARW) that we tar-

get with proximal I/O, we must consider random reads,

sequential writes, and sequential reads not coupled with

frequent (small) updates. It is our belief that storage sys-

tems already employ effective techniques that can handle

these other access patterns. In our view, proximal I/O is

the missing link that fixes the inefficiencies of disk ac-

cesses in today’s deployments.

Increasing the size of read caches, for example by em-

ploying devices based on flash memory, effectively copes

with random reads. A modicum of NV-RAM can turn

sequential writes into efficient disk accesses. In con-

trast, increasing the efficiency of random updates re-

quires large buffers. Finally, sequential reads (in the ab-

sence of small updates) are easy to achieve. For exam-

ple, workloads typical for fixed-content repositories of-

ten write out and read entire objects. When individual

objects would be too small for efficient disk I/O, they are

grouped into larger allocation and access units [4, 35].

3.5 Target workloads

Our work targets workloads in large-scale storage sys-

tems and is motivated by the emergence of virtualized

data center environments. The computing infrastructure

includes a storage manager that allocates data from the

underlying storage systems in large chunks or extents.

For example, both the Oracle ASM [12] and VMWare

VMFS [13] allocate data in 1 MB chunks. Storage sys-

tems in these environment in turn provide data man-

agement features such as fine-grain snapshots, writable

clones, etc. [20].

In these environments SRARW workloads are typical.

The storage manager reads and prefetches data in full al-

location units (chunks). However updates are typically

at a finer granularity—for Oracle ASM, the update size

is equivalent to the DBMS page size (typically 4–8 KB).

For VM hypervisors, the update size is governed by the

block size of the file system in the VM guest operating

system. The writes from the storage managers to the

underlying storage systems may turn into copy-on-write

(rather than update-in-place) operations in order to pre-

serve older versions data for disaster recovery. Our work

focuses on these logical update-in-place operations with

serial reads for prefetching or OLAP data scans.

4 Prototype data layout engine

The goal of our work is not to build an entire new file sys-

tem. Instead, we have built a data layout engine (DLE)

that uses our staging and allocation algorithms to demon-

strate the feasibility of using proximal I/O to greatly

improve random write performance while maintaining

(near) optimal serial performance for SRARW work-

loads. We believe these algorithms are readily adaptable

to both update-in-place and write-anywhere file systems.

Our DLE is, in effect, a stripped-down object storage sys-

tem. We store logical extents of data in a flat namespace,

where each extent is named only by a unique ID. Ex-

tents can be created, read, written (and overwritten) and

deleted. For simplicity, we only support reads and writes

that are properly-aligned on block boundaries. Our DLE

includes all of the necessary file systems structures to

support this functionality, inode-like structures for each

extent, allocation maps to track free space, and additional

metadata to facilitate layouts friendly to proximal I/O.

Because we are primarily interested in addressing the

SRARW workload, our DLE is designed to efficiently

support moderately large extents (1 MB or larger)—large

enough for the serial read portion of the workload to ben-

efit substantially from sequential layout. Our DLE works

correctly for smaller extents, but we have not tested or

optimized its performance in those cases. We believe

that for those workloads, file systems would benefit more

from using allocation algorithms that are different from

those implemented in our prototype DLE. We describe

here only the major pieces of our prototype necessary to

understand the experiments presented in Section 5.

4.1 Extent interface

The DLE operates on extents. An extent is a contigu-

ous logical range of bytes. The DLE decides how to best

allocate extent data into fixed-size blocks (4 KB in our

prototype) of the underlying storage subsystem—a logi-

cal volume created from raw disks in a RAID group. In-

ternally, each extent is represented by an inode, which is

the root of a constant-height tree of indirect blocks. The

leaf nodes of this tree contain the extent data.

4.2 Staging area

Our DLE uses a separate flash device as a staging area to

accommodate random writes. When the DLE writes data

into the staging area, it also updates the corresponding

metadata including inode and indirect blocks for the just-

written extent. Thus the staging area is the full-fledged

home (albeit temporary) for new data, rather than a write

cache with a copy of the data. When the system achieves

the required I/O density (or the staging area runs out of

capacity) we use proximal I/O to move data from the

flash-based staging area to the on-disk location. More

importantly, during destage, we make just-in-time allo-

140 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

cation decisions for the best on-disk placement in rela-

tion to the data already-allocated to the disk. Because

of our desire to keep previous versions of data for snap-

shots, we don’t overwrite in place and instead write to a

new location. When the destage operation finishes, we

update the extent and DLE metadata accordingly to re-

flect its new on-disk location.

As part of its metadata, the staging area maintains a ta-

ble mapping each block in the staging area to the extent

and offset that the block belongs to. This allows us to

efficiently locate items in the staging area for destage.

Our DLE also uses the flash device to store its internal

metadata, so metadata access does not interfere with the

SRARW access patterns we wish to study.

4.3 Allocation policies

The more interesting feature of our prototype is the set

of write allocation policies we implemented. When new

data is written to an extent, we use the size of the write

to determine whether to write the data to the staging area

or directly to disk. In the current implementation this

threshold is 168 KB—a number chosen to be approxi-

mately the break-even point between the response time

of a random I/O of that size and a full-track read for our

current disks. Although, we have not examined alternate

settings, we believe that the precise value has little qual-

itative effect on our system; it only serves to distinguish

between small and large writes.

We have three different I/O allocation scenarios in our

system: small writes allocated to the staging area, large

writes allocated on disk, and collections of small writes

allocated on disk when destaging. We manage the stag-

ing area as an append-only log. Other more involved

schemes are possible, but we have not explored them.

When the staging area fills, we destage its full contents

and start refilling it again from the beginning. As de-

scribed earlier, when we write a block to the staging area,

we update the metadata that points to it, freeing any on-

disk block containing older data at that offset if that block

is not used for a snapshot.

When we receive a large write request, we write it di-

rectly to disk, allocating new space if necessary, as when

first writing an extent. Since we assume that extents

will be large, and we want to provide good serial per-

formance, we map large sequential ranges of an extent

to similarly sized physical extents on disk that we call

allocation ranges. By allocating at first fewer physical

blocks than the size of the allocation range, we can pro-

vide extra space for future updates and write-anywhere-

style snapshots [19] at the cost of a corresponding frac-

tion of serial bandwidth. We have not yet explored this

capability in our prototype.

We follow the recommendations of Chen et al. [6] for

stripe unit size to approximate the disk track size. Given

the current disk parameters, we chose 1 MB as the size

for the RAID stripe unit and allocation range for near-

line drives and 512 KB for enterprise-class drives. Note

however, that we need not know the precise disk parame-

ters. The allocation unit size is a configurable parameter

in our allocation algorithm and can loosely follow tech-

nology trends over time as track size increases.

Small writes (or updates) are first written to a staging

area and held there until sufficient number of random

updates is accumulated to achieve the required proximal

I/O density. At that point we collect the relevant data

(using our metadata info) and destage them to their fi-

nal place. That is where alternative storage technologies

work to our advantage; we can perform random reads

directly from the staging area backed by e.g., flash mem-

ory. If using disks instead, we need to perform (possibly

multiple) sorting pass(es) and use additional DRAM.

Destage is a two phase process. First, by scanning the

staging area tables, we identify sets of blocks that can

be allocated together. We do this by sorting the blocks

first by extent and then by logical offset within each ex-

tent. Second, from the extent metadata, we determine the

allocation range(s) that contain related data i.e., data at

the logical offsets immediately preceding and following

the data being destaged. If there is enough space in the

corresponding allocation range we simply write-allocate

data there. When no additional space exists, we look for

another allocation range that has enough free space to

absorb the blocks and is in the vicinity of proximal I/O.

In the worst case we inspect up to approximately 100

allocation ranges (given current disk characteristics) for

each group of blocks i.e., all blocks in the staging area

belonging to a single extent and that are logically offset

by the range of proximal I/O. In practice, this number is

much smaller; when we wrote blocks to the staging area,

we typically deallocate the older version of the block on

disk, unless they are kept for snapshots. If we are destag-

ing to an allocation range that had no underlying physical

storage (i.e., we are writing to a sparse extent), we first

allocate a physical extent for the allocation range, and

then allocate the destage blocks within it. Figure 5 illus-

trates the destaging process, showing the layout of data

in both flash memory and disk.

Our allocation algorithm uses two parameters dependent

on disk technology trends: (a) the SPT governs the effi-

cient allocation and serial I/O size and (b) minimal seek

time governs the effective range of proximal I/O. The

first parameter dictates the size of our allocation range,

the second one, expressed in the number of allocation

ranges, provides the flexibility in our allocation deci-

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 141

sions during destage operation. The parameters need not

closely follow the technology trends. One adjustment for

every few disk generations is sufficient. The trends are

evolving to our advantage (see discussion in Section 5.4).

4.4 RAID Layer

Our user-level prototype also includes a stand-alone

RAID subsystem, which presents a logical volume ab-

straction to our DLE. This has several benefits compared

to using an off-the-shelf one such as hardware RAID

controller or a software implementation such as the md

block device driver in Linux (our prototype platform).

Our RAID implementation offers fine control over

scheduling requests to individual disks. We use Linux

SCSI generic device (/dev/sg) interface that bypasses

the kernel block device’s buffer cache and the block de-

vice schedulers. Linux can issue SCSI commands di-

rectly to both SCSI/FC and SATA drives thanks to the

libsata layer. Most importantly, our own implementa-

tion more closely emulates the operation of an enterprise-

class RAID layer and includes features that are missing

from the aforementioned RAID implementations.

First, we perform updates either by addition or subtrac-

tion so as to minimize the number of disks engaged in

I/O operations. Second, just like many other RAID sub-

systems [20, 8, 9], we maintain additional information

for every data block, including, a write generation num-

ber for lost write protection and additional data check-

sum. Since SATA disks support only 512-byte sectors,

we must use a separate sector for the additional per-block

information. We use 64 bytes of additional information

per single 4 KB block grouped into one checksum block

for every 63 data blocks, emulating the features of Data

ONTAP [20] running on systems with commodity SATA

disks. Thus, accessing one block above the DLE inter-

face results in two distinct block accesses.

5 Results

We evaluate the effectiveness of proximal I/O using our

DLE prototype. We first study random updates to large

extents comprising a logical volume (LUN) exported by

a storage system. and then analyze serial reads after our

volume has been aged with many small random updates.

5.1 Experimental setup

Our prototype runs as a user-level process on a host with

one dual core 3 GHz Intel CPU under Linux 2.6.24 (from

stock Ubuntu Server 9.04 distribution). We use a 4+1

RAID4 of 1 TB Western Digital RE3 (WD1002FBYS)

SATA drives. We chose these 7200 RPM drives despite

their lower performance compared to their enterprise-

class counterparts because they are more cost effective.

We fill our DLE with 16 MB extents to 89% of its capac-

ity, writing them serially directly to the disks. We then

issue 2000 small (4 KB) random updates per extent, thus

re-allocating half of all blocks we initially wrote. Our

DLE accumulates these updates to an SSD-based staging

area, destaging them to back-end disk each time the stag-

ing area fills. For measuring serial reads after writes, we

read every single extent from our aged DLE (in random

order). These requests for 974 logically serial blocks at

a time (governed by the fan-out of our indirect blocks)

result in several scatter-gather disk I/Os. Figure 5 shows

the layout during the execution of updates.

Before the DLE issues a set of requests to the RAID

layer, we execute random I/Os to each of the constituent

disks so as to avoid “short-stroking” (i.e., generating arti-

ficially short seeks due to using only a subset of the disk

capacity). We wait for the disks complete the random

I/Os and exclude these unrelated I/Os from our analysis.

Executing a set of small updates results in many more in-

dividual disk I/Os than there are requests in the batch —

the RAID layer needs to access the additional checksum

blocks and to perform read-modify-write operations.

5.2 Random updates

The results for the random updates are summarized in

Table 2. Each table row represents measurements with

a different size of the staging area relative to the RAID

group size. We collect statistics for each batch of I/O,

where one batch is the disk I/O generated in destaging

the accumulated changes to a single extent. Thus, a entire

destage operation will generate one batch of I/O for each

extent with at least one block in the staging area. We

measure the mean response time and the number of user

updates for each batch (columns 2 and 3). These times

reflect the disk activity (i.e., the operations on the data).

The DLE and extent metadata are updated on the SSDs,

on average, with fewer than three I/Os for each batch.

Since the SSD I/O service time is much smaller, the disk

I/O dominates the batch response time.

We collect the service time for each disk I/O (computed

as the difference between the completions of the last two

I/Os). We list the mean number of disk I/Os (reads and

writes across all five drives) in column 4. Column 5

shows the I/O amplification, the mean number of disk

I/Os needed for each user-initiated update. Column 6

shows the equivalent number of disk I/Os serviced per

revolution. Finally, we show for the data and parity disks

the mean number of I/Os, per-I/O service time, and the

resulting disk utilization.

142 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Flash memory (SSD)
extent & other metadata

(a) Initial setup with sequentially written extents.

RAID group (HDDs)
updates in
staging area

(b) Aged layout with updates still in the Flash memory staging area.

Figure 5: An example of block allocation in the prototype DLE. Initially, extents are written out directly to the RAID group. The

Flash memory (SSD) holds extent and DLE metadata. Random updates are first put into the Flash staging area. As the layout ages,

the extents are no longer contiguously laid out. However, the DLE maintains the proximity of the related blocks of the same extent

by “pluging” holes in the layout created by overwrites two destage operations.

Stage

Area

Resp.

time

User

writes

Disk

I/Os

I/O

ampl.

I/Os

p. rev.

Data disks Parity disk

I/Os ST Util. I/Os ST Util.

Baseline 16.8 ms 1 8 8x 2.0 4 4.2 97% 4 4.2 97%

1% 129.5 47.5 295.3 6.2x 5.3 43.3 2.0 65% 122.0 1.0 91%

2% 155.0 85.2 465.3 5.5x 7.2 66.1 1.4 61% 201.1 0.7 93%

3% 182.9 119.7 614.8 5.1x 8.1 86.2 1.2 57% 269.9 0.6 94%

4% 227.6 149.3 723.7 4.8x 7.7 99.8 1.1 47% 324.3 0.6 86%

5% 235.9 179.1 847.6 4.7x 8.7 117.0 1.0 48% 379.8 0.6 95%

6% 278.4 226.1 1014.7 4.5x 9.0 136.3 0.9 44% 469.3 0.6 97%

7% 315.4 259.5 1151.5 4.4x 9.0 155.6 0.9 42% 529.2 0.6 97%

8% 320.9 254.8 1166.7 4.6x 8.7 163.5 0.8 43% 512.6 0.6 96%

Table 2: Random updates for various sizes of the staging area. Resp. time is the response time of the batch of user I/Os being

destaged and ST is the the per disk I/O service time, both reported in milliseconds. I/O ampl. is the ratio of disk I/Os to user writes.

The I/Os per revolution represents the number of I/Os serviced by a drive averages across both data and parity disks. The base data

represents a system without staging area, whereby every user write results in RMW at the RAID back-end.

In our baseline data, we show the performance when a

batch contains exactly one block. This has a latency of

16.8 ms, and results in 8 separate disk I/Os (an I/O ampli-

fication of 8×). Writing a single block to RAID4 results

in 4 individual disk I/Os—a read and write of both the

data disk and the parity disk. Updating the checksum

incurs an additional 4 I/Os.

Next, we explore how our write allocation, coupled with

1% of staging area, leverages proximal I/O to improve

the efficiency of disk accesses. We observe that, on av-

erage, 47.5 user updates result in 295.3 disk I/Os for a

6.2× amplification that are serviced in 139.5 ms. The

per-I/O service time for the data and parity disk is thus

2.0 ms and 1.0 ms respectively. Even though the RAID4

parity disk is more efficient, it has to service many more

I/Os and thus is the bottleneck.

Since the batch of I/Os is serviced by proximal I/O, we

can retire on average 5.3 I/Os per revolution. Yet, as

shown in Figure 1, we were only able to retire 1.9 I/Os

per revolution in a strand of 8 requests (17.1 ms to retire

8 read requests with 4 ms rotational time). We achieve

this improvement because of the greater I/O density; we

are writing strands that contain many more blocks, typi-

cally within a single track or two. Also, the RAID layer

must also update the checksum block for data blocks that

are being written out. This further increases the number

of disk I/Os, but also the I/O density — for most data

blocks the checksum block is on the same track. For the

same reason, we also see only a 6.2× write amplification

(instead of 8×); we need to access the same checksum

block only once for several data block updates.

As the size of the staging area increases, the batch size

increases (from 47.5 to 369.7 updates for staging area

of 1% and 10% respectively) and the destage operation

for each batch becomes more efficient. The I/O amplifi-

cation decreases from 6.2× to 4.5× and the number of

disk I/Os serviced per revolution grows from 5.3 to 8.6.

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 143

5.3 Serial reads after random updates

Table 3 shows the results for sequential reads from an

aged layout as depicted in Figure 5(b). Our system reads

up to 974 logically consecutive blocks. Given the ex-

tent sizes, our DLE requests on average 819.2 blocks

that are returned with a mean response time of 9.5 ms.

This translates to effective bandwidth of 86.2 MB/s per

disk (345 MB / 4 data disks in RAID group). Because

of fragmented layout, the request for up to 974 logical

blocks results in a batch of 47.5 logically sequential runs

of blocks issued to the RAID group that are further bro-

ken into individual per-disk I/Os. Because of striping

and the need to access the checksum block in addition to

the data blocks, each disk services on average 20.7 in-

dividual I/O requests. Given the 1 MB stripe unit size

on our RAID setup, the original request for 974 logically

sequential blocks is typically serviced by three disks.

We repeated the same experiment on the non-aged data

layout depicted in Figure 5(a) where extents are laid out

on physically contiguous disk sectors. We measured

mean response time of 9.2 ms, which translated to per-

disk bandwidth of 89 MB/s. Thus, sequential reads after

random updates on our system are within 3% of the the

best-case scenario of physically contiguous layout.

Finally, we evaluated the performance of serial reads af-

ter random updates with write-anywhere-style allocation.

In our system, we induced this behavior by eliminating

the staging area and writing out data by greedily plug-

ging the holes created by deletes of earlier versions of

the data (we did not implement an LFS-style segment

cleaner). In this setup, logically serial data increasingly

dispersed over the disk over time, resulting in dramati-

cally lower bandwidth compared to the baseline case.

5.4 System cost and technology trends

Lowering overall cost is one of the driving forces behind

changing the internal architecture and design of commer-

cial enterprise-scale storage systems. The adjustments to

the write allocation policies presented here coupled with

deployment of some additional device(s) for the stag-

ing area is but one example of such force. Making the

prevalent access pattern (e.g., the serial read after random

write described here) more efficient allows the system to

run workloads with larger I/O demand for the same dol-

lar cost. We now explore the trade off between the cost of

additional hardware for the staging area and the resulting

improvement in the back-end disk I/O capacity.

Consider the WD1002FBYS disk drive we used in our

experiments. It has a measured average seek time of

7.5 ms and rotational speed of 7,200 RPM. With the time

of 8.4 ms for a single rotation, the mean time to service

Per disk statistics

Read BW Diff I/Os Util.

Baseline 89.0 MB/s 11.7 85%

Aged layout 86.2 MB/s -3% 20.7 82%

Write-anywhere 2.6 MB/s -97% 210.2 85%

Aged layout reads – detailed statistics

mean min max

Request response time (ms) 9.5 6.5 32.9

Request size (4 KB blocks) 819.2 200 974

Requests per batch 43.9 28 114

Span of blocks 1002.8 914 1008

Number of I/Os per disk 20.7 2 58

Per-disk resp. time (ms) 8.8 0.9 32.8

Aged layout – read response time quantiles

10% 20% 30% 40% 50% 60% 70% 80% 90% 95%

7.4 7.5 7.6 7.7 7.9 8.1 8.4 22.1 27.8 31.9

Table 3: Serial reads after random updates.

a random I/O is 11.7 ms. Thus our drive can perform 86

random IOPS. With a street price of $130, this means we

are paying $1.52 per IOPS. Now consider the effects of

adding 1% of capacity as a flash staging area. Table 2

shows that in this configuration we can write 5.3 blocks

in a single revolution. Adding an average seek means

that our system performs 5.3 writes in 15.9 ms, or 3 ms

per write. This is equivalent to 333 random IOPS, an

improvement of 289% over the basic disk solution.

Adding the flash staging area increases the cost of the

system. With cost of flash at $3.13/GB, based on a

160 GB Intel X25 SSD with a street price of $500, a 1%

staging area for our 1 TB drive requires 10 GB of flash,

increasing our cost by $31.30, to a total of $161.30 for a

configuration capable of 333 random IOPS. Thus, in our

system, the cost is $0.48 per IOPS, less then a third of

the per IOPS cost of the raw disk drive.

With our system, we pay an extra 25% to add a flash

staging area and in return we get nearly a 3× perfor-

mance increase on random writes, while preserving near

sequential on-disk layout.2 Note that these numbers are

pessimistic. They assume that the staging area is scaled

to the entire disk-based storage capacity. In reality, the

staging area need only be 1% of the write working set,

further reducing the flash costs.

We conclude by considering the impact of technology

trends on the effectiveness of proximal I/O. The disk

trends are in our favor. Growing areal media densities

2These numbers are shown here only to illustrate our point. our

simplified model considers only the cost of individual devices. Also,

we ignore many practical system issues such as RAID group size, etc.

144 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

(i.e., the increase in both SPT and track density), increase

the span of LBNs over which proximal I/O will be ef-

fective. Larger span gives more options to our system

to lay out its data. Similarly, as the flash memory cost

decreases, the relative size of the deployed staging area

may likely increase relative to the disk storage capacity.

This will also increase the effectiveness of our destage

process. In the end however, the ratio of flash memory to

disk capacity will be driven by customer needs and their

ability to get the right performance for the least cost.

6 Related Work

Our work explores the design principles for a data lay-

out suitable for the SRARW workload while leveraging

a more efficient disk access pattern. We review some ad-

ditional related work not mentioned earlier in the paper.

Our data layout is similar in principle to the data jour-

nalling mode employed by some journalling file sys-

tems [5, 26, 32]. As in those systems, we write data

initially to a designated staging area (journal, separate

device etc.) and later on destage them to their final loca-

tion. The difference in our approach, which utilizes prox-

imal I/O, is that the efficiency of our destage operation

is much much higher; journalling file systems typically

write to a specific location on the disk constrained by

their “overwrite-in-place” policy. In contrast, we destage

data with fewer constraints offered by the span of blocks

in proximal I/O. Additionally, we can consider the best

location with respect to the related data and thus make

the write operations more efficient.

The Disk Caching Disk (DCD) [24] explored a differ-

ent technique for using write caching to improve stor-

age system performance. DCD aggregates small writes

on a separate caching disk, achieving serial performance

when flushing dirty data from the buffer cache. During

idle periods it destages data from the cache disk to its

home on the primary disk. This design improves the la-

tency of small writes, but does not leverage proximal I/O

to achieve better I/O efficiency. A similar technique has

also been used in database systems [16].

The idea of proximal I/O combines and expands on the

observations about (1) efficient disk access across ad-

jacent tracks with minimal positioning cost [30] and

(2) minimal positioning cost when seeking across an

ever-increasing range of cylinders [31]. Unlike semi-

sequential access, however, proximal I/O does not re-

quire detailed knowledge of disk geometry or specialized

device interface that provides the position of the next

semi-sequential block relative to the current position; it

works on systems with standardized interfaces (SATA or

SCSI) and off-the-shelf commodity disk drives.

Our DLE design relies on write-anywhere allocation,

similar to LFS [27], WAFL [19] and related designs

such as ZFS [22] and btrfs [3]. Like these systems, it

never overwrites old data in place, making it possible

to preserve older versions of data, or snapshots, with

minimal I/O overhead. Traditional write-anywhere file

systems batch temporally related dirty data for efficient

disk writes. Thus logical data locality is lost, requir-

ing segment cleaning [27] or other defragmentation tech-

niques [15] to re-establish sequential layout. In contrast,

our DLE allocates data close to logically related on-disk

data, preserving logical locality with proximalI/O plus

the staging area to achieve efficient write performance.

The Loge [17] disk controller represents another varia-

tion of write-anywhere; it virtualizes block addresses so

that it can write incoming data at the free locations near-

est to the current disk head location. However, the work

does not target SRARW workloads; it explicitly assumed

that randomly written data would also be randomly read.

In principle, many aspects of our DLE design could be

implemented in a Loge-like disk controller rather than in

a file system, although it would loose the semantic infor-

mation about which blocks of data are logically related

and are likely to be read together. Moreover, our design

does not require detailed knowledge of disk head posi-

tion and thus is time-invariant.

Appendix A: Proximal I/O model

Our objective is to find the expected number of revolu-

tions needed to serve D requests in a strand. Recall that

a strand is a collection of proximal I/Os that are sent

together to a disk and that are close enough such that

servicing any one of the requests incurs a minimal seek

equivalent to head/track switch time.

Assume there are SPT sectors per track and D requests,

each of size S sectors, and a seek between each request in

the strand equivalent to head switch time, H. We express

H in terms of the number of sectors that pass by the disk

head during track switch. We can formulate the problem

of finding the expected number of revolutions in terms

of binning requests into B bins. Each request of size S is

then randomly placed into any one of the K slots along a

circular track. This is analogous to a roulette wheel with

K slots and D balls spun simultaneously.

With such a formulation, if two balls (i.e., requests on

different tracks) fall into the same bin, that is, if they are

within K × S/H slots, the disk arm cannot service those

requests in a single revolution and we get

B =
SPT

H
=

K ×S

H
.

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 145

Let’s express the probability, Q1, that no two requests are

in the same bin. This is analogous to the probability that

no extra revolutions are required when servicing a sched-

ule of D requests in a strand. This can be solved by the

birthday paradox problem, where we look for the proba-

bility that no two people out of a group of n people in a

room have a birthday on the same day out of b possible,

and equally likely, birthdays.

Q1 =
b!

(b−n)!bn

Using our analogy, we have B bins, which is equivalent

to the b possible birthdays, and D, the number of requests

in a strand, is the number of people, n. This is equivalent

to not using any extra revolutions (since each request is

in a separate bin) when servicing the D requests.

We can now calculate the probability that at least one

extra revolution will be required as

P1 = 1−Q1.

More generally, the probability that a birthday is shared

by exactly k (and no more) people is expressed as [33]

Qk(n,b) =

⌊n/k⌋

∑
i=1

(
n!b!

biki!(k!)i(n− ik)!(b− i)!

k−1

∑
j=1

Qk−1
(b− i)n−ik

bn−ik

)

This is equivalent to the probability of servicing a given

strand in k revolutions or using exactly k− 1 extra revo-

lutions. This assumes that each request landed on a sep-

arate track and requires a track switch when servicing it.

The probability that we will require at least k extra revo-

lutions in servicing a request (or that k+1 or more people

share a birthday in our analogy), we have

Pk = 1−
k

∑
i=1

Qi

Now let’s express the probability that we will not use

any extra revolutions when servicing a strand as a func-

tion of number of sectors, H, that pass by during track

switch time. With values for the Seagate Cheetah 15K.5

disk’s first zone we have SPT = 1200, track switch time

0.475 ms, H = SPT ×⌈0.475 ms/4 ms⌉ = 142, and the

number of bins B = 8.45. Therefore, we set ⌊B⌋ = 8,

meaning that this disk can at best schedule 8 proximal

I/Os in a revolution when the requests are properly offset

from each other. With strand where D = 8, the probabil-

ity of not using any extra revolutions is close to zero.

We express the expected number of revolutions for ser-

vicing a strand of D requests as

E[Revs] =
1

2
+

D

∑
i=1

iQi(D,SPT/H)

For D = 8, we get E[Revs] = 3.4, assuming that each

request lands on a separate track. Normalized (or per-

request) number of revolutions is then 0.43.

Next, we assume eight requests in a strand even though

this disk can service at best six in a single revolution. We

choose the value of eight because it gives, on average,

12% lower per-request service time compared to a strand

with D = 6. Adding an initial average seek of 3.5 ms

for each strand, the per-request service time is 2.16 ms

or 17.26 ms for the entire strand of D = 8 with variance

σ2 = 9 ms. This comes to within 1% of the measured

mean service time of 17.14 ms with σ2 = 9.6 ms.

Finally, we examine the probability of using exactly one,

two, three, and so on, revolutions when servicing a strand

of D = 8 requests. From our model, the most prevalent

value is two extra revolutions (three in total). When D =
6 (with H ≈ 7 for our disk), the probability of not using

any additional revolutions is still only 0.02.

Acknowledgments

We would like to thank the program committee and

the anonymous reviewers for their helpful comments.

In particular, we thank our shepherd, Arif Merchant,

for his insight and suggestions for improving this pa-

per. Thanks also to Steve Kleiman for asking the ques-

tions that started us down this path and for many fruitful

conversations along the way. Finally, we thank Jeffrey

Heller, Art Harkin, and the all of NetApp’s Advanced

Technology Group (ATG) for their advice, support, and

suggestions—and for making it fun to come to the office

everyday!

References

[1] Dave Anderson. You don’t know jack about disks.

Queue, 1(4):20–30, 2003.

[2] Dave Anderson, Jim Dykes, and Erik Riedel. More

than an interface—SCSI vs. ATA. In Proceedings

of Conference on File and Storage Technologies

(FAST), pages 245–257, 2003.

[3] Valerie Aurora. A short history of btrfs. http://

lwn.net/Articles/342892, Jul 2009.

[4] Doug Beaver, Sanjeev Kumar, Harry C. Li, Ja-

son Sobel, and Peter Vajgel. Finding a needle in

haystack: Facebook’s photo storage. In Proceeding

of Symposium on Operating Systems Design and

Implementation (OSDI), Oct 2010.

146 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

[5] Mingming Cao, Theodore Y. Tso, Badari Pulavarty,

Suparna Bhattacharya, Andreas Dilger, and Alex

Tomas. State of the art: Where we are with the

ext3 filesystem. In Proceedings of Ottawa Linux

Symposium (OLS), pages 69–96, Jul 2005.

[6] Peter M. Chen, Edward K. Lee, Garth A. Gib-

son, Randy H. Katz, and David A. Patterson.

RAID: high-performance, reliable secondary stor-

age. Computer Surveys, 26(2):145–185, 1994.

[7] EMC Corporation. EMC Centera: Content Ad-

dressed Storage. http://www.emc.com/products/

systems/centera.jsp, 2007.

[8] EMC Corporation. CLARiiON CX4 Se-

ries. http://www.emc.com/products/series/

cx4-series.htm, 2010.

[9] EMC Corporation. Symmetrix DMX-

4: Enterprise networked storage system.

http://www.emc.com/products/detail/hardware/

symmetrix-dmx-4.htm, 2010.

[10] IBM Corporation. IBM System Storage DS8000

Turbo. http://www-03.ibm.com/systems/storage/

disk/ds8000/index.html, 2010.

[11] Microsoft Corporation. Microsoft Exchange

Server. http://www.microsoft.com/exchange/

2010/en/us/default.aspx, 2010.

[12] Oracle Corporation. Oracle database storage

administrator’s guide 11g release 1 (11.1).

http://download.oracle.com/docs/cd/B28359_

01/server.111/b31107/toc.htm, 2008.

[13] VMware Corporation. VMware vSphere. http:

//www.vmware.com/products/vmfs/index.html,

2010.

[14] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt,

Michal Kaczmarczyk, Wojciech Kilian, Przemys-

law Strzelczak, Jerzy Szczepkowski, Cristian Un-

gureanu, and Michal Welnicki. HYDRAstor: a

scalable secondary storage. In Proceedings of Con-

ference on File and Storage Technologies (FAST),

pages 197–210, 2009.

[15] John K. Edwards, Daniel Ellard, Craig Everhart,

Robert Fair, Eric Hamilton, Andy Kahn, Arkady

Kanevsky, James Lentini, Ashish Prakash, Keith A.

Smith, and Edward Zayas. FlexVol: flexible, effi-

cient file volume virtualization in WAFL. In Pro-

ceedings of the 2008 USENIX Annual Technical

Conference, pages 129–142, Jun 2008.

[16] Klaus Elhardt and Rudolf Bayer. A database cache

for high performance and fast restart in database

systems. ACM Transactions on Database Systems,

9:503–525, 1984.

[17] Robert M. English and Alexander A. Stepanov.

Loge: a self-organizing disk controller. In Proceed-

ings of the USENIX Winter 1992 Technical Confer-

ence, pages 237–251, Jan 1992.

[18] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak

Leung. The Google File System. SIGOPS Operat-

ing Systems Review, 37(5):29–43, 2003.

[19] Dave Hitz, James Lau, and Michael Malcolm. File

system design for an NFS file server appliance.

In Proceedings of USENIX Winter 1994 Technical

Conference, pages 235–246, Jan 1994.

[20] NetApp Inc. Data ONTAP 8. http://www.netapp.

com/us/products/platform-os/data-ontap-8/,

2010.

[21] Marshall K. McKusick, William N. Joy, Samuel J.

Leffler, and Robert S. Fabry. A fast file sys-

tem for unix. Transactions on Computer Systems,

2(3):181–197, 1984.

[22] Sun Microsystems. ZFS at OpenSolaris com-

munity. http://opensolaris.org/os/community/

zfs/.

[23] Sun Microsystems. Logzilla: Hybrid storage pools

in the 7410. http://dtrace.org/blogs/ahl/2008/

11/10/hybrid-storage-pools-in-the-7410/,

2008.

[24] Tycho Nightingale, Yiming Hu, and Qing Yang.

The design and implementation of a DCD device

driver for unix. In Proceedings of USENIX Annual

Technical Conference, pages 295–308, Jun 1999.

[25] Zachary Peterson and Randal Burns. Ext3cow: a

time-shifting file system for regulatory compliance.

Transactions on Storage, 1(2):190–212, 2005.

[26] Hans Reiser. Reiserfs. http://www.namesys.com/.

[27] Mendel Rosenblum and John K. Ousterhout. The

design and implementation of a log-structured file

system. ACM Transactions on Computer Systems,

10:1–15, 1992.

[28] Chris Ruemmler and John Wilkes. An introduction

to disk drive modeling. IEEE Computer, 27:17–28,

1994.

[29] Jiri Schindler and Gregory R. Ganger. Auto-

mated disk drive characterization. Technical Re-

port CMU-CS-99-176, Carnegie Mellon Univer-

sity, 1999.

[30] Jiri Schindler, Steven W. Schlosser, Minglong

Shao, Anastassia Ailamaki, and Gregory R.

Ganger. Atropos: A disk array volume manager for

orchestrated use of disks. In Proceedings of Con-

ference on File and Storage Technologies (FAST),

pages 159–172, Mar 2004.

[31] Steven W. Schlosser, Jiri Schindler, Stratos Papado-

manolakis, Minglong Shao, Anastassia Ailamaki,

Christos Faloutsos, and Gregory R. Ganger. On

multidimensional data and modern disks. In Pro-

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 147

ceedings of Conference on File and Storage Tech-

nologies (FAST), pages 225–238, Dec 2005.

[32] Adam Sweeney, Doug Doucette, Wei Hu, Curtis

Anderson, Mike Nishimoto, and Geoff Peck. Scal-

ability in the XFS file system. In Proceedings of

USENIX Annual Technical Conference, pages 1–

14, Jan 1996.

[33] Eric Weisstein. Birthday problem. http://

mathworld.wolfram.com/BirthdayProblem.html,

2007.

[34] Bruce L. Worthington, Gregory R. Ganger, and

Yale N. Patt. Scheduling algorithms for modern

disk drives. SIGMETRICS Perform. Eval. Rev.,

22(1):241–251, 1994.

[35] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoid-

ing the disk bottleneck in the data domain dedupli-

cation file system. In Proceedings of Conference on

File and Storage Technologies (FAST), pages 269–

282, Feb 2008.

NetApp, Data ONTAP, Snapshot, and WAFL are trade-

marks of NetApp, Inc. in the United States and/or other

countries. Linux is a registered trademark of Linus Tor-

valds. Intel is a registered trademark of Intel Corpora-

tion. UNIX is a registered trademark of The Open Group.

All other brands or products are trademarks or regis-

tered trademarks of their respective holders and should

be treated as such.

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 149

FastScale: Accelerate RAID Scaling by Minimizing Data Migration

Weimin Zheng, Guangyan Zhang
Tsinghua University

gyzh@tsinghua.edu.cn

Abstract
Previous approaches to RAID scaling either require a
very large amount of data to be migrated, or cannot toler-
ate multiple disk additions without resulting in disk im-
balance. In this paper, we propose a new approach to
RAID-0 scaling called FastScale. First, FastScale mini-
mizes data migration, while maintaining a uniform data
distribution. With a new and elastic addressing function,
it moves only enough data blocks from old disks to fill
an appropriate fraction of new disks without migrating
data among old disks. Second, FastScale optimizes data
migration with two techniques: (1) it accesses multiple
physically successive blocks via a single I/O, and (2) it
records data migration lazily to minimize the number of
metadata writes without compromising data consistency.
Using several real system disk traces, our experiments
show that compared with SLAS, one of the most effi-
cient traditional approaches, FastScale can reduce redis-
tribution time by up to 86.06% with smaller maximum
response time of user I/Os. The experiments also illus-
trate that the performance of the RAID-0 scaled using
FastScale is almost identical with that of the round-robin
RAID-0.

1 Introduction

Redundant Array of Inexpensive Disks (RAID) [1] was
proposed to achieve high performance, large capacity
and data reliability, while allowing a RAID volume to
be managed as a single device. As user data increase
and computing powers enhance, applications often re-
quire larger storage capacity and higher I/O performance.
To supply needed capacity and/or bandwidth, one solu-
tion is to add new disks to a RAID volume. This disk
addition is termed “RAID scaling”.

To regain uniform data distribution in all disks includ-
ing the old and the new, RAID scaling requires certain
blocks to be moved onto added disks. Furthermore, in

today’s server environments, many applications (e.g., e-
business, scientific computation, and web servers) access
data constantly. The cost of downtime is extremely high
[2], giving rise to the necessity of online and real-time
scaling.

Traditional approaches [3, 4, 5] to RAID scaling
are restricted by preserving the round-robin order after
adding disks. The addressing algorithm can be expressed
as follows for the ith scaling operation:

fi(x) :
{

d = x mod Ni
b = x/Ni

(1)

where block b of disk d is the location of logical block x,
and Ni gives the total number of disks. Generally speak-
ing, as far as RAID scaling from m disks to m + n is
concerned, only the data blocks in the first stripe are not
moved. This indicates that almost 100 percent of data
blocks have to be migrated no matter what the numbers
of old disks and new disks are. There are some efforts
[3, 5] concentrating on optimization of data migration.
They improve the performance of RAID scaling by a cer-
tain degree, but do not overcome the limitation of large
data migration completely.

The most intuitive method to reduce data migration is
the semi-RR [6] algorithm. It requires a block movement
only if the resulting disk number is one of new disks. The
algorithm can be expressed as follows for the ith scaling
operation:

gi(x) =
{

gi−1(x) if (x mod Ni) < Ni−1
fi(x) otherwise (2)

Semi-RR reduces data migration significantly. Unfortu-
nately, it does not guarantee uniform distribution of data
blocks after subsequent scaling operations (see section
2.4). This will deteriorate the initial equally distributed
load.

In this paper, we propose a novel approach called
FastScale to redistribute data for RAID-0 scaling. It ac-
celerates RAID-0 scaling by minimizing data migration.

1

150 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

0

)(1 nm

m1

D0 D1 Dm-1 Dm Dm+n-1

new disksold disks

Figure 1: Data migration using FastScale. Only data blocks are moved
from old disks to new disks for regaining a uniform distribution, while
no data is migrated among old disks.

As shown in Figure 1, FastScale moves only data blocks
from old disks to new disks enough for preserving the
uniformity of data distribution, while not migrating data
among old disks. Consequently, the migration fraction of
FastScale reaches the lower bound of the migration frac-
tion, n/(m + n). In other words, FastScale succeeds in
minimizing data migration for RAID scaling.

We design an elastic addressing function through
which the location of one block can be easily computed
without any lookup operation. By using this function,
FastScale changes only a fraction of the data layout while
preserving the uniformity of data distribution. FastScale
has several unique features as follows:

• FastScale maintains a uniform data distribution af-
ter RAID scaling.

• FastScale minimizes the amount of data to be mi-
grated entirely.

• FastScale preserves a simple management of data
due to deterministic placement.

• FastScale can sustain the above three features after
multiple disk additions.

FastScale also exploits special physical properties to
optimize online data migration. First, it uses aggre-
gate accesses to improve the efficiency of data migration.
Second, it records data migration lazily to minimize the
number of metadata updates while ensuring data consis-
tency.

We implement a detailed simulator that uses DiskSim
as a worker module to simulate disk accesses. Under sev-
eral real-system workloads, we evaluate the traditional
approach and the FastScale approach. The experimental
results demonstrate that:

• Compared with one of the most efficient traditional
approaches, FastScale shortens redistribution time

by up to 86.06% with smaller maximum response
time of user I/Os.

• The performance of the RAID scaled using
FastScale is almost identical with that of the round-
robin RAID.

In this paper, we only describe our solution for RAID-
0, i.e., striping without parity. The solution can also work
for RAID-10 and RAID-01. Although we do not handle
RAID-4 and RAID-5, we believe that our method pro-
vides a good starting point for efficient scaling of RAID-
4 and RAID-5 arrays.

2 Minimizing Data Migration

2.1 Problem Statement
For disk addition into a RAID, it is desirable to ensure an
even load on all the disks and minimal block movement.
Since the location of a block may be changed during a
scaling operation, another objective is to quickly com-
pute the current location of a block.

To achieve the above objectives, the following three
requirements should be satisfied for RAID scaling:

• Requirement 1 (Uniform data distribution): If there
are B blocks stored on m disks, the expected number
of blocks on each disk is approximately B/m so as
to maintain an even load.

• Requirement 2 (Minimal Data Migration): During
the addition of n disks to a RAID with m disks stor-
ing B blocks, the expected number of blocks to be
moved is B×n/(m+n).

• Requirement 3 (Fast data Addressing): In a m-disk
RAID, the location of a block is computed by an
algorithm with low space and time complexity.

2.2 Two Examples of RAID Scaling
Example 1: To understand how the FastScale algorithm
works and how it satisfies all of the three requirements,
we take RAID scaling from 3 disks to 5 as an example.
As shown in Figure 2, one RAID scaling process can be
divided into two stages logically: data migration and data
filling. In the first stage, a fraction of existing data blocks
are migrated to new disks. In the second stage, new data
are filled into the RAID continuously. Actually, the two
stages, data migration and data filling, can be overlapped
in time.

For the RAID scaling, each 5 sequential locations in
one disk are grouped into one segment. For the 5 disks,
5 segments with the same physical address are grouped

2

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 151

3+2

D0

D1

D2

0 242118151296 273 30

2 2623201714118 295 32

1 2522191613107 284 31

D0

D1

D2

24211296 27

2 201714 295 32

1 25161310 28 31

D3

D4 2623191184

0 22181573 30

New data is filled in

D0

D1

D2

33 242145431296 2735 53

2 49482017143938 295 32

1 25474616131037 2836 31

D3

D4 34 2623194442118 524 54

0 5022181541407 513 30

Figure 2: RAID scaling from 3 disks to 5 using FastScale, where m≥ n.

into one region. In Figure 2, different regions are sepa-
rated with a wavy line. For different regions, the ways to
data migration and data filling are exactly identical.

In a region, all of the data blocks within a parallelo-
gram will be moved. The base of the parallelogram is
2, and the height is 3. In other words, 2 data blocks
are selected from each old disk and migrated to new
disks. The 2 blocks are sequential, and the start address
is disk no. Figure 2 depicts the moving trace of each
migrating block. For one moving data block, only its
physical disk number is changed while its physical block
number is unchanged. As a result, the five columns of
two new disks will contain 1, 2, 2, 1, and 0 migrated data
blocks, respectively. Here, the data block in the first col-
umn will be placed upon disk 3, while the data block in
the fourth column will be placed upon disk 4. The first
blocks in columns 2 and 3 are placed on disk 3, and the
second blocks in columns 2 and 3 are placed on disk 4.
Thus, each new disk has 3 data blocks.

After data migration, each disk, either old or new, has
3 data blocks. That is to say, FastScale regains a uni-
form data distribution. The total number of data blocks
to be moved is 2×3 = 6. This reaches the minimal num-
ber of moved blocks, (5×3)× (2/(3+2)) = 6. We can
claim that the RAID scaling using FastScale can satisfy
Requirement 1 and Requirement 2.

Let us examine whether FastScale can satisfy Require-
ment 3, i.e., fast data addressing. To consider how one
logical data block is addressed, we divide all the data
space in the RAID into three categories: original and un-
moved data, original and migrated data, and new data. A
conclusion can be drawn from the following description

2+3

D0

D1

0 16141210864 182 20

1 17151311975 193 21

D0

D1

D2

1686 18

0 12102 20

1 119 19 21

D3

D4 171575

141343

New data is filled in

D0

D1

D2

22 164340378628 1825 52

0 47451210343230 492 20

1 4644411193129 1926 21

D3

D4 24 171542393675 5127 54

23 4814133835334 503 53

Figure 3: RAID scaling from 2 disks to 5 using FastScale, where m < n.

that the calculation overhead for the data addressing is
very low.

• The original and unmoved data can be addressed
with the original addressing method. In this exam-
ple, the ordinal number of the disk holds one block x
can be calculated: d = x mod 3. Its physical block
number can be calculated: b = x/3.

• The addressing method for original and migrated
data can be obtained easily from the above descrip-
tion about the trace of the data migration. b = x/3.
For those blocks in the first triangle, i.e., blocks 0,
3, and 4, we have d = d0 + 3. For those blocks in
the last triangle, i.e., blocks 7, 8, and 11, we have
d = d0 +2. Here, d0 is their original disk.

• Each region can hold 5 × 2 = 10 new blocks. In
one region, how those new data blocks are placed
is shown in Figure 2. If block x is a new block, it
is the yth new block, where y = x− 3× 11. Each
stripe holds 2 new blocks. So, we have b = y/2.
The first two new blocks in each region are placed
on Blocks 0 of Disk 0 and 4. For the other blocks,
d = (y mod 2)+(b mod 5)−1.

Example 2: In the above example, the number of the
old disks m and the number of the new disks n satisfy the
condition: m ≥ n. In the following, we inspect the case
when m < n. Take RAID scaling from 2 disks to 5 as an
example. Here, m = 2 and n = 3.

Likewise, in a region, all of the data blocks within
a parallelogram will be moved. The base of the paral-
lelogram is 3, and the height is 2. 3 consecutive data
blocks are selected from each old disk and migrated to

3

152 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Algorithm: Addressing(t, H, s, x, d, b)
Input:

t: scaling times
H: scaling history, H[0],..., H[t]
s: total number of data blocks in one disk
x: logical block number

Output:
d: the disk holding Block x
b: physical block number

1: if t = 0 then
2: m ← H[0], d ← x mod m, b ← x / m
3: exit
4: m ← H[t-1], n ← H[t] - m, δ ← m - H[0]
5: if x ∈ [0,m× s−1] // an original data block
6: Addressing(t-1, H, s, x, d0, b0)
7: b1 ← (b0 - δ) mod (m+n)
8: if b1 ∈ [d0, d0 +n -1] // to be moved
9: d← Moving(d0, b1, m, n), b←b0
10: else // not moved
11: d←d0, b←b0
12:else // a new data block
13: Placing(x, m, n, s, δ , d, b)

Table 1: The addressing algorithm using in FastScale.

new disks. Figure 3 depicts the trace of each migrat-
ing block. Similarly, for one moving data block, only its
physical disk number is changed while its physical block
number is unchanged. As a result, five columns of three
new disks will have a different number of existing data
blocks: 1, 2, 2, 1, 0. Here, the data block in the first
column will be placed upon disk 3, while the data block
in the fourth column will be placed upon disk 4. Unlike
the first example, the first block in columns 2 and 3 are
placed on disks 2 and 3, respectively. Thus, each new
disk has 2 data blocks.

Similar to the first example, we can demonstrate that
the RAID scaling using FastScale can satisfy the three
requirements.

2.3 The Addressing Algorithm
Table 1 shows the algorithm to minimize data migration
required by RAID scaling. The array H records the his-
tory of RAID scaling. H[0] is the initial number of disks
in the RAID. After the ith scaling operations, the RAID
consists of H[i] disks.

When a RAID is constructed from scratch (i.e., t = 0),
it is a round-robin RAID actually. The address of block x
can be calculated via one division and one modular (line
2).

Let us inspect the tth scaling, where n disks are added
into a RAID made up of m disks (line 4).

(1) If block x is an original block (line 5), FastScale

Function: Moving(d0, b1, m, n)
Input:

d0: the disk of the original location
b1: the original location in a region
m: the number of old disks
n: the number of new disks

Output:
return value: new disk holding the block

1: if m ≥ n
2: if b1 ≤ n-1
3: return d0+m
4: if b1 ≥ m-1
5: return d0+n
6: return m+n-1- (b1-d0)
7: if m < n
8: if b1 ≤ m-1
9: return d0+m
10: if b1 ≥ n-1
11: return d0+n
12: return d0+ b1+1

Table 2: The Moving function.

calculates its old address (d0, b0) before the tth scaling
(line 6).

• If (d0, b0) needs to be moved, FastScale changes the
disk ordinal number while keeping the block ordinal
number unchanged (line 9).

• If (d0, b0) does not need to be moved, FastScale
keeps the disk ordinal number and the block ordi-
nal number unchanged (line 11).

(2) If block x is a new block, FastScale places it via
the Placing() procedure (line 13).

The code of line 8 is used to decide whether a data
block (d0, b0) will be moved during RAID scaling. As
shown in Figures 2 and 3, there is a parallelogram in each
region. The base of the parallelogram is n, and the height
is m. If and only if the data block is within a parallelo-
gram, it will be moved. One parallelogram mapped to
disk d0 is a line segment. Its beginning and end are d0
and d0 + n−1, respectively. If b1 is within the line seg-
ment, block x is within the parallelogram, and therefore it
will be moved. After a RAID scaling by adding n disks,
the left-above vertex of the parallelogram proceeds by n
blocks (line 7).

Once a data block is determined to be moved,
FastScale changes its disk ordinal number with the Mov-
ing() function. As shown in Figure 4, a migrating par-
allelogram is divided into three parts: a head triangle,
a body parallelogram, and a tail triangle. How a block
moves depends on which part it lies in. No matter which
is bigger between m and n, the head triangle and the tail

4

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 153

Procedure: Placing(x, m, n, s, δ , d, b)
Input:

x: logical block number
m: the number of old disks
n: the number of new disks
s: total number of data blocks in one disk
δ : offset of the first region

Output:
d: new disk holding the block
b: physical block of new location

1: y←x - m×s
2: b← y / n row← y mod n
3: e← (b-δ) mod (m+n)
4: if e < n
5: if row < e+1
6: d← row
7: else
8: d← row+m
9: else
10: d← row+e-n+1

Table 3: The procedure to place new data.

triangle keep their shapes unchanged. The head triangle
will be moved by m disks (line 3, 9), while the tail tri-
angle will be moved by n disks (line 5, 11). However,
the body is sensitive to the relationship between m and n.
The body is twisted from a parallelogram to a rectangle
when m ≥ n (line 6), while from a rectangle to a parallel-
ogram when m < n (line 12). FastScale keeps the relative
locations of all blocks in the same column.

When block x is in the location newly added after the
last scaling, it is addressed via the Placing() procedure.
If block x is a new block, it is the yth new block (line 1).
Each stripe holds n new blocks. So, we have b = y/n
(line 2). The order of placing new blocks is shown in
Figures 2 and 3 (line 4-10).

This algorithm is very simple. It requires fewer than
50 lines of C code, reducing the likelihood that a bug will
cause a data block to be mapped to the wrong location.

2.4 Property Examination
The purpose of this experiment is to quantitatively char-
acterize whether the FastScale algorithm satisfies the
three requirements, described in Subsection 2.1. For this
purpose, we compare FastScale with the round-robin al-
gorithm and the semi-RR algorithm. From a 4-disk array,
we add one disk repeatedly for 10 times using the three
algorithms respectively. Each disk has a capacity of 128
GB, and the size of a data block is 64 KB. In other words,
each disk holds 2×10242 blocks.

Uniform data distribution. We use the coefficient of
variation as a metric to evaluate the uniformity of data

head head
body

tail
body

tail

(a) m n (b) m n

m

n

m

n

head
body

tail
n

m

head

body

tail

n

m

Figure 4: The variation of data layout involved in migration.

distribution across all the disks. The coefficient of vari-
ation expresses the standard deviation as a percentage of
the average. The smaller the coefficient of variation is,
the more uniform the data distribution is. Figure 5 plots
the coefficient of variation versus the number of scal-
ing operations. For the round-robin and FastScale algo-
rithms, both the coefficients of variation remain 0 percent
as the times of disk additions increases.

Conversely, the semi-RR algorithm causes excessive
oscillation in the coefficient of variation. The maximum
is even 13.06 percent. The reason for this non-uniformity
is given as follows. An initial group of 4 disks makes the
blocks be placed in a round-robin fashion. When the first
scaling operation adds one disk, then 1/5 of all blocks,
where (x mod 5)≥ 4, are moved onto the new disk, Disk
4. However, with another operation of adding one more
disk using the same approach, 1/6 of all the blocks are
not evenly picked from the 5 old disks and moved onto
the new disk, Disk 5. Only certain blocks from disks 1, 3
and 4 are moved onto disk 5 while disk 0 and disk 2 are
ignored. This is because disk 5 will contain blocks with
logical numbers that satisfy (x mod 6) = 5, which are
all odd numbers. The logical numbers of those blocks
on Disks 0 and 2, resulting from (x mod 4) = 0 and
(x mod 4) = 2 respectively, are all even numbers. There-
fore, blocks from disks 0 and 2 do not qualify and are not
moved.

Minimal data migration. Figure 6 plots the migra-
tion fraction (i.e., the fraction of data blocks to be mi-
grated) versus the number of scaling operations. Using
the round-robin algorithm, the migration fraction is con-
stantly 100%. This will bring a very large migration cost.

The migration fractions using the semi-RR algorithm
and using FastScale are identical. They are significantly
smaller than the migration fraction of using the round-

5

154 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Figure 5: Comparison in uniform data distribution

Figure 6: Comparison in data migration ratio

robin algorithm. Another obvious phenomenon is that
they decrease with the increase of the number of scaling
operations. The reason behind this phenomenon is de-
scribed as follows. To make each new disk hold 1/(m+
n) of total data, the semi-RR algorithm and FastScale
moves n/(m + n) of total data. m increases with the
number of scaling operations. As a result, the percent-
age of new disks (i.e., n/(m + n)) decreases. Therefore,
the migration fractions using the semi-RR algorithm and
FastScale decrease.

Storage and calculation overheads. When a disk ar-
ray boots, it needs to obtain the RAID topology from
disks. Table 4 shows the storage overheads of the three
algorithms. The round-robin algorithm depends only on
the total number of member disks. So its storage over-
head is one integer. The semi-RR and FastScale algo-
rithms depend on how many disks are added during each
scaling operation. If we scale RAID t times, their stor-
age overheads are t integers. Actually, the RAID scaling
operation is not too frequent. It may be performed ev-
ery half year, or even longer. Consequently, the storage
overheads are very small.

To quantitatively characterize the calculation over-
heads, we run different algorithms to calculate the phys-

Figure 7: Comparison in addressing time

Algorithm Storage Overhead
round-robin 1

semi-RR t
FastScale t

Table 4: The storage overheads of different algorithms.

ical addresses for all data blocks on a scaled RAID. The
whole addressing process is timed and then the average
addressing time for each block is calculated. The testbed
used in the experiment is an Intel Dual Core T9400 2.53
GHz machine with 4 GB of memory. A Windows 7 En-
terprise Edition is installed. Figure 7 plots the addressing
time versus the number of scaling operations.

The round-robin algorithm has a low calculation over-
head of 0.014 µs or so. The calculation overheads us-
ing the semi-RR and FastScale algorithms are close, and
both take on an upward trend. Among the three algo-
rithms, FastScale has the largest overhead. Fortunately,
the largest addressing time using FastScale is 0.24 µs
which is negligible compared to milliseconds of disk I/O
time.

3 Optimizing Data Migration

The FastScale algorithm succeeds in minimizing data
migration for RAID scaling. In this section, we describe
FastScale’s optimizations to the process of data migra-
tion.

3.1 Access Aggregation
FastScale moves only data blocks from old disks to new
disks, while not migrating data among old disks. The
data migration will not overwrite any valid data. As a
result, data blocks may be moved in an arbitrary order.
Since disk I/O performs much better with large sequen-
tial access, FastScale accesses multiple successive blocks
via a single I/O.

6

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 155

D0

D1

D2

0 242118151296 273 30

2 2623201714118 295 32

1 2522191613107 284 31

D3

D4

Figure 8: Aggregate reads for RAID scaling from 3 disks to 5. Multiple
successive blocks are read via a single I/O.

D0

D1

D2

24211296 27

2 201714 295 32

1 25161310 28 31

D3

D4 2623191184

0 22181573 30

Figure 9: Aggregate writes for RAID scaling from 3 disks to 5. Multi-
ple successive blocks are written via a single I/O.

Take a RAID scaling from 3 disks to 5 as an exam-
ple, shown in Figure 8. Let us focus on the first region.
FastScale issues the first I/O request to read Blocks 0 and
3, the second request to read Blocks 4 and 7, and the
third request for Blocks 8 and 11, simultaneously. By
this means, to read all of these blocks, FastScale requires
only three I/Os, instead of six. Furthermore, all these 3
large-size data reads are on three disks. They can be done
in parallel, further increasing I/O rate.

When all the six blocks have been read into a mem-
ory buffer, FastScale issues the first I/O request to write
Blocks 0, 3, and 7, the second I/O to write Blocks 4, 8
and 11, simultaneously (see Figure 9). In this way, only
two large sequential write requests are issued as opposed
to six small writes.

For RAID scaling from m disks to m+n, m reads and
n writes are required to migrate all the data in a region,
i.e., m × n data blocks.

Access aggregation converts sequences of small re-
quests into fewer, larger requests. As a result, seek cost
is mitigated over multiple blocks. Moreover, a typical
choice of the optimal block size for RAID is 32KB or
64KB [4, 7, 8, 9]. Thus, accessing multiple successive
blocks via a single I/O enables FastScale to have a larger
throughput. Since data densities in disks increase at a
much faster rate than improvements in seek times and ro-
tational speeds, access aggregation benefits more as tech-
nology advances.

3.2 Lazy Checkpoint
While data migration is in progress, the RAID storage
serves user requests. Furthermore, the coming user I/Os
may be write requests to migrated data. As a result,
if mapping metadata does not get updated until all of
the blocks have been moved, data consistency may be
destroyed. Ordered operations [9] of copying a data

D0

D1

D2

0 242118151296 273 30

2 2623201714118 295 32

1 2522191613107 284 31

D3

D4 1184

0 73

0 3 4 mapping metadata7 8 11

Figure 10: If data blocks are copied to their new locations and meta-
data is not yet updated when the system fails, data consistency is still
maintained because the data in their original locations are valid and
available.

hi-1(x)hi(x)

moving
region

disk number

chunk number

MC U

checkpoint

Figure 11: Lazy updates of mapping metadata. “C”: migrated and
checkpointed; “M”: migrated but not checkpointed; “U”:not migrated.
Data redistribution is checkpointed only when a user write request ar-
rives in the area “M”.

block and updating the mapping metadata (a.k.a., check-
point) can ensure data consistency. But ordered opera-
tions cause each block movement to require one meta-
data write, which results in a large cost of data migra-
tion. Because metadata is usually stored at the beginning
of all member disks, each metadata update causes one
long seek per disk. FastScale uses lazy checkpoint to
minimize the number of metadata writes without com-
promising data consistency.

The foundation of lazy checkpoint is described as fol-
lows. Since block copying does not overwrite any valid
data, both its new replica and original are valid after a
data block is copied. In the above example, we suppose
that Blocks 0, 3, 4, 7, 8, and 11 have been copied to their
new locations and the mapping metadata has not been up-
dated (see Figure 10), when the system fails. The origi-
nal replicas of the six blocks will be used after the system
reboots. As long as Blocks 0, 3, 4, 7, 8, and 11 have not
been written since being copied, the data remain consis-
tent. Generally speaking, when the mapping information
is not updated immediately after a data block is copied,
an unexpected system failure only wastes some data ac-
cesses, but does not sacrifice data reliability. The only
threat is the incoming of write operations to migrated
data.

The key idea behind lazy checkpoint is that data blocks
are copied to new locations continuously, while the map-
ping metadata is not updated onto the disks (a.k.a., check-
point) until a threat to data consistency appears. We use
hi(x) to describe the geometry after the ith scaling opera-

7

156 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

workload

generator

I/O

processor mover

array controller

storage components

S
im

P
y

D
is

k
S

im

disk array

Figure 12: Simulation system block diagram: The workload generator
and the array controller were implemented in SimPy. DiskSim was
used as a worker module to simulate disk accesses.

tion, where Ni disks serve user requests. Figure 11 illus-
trates an overview of the migration process. Data in the
moving region is copied to new locations. When a user
request arrives, if its physical block address is above the
moving region, it is mapped with hi−1(x); If its physical
block address is below the moving region, it is mapped
with hi(x). When all of the data in the current moving
region are moved, the next region becomes the moving
region. In this way, the newly added disks are gradually
available to serve user requests. Only when a user write
request arrives in the area where data have been moved
and the movement has not been checkpointed, are map-
ping metadata updated.

Since one write of metadata can store multiple map
changes of data blocks, lazy updates can significantly
decrease the number of metadata updates, reducing the
cost of data migration. Furthermore, lazy checkpoint
can guarantee data consistency. Even if the system fails
unexpectedly, only some data accesses are wasted. It
should also be noted that the probability of a system fail-
ure is very low.

4 Experimental Evaluation

The experimental results in Section 2.4 show that the
semi-RR algorithm causes extremely non-uniform data
distribution. This will bring into low I/O performance.
In this section, we compare FastScale with the SLAS
approach [5] through detailed experiments. SLAS, pro-
posed in 2007, preserves the round-robin order after
adding disks.

4.1 Simulation System
We use detailed simulations with several disk traces col-
lected in real systems. The simulator is made up of a
workload generator and a disk array (Figure 12). Ac-
cording to trace files, the workload generator initiates an
I/O request at the appropriate time so that a particular
workload is induced on the disk array.

The disk array consists of an array controller and stor-
age components. The array controller is logically divided
into two parts: an I/O processor and a data mover. The
I/O processor, according to the address mapping, for-
wards incoming I/O requests to the corresponding disks.
The data mover reorganizes the data on the array. The
mover uses an on/off logic to adjust the redistribution
rate. Data redistribution is throttled on detection of high
application workload. Otherwise, it performs continu-
ously.

The simulator is implemented in SimPy [10] and
DiskSim [11]. SimPy is an object-oriented, process-
based discrete-event simulation language based on stan-
dard Python. DiskSim is an efficient, accurate disk sys-
tem simulator from Carnegie Mellon University and has
been extensively used in various research projects study-
ing storage subsystem architectures. The workload gen-
erator and the array controller are implemented in SimPy.
Storage components are implemented in DiskSim. In
other words, DiskSim is used as a worker module to sim-
ulate disk accesses. The simulated disk specification is
that of the 15,000-RPM IBM Ultrastar 36Z15 [12].

4.2 Workloads
Our experiments use the following three real-system disk
I/O traces with different characteristics.

• TPC-C traced disk accesses of the TPC-C database
benchmark with 20 warehouses [13]. It was col-
lected with one client running 20 iterations.

• Fin is obtained from the Storage Performance
Council (SPC) [14, 15], a vendor-neutral standards
body. The Fin trace was collected from OLTP appli-
cations running at a large financial institution. The
write ratio is high.

• Web is also from SPC. It was collected from a
system running a web search engine. The read-
dominated Web trace exhibits the strong locality in
its access pattern.

4.3 Experiment Results
4.3.1 The Scaling Efficiency

Each experiment lasts from the beginning to the end of
data redistribution for RAID scaling. We focus on com-

8

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 157

Figure 13: Performance comparison between FastScale and SLAS un-
der the Fin workload.

paring redistribution times and user I/O latencies when
different scaling programs are running in background.

In all experiments, the sliding window size for SLAS
is set to 1024. Access aggregation in SLAS can improve
the redistribution efficiency. However, a too large size of
redistribution I/Os will compromise the I/O performance
of applications. In our experiments, SLAS reads 8 data
blocks via an I/O request.

The purpose of our first experiment is to quantitatively
characterize the advantages of FastScale through a com-
parison with SLAS. We conduct a scaling operation of
adding 2 disks to a 4-disk RAID, where each disk has
a capacity of 4 GB. Each approach performs with the
32KB stripe unit size under a Fin workload. The thresh-
old of rate control is set 100 IOPS. This parameter setup
acts as the baseline for the latter experiments, from which
any change will be stated explicitly.

We collect the latencies of all user I/Os. We divide
the I/O latency sequence into multiple sections accord-
ing to I/O issuing time. The time period of each section
is 100 seconds. Furthermore, we get a local maximum
latency from each section. A local maximum latency is
the maximum of I/O latencies in a section. Figure 13
plots local maximum latencies using the two approaches
as the time increases along the x-axis. It illustrates that
FastScale demonstrates a noticeable improvement over
SLAS in two metrics. First, the redistribution time using
FastScale is significantly shorter than that using SLAS.
They are 952 seconds and 6,830 seconds, respectively.
In other words, FastScale has a 86.06% shorter redistri-
bution time than SLAS.

The main factor in FastScale’s reducing the redistribu-
tion time is the significant decline of the amount of the
data to be moved. When SLAS is used, almost 100%
of data blocks have to be migrated. However, when
FastScale is used, only 33.3% of data blocks require to
be migrated. Another factor is the effective exploitation
of two optimization technologies: access aggregation re-

Figure 14: Cumulative distribution of I/O latencies during the data re-
distributions by the two approaches under the Fin workload.

duces the number of redistribution I/Os; lazy checkpoint
minimizes metadata writes.

Second, local maximum latencies of SLAS are obvi-
ously longer than those of FastScale. The global max-
imum latency using SLAS reaches 83.12 ms while that
using FastScale is 55.60 ms. This is because the redis-
tribution I/O size using SLAS is larger than that using
FastScale. For SLAS, the read size is 256 KB (8 blocks),
and the write size is 192 KB (6 blocks). For FastScale,
the read size is 64 KB (2 blocks), and the write size is 128
KB (4 blocks). Of course, local maximum latencies of
SLAS will be lower with a decrease in the redistribution
I/O size. But the decrease in the I/O size will necessarily
enlarge the redistribution time.

Figure 14 shows the cumulative distribution of user re-
sponse times during data redistribution. To provide a fair
comparison, I/Os involved in statistics for SLAS are only
those issued before 952 seconds. When I/O latencies are
larger than 18.65 ms, the CDF value of FastScale is larger
than that of SLAS. This indicates again that FastScale
has smaller maximum response time of user I/Os than
SLAS. The average latency of FastScale is close to that
of SLAS. They are 8.01 ms and 7.53 ms respectively. It
is noteworthy that due to significantly shorter data redis-
tribution time, FastScale has a markedly smaller impact
on the user I/O latencies than SLAS does.

A factor that might affect the benefits of FastScale is
the workload under which data redistribution performs.
Under the TPC-C workload, we also measure the per-
formances of FastScale and SLAS to perform the “4+2”
scaling operation.

For the TPC-C workload, Figure 15 shows local max-
imum latencies versus the redistribution times for SLAS
and FastScale. It shows once again the efficiency of
FastScale in improving the redistribution time. The re-
distribution times using SLAS and FastScale are 6,820
seconds and 964 seconds, respectively. That is to say,
FastScale brings an improvement of 85.87% in the re-

9

158 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Figure 15: Performance comparison between FastScale and SLAS un-
der the TPC-C workload.

distribution time. Likewise, local maximum latencies of
FastScale are also obviously shorter than those of SLAS.
The global maximum latency using FastScale is 114.76
ms while that using SLAS reaches 147.82 ms.

To compare the performance of FastScale under dif-
ferent workloads, Figure 16 shows a comparison in the
redistribution time between FastScale and SLAS. For
completeness, we also conducte a comparison experi-
ment on the redistribution time with no loaded work-
load. To scale a RAID volume off-line, SLAS uses 6802
seconds whereas FastScale consumes only 901 seconds.
FastScale provides an improvement of 86.75% in the re-
distribution time.

We can draw one conclusion from Figure 16. Under
various workloads, FastScale consistently outperformes
SLAS by 85.87-86.75% in the redistribution time, with
smaller maximum response time of user I/Os.

4.3.2 The Performance after Scaling

The above experiments show that FastScale improves the
scaling efficiency of RAID significantly. One of our con-
cerns is whether there is a penalty in the performance of
the data layout after scaling using FastScale, compared
with the round-robin layout preserved by SLAS.

We use the Web workload to measure the perfor-
mances of the two RAIDs, scaled from the same RAID
using SLAS and FastScale. Each experiment lasts 500
seconds, and records the latency of each I/O. Based on
the issue time, the I/O latency sequence is divided into
20 sections evenly. Furthermore, we get a local average
latency from each section.

First, we compare the performances of two RAIDs,
after one scaling operation “4+1” using the two scaling
approaches. Figure 17 plots local average latencies for
the two RAIDs as the time increases along the x-axis.
We can find that the performances of the two RAIDs are
very close. With regards to the round-robin RAID, the
average latency is 11.36 ms. For the FastScale RAID,

Figure 16: Comparison of redistribution times of FastScale and SLAS
under different workloads. The label “unloaded” means scaling a
RAID volume offline.

the average latency is 11.37 ms.
Second, we compare the performances of two RAIDs,

after two scaling operations “4+1+1” using the two ap-
proaches. Figure 18 plots local average latencies of the
two RAIDs as the time increases along the x-axis. It
again revealed the approximate equality in the perfor-
mances of the two RAIDs. With regards to the round-
robin RAID, the average latency is 11.21 ms. For the
FastScale RAID, the average latency is 11.03 ms.

One conclusion can be reached that the performance
of the RAID scaled using FastScale is almost identical
with that of the round-robin RAID.

5 Related Work

5.1 Scaling Deterministic RAID
The HP AutoRAID [8] allows an online capacity expan-
sion. Newly created RAID-5 volumes use all of the disks
in the system, but previously created RAID-5 volumes
continue to use only the original disks. This expansion
does not require data migration. But the system cannot
add new disks into an existing RAID-5 volume. The con-
ventional approaches to RAID scaling redistributes data
and preserves the round-robin order after adding disks.

Gonzalez and Cortes [3] proposed a gradual assimila-
tion algorithm (GA) to control the overhead of scaling a
RAID-5 volume. However, GA accesses only one block
via an I/O. Moreover, it writes mapping metadata onto
disks immediately after redistributing each stripe. As a
result, GA has a large redistribution cost.

The reshape toolkit in the Linux MD driver (MD-
Reshape) [4] writes mapping metadata for each fixed-
sized data window. However, user requests to the data
window have to queue up until all data blocks within the
window are moved. On the other hand, MD-Reshape is-
sues very small (4KB) I/O operations for data redistri-
bution. This limits the redistribution performance due to

10

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 159

Figure 17: Performance comparison between FastScale’s layout and
round-robin layout under the Web workload after one scaling operation
“4+1”.

more disk seeks.
Zhang et al. [5] discovered that there is always a re-

ordering window during data redistribution for round-
robin RAID scaling. The data inside the reordering win-
dow can migrate in any order without overwriting any
valid data. By leveraging this insight, they proposed the
SLAS approach, improving the efficiency of data redis-
tribution. However, SLAS still requires migrating all
data. Therefore, RAID scaling remains costly.

D-GRAID [16] restores only live file system data to a
hot spare so as to recover from failures quickly. Like-
wise, it can accelerate the redistribution process if only
the live data blocks from the perspective of file systems
are redistributed. However, this needs for semantically-
smart storage systems. Differently, FastScale is indepen-
dent on file systems, and it can work with any ordinary
disk storage.

A patent [17] presents a method to eliminate the need
to rewrite the original data blocks and parity blocks on
original disks. However, the method makes all the parity
blocks be either only on original disks or only on new
disks. The obvious distribution non-uniformity of parity
blocks will bring a penalty to write performance.

Franklin et al. [18] presented an RAID scaling method
using spare space with immediate access to new space.
First, old data are distributed among the set of data disk
drives and at least one new disk drive while, at the same
time, new data are mapped to the spare space. Upon
completion of the distribution, new data are copied from
the spare space to the set of data disk drives. This is simi-
lar to the key idea of WorkOut [19]. This kind of method
requires spare disks available in the RAID.

In another patent, Hetzler [20] presented a method to
RAID-5 scaling, noted MDM. MDM exchanges some
data blocks between original disks and new disks. MDM
can perform RAID scaling with reduced data movement.
However, it does not increase (just maintains) the data
storage efficiency after scaling. The RAID scaling pro-

Figure 18: Performance comparison between FastScale’s layout and
round-robin layout under the Web workload after two scaling opera-
tions “4+1+1”.

cess exploited by FastScale is favored in the art because
the data storage efficiency is maximized, which many
practitioners consider desirable.

5.2 Scaling Randomized RAID
Randomized RAID [6, 21, 22, 23] appears to have bet-
ter scalability. It is now gaining the spotlight in the data
placement area. Brinkmann et al. [23] proposed the cut-
and-paste placement strategy that uses randomized allo-
cation strategy to place data across disks. For a disk ad-
dition, it cuts off the range [1/(n + 1),1/n] from given
n disks, and pastes them to the newly added (n + 1)th

disk. For a disk removal, it uses reversing operation to
move all the blocks in disks that will be removed to the
other disks. Also based on random data placement, Seo
and Zimmermann [24] proposed an approach to finding a
sequence of disk additions and removals for the disk re-
placement problem. The goal is to minimize the data mi-
gration cost. Both these two approaches assume the exis-
tence of a high-quality hash function that assigns all the
data blocks in the system into the uniformly distributed
real numbers with high probability. However, they did
not present such a hash function.

The SCADDAR algorithm [6] uses a pseudo-random
function to distribute data blocks randomly across all
disks. It keeps track of the locations of data blocks after
multiple disk reorganizations and minimizes the amount
of data to be moved. Unfortunately, the pseudo-hash
function does not preserve the randomness of the data
layout after several disk additions or deletions [24]. So
far, true randomized hash function which preserves its
randomness after several disk additions or deletions has
not been found.

The simulation report in [21] shows that a single copy
of data in random striping may result in some hiccups of
the continuous display. To address this issue, one can use
data replication [22], where a fraction of the data blocks

11

160 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

randomly selected are replicated on randomly selected
disks. However, this will bring into a large capacity over-
head.

RUSH [25, 26] and CRUSH [27] are two algorithms
for online placement and reorganization of replicated
data. They are probabilistically optimal in distributing
data evenly and minimizing data movement when new
storage is added to the system. There are three differ-
ences between them and FastScale. First, they depend on
the existence of a high-quality random function, which
is difficult to generate. Second, they are designed for
object-based storage systems. They focus on how a data
object is mapped to a disk, without considering the data
layout of each individual disk. Third, our mapping func-
tion needs to be 1-1 and onto, but hash functions have
collisions and count on some amount of sparseness.

6 Conclusion and Future Work

This paper presents FastScale, a new approach that ac-
celerates RAID-0 scaling by minimizing data migra-
tion. First, with a new and elastic addressing function,
FastScale minimizes the number of data blocks to be mi-
grated without compromising the uniformity of data dis-
tribution. Second, FastScale uses access aggregation and
lazy checkpoint to optimize data migration.

Our results from detailed experiments using real-
system workloads show that, compared with SLAS, a
scaling approach proposed in 2007, FastScale can reduce
redistribution time by up to 86.06% with smaller maxi-
mum response time of user I/Os. The experiments also
illustrate that the performance of the RAID scaled using
FastScale is almost identical with that of the round-robin
RAID.

In this paper, the factor of data parity is not taken into
account. we believe that FastScale provides a good start-
ing point for efficient scaling of RAID-4 and RAID-5 ar-
rays. In the future, we will focus on extending FastScale
to RAID-4 and RAID-5.

7 Acknowledgements

We are indebted to the anonymous reviewers of the pa-
per for their insightful comments. We are also grate-
ful to Dr. Benjamin Reed, our shepherd, for detailed
comments and suggestions that greatly improved the
readability of the paper. This work was supported by
the National Natural Science Foundation of China un-
der Grant 60903183, the National High Technology Re-
search and Development Program of China under Grant
No. 2009AA01A403, and the National Grand Funda-
mental Research 973 Program of China under Grant No.
2007CB311100.

References

[1] D. A. Patterson, G. A. Gibson, R. H. Katz. A Case for Redundant
Arrays of Inexpensive Disks (RAID), in Proceedings of the In-
ternational Conference on Management of Data (SIGMOD’88),
June 1988. pp. 109-116.

[2] D. A. Patterson. A simple way to estimate the cost of down-time.
In Proceedings of the 16th Large Installation Systems Adminis-
tration Conference (LISA’02), October 2002. pp. 185-188.

[3] J. Gonzalez and T. Cortes. Increasing the capacity of RAID5 by
online gradual assimilation. In Proceedings of the International
Workshop on Storage Network Architecture and Parallel I/Os.
Antibes Juan-les-pins, France, Sept. 2004

[4] N. Brown. Online RAID-5 resizing. drivers/md/ raid5.c in the
source code of Linux Kernel 2.6.18. http://www.kernel.org/.
September 2006.

[5] G. Zhang, J. Shu, W. Xue, and W. Zheng. SLAS: An efficient
approach to scaling round-robin striped volumes. ACM Trans.
Storage, volume 3, issue 1, Article 3, 1-39 pages. March 2007.

[6] A. Goel, C. Shahabi, S-YD Yao, R. Zimmermann. SCADDAR:
An efficient randomized technique to reorganize continuous me-
dia blocks. In Proceedings of the 18th International Conference
on Data Engineering (ICDE’02). San Jose, 2002. pp. 473-482.

[7] J. Hennessy and D. Patterson. Computer Architecture: A Quan-
titative Approach, 3rd ed. Morgan Kaufmann Publishers, Inc.,
San Francisco, CA, 2003.

[8] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP
AutoRAID hierarchical storage system. ACM Transactions on
Computer Systems, volume 14, issue 1, pp. 108-136, February
1996.

[9] C. Kim, G. Kim, and B. Shin. Volume management in SAN envi-
ronment. In Proceedings of the 8th International Conference on
Parallel and Distributed Systems, ICPADS’01. 2001. pp. 500-
505.

[10] Klaus Muller, Tony Vignaux. SimPy 2.0.1’s documenta-
tion. http://simpy.sourceforge.net/SimPyDocs/index.html. last
accessed on April, 2009.

[11] J. Bucy, J. Schindler, S. Schlosser, G. Ganger. The DiskSim Sim-
ulation Environment Version 4.0 Reference Manual. Tech. report
CMU-PDL-08-101, Carnegie Mellon University. 2008.

[12] Hard disk drive specifications Ultrastar 36Z15.
http://www.hitachigst.com/tech/techlib.nsf/techdocs/
85256AB8006A31E587256A7800739FEB/$file/U36Z15 sp10.PDF.
Revision 1.0, April, 2001.

[13] TPC-C. Postgres. 20 iterations. DTB v1.1. Performance Eval-
uation Laboratory, Brigham Young University. Trace distribu-
tion center. http://tds.cs.byu.edu/tds/, last accessed on Decem-
ber, 2010.

[14] OLTP Application I/O and Search En-
gine I/O. UMass Trace Repository.
http://traces.cs.umass.edu/index.php/Storage/Storage. June,
2007.

[15] Storage Performance Council.
http://www.storageperformance.org/home. last accessed
on December, 2010.

[16] Muthian Sivathanu , Vijayan Prabhakaran , Andrea C. Arpaci-
Dusseau , Remzi H. Arpaci-Dusseau. Improving Storage System
Availability with D-GRAID, In Proceedings of the 3rd USENIX
Conference on File and Storage Technologies (FAST’04), San
Francisco, CA. March 2004.

[17] C.B. Legg, Method of Increasing the Storage Capacity of a Level
Five RAID Disk Array by Adding, in a Single Step, a New Parity
Block and N-1 New Data Blocks Which Respectively Reside in
a new Columns, Where N Is at Least Two, US Patent: 6000010,
December 1999.

12

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 161

[18] C.R Franklin and J.T. Wong, Expansion of RAID Subsystems
Using Spare Space with Immediate Access to New Space, US
Patent 10/033,997, 2006.

[19] Suzhen Wu, Hong Jiang, Dan Feng, Lei Tian, and Bo Mao,
WorkOut: I/O Workload Outsourcing for Boosting the RAID
Reconstruction Performance, In Proceedings of the 7th USENIX
Conference on File and Storage Technologies (FAST ’09), San
Francisco, CA, USA, pp. 239-252. February 2009.

[20] S.R. Hetzler, Data Storage Array Scaling Method and System
with Minimal Data Movement, US Patent 20080276057, 2008.

[21] J. Alemany and J. S. Thathachar. Random striping news on de-
mand servers. Tech. Report, TR-97-02-02, University of Wash-
ington, 1997.

[22] Jose Renato Santos, Richard R. Muntz, and Berthier A. Ribeiro-
Neto. Comparing random data allocation and data striping in
multimedia servers. In Measurement and Modeling of Computer
Systems, pp. 44-55. 2000.

[23] Andre Brinkmann, Kay Salzwedel, and Christian Scheideler. Ef-
ficient, distributed data placement strategies for storage area net-
works (extended abstract). In ACM Symposium on Parallel Al-
gorithms and Architectures, pp. 119-128. 2000.

[24] Beomjoo Seo and Roger Zimmermann. Efficient disk replace-
ment and data migration algorithms for large disk subsystems.
ACM Transactions on Storage (TOS), volume 1, issue 3, pages
316-345, August 2005.

[25] R. J. Honicky and E. L. Miller. A fast algorithm for online place-
ment and reorganization of replicated data. In Proceedings of the
17th International Parallel and Distributed Processing Sympo-
sium (IPDPS 2003), Nice, France, April 2003.

[26] R. J. Honicky and E. L. Miller. Replication under scalable hash-
ing: A family of algorithms for scalable decentralized data dis-
tribution. In Proceedings of the 18th International Parallel and
Distributed Processing Symposium (IPDPS’04), IEEE. 2004

[27] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn. CRUSH:
Controlled, Scalable, Decentralized Placement of Replicated
Data. In Proceedings of the International Conference on Super
Computing (SC’06). Tampa Bay, FL. 2006.

13

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 163

The SCADS Director: Scaling a Distributed Storage System Under
Stringent Performance Requirements

Beth Trushkowsky, Peter Bodı́k, Armando Fox,
Michael J. Franklin, Michael I. Jordan, David A. Patterson

{trush, bodik, fox, franklin, jordan, pattrsn}@eecs.berkeley.edu
University of California, Berkeley

Abstract
Elasticity of cloud computing environments provides an
economic incentive for automatic resource allocation of
stateful systems running in the cloud. However, these
systems have to meet strict performance Service-Level
Objectives (SLOs) expressed using upper percentiles of
request latency, such as the 99th. Such latency measure-
ments are very noisy, which complicates the design of
the dynamic resource allocation. We design and evaluate
the SCADS Director, a control framework that reconfig-
ures the storage system on-the-fly in response to work-
load changes using a performance model of the system.
We demonstrate that such a framework can respond to
both unexpected data hotspots and diurnal workload pat-
terns without violating strict performance SLOs.

1 Introduction
Cloud computing has emerged as a preferred technology
for delivering large-scale internet applications, in part be-
cause its elasticity provides the ability to dynamically
provision and reclaim resources in response to fluctua-
tions in workload. As cloud environments and their ap-
plications expand in scale and complexity, it becomes in-
creasingly important to automate such dynamic resource
allocation.

Techniques for automatically scaling stateless systems
such as web servers or application servers are fairly well
understood. However, many applications that can most
benefit from elasticity, such as social networking, e-
commerce and auction sites, are both data-intensive and
interactive. Such applications present three major chal-
lenges for automatic scaling.

First, in most data-intensive services, a request for a
specific data item can only be satisfied by a copy of that
particular data item, so not every server can handle every
request, which complicates load balancing. Second, in-
teractivity means that a successful application must pro-
vide highly-responsive, low-latency service to the vast
majority of users: a typical Service Level Objective

(SLO) might be expressed as “99% of all requests must
be answered within 100ms” [20, 17]. Third, the work-
loads presented by large-scale applications can be highly
volatile, with quickly-occurring unexpected spikes (due
to flash crowds) and diurnal fluctuations.

This “perfect storm” of statefulness, workload volatil-
ity and stringent performance requirements complicates
the development of automatic scaling mechanisms. To
scale a data-intensive system, data items must be moved
(i.e., partitioned or coalesced) or copied (i.e., replicated)
among the nodes of the system. Such data movement
takes time and can place additional load on an already
overloaded system. Provisioning of new nodes incurs
significant start-up delay, so decisions must be made
early to react effectively to workload changes. But most
importantly, the SLOs on upper percentile latency sig-
nificantly complicate the problem compared to require-
ments based on average latency, as statistical estimates
based on observations in the upper percentiles of the la-
tency distribution have higher variance than estimates
obtained from the center of the distribution. This vari-
ance is exacerbated by “environmental” application noise
uncorrelated to particular queries or data items [19]. The
resulting noisy latency signal can cause oscillations in
classical closed-loop control [7].

In this paper we describe the design of a control frame-
work for dynamically scaling distributed storage systems
that addresses these challenges. Our approach leverages
key features of modern distributed storage systems and
uses a performance model coupled with workload statis-
tics to predict whether each server is likely to continue to
meet its SLO. Based on this model, the framework moves
and replicates data as necessary. In particular, we make
the following contributions:
• We identify the challenges and opportunities that

arise in designing dynamic resource allocation
frameworks for stateful systems that maintain perfor-
mance SLOs on upper quantiles of request latency.

164 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

• We describe the design and implementation of
a modular control framework based on Model-
Predictive Control [30] that addresses these chal-
lenges.

• We evaluate the effectiveness of the control frame-
work through experiments using a storage system
running on Amazon’s Elastic Compute Cloud (EC2),
using workloads that exhibit both periodic and erratic
fluctuations comparable to those observed in produc-
tion systems.

The rest of the paper proceeds as follows. Section 2
describes background and challenges, and Section 3 dis-
cusses the design considerations that address those chal-
lenges. Related work is in Section 4. Section 5 details
the implementation of our control framework, and Sec-
tion 6 demonstrates experimental results of the control
framework using Amazon’s EC2. Further discussion is
in Section 7, and we remark on future work and conclude
in Sections 8 and 9.

2 Scaling Challenges
2.1 Background

We address dynamic resource allocation for distributed
storage systems for which the performance SLO is spec-
ified using an upper percentile of latency. The goal is to
design a control framework that tries to avoid SLO vio-
lations, while keeping the cost of leased resources low.

Our solution is targeted for storage systems designed
for horizontal scalability, such as key-value stores, that
back interactive web applications. Examples of such
systems are PNUTS [17], BigTable [14], Cassandra [3],
SCADS [6], and HBase [4]. Requests in these systems
have a simple communication pattern; each system at
minimum provides get and put functionality on keys,
and each request is single unit of work. We take advan-
tage of this simplicity in our approach.

This simplified model also lends itself to easy parti-
tioning of the key space across multiple servers, typi-
cally using a hash or range partitioning scheme. Each
server node stores a subset of the data and serves re-
quests for that subset. The control framework has two
knobs: it can partition or replicate data to prevent servers
from being overloaded when workload increases (e.g.
due to diurnal variation or hotspots), or it can coalesce
data and remove unnecessary replicas when the work-
load decreases. To make these configuration changes,
the underlying storage system must be easy to recon-
figure on-the-fly. Specifically, we require that it al-
lows data to be copied from one server to another or
deleted from a server, and that it provides methods like
AddServer and RemoveServer to alter the num-
ber of leased servers. We previously designed and built
SCADS [6] to both support this functionality and pro-

0 5 10 15

2
5

10
20

50

smoothing interval [min

st
an

da
rd

 d
ev

ia
tio

n
[m

s]
 (l

og
 s

ca
le

) ●

●

●

●

●
●

●
●

●
●

●
●

●
● ● ●

● stdev o smoothed 99th percentile latency
stdev o smoothed mean latency
stdev o mean latency over 20 seconds
stdev o mean latency over 1 minute

Figure 1: Standard deviation for the mean and 99th
percentile of latency for increasing smoothing window
sizes. The left-most points represent the raw measure-
ments over 20-second periods. The average of the mean
and 99th percentile latencies are 11 ms and 82 ms, re-
spectively.

vide the simple communication pattern described above.
As we further discuss in Section 7, running our own
key-value store in the cloud has advantages over using
a cloud-provided data service such as Amazon’s S3.

SCADS was designed to keep data memory-resident
so that applications aren’t required to use ad-hoc caching
techniques to reach performance goals. This design pro-
vides similar performance benefits as Memcached; how-
ever, SCADS also supports real-time replication and load
balancing. An example target application would be the
highly interactive social networking site Facebook.com;
most of their data remains memory-resident in order to
hit performance targets [31].

In this section, we identify two challenges in scaling a
storage system while maintaining a high-percentile SLO:
noise and data movement. Benchmarks are presented to
show the effects of each of these challenges.

2.2 Controlling a Noisy Signal

Figure 1 shows request latencies achieved by several key-
value storage servers under a steady workload.1 As ex-
pected, the standard deviation of both the mean latency
and 99th percentile latency decreases as we increase the
smoothing window, or time period over which the mea-
surements are aggregated. However, as can be seen in
the figure, the 99th percentile of latency would have
be to smoothed over a four-minute window to achieve
the same standard deviation as that achieved by the
mean smoothed over a 20-second window (an 11x longer
smoothing window). Similar effects are illustrated in ex-
periments with Dynamo [20]2.

This observation has serious consequences if we are

1The workload consists of get and put requests against the
SCADS [6] storage system, running on ten Amazon Elastic Compute
Cloud (EC2) “Small” instances. Details of our experimental setup are
in Section 6.1.

2See Figure 4 in [20]

2

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 165

0.
00

1
0.

01
0

0.
10

0

95% gets, 5% puts

copy rate [MB/s]

fra
ct

io
n

of
 re

qu
es

ts
 s

lo
we

r t
ha

n
10

0m
s

0.10 0.25 0.50 1.00 2.00 4.00

Figure 2: Impact on read performance during data copy-
ing on the write target. The x-axis represents the copy
rate (in log scale) and the y-axis represents the fraction
of requests slower than 100 ms (in log scale).

contemplating using classical closed-loop control. A
long smoothing window means a longer delay before
the control loop can make its next decision, resulting in
more SLO violations. Furthermore, too much smoothing
could mask a real spike in workload, and the controller
would not respond at all. A short smoothing window
mitigates both problems but can lead to oscillatory be-
havior [7]. Due to the high variance associated with a
shorter smoothing window, the controller cannot tell if a
server with high latency is actually overloaded or if it is
simply exhibiting normally-occurring higher latency. A
classical closed-loop controller might add servers in one
iteration just to remove them in the next or may move
data back and forth unnecessarily in response to such
“false alarms.” We show in Section 3 that a more ef-
fective approach is a model-based control in which the
controller uses a different input signal than the quantity
it is trying to control.

2.3 Data Movement Hurts Performance

Scaling a storage system requires data movement. Be-
cause each server is responsible for its own state, i.e.,
the data it stores, it is not generally true that any server
can service any request. Simply adding and removing
servers is not sufficient to respond to changes in work-
load, we additionally need to copy and move data be-
tween servers. However, data movement impacts perfor-
mance and this impact is especially noticeable in the tail
of the latency distribution. Impacting the tail of the distri-
bution is of particular interest since we target upper per-
centile SLOs. As demonstrated in Figure 2, copying data
increases the fraction of slow requests. In Dynamo [20],
the data copy operations are run in low priority mode to
minimize their impact on performance of interactive op-
erations. Since one of our operational goals is to respond
to spikes while minimizing SLO violations, our approach
instead identifies and copies the smallest amount of data
needed to relieve SLO pressure.

3 Design Techniques and Approach
Having outlined our goals and identified key challenges
in Section 2, we now describe the design techniques in
our solution. In particular, we use a model-predictive
control, fine-grained workload statistics, and replication
for performance predictability.

3.1 Model-Predictive Control

Model-predictive control (MPC) can yield improvements
over classical closed-loop control systems in the pres-
ence of noisy signals because the controller takes as in-
put a different signal than the one it is trying to control.
In MPC, the controller uses a model of the system and
its current state to compute the (near) optimal sequence
of actions that maintain desired constraints. To simplify
the computation of these actions, MPC considers a short
receding time horizon. The controller executes only the
first action in the sequence and then uses the new cur-
rent state to compute a new sequence of actions. In each
iteration, the controller reevaluates the system state and
computes a new target state to adjust to changing condi-
tions.

Realizing the improvements of MPC requires con-
structing an accurate model of the controlled system,
which can be difficult in general. However, a distributed
system with simple requests (see Section 2.1) is simpler
to control: by avoiding per-server SLO violations, the
controller avoids global violations.

We use a model of the system that predicts SLO viola-
tions based on the workload from individual servers. An
overloaded server is in danger of a violation and needs to
have data moved away. Similarly, the control framework
uses the model to estimate how much spare capacity is
left on an underloaded server, helpful for deciding which
data should be moved there. Details of our model are in
Section 5.4.

3.2 Reduce Data Movement

Figure 2 demonstrates that data movement negatively im-
pacts performance. To reduce the amount of data copied
between servers, we organize data as small units (bins),
monitor workload to these bins, and move individual bins
of data. This approach is commonly used to ease load-
balancing [14, 17].

Monitoring workload statistics at a granularity finer
than per-server is essential for the control framework to
decide which data should be moved or copied. With-
out this information, it would be impossible to deter-
mine the minimal amount of data that could be moved
from an overloaded server to bring it back to an SLO-
compliant state. The performance model can predict how
much “extra room” underloaded servers have, allowing
the control framework to choose where to move the data.
A “best-fit” policy that keeps the servers as fully utilized

3

166 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

0
50

10
0

10 servers, 1 replica

99
th

 %
-ti

le
 la

te
nc

y
[m

s]

0

99
th

 %
-ti

le
 la

te
nc

y
[m

s]

0 5 10 15 20

0
50

10
0

10 servers, 2 replicas

time [min]

99
th

 %
-ti

le
 la

te
nc

y
[m

s]

Figure 3: 99th percentile of latency over time measured
during two experiments with steady workload. We kept
the workload volume and number of servers the same,
but changed the replication level from one data copy
(top) to two (bottom). Horizontal lines representing the
latencies 50 ms and 100 ms are provided for reference.

as possible is also important for scaling down leased re-
sources, as unused servers can be released. Monitoring
workload on small ranges of data give the control frame-
work fine-grained information to move as little data as
necessary to alleviate performance issues and to safely
coalesce servers so they can be released.

3.3 Replication for Predictability

Distributed systems, particularly those operating in a
cloud environment, typically experience environmental
noise uncorrelated to a particular query or data [19]. In
our benchmarks, we saw fluctuations in 99th percentile
of latency over time and between different servers.

However, distributed systems also present the oppor-
tunity to use replication as a means of improving per-
formance. In Dynamo, setting the read/write quorum
parameters to be less than the total number of replicas
achieves better request latency [20]. Another example
is in the Google File System [21], which writes logs to
different servers.

We handle performance perturbations caused by envi-
ronmental noise by exploiting data replication; replica-
tion in the cloud environment is useful for performance
predictability. Each request is sent to multiple replicas of
the requested item and the first response is sent back to
the client; this is the technique described in [20].

Figure 3 compares using one replica versus two on the
same number of total servers (ten); shown is the 99th
percentile of latency over time measured with steady
workload. Note that the latency using replication is
both smaller and more stable, even though each of these
servers is doing more work than a server in the single
replica scenario. It may seem that using single replicas
with higher utilization would yield higher overall good-

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

99th percentile latency with varying replication

lantecy [ms

C
D

F

5 nodes, 1 replica
10 nodes, 2 replicas
15 nodes, 3 replicas

Figure 4: CDFs of 99th percentile latency measured ev-
ery 20 seconds in three experiments. Each experiment
yields the same goodput, however using more replicas
results in lower and less variable latency.

put (i.e., the amount of useful work accomplished per
unit time). However, the extra work done by increasing
the utilization will be in vain if those requests violate the
SLO. In other words, the stringent SLO lowers the useful
utilization of a single server.

Using more replicas yields lower variance in the 99th
percentile. Figure 4 shows three Cumulative Distribu-
tion Functions (CDFs) of the 99th percentile of latency
during three experiments using up to three replicas; each
experiment yields the same goodput (workload to fully
load five single replicas). Note the shorter tails on the
distributions as the replication factor increases.

An advantage of using replication for performance is
that it helps mask the effects of data movement during
dynamic scaling. Thus replication is beneficial for alle-
viating both naturally-occurring and introduced noise.

Note that this data replication technique improves the
99th percentile latency from the perspective of the client,
but does not reduce variance of the upper percentiles of
latency of requests from an individual server. Therefore,
the need for model-based control due to the difficulty in
controlling a noisy signal remains present.

4 Related Work
Previous projects have addressed various subsets of our
problem space, but to our knowledge none tackle the en-
tire problem of the online control of the upper percentiles
of latency in stateful, distributed systems.

Some work [2, 33] aims to optimize the static provi-
sioning of a storage system before deploying to produc-
tion. They search the configuration space for a cluster
configuration that optimizes a specified utility function,
but this optimization is done offline and performance is
not considered during the re-configuration.

Other work tackles online configuration changes in
storage systems, but only considers mean request latency
rather than the upper percentile SLOs we consider. In

4

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 167

[16, 32], the authors propose a database replication pol-
icy for automatic scale up and down. In [32], they use
a reactive, feed-back controller which monitors request
latency and adds additional full replicas of the database.
An enhancement in [16] uses a performance model to
add replicas via a proactive controller. These papers ad-
ditionally differ from our work in their assumption that
the full dataset fits on a single server, thus they only con-
sider adding a full replica when scaling up (instead of
also partitioning).

In [25], the controller adds and removes nodes from a
distributed file system, rebalancing data as servers come
and go. However this work focuses more on controlling
the rebalance speed rather than choosing which data to
move to which servers; the work additionally does not
focus on upper-percentile SLOs.

Some systems target large-scale storage servers with
terabytes of data on each machine and thus cannot han-
dle a sustained workload spike or data hotspot because
the data layout cannot change on-the-fly. For example:
in Everest [28], the authors propose a write off-loading
technique that allows them to absorb short burst of writes
to a large-scale storage system. Performance improve-
ment is measured as 99th percentile of latency during the
30 minute experiments, however they do not attempt to
maintain a stringent SLO over short time intervals. Sierra
[35] and Rabbit [1] are power-proportional systems that
alter power consumption based on workload. The ap-
proach that both papers take is to first provision the sys-
tem for the peak load with multiple replicas of all data
and then turn off servers when the workload decreases.
Both papers evaluate the performance of the system un-
der the power-proportional controller (Sierra uses the
99th percentile of latency), but these systems could not
respond to workload spikes taller than the provisioned
capacity or to unexpected hotspots that affect individual
servers. SMART [38] is evaluated on a large file system
that prevents it from quickly responding to unexpected
spikes and does not consider upper percentiles of latency.

Most DHTs [8] are designed to withstand churn in
the server population without affecting the availability
and durability of the data. However, quickly adapting
to changes in user workload and maintaining a stringent
performance SLO during such changes are not design
goals. Amazon’s Dynamo [20] is an example of a DHT
that provides an SLO on the 99.9th percentile of latency,
but the authors mention that during a busy holiday sea-
son it took almost a day to copy data to a new server due
to running the copy action slow enough to avoid perfor-
mance issues; this low-priority copying would be slow to
respond to unexpected spikes.

Much has been published on dynamic resource allo-
cation for stateless systems such as Web servers or ap-
plication servers [15, 36, 26, 23, 22, 34], even consider-

ing stringent performance SLOs. However, most of that
work does not directly apply to stateful storage systems:
the control polices for stateless systems need only vary
the number of active servers because any server can han-
dle any request. These policies do not have to consider
the complexities of data movement.

Aqueduct [27] is a migration engine that moves data in
a storage system while guaranteeing a performance SLO
on mean request latency. It does not directly respond to
workload, but could be used instead of the action sched-
uler in our control framework (see Section 5.6).

5 The Control Framework
This section describes the design and implementation of
the control framework, incorporating the strategies out-
lined in Section 3. The framework uses per-server work-
load and the performance model to determine when a
server is overloaded and thus when to copy data. It
chooses what to copy based on workload statistics on
small units of data (bins). Finer statistics together with
the models inform where to copy data.

5.1 The control loop

The control framework consists of a controller, workload
forecaster, and action scheduler which, together with the
storage system and performance models, form a control
loop (see Figure 5). These components are described in
more detail in subsequent sections.

We focus on the controller, which is responsible for
altering the configuration of the cluster by prescribing
actions that add/remove servers and move/copy data be-
tween servers. Its decisions are based on a view of the
current state given by the workload forecaster and the
current data layout, in consultation with models that pre-
dict how servers will perform under particular loads. Af-
ter the controller compiles a list of actions to run on the
cluster, the action scheduler executes them.

Workload statistics are maintained for small ranges of

performance
models

controller

action
scheduler

workload
smoothing +
forecasting

current
data

layout

workload
histogram

raw
workload

list of
actions

actions

storage servers hot standbys

Figure 5: The control framework modules—workload
forecasting, controller, performance model, and action
execution—form a control loop that interacts with the
storage system.

5

168 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

data called bins; each bin is about 10-100 MB of data.
These bins also represent the unit of data movement. We
assume a bin cannot be further partitioned and will need
to be replicated if its workload exceeds the capacity of
a single server. The total number of bins is a parame-
ter of the control framework. Setting the value too low
or too high has its drawbacks. With too few data bins,
the controller does not have enough flexibility in terms
of moving data from overloaded servers and might have
to copy more data than necessary. Having too many data
bins increases the load on the monitoring system and run-
ning the controller might take longer since it would have
to consider more options. In practice, having on average
five to ten bins per server is a good compromise.

5.2 A manipulable storage system

The SCADS [6] storage system provides an interface for
dynamic scaling: it is easy to control which servers have
which data, and data can be manipulated as small bins.
SCADS is an eventually consistent key-value store with
range partitioning. Each node can serve multiple small
ranges; e.g., keys A-C, G-I. We use the get and put
operators; read requests are satisfied from one or more
servers, and writes are asynchronously propagated and
flushed to all replicas.

SCADS provides an interface for copying and mov-
ing data between pairs of servers; replication is ac-
complished by copying the target data range to another
server, and partitioning is the result of moving data from
one server to another. The SCADS design makes low la-
tency a top priority, thus all data is kept in memory. This
characteristic has little impact on the control framework,
besides simplifying the performance modeling described
in Section 5.4.

5.3 Controller

Given the workload statistics in each bin, the minimal
number of servers would be achieved by solving a bin-
packing problem—packing the data bins into servers—
an NP-complete problem. While approximate algorithms
exist [37], they typically do not consider the current loca-
tions of the bins and thus could completely reshuffle the
data on the servers, a costly operation. Instead, our con-
troller uses a greedy heuristic that moves data from the
overloaded servers and coalesces underloaded servers.
While there are many possible controller implementa-
tions, we describe our design that leverages the solutions
outlined above.

The controller executes periodically to decide how to
alter the configuration of the cluster; the frequency is an
implementation parameter. In each iteration, the con-
troller prescribes actions for overloaded and underloaded
servers as well as changing the number of servers. By the
end of an iteration, the controller has compiled a list of

Algorithm 1 Controller iteration
1: estimate workload on each server
2: identify servers that are overloaded or underloaded
3:

4: for all overloaded server S do
5: while S is overloaded do
6: determine hottest bin H on S
7: if workload on H is too high for a single server then
8: move and replicate H to empty servers
9: else

10: move H to the most-loaded underloaded server
that can accept H without SLO violation

11:

12: for all underloaded server S do
13: if S contains only a single bin replica then
14: remove the bin if no longer necessary
15: else
16: for all bin B on S do
17: move B to most-loaded underloaded server that

can accept B
18: if cannot move B then
19: leave it on S
20:

21: add/remove servers as necessary, as per previous actions

actions to be run on the cluster, which are then executed
by the action scheduler (see Section 5.6).

Pseudocode for the controller is shown in Algorithm 1.
Using a performance model (described in the next sub-
section), the controller predicts which servers are under-
loaded or overloaded. Lines 4-10 describe the steps for
fixing an overloaded server: moving bins that have too
much workload for one server to dedicated servers, or
moving bins to the most loaded servers that have enough
capacity, a “best-fit” approach. Next, in lines 12-19, in an
attempt to deallocate servers for scaling down, the con-
troller moves bins from the least loaded loaded servers
to other underloaded servers. Finally, servers are added
and removed from the cluster. To simplify its reason-
ing about the current state of the system, the controller
waits until previously scheduled copy actions complete.
Long-running actions could block the controller from ex-
ecuting, preventing it from responding to sudden changes
in workload. An action that needs to move many bins
from one server to another. To avoid scheduling such ac-
tions, the controller uses a copy-duration model to esti-
mate action duration and splits potentially long-running
actions into shorter ones. For example, an action that
needs to move many bins from one server to another can
be split into several actions that move fewer bins between
the two servers. If some of the actions do not complete
within a time threshold, the controller can cancel them
to reassess the current state and continue to respond to
workload changes.

The controller can also maintain a user-specified num-

6

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 169

ber of standby servers, a form of extra capacity in addi-
tion to overprovisioning in the workload smoothing com-
ponent (see Section 5.5). These standbys help the con-
troller avoid waiting for new servers to boot up during a
sudden workload spike, as they are already running the
storage system software but not serving any data. Stand-
bys are particularly useful for handling hotspots when
replicas of a bin require an empty server.

The presence of a centralized component such as the
controller does not necessarily mean the system isn’t
scalable[19]. Nevertheless, there is likely a limit to the
number of decisions the controller can make per unit
time for a given number of servers and/or bins. In our
results, the controller inspects forty servers in a few
seconds; experimenting with a larger cluster is future
work. If a decision-making limit is approached, the con-
troller may need to make decisions less frequently; this
could impact the attainable SLO if the workload changes
rapidly. However, with more servers, the controller has
more flexibility in placing data, meaning it doesn’t have
to consider many servers when relocating a particular
bin.

5.4 Benchmarking and modeling

The controller uses models of system performance to de-
termine which servers are overloaded/underloaded and
to guide its decisions as to which data to move where,
as well as how many servers to add or remove. Re-
call that Model-Predictive Control requires an accurate
model of the system. Instead of responding to changes
in 99th percentile of request latency, our controller re-
sponds directly to changes in system workload. There-
fore, the controller needs a model that accurately predicts
whether a server can handle a particular workload with-
out violating the performance SLO. Our controller also
uses a model of duration of the data copy operations to
create short copy actions.

One of the standard approaches to performance mod-
eling is using analytical models based on network of
queues. These models require detailed understanding
of the system and often make strong assumptions about
the request arrival and service time distributions. Conse-
quently, analytical models are difficult to construct and
their predictions might not match the performance of the
system in production environments.

Instead, we use statistical machine learning (SML)
models. As noted in the solutions above, a model-based
approach allows us to use a signal other than latency in
the control loop. Consequently, the controller needs an
accurate model of the system on which to base its de-
cisions. Building a model typically involves gathering
training data by introducing a range of inputs into the
system and observing the outcomes. In a large-scale sys-
tem it becomes more difficult to construct the appropri-

0 2000 4000 6000 8000

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

get workload [req/sec

p
u

t
w

o
rk

lo
a

d
 [

re
q

/s
e

c
]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ●

● no SLO violation

SLO violation

throughput model

Figure 6: The training data and steady-state model for
two replicas. The x- and y-axes represent the request
rates of get and put operations, and the small dots and
large squares represent workloads that the server can and
cannot handle, respectively. The solid line crossing the
four others is the boundary of the performance model.
SCADS can handle workload rates to the left of this line.

ate set of inputs [7]. Furthermore, it is more likely in a
larger system to only be able to observe a subset of the
component interactions that actually take place. Not hav-
ing knowledge of all interactions (unmodeled dynamics)
leads to a less accurate model.

Fortunately, we can leverage the simple communica-
tion pattern of SCADS requests to simplify the model-
ing process. Other key-value stores with similar sim-
ple requests would also be amenable to modeling. Be-
low we describe the development and use of two mod-
els, the steady-state model and the copy-duration model.
All benchmarks were run on tens of SCADS servers and
workload-generating clients on Amazon’s Elastic Com-
pute Cloud (EC2) on m1.small instances.

Simple changes in workload, such as a shift in pop-
ularity of individual objects [11, 5, 9], will not affect
the accuracy of these offline models as all SCADS re-
quests are served from memory. The performance of
these offline models (and thus the system) may degrade
over time if new, unmodeled features are added to the
application. For example, an individual request may be-
come more expensive if it returns more data or if new
types of requests are supported. The model’s degrada-
tion speed would be application-specific, however these
feature-change events are known to the developer and the
offline models can be periodically rebuilt via benchmark-
ing and fine-tuned in production [12].

Steady-state model: The steady-state performance
model is used to predict whether a server can handle
a particular workload without violating a given latency
threshold. The controller uses this model to detect which
servers are overloaded and to decide where data should
be moved. To build this model, we benchmark SCADS
under steady workload for a variety of workload mixes:
read/write ratios 50/50, 80/20, 90/10 and 95/5 (these

7

170 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

mixes are also used in [18]). We then create a linear clas-
sification model using logistic regression, based on train-
ing data from the benchmarks. The model has two co-
variates (features): the workload rate of get and put re-
quests. For each workload mix, we determine the work-
load volume at which the latency threshold specified by
the SLO would be surpassed. This workload volume sep-
arates two classes: SLO violation or no violation. Thus,
for a particular workload, the model can predict whether
a server with that workload would violate the SLO. Fig-
ure 6 illustrates the steady-state linear model and the
training data used to generate it.

Copy-duration model: To allow the controller to es-
timate how long it will take to copy data between two
servers, we build a model that predicts the rate of data
transfer during a copy action. While the copy opera-
tion in SCADS has a parameter for specifying the num-
ber of bytes/second at which to transfer data, the actual
rate is often lower because of activity on both servers in-
volved. Our model thus predicts the copy-rate factor—
the ratio of observed to specified copy-rate. A factor of
0.8 means that the actual copy operation is only 80%
the specified rate. We use this estimate of the actual rate
to compute the duration of the copy action.

To build the model, we benchmark duration of copy
actions between pairs of servers operating at various
workload rates. We then model the copy rate factor using
linear regression; covariates are linear and quadratic in
the specified rate and get and put request rates.

While our controller does not directly consider the
effects of data copy on system performance during
real-time decisions, we considered these effects when
designing the controller and the action execution
modules. Recall that Figure 2 summarizes the results
of benchmarking SCADS during copy operations;
performance is affected mostly on the target servers for
the copy action. Also note that in both performance
models network utilization and activity of other VMs
are ignored. These effects are part of environmental
noise described earlier, and are compensated for with
replication.

5.5 Workload Monitoring and Smoothing

In addition to performance models, the controller needs
to know how workload is distributed amongst the data.
Workload is represented by a histogram that contains re-
quest rates for individual request types (get and put)
for each bin. To minimize the impact of monitoring on
performance, we sample 2% of get requests for use in
our statistics (put requests are sampled at 40% because
there are fewer put requests in our workload mixes). We
found that using higher sampling rates did not greatly im-
prove accuracy.

Every twenty seconds, a summary of the workload
volume is generated for each bin. This creates the raw
workload histogram: for each bin we have counts of the
number of get and put requests to keys in that bin. To
prevent the controller from reacting to small variance in
workload, the raw workload is smoothed via hysteresis.
As scaling up is more important than scaling down with
respect to performance, we want to respond quickly to
workload spikes while coalescing servers more slowly.
We apply smoothing with two parameters: αup and
αdown. If the workload in a bin increases relative to
the last time step’s smoothed workload, we smooth that
bin’s workload with αup; otherwise we use the αdown

smoothing parameter. For example, in the case of in-
creasing workload at time t we have: smoothedt =
smoothedt−1 + αup ∗ (rawt − smoothedt−1).

The smoothed workload can also be amplified using
an overprovisioning factor. Overprovisioning causes the
controller to think the workload on a server is higher than
it actually is. For instance, an overprovisioning factor
of 0.1 would make an actual workload of w appear to
the controller as 1.1w. Thus overprovisioning creates
a “safety buffer” that buys the controller more time to
move data. For more discussion of tradeoffs, see Sec-
tion 7.

The controller bases its decisions on an estimate of
the workload at each server, determined by sampling the
requests. Calculating per-bin workload in a centralized
controller may prove unscalable as the number of re-
quests to sample grows large. While we used a single
server to process the requests and compute the per-bin
workloads, the Chukwa monitoring system [29] could
be distributed over a cluster of servers. The monitoring
system could then prioritize the delivery of the monitor-
ing data to the controller, sending updates only for bins
with significant changes in workload. Another approach
would have each server maintain workload information
over a specified time interval. The controller could then
query for the workload information when it begins its
decision-making process.

5.6 Action Scheduler

On most storage systems, copying data between servers
has a negative impact on performance of the interactive
workload. In SCADS, the copy operation significantly
affects the target server (see Figure 2), while the source
server is mostly unaffected. Therefore, executing all
data copy actions concurrently might overwhelm the sys-
tem and reduce performance. Executing the actions se-
quentially would minimize the performance impact, but
would be very slow.

In addition to improving steady-state performance of
storage systems, replication helps smooth performance
during data copy. We specify a constraint that each bin

8

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 171

have at least one replica on a server that is not affected
by data copy. The action scheduler iterates through its
list of actions and schedules concurrently all actions that
do not violate the constraint. When an action completes,
the scheduler repeats this process with the remaining un-
scheduled actions.

5.7 Controller Parameters

A summary of the parameters used by the controller ap-
pear in Table 5.7, along with the values used in our ex-
periments (in Section 6). The hysteresis parameters αup

and αdown affect how abruptly the controller will scale
up and down. Reasonable values for these parameters
can be chosen via simulation [13].

Controller Parameter Value
execution period 20 seconds
αup, αdown 0.9, 0.1
number standbys 2
overprovisioning 0.1 or 0.3
copyrate 4 MB/s

6 Experimental Results
We evaluate our control framework implementation by
stress testing it with two workload profiles that represent
the main scenarios where our proposed control frame-
work could be applied. The first workload contains a
spike on a single data item; as shown in [11], web ap-
plications typically experience hotspots on a small frac-
tion of the data. Unexpected workload spikes with data
hotspots are difficult to handle in stateful systems be-
cause the location of the hotspot is unknown before the
spike. Therefore, statically overprovisioning for such
spikes would be expensive. Managing and monitor-
ing small data ranges is especially important for dealing
with these hotspots, particularly when quick replication
is needed. The second workload exhibits a diurnal work-
load pattern: workload volume increases during the day
and decreases at night; this profile demonstrates the ef-
fectiveness of both scale-up and scale-down.

For the hotspot workload, we observe how well the
control framework is able to react to a sudden increase in
workload volume, as well as how quickly performance
stabilizes. We also look at the performance impact dur-
ing this transition period. Note, however, that any sys-
tem will likely have some visible impact for sufficiently
strict characteristics of the spike (i.e., how rapidly it ar-
rives and how much extra workload there is). The di-
urnal workload additionally exercises the control frame-
work’s ability to both scale up and down. Finally, we dis-
cuss some of the tradeoffs of SLO parameters and cost of
leased resources, as well as potential savings to be gained
by scaling up and down.

6.1 Experiment setup

Experiments were run using Amazon’s Elastic Compute
Cloud (EC2). We ran SCADS servers on m1.small in-
stances using 800 MB of the available RAM as each
storage server’s in-memory cache. We gained an un-
derstanding of the variance present in this environment
by benchmarking SCADS’ performance both in the ab-
sence and presence of data movement, see Section 5.4.
As described in Section 2, latency variance occurs in
the upper quantiles even in the absence of data move-
ment. Therefore we maintain at least two copies of each
data item, using the replication strategy described earlier:
each get request is sent to both replicas and we count
the faster response as its latency. We do not consider the
latency of put requests, as the work described in this
paper is targeted towards OLTP-type applications similar
to those described by [18], in which read requests domi-
nate writes. Furthermore, evaluating latency for write re-
quests isn’t applicable in an eventually consistent system,
such as SCADS. More appropriate would be an SLO on
data staleness, a subject for future work.

Workload is generated by a separate set of machines,
also m1.small instances on EC2. These experiments use
sixty workload-generating instances and twenty server
instances. The control framework runs on one m1.xlarge
instance. The controller uses a 100 ms SLO threshold on
latency for get requests, and in the description of each
experiment we discuss the other two parameters of the
SLO: the percentile at which to evaluate the threshold,
and the interval over which to assess violations. Table 1
summarizes the parameter values used in the two experi-
ments. To avoid running an experiment for an entire day,
we execute it in a shorter time. We control the length of
the boot-up time in the experiment by leasing all the vir-
tual machines needed before the experiment begins and
simply adding a delay before a “new” server can be used.
This technique allows us to replay the Ebates.com work-

Parameter Hotspot Diurnal
server boot-up time 3 minutes 15 seconds
server charge interval 60 minutes 5 minutes
server capacity 800 MB 66.7 MB
size of 1 key-value 256 B 256 B
total number of keys 4.8 million 400,000
minimum # of replicas 2 2
total data size 2.2 GB 196 MB
read/write ratio 95/5 95/5

Table 1: Various experiment parameters for the hotspot
and diurnal workload experiments. We replay the diurnal
workload with a speed-up factor of 12 and thus also re-
duce the server boot-up and charge intervals and the data
size by a factor of 12.

9

172 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

re
q
u
e
s
t
ra

te
 [
re

q
/s

]

05 10 05 15 05 20 05 25 05 30

0
4
0
0
0
0

0
1
0
0
0
0

3
0
0
0
0

p
e
r−

b
in

re
q
u
e
s
t
ra

te
 [
re

q
/s

]

 bin with

max workload

all other bins

Figure 7: Workload over time in the Hotspot experiment.
Top row: aggregate request rate during the spike dou-
bled between 5:12 and 5:17. Bottom row: request rate
for each of the 200 data bins; the rate for the hot bin in-
creased to approximately 30,000 reqs/sec.

load trace [10] 12x faster: replaying twenty-four hours
of the trace in two hours. To retain the proportionality
of the other time-related parameters, we scale down by
12x the data size, server cost interval, boot up time, and
server release time. The data size is scaled down because
we can’t speed up the copy rate higher than the network
bandwidth on m1.small instances allows. Additionally,
the total data size is limited by the maximum storage on
the number of servers when the cluster is scaled down.
As SCADS keeps its data in memory, server capacity is
limited by available memory on the m1.small instance.

6.2 Hotspot

We create a synthetic spike workload based on the
statistics of a spike experienced by CNN.com after the
September 11 attacks [24]. The workload increased by
an order of magnitude in 15 minutes, which corresponds
to about 100% increase in 5 minutes. We simulate this
workload by using a flat, one-hour long period of the
Ebates.com trace [10] to which we add a workload spike
with a single hotspot. During a five minute period, the
aggregate workload volume increases linearly by a fac-
tor of two, but all the additional workload is directed at a
single key in the system. Figure 7 depicts the aggregate
workload and the per-bin workload over time. Notice
that when the spike occurs, the workload in the hot bin
greatly exceeds that in all other bins.

Our controller dynamically creates eight additional
replicas of this hot data bin to handle the spike. Figure 8
shows the performance (99th percentile latency) and the
number of servers over time. The workload spike im-
pacts performance for a brief period. However, the con-
troller quickly begins replicating the hot data bin. It first
uses the two standbys, then requests additional servers.
Performance stabilizes in less than three minutes.

It is relatively easy for our control framework to re-
act to spikes like this because only a very small fraction
of the data has to be replicated. We can thus handle a
spike with data hotspots with resources proportional to

9
9
th

 p
e
rc

e
n
ti
le

la
te

n
c
y
 [
m

s
]

0
5
0

1
0
0

1
5
0

n
u
m

b
e
r

o
f
s
e
rv

e
rs

05 10 05 20 05 30

0
5

1
0

1
5

2
0

Figure 8: Performance and resources in the Hotspot ex-
periment. Top row: 99th percentile of latency along with
the 100 ms threshold (dashed line). Bottom row: num-
ber of servers over time. The controller keeps up with
the spike for the first few minutes, then latency increases
above the threshold, but the system quickly recovers.

Interval Max percentile
5 minutes 98
1 minute 95

20 seconds 80

Table 2: The maximum percentile without SLO viola-
tions for each interval in the Hotspot experiment. No-
tice that we can support higher latency percentiles for
longer time intervals.

the magnitude of the spike, not proportional to the size
of the full dataset or the number of servers.

The performance impact when the spike first arrives
is brief, but may result in an SLO violation, depending
how the SLO is specified. The SLO is parameterized by
the latency threshold, latency percentile, and duration of
the SLO interval. Fixing the latency threshold at 100 ms,
in Table 6.2 we show how varying the interval affects the
maximum percentile under which no violations occurred.

In general, SLOs specified over a longer time interval
are easier to maintain despite drastic workload changes;
this experiment has one five-minute violation. Similarly,
an SLO with a lower percentile will have fewer violations
than a higher one. In this experiment, there are zero vi-
olations over a twenty-second window when looking at
the 80th percentile of latency, but extending the interval
to five minutes can yield the 98th percentile.

The cost tradeoff between SLO violations and leased
resources depends in part on the cost of a violation.
Whether a violation costs more than leasing enough
servers to overprovision the system to satisfy a hotspot
on any data item will be application-specific. Dynamic
scaling, however, has the advantage of not having to es-
timate the magnitude of unexpected spikes.

10

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 173

0
4
0
0
0
0

8
0
0
0
0

w
o
rk

lo
a
d
 r

a
te

 [
re

q
/s

]

n
u
m

b
e
r

o
f
s
e
rv

e
rs

0
5

1
0

1
5

fixed 70% utilization

fixed 100% utilization

ideal

0 20 40 60 80 100 120

0
5

10
15

simulated time [min

nu
m

be
r o

f s
er

ve
rs

elastic 0.3
elastic 0.1
ideal

Figure 9: Top: Diurnal workload pattern. Middle: num-
ber of servers assuming the ideal server allocation and
two fixed allocations during the diurnal workload exper-
iment. Bottom: ideal server allocation and two elastic
allocations using our control framework.

6.3 Ebates.com diurnal workload trace

The diurnal workload profile is derived from a trace from
Ebates.com [10]; we use the trace’s aggregate workload
pattern; data accesses follow a constant zipfian distribu-
tion. This profile shows the control framework’s effec-
tiveness in scaling both up and down as the workload
volume on all data items fluctuates. We replay twenty-
four hours of the trace in two hours, a 12x speedup.

We experiment using two overprovisioning parameters
(see Section 5.5 on workload smoothing). With 0.3 over-
provisioning, the smoothed workload is multiplied by a
factor of 1.3. With more headroom, the system can better
absorb small spikes in the workload. Using 0.1 overpro-
visioning has less headroom, thus higher savings at the
cost of worse performance.

We compare the results of our experiments with the
ideal resource allocation and two fixed allocation calcu-
lations. In the ideal allocation, we assume that we know
the workload at each time step throughout the experiment
and compute the minimum number of servers we would
need to support this workload for each 5-minute interval
(the scaled-down server cost interval). The ideal alloca-

tion assumes that moving data is instantaneous and has
no effect on performance, and provides the lower bound
on the number of compute resources required to handle
this workload without SLO violations.

The fixed-100% and fixed-70% allocations use a con-
stant number of servers throughout the experiment.
Fixed-100% assumes the workload’s peak value is
known a priori, and computes the number of servers
based on that value and the maximum throughput of
each server (7000 requests per second, see Section 5.4).
The number of servers used in the fixed-100% alloca-
tion equals the maximum number of servers used by the
ideal allocation. Fixed-70% is calculated similarly to the
fixed-100%, but restricts the servers’ utilization to 70%
of their potential throughput (i.e., 7, 000 ∗ 0.7 = 4, 900
requests per second). Fixed-100% is the ideal fixed al-
location, but in practice datacenter operators often add
more headroom to absorb unexpected spikes.

Figure 9 shows the workload profile and the number
of server units used by the different allocation policies:
ideal, fixed-100%, fixed-70%, and our elastic policy with
overprovisioning of 0.3 and 0.1. A server unit corre-
sponds to one server being used for one charge interval,
thus fewer server units used translates to monetary cost
savings. The policy with 0.1 overprovisioning achieves
savings of 16% and 41% compared to the fixed-100%
and fixed-70% allocations, respectively.

The ideal resource allocation uses 175 servers units,
while using overprovisioning of 0.1 uses 241 server
units. However, recall that our controller maintains
two empty standby servers to quickly respond to data
hotspots that require replication. The actual number of
server units used for serving data is thus 191 which is
within 10% of the ideal allocation3.

Performance and SLO violations are summarized in
Figure 10. Note that it is more difficult to maintain SLOs
with shorter time intervals and higher percentiles.

7 Discussion
The experiments demonstrate the control framework’s
effectiveness in scaling both up and down for typical
workload profiles that exhibit fluctuating workload pat-
terns. Having the same mechanism work well in sce-
narios with rapidly appearing hotspots as well as more
gradual variations is advantageous because application
developers won’t need to decide a priori what type of
growth to prepare for: the same control framework can
dynamically scale as needed in either case. For operators
who still prefer to maintain a fixed allocation for non-
spike, peak traffic, say on their own hardware, there is
still potential to utilize the control framework for surge
computing in the cloud. A temporary spike could be sat-

3The experiment has a total of 25 5-minute server-charging intervals
which yields 50 server units used by the standbys.

11

174 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

overprovisioning = 0.1

SLO percen ile

nu
m

be
r o

f v
io

la
tio

ns
0

5
10

15

99 9 99 5 99 98 95 90 80 50

●●●

●

●

●

●

●

● 20−second SLO in erval
1−minu e SLO in erval
5−minu e SLO in erval

Interval Max percentile
0.3 overprovision 0.1 overprovision

5 minutes 99.5 99
1 minute 99 95

20 seconds 95 90

Figure 10: Top: Number of SLO violations during the
0.1 overprovisioning diurnal experiment, for different
values of the SLO percentile. The three lines in the graph
correspond to the three intervals over which to evaluate
the SLO: 5 minutes, 1 minute, and 20 seconds. Bottom:
summary of SLO violations and maximum latency per-
centile supported with no SLO violations during the di-
urnal workload with two different overprovisioning pa-
rameters.

isfied with leased resources from the cloud, which would
be relinquished once the spike subsides.

There are cost implications in setting some of the con-
trol framework’s parameters to manage “extra capacity,”
namely the number of standbys and the overprovision-
ing factor. Both these techniques result in higher server
costs, either due to maintaining booted empty servers for
standbys or underutilization of active servers in the case
of overprovisioning. Standby servers are particularly
helpful for dealing with workload spikes which neces-
sitate replication, as empty servers are waiting and ready
to receive data. Overprovisioning is better for workload
profiles like a diurnal pattern in which all data items more
slowly experience increased access rates; this headroom
allows the control framework more time to shuffle data
around without overloading the servers. Reducing the
number of standbys and/or the overprovisioning factor
can yield cost savings, with the associated risk of SLO
violations if scaling up is not performed rapidly enough.

We presented results of our controller using replica-
tion to both smooth variance and lessen the effects of data
movement. To see that the controller remains robust to
the variance in the environment without replication, we
performed the same two experiments using only a single
copy of each data item. While SCADS still scales effec-

tively, the variance limits the attainable SLO percentile.
For example, in the hotspot workload, the 5-minute, 1-
minute, and 20-second attainable percentiles were 95,
80, and 80, respectively, compared to 98, 95, and 80
when using replication. The replication factor thus of-
fers a tradeoff between performance/robustness and the
cost of running the system. Note, however, that a differ-
ent environment than EC2, like dedicated hardware, may
have less variance and thus may achieve the desired SLO
without replication.

The ability to control these performance tradeoffs is an
advantage of running the SCADS key-value store on EC2
rather than simply using S3 for data storage. In general,
S3 is optimized for larger files and has nontrivial over-
head per HTTP request. S3 also does not offer a SLO
on latency, while SCADS offers a developer-specified
SLO. Data replication factor and data location are not
tunable with S3, which would make maintaining a par-
ticular SLO difficult. More fundamentally, S3 does not
provide the API that SCADS on EC2 does. SCADS sup-
ports features like TestAndSet() and various meth-
ods on ranges of keys; this enables a higher level query
language on top. Additionally, the SCADS client library
supports read/write quorums for trading off performance
and consistency, this would also be meaningless without
being able to control the replication factor.

8 Future Work
Future work includes incorporating resource heterogene-
ity in the control framework, as well as designing a
framework simulator for performing what-if analysis.
Cloud providers typically offer a variety of resources at
different cost, e.g., paying more per hour for a server
with more CPU or disk capacity. By modeling perfor-
mance of different server types, we could include in the
control framework decisions about which type of server
to use. Additionally, we hope to use the performance
models in a control framework simulator that emulates
the behavior of real servers. The simulator could be used
for assessing the performance-cost tradeoff for unseen
workloads; developers could create synthetic workloads
using the features described in [11].

9 Conclusion
The elasticity of the cloud provides an opportunity for
dynamic resource allocation, scaling up when workload
increases and scaling down to save money. To date,
this opportunity has been exploited primarily by stateless
services, in which simply adding and removing servers
is sufficient to track workload variation. Our goal was
to design a control framework that could automatically
scale a stateful key-value store in the cloud while com-
plying with a stringent performance SLO in which a very
high percentile of requests (typically 99%) must meet a

12

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 175

specific latency bound. As described in Section 2, meet-
ing such a stringent SLO is challenging both because of
high variance in the tail of the request latency distribu-
tion and because of the need to copy data in addition to
adding and removing servers. Our solution avoids trying
to control for such a noisy latency signal, instead using
a model-based approach that maps workload to latency.
This model, combined with fine-grained workload statis-
tics, allows the framework to move only necessary data
to alleviate performance issues while keeping the amount
of leased resources needed to satisfy the current work-
load. In the event of an unexpected hotspot, replicas are
added proportional to the magnitude of the spike, not the
total number of servers. For workload that exhibits a di-
urnal pattern, the framework easily scales both up and
down as the workload fluctuates. In the midst of this dy-
namic scaling, we use replication to mask both inherent
environmental noise and the performance perturbations
introduced by data movement. We anticipate that this
work provides a useful starting point for allowing large-
scale storage systems to take advantage of the elasticity
of cloud computing.

10 Acknowledgements
We would like to thank our fellow students and faculty in
the RAD lab for their ongoing thoughtful advice through-
out this project. We additionally thank Kim Keeton, Tim
Kraska, Ari Rabkin, Eno Thereska, and John Wilkes for
their feedback on this paper.

This research is supported in part by a National Sci-
ence Foundation graduate fellowship, and gifts from Sun
Microsystems, Google, Microsoft, Amazon Web Ser-
vices, Cisco Systems, Cloudera, eBay, Facebook, Fu-
jitsu, Hewlett-Packard, Intel, Network Appliance, SAP,
VMWare and Yahoo! and by matching funds from the
State of California’s MICRO program (grants 06-152,
07-010, 06-148, 07-012, 06-146, 07-009, 06-147, 07-
013, 06-149, 06-150, and 07-008), the National Science
Foundation (grant #CNS-0509559), and the University
of California Industry/University Cooperative Research
Program (UC Discovery) grant COM07-10240.

References
[1] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A.

Kozuch, and K. Schwan. Robust and Flexible
Power-Proportional Storage. In SoCC: ACM Sym-
posium on Cloud Computing, 2010.

[2] E. Anderson, M. Hobbs, K. Keeton, S. Spence,
M. Uysal, and A. Veitch. Hippodrome: Run-
ning Circles Around Storage Administration. In
FAST: Conference on File and Storage Technolo-
gies, 2002.

[3] Apache. Cassandra. incuba-
tor.apache.org/cassandra, 2010.

[4] Apache. HBase. hadoop.apache.org/hbase, 2010.

[5] M. Arlitt and T. Jin. Workload Characterization of
the 1998 World Cup Web Site. Technical Report
HPL-1999-35R1, HP Labs, 1999.

[6] M. Armbrust, A. Fox, D. Patterson, N. Lanham,
H. Oh, B. Trushkowsky, and J. Trutna. SCADS:
Scale-independent Storage for Social Computing
Applications. In Conference on Innovative Data
Systems Research (CIDR), 2009.

[7] K. J. Åström. Introduction to Stochastic Control
Theory. Academic Press, 1970.

[8] H. Balakrishnan, M. F. Kaashoek, D. Karger,
R. Morris, and I. Stoica. Looking Up Data in
P2P Systems. Communications of the ACM, 46(2),
February 2003.

[9] P. Barford and M. Crovella. Generating Repre-
sentative Web Workloads for Network and Server
Performance Evaluation. In Proceedings of the
ACM SIGMETRICS Joint International Confer-
ence, 1998.

[10] P. Bodı́k et al. Combining Visualization and Statis-
tical Analysis to Improve Operator Confidence and
Efficiency for Failure Detection and Localization.
In International Conference on Autonomic Com-
puting (ICAC), 2005.

[11] P. Bodı́k, A. Fox, M. J. Franklin, M. I. Jordan,
and D. Patterson. Characterizing, Modeling, and
Generating Workload Spikes for Stateful Services.
In SoCC: ACM Symposium on Cloud Computing,
2010.

[12] P. Bodı́k, R. Griffith, C. Sutton, A. Fox, M. I. Jor-
dan, and D. A. Patterson. Automatic Exploration
of Datacenter Performance Regimes. In Proceed-
ings of the 1st Workshop on Automated Control for
Datacenters and Clouds, 2009.

[13] P. Bodı́k, R. Griffith, C. Sutton, A. Fox, M. I.
Jordan, and D. A. Patterson. Statistical Machine
Learning Makes Automatic Control Practical for
Internet Datacenters. In Workshop on Hot Topics
in Cloud Computing (HotCloud), 2009.

[14] F. Chang et al. Bigtable: A Distributed Storage
System for Structured Data. In OSDI: Symposium
on Operating Systems Design and Implementation,
2006.

13

176 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

[15] J. Chase, D. C. Anderson, P. N. Thakar, A. M. Vah-
dat, and R. P. Doyle. Managing Energy and Server
Resources in Hosting Centers. In Symposium on
Operating Systems Principles (SOSP), 2001.

[16] J. Chen, G. Soundararajan, and C. Amza. Auto-
nomic Provisioning of Backend Databases in Dy-
namic Content Web Servers. In International Con-
ference on Autonomic Computing (ICAC), 2006.

[17] B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H.-A. Jacobsen,
N. Puz, D. Weaver, and R. Yerneni. PNUTS: Ya-
hoo!’s Hosted Data Serving Platform. In Proceed-
ings of the International Conference on Very Large
Databases (VLDB), 2008.

[18] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakr-
ishnan, and R. Sears. Benchmarking cloud serving
systems with YCSB. In SoCC: ACM Symposium
on Cloud Computing, 2010.

[19] J. Dean. Evolution and Future Directions of Large-
scale Storage and Computation Systems at Google.
In SoCC: ACM Symposium on Cloud Computing,
2010.

[20] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s
Highly Available Key-value Store. In Symposium
on Operating Systems Principles (SOSP), 2007.

[21] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google File System. In Symposium on Operating
Systems Principles (SOSP), 2003.

[22] J. L. Hellerstein, V. Morrison, and E. Eile-
brecht. Optimizing Concurrency Levels in the
.NET ThreadPool: A Case Study of Controller De-
sign and Implementation. In Workshop on Feed-
back Control Implementation and Design in Com-
puting Systems and Networks, 2008.

[23] D. Kusic et al. Power and Performance Manage-
ment of Virtualized Computing Environments Via
Lookahead Control. In International Conference
on Autonomic Computing (ICAC), 2008.

[24] W. LeFebvre. CNN.com: Facing a world crisis.
www.tcsa.org/lisa2001/cnn.txt, 2001.

[25] H. C. Lim, S. Babu, and J. S. Chase. Automated
Control for Elastic Storage. In International Con-
ference on Autonomic Computing (ICAC), 2010.

[26] X. Liu, J. Heo, L. Sha, and X. Zhu. Adaptive
Control of Multi-Tiered Web Applications Using

Queueing Predictor. Network Operations and Man-
agement Symposium, April 2006.

[27] C. Lu, G. A. Alvarez, and J. Wilkes. Aqueduct: On-
line Data Migration with Performance Guarantees.
In FAST: Conference on File and Storage Technolo-
gies, 2002.

[28] D. Narayanan, A. Donnelly, E. Thereska, S. El-
nikety, and A. I. T. Rowstron. Everest: Scaling
Down Peak Loads Through I/O Off-Loading. In
OSDI: Symposium on Operating Systems Design
and Implementation, 2008.

[29] A. Rabkin and R. H. Katz. Chukwa: A System
for Reliable Large-scale Log Collection. Master’s
thesis, EECS Department, University of California,
Berkeley, Mar 2010.

[30] J. A. Rossiter. Model Based Predictive Control: A
Practical Approach. CRC Press, 2003.

[31] J. Rothschild. High Performance at Mas-
sive Scale - Lessons Learned at Facebook.
http://cns.ucsd.edu/lecturearchive09.shtml#Roth,
October 2009.

[32] G. Soundararajan, C. Amza, and A. Goel. Database
Replication Policies for Dynamic Content Applica-
tions. In EuroSys: ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems, 2006.

[33] J. D. Strunk, E. Thereska, C. Faloutsos, and G. R.
Ganger. Using Utility to Provision Storage Sys-
tems. In FAST: Conference on File and Storage
Technologies, 2008.

[34] G. Tesauro, N. Jong, R. Das, and M. Bennani. A
Hybrid Reinforcement Learning Aproach to Auto-
nomic Resource Allocation. In International Con-
ference on Autonomic Computing (ICAC), 2006.

[35] E. Thereska, A. Donnelly, and D. Narayanan.
Sierra: A Power-Proportional, Distributed storage
System. Technical Report MSR-TR-2009-153, Mi-
crosoft, 2009.

[36] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal.
Dynamic Provisioning of Multi-tier Internet Appli-
cations. In International Conference on Autonomic
Computing (ICAC), 2005.

[37] V. V. Vazirani. Approximation Algorithms.
Springer, 2003.

[38] L. Yin, S. Uttamchandani, M. Korupolu, K. Voru-
ganti, and R. Katz. SMART: An Integrated Multi-
Action Advisor for Storage Systems. In USENIX
Annual Technical Conference, 2006.

14

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 177

Scale and Concurrency of GIGA+:
File System Directories with Millions of Files

Swapnil Patil and Garth Gibson
Carnegie Mellon University

{firstname.lastname @ cs.cmu.edu}

Abstract – We examine the problem of scalable file system
directories, motivated by data-intensive applications requiring
millions to billions of small files to be ingested in a single di-
rectory at rates of hundreds of thousands of file creates every
second. We introduce a POSIX-compliant scalable directory
design, GIGA+, that distributes directory entries over a cluster
of server nodes. For scalability, each server makes only local, in-
dependent decisions about migration for load balancing. GIGA+
uses two internal implementation tenets, asynchrony and even-
tual consistency, to: (1) partition an index among all servers
without synchronization or serialization, and (2) gracefully tol-
erate stale index state at the clients. Applications, however, are
provided traditional strong synchronous consistency semantics.
We have built and demonstrated that the GIGA+ approach scales
better than existing distributed directory implementations, deliv-
ers a sustained throughput of more than 98,000 file creates per
second on a 32-server cluster, and balances load more efficiently
than consistent hashing.

1 Introduction
Modern file systems deliver scalable performance for large
files, but not for large numbers of files [18, 67]. In par-
ticular, they lack scalable support for ingesting millions
to billions of small files in a single directory - a growing
use case for data-intensive applications [18, 44, 50]. We
present a file system directory service, GIGA+, that uses
highly concurrent and decentralized hash-based indexing,
and that scales to store at least millions of files in a sin-
gle POSIX-compliant directory and sustain hundreds of
thousands of creates insertions per second.

The key feature of the GIGA+ approach is to enable
higher concurrency for index mutations (particularly cre-
ates) by eliminating system-wide serialization and syn-
chronization. GIGA+ realizes this principle by aggres-
sively distributing large, mutating directories over a clus-
ter of server nodes, by disabling directory entry caching
in clients, and by allowing each node to migrate, without
notification or synchronization, portions of the directory
for load balancing. Like traditional hash-based distributed
indices [17, 36, 52], GIGA+ incrementally hashes a direc-
tory into a growing number of partitions. However, GIGA+
tries harder to eliminate synchronization and prohibits mi-

gration if load balancing is unlikely to be improved.
Clients do not cache directory entries; they cache only

the directory index. This cached index can have stale point-
ers to servers that no longer manage specific ranges in the
space of the hashed directory entries (filenames). Clients
using stale index values to target an incorrect server have
their cached index corrected by the incorrectly targeted
server. Stale client indices are aggressively improved by
transmitting the history of splits of all partitions known
to a server. Even the addition of new servers is supported
with minimal migration of directory entries and delayed
notification to clients. In addition, because 99.99% of the
directories have less than 8,000 entries [4, 14], GIGA+
represents small directories in one partition so most direc-
tories will be essentially like traditional directories.

Since modern cluster file systems have support for data
striping and failure recovery, our goal is not to compete
with all feature of these systems, but to offer additional
technology to support high rates of mutation of many
small files.1 We have built a skeleton cluster file system
with GIGA+ directories that layers on existing lower layer
file systems using FUSE [19]. Unlike the current trend of
using special purpose storage systems with custom inter-
faces and semantics [6, 20, 54], GIGA+ directories use the
traditional UNIX VFS interface and provide POSIX-like
semantics to support unmodified applications.

Our evaluation demonstrates that GIGA+ directories
scale linearly on a cluster of 32 servers and deliver a
throughput of more than 98,000 file creates per second
– outscaling the Ceph file system [63] and the HBase
distributed key-value store [26], and exceeding peta-
scale scalability requirements [44]. GIGA+ indexing also
achieves effective load balancing with one to two orders
of magnitude less re-partitioning than if it was based on
consistent hashing [30, 58].

In the rest of the paper, we present the motivating use
cases and related work in Section 2, the GIGA+ indexing
design and implementation in Sections 3-4, the evaluation
results in Section 5, and conclusion in Section 6.

1OrangeFS is currently integrating a GIGA+ based distributed direc-
tory implementation into a system based on PVFS [2, 45].

1

178 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

2 Motivation and Background
Over the last two decades, research in large file systems
was driven by application workloads that emphasized ac-
cess to very large files. Most cluster file systems provide
scalable file I/O bandwidth by enabling parallel access
using techniques such as data striping [20, 21, 25], object-
based architectures [21, 39, 63, 66] and distributed locking
[52, 60, 63]. Few file systems scale metadata performance
by using a coarse-grained distribution of metadata over
multiple servers [16, 46, 52, 63]. But most file systems
cannot scale access to a large number of files, much less ef-
ficiently support concurrent creation of millions to billions
of files in a single directory. This section summarizes the
technology trends calling for scalable directories and how
current file systems are ill-suited to satisfy this call.

2.1 Motivation
In today’s supercomputers, the most important I/O work-
load is checkpoint-restart, where many parallel applica-
tions running on, for instance, ORNL’s CrayXT5 cluster
(with 18,688 nodes of twelve processors each) periodically
write application state into a file per process, all stored in
one directory [7, 61]. Applications that do this per-process
checkpointing are sensitive to long file creation delays be-
cause of the generally slow file creation rate, especially
in one directory, in today’s file systems [7]. Today’s re-
quirement for 40,000 file creates per second in a single
directory [44] will become much bigger in the impending
Exascale-era, when applications may run on clusters with
up to billions of CPU cores [31].

Supercomputing checkpoint-restart, although important,
might not be a sufficient reason for overhauling the cur-
rent file system directory implementations. Yet there are
diverse applications, such as gene sequencing, image pro-
cessing [62], phone logs for accounting and billing, and
photo storage [6], that essentially want to store an un-
bounded number of files that are logically part of one
directory. Although these applications are often using
the file system as a fast, lightweight “key-value store”,
replacing the underlying file system with a database is
an oft-rejected option because it is undesirable to port
existing code to use a new API (like SQL) and because tra-
ditional databases do not provide the scalability of cluster
file systems running on thousands of nodes [3, 5, 53, 59].

Authors of applications seeking lightweight stores for
lots of small data can either rewrite applications to avoid
large directories or rely on underlying file systems to im-
prove support for large directories. Numerous applica-
tions, including browsers and web caches, use the for-
mer approach where the application manages a large
logical directory by creating many small, intermediate
sub-directories with files hashed into one of these sub-
directories. This paper chose the latter approach because
users prefer this solution. Separating large directory man-

agement from applications has two advantages. First,
developers do not need to re-implement large directory
management for every application (and can avoid writing
and debugging complex code). Second, an application-
agnostic large directory subsystem can make more in-
formed decisions about dynamic aspects of a large direc-
tory implementation, such as load-adaptive partitioning
and growth rate specific migration scheduling.

Unfortunately most file system directories do not cur-
rently provide the desired scalability: popular local file
systems are still being designed to handle little more than
tens of thousands of files in each directory [43, 57, 68]
and even distributed file systems that run on the largest
clusters, including HDFS [54], GoogleFS [20], PanFS
[66] and PVFS [46], are limited by the speed of the single
metadata server that manages an entire directory. In fact,
because GoogleFS scaled up to only about 50 million files,
the next version, ColossusFS, will use BigTable [12] to
provide a distributed file system metadata service [18].

Although there are file systems that distribute the direc-
tory tree over different servers, such as Farsite [16] and
PVFS [46], to our knowledge, only three file systems now
(or soon will) distribute single large directories: IBM’s
GPFS [52], Oracle’s Lustre [38], and UCSC’s Ceph [63].
2.2 Related work
GIGA+ has been influenced by the scalability and concur-
rency limitations of several distributed indices and their
implementations.

GPFS: GPFS is a shared-disk file system that uses a
distributed implementation of Fagin’s extendible hashing
for its directories [17, 52]. Fagin’s extendible hashing
dynamically doubles the size of the hash-table pointing
pairs of links to the original bucket and expanding only
the overflowing bucket (by restricting implementations to
a specific family of hash functions) [17]. It has a two-level
hierarchy: buckets (to store the directory entries) and a
table of pointers (to the buckets). GPFS represents each
bucket as a disk block and the pointer table as the block
pointers in the directory’s i-node. When the directory
grows in size, GPFS allocates new blocks, moves some of
the directory entries from the overflowing block into the
new block and updates the block pointers in the i-node.

GPFS employs its client cache consistency and dis-
tributed locking mechanism to enable concurrent access to
a shared directory [52]. Concurrent readers can cache the
directory blocks using shared reader locks, which enables
high performance for read-intensive workloads. Concur-
rent writers, however, need to acquire write locks from the
lock manager before updating the directory blocks stored
on the shared disk storage. When releasing (or acquir-
ing) locks, GPFS versions before 3.2.1 force the directory
block to be flushed to disk (or read back from disk) induc-
ing high I/O overhead. Newer releases of GPFS have mod-
ified the cache consistency protocol to send the directory

2

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 179

insert requests directly to the current lock holder, instead
of getting the block through the shared disk subsystem
[1, 22, 27]. Still GPFS continues to synchronously write
the directory’s i-node (i.e., the mapping state) invalidating
client caches to provide strong consistency guarantees [1].
In contrast, GIGA+ allows the mapping state to be stale
at the client and never be shared between servers, thus
seeking even more scalability.

Lustre and Ceph: Lustre’s proposed clustered metadata
service splits a directory using a hash of the directory en-
tries only once over all available metadata servers when it
exceeds a threshold size [37, 38]. The effectiveness of this
"split once and for all" scheme depends on the eventual
directory size and does not respond to dynamic increases
in the number of servers. Ceph is another object-based
cluster file system that uses dynamic sub-tree partitioning
of the namespace and hashes individual directories when
they get too big or experience too many accesses [63, 64].
Compared to Lustre and Ceph, GIGA+ splits a directory
incrementally as a function of size, i.e., a small directory
may be distributed over fewer servers than a larger one.
Furthermore, GIGA+ facilitates dynamic server addition
achieving balanced server load with minimal migration.

Linear hashing and LH*: Linear hashing grows a hash
table by splitting its hash buckets in a linear order using a
pointer to the next bucket to split [34]. Its distributed vari-
ant, called LH* [35], stores buckets on multiple servers
and uses a central split coordinator that advances permis-
sion to split a partition to the next server. An attractive
property of LH* is that it does not update a client’s map-
ping state synchronously after every new split.

GIGA+ differs from LH* in several ways. To main-
tain consistency of the split pointer (at the coordinator),
LH* splits only one bucket at a time [35, 36]; GIGA+
allows any server to split a bucket at any time without any
coordination. LH* offers a complex partition pre-split op-
timization for higher concurrency [36], but it causes LH*
clients to continuously incur some addressing errors even
after the index stops growing; GIGA+ chose to minimize
(and stop) addressing errors at the cost of more client state.

Consistent hashing: Consistent hashing divides the hash-
space into randomly sized ranges distributed over server
nodes [30, 58]. Consistent hashing is efficient at managing
membership changes because server changes split or join
hash-ranges of adjacent servers only, making it popular for
wide-area peer-to-peer storage systems that have high rates
of membership churn [13, 42, 48, 51]. Cluster systems,
even though they have much lower churn than Internet-
wide systems, have also used consistent hashing for data
partitioning [15, 32], but have faced interesting challenges.

As observed in Amazon’s Dynamo, consistent hashing’s
data distribution has a high load variance, even after using
“virtual servers” to map multiple randomly sized hash-
ranges to each node [15]. GIGA+ uses threshold-based

binary splitting that provides better load distribution even
for small clusters. Furthermore, consistent hashing sys-
tems assume that every data-set needs to be distributed
over many nodes to begin with, i.e., they do not have sup-
port for incrementally growing data-sets that are mostly
small – an important property of file system directories.

Other work: DDS [24] and Boxwood [40] also used
scalable data-structures for storage infrastructure. While
both GIGA+ and DDS use hash tables, GIGA+’s focus is
on directories, unlike DDS’s general cluster abstractions,
with an emphasis on indexing that uses inconsistency at
the clients; a non-goal for DDS [24]. Boxwood proposed
primitives to simplify storage system development, and
used B-link trees for storage layouts [40].

3 GIGA+ Indexing Design
3.1 Assumptions
GIGA+ is intended to be integrated into a modern cluster
file system like PVFS, PanFS, GoogleFS, HDFS etc. All
these scalable file systems have good fault tolerance usu-
ally including a consensus protocol for node membership
and global configuration [9, 29, 65]. GIGA+ is not de-
signed to replace membership or fault tolerance; it avoids
this where possible and employs them where needed.

GIGA+ design is also guided by several assumptions
about its use cases. First, most file system directories
start small and remain small; studies of large file sys-
tems have found that 99.99% of the directories contain
fewer than 8,000 files [4, 14]. Since only a few directories
grow to really large sizes, GIGA+ is designed for incre-
mental growth, that is, an empty or a small directory is
initially stored on one server and is partitioned over an
increasing number of servers as it grows in size. Perhaps
most beneficially, incremental growth in GIGA+ handles
adding servers gracefully. This allows GIGA+ to avoid
degrading small directory performance; striping small di-
rectories across multiple servers will lead to inefficient
resource utilization, particularly for directory scans (us-
ing readdir()) that will incur disk-seek latency on all
servers only to read tiny partitions.

Second, because GIGA+ is targeting concurrently shared
directories with up to billions of files, caching such direc-
tories at each client is impractical: the directories are too
large and the rate of change too high. GIGA+ clients do
not cache directories and send all directory operations to
a server. Directory caching only for small rarely changing
directories is an obvious extension employed, for example,
by PanFS [66], that we have not yet implemented.

Finally, our goal in this research is to complement ex-
isting cluster file systems and support unmodified appli-
cations. So GIGA+ directories provide the strong consis-
tency for directory entries and files that most POSIX-like
file systems provide, i.e., once a client creates a file in a
directory all other clients can access the file. This strong

3

180 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Figure 1 – Concurrent and unsynchronized data partitioning in GIGA+. The hash-space (0,1] is divided into multiple partitions
(Pi) that are distributed over many servers (different shades of gray). Each server has a local, partial view of the entire index and can
independently split its partitions without global co-ordination. In addition to enabling highly concurrent growth, an index starts small
(on one server) and scales out incrementally.

consistency API differentiates GIGA+ from “relaxed” con-
sistency provided by newer storage systems including
NoSQL systems like Cassandra [32] and Dynamo [15].

3.2 Unsynchronized data partitioning

GIGA+ uses hash-based indexing to incrementally divide
each directory into multiple partitions that are distributed
over multiple servers. Each filename (contained in a direc-
tory entry) is hashed and then mapped to a partition using
an index. Our implementation uses the cryptographic
MD5 hash function but is not specific to it. GIGA+ relies
only on one property of the selected hash function: for
any distribution of unique filenames, the hash values of
these filenames must be uniformly distributed in the hash
space [49]. This is the core mechanism that GIGA+ uses
for load balancing.

Figure 1 shows how GIGA+ indexing grows incremen-
tally. In this example, a directory is to be spread over three
servers {S0,S1,S2} in three shades of gray color. P(x,y]

i
denotes the hash-space range (x,y] held by a partition with
the unique identifier i.2 GIGA+ uses the identifier i to map
Pi to an appropriate server Si using a round-robin mapping,
i.e., server Si is i modulo num_servers. The color of each
partition indicates the (color of the) server it resides on.
Initially, at time T0, the directory is small and stored on a
single partition P(0,1]

0 on server S0. As the directory grows
and the partition size exceeds a threshold number of direc-
tory entries, provided this server knows of an underutilized
server, S0 splits P(0,1]

0 into two by moving the greater half
of its hash-space range to a new partition P(0.5,1]

1 on S1. As
the directory expands, servers continue to split partitions
onto more servers until all have about the same fraction
of the hash-space to manage (analyzed in Section 5.2 and

2For simplicity, we disallow the hash value zero from being used.

5.3). GIGA+ computes a split’s target partition identifier
using well-known radix-based techniques.3

The key goal for GIGA+ is for each server to split inde-
pendently, without system-wide serialization or synchro-
nization. Accordingly, servers make local decisions to
split a partition. The side-effect of uncoordinated growth
is that GIGA+ servers do not have a global view of the
partition-to-server mapping on any one server; each server
only has a partial view of the entire index (the mapping
tables in Figure 1). Other than the partitions that a server
manages, a server knows only the identity of the server
that knows more about each “child” partition resulting
from a prior split by this server. In Figure 1, at time T3,
server S1 manages partition P1 at tree depth r = 3, and
knows that it previously split P1 to create children parti-
tions, P3 and P5, on servers S0 and S2 respectively. Servers
are mostly unaware about partition splits that happen on
other servers (and did not target them); for instance, at
time T3, server S0 is unaware of partition P5 and server S1
is unaware of partition P2.

Specifically, each server knows only the split history
of its partitions. The full GIGA+ index is a complete
history of the directory partitioning, which is the transitive
closure over the local mappings on each server. This full
index is also not maintained synchronously by any client.
GIGA+ clients can enumerate the partitions of a directory
by traversing its split histories starting with the zeroth
partition P0. However, such a full index constructed and

3GIGA+ calculates the identifier of partition i using the depth of the
tree, r, which is derived from the number of splits of the zeroth partition
P0. Specifically, if a partition has an identifier i and is at tree depth r,
then in the next split Pi will move half of its filenames, from the larger
half of its hash-range, to a new partition with identifier i + 2r . After
a split completes, both partitions will be at depth r + 1 in the tree. In
Figure 1, for example, partition P(0.5,0.75]

1 , with identifier i = 1, is at tree
depth r = 2. A split causes P1 to move the larger half of its hash-space
(0.625,0.75] to the newly created partition P5, and both partitions are
then at tree depth of r = 3.

4

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 181

cached by a client may be stale at any time, particularly
for rapidly mutating directories.

3.3 Tolerating inconsistent mapping at clients
Clients seeking a specific filename find the appropriate
partition by probing servers, possibly incorrectly, based
on their cached index. To construct this index, a client
must have resolved the directory’s parent directory entry
which contains a cluster-wide i-node identifying the server
and partition for the zeroth partition P0. Partition P0 may
be the appropriate partition for the sought filename, or it
may not because of a previous partition split that the client
has not yet learned about. An “incorrectly” addressed
server detects the addressing error by recomputing the
partition identifier by re-hashing the filename. If this
hashed filename does not belong in the partition it has,
this server sends a split history update to the client. The
client updates its cached version of the global index and
retries the original request.

The drawback of allowing inconsistent indices is that
clients may need additional probes before addressing re-
quests to the correct server. The required number of in-
correct probes depends on the client request rate and the
directory mutation rate (rate of splitting partitions). It is
conceivable that a client with an empty index may send
O(log(Np)) incorrect probes, where Np is the number of
partitions, but GIGA+’s split history updates makes this
many incorrect probes unlikely (described in Section 5.4).
Each update sends the split histories of all partitions that
reside on a given server, filling all gaps in the client index
known to this server and causing client indices to catch up
quickly. Moreover, after a directory stops splitting parti-
tions, clients soon after will no longer incur any addressing
errors. GIGA+’s eventual consistency for cached indices
is different from LH*’s eventual consistency because the
latter’s idea of independent splitting (called pre-splitting
in their paper) suffers addressing errors even when the
index stops mutating [36].

3.4 Handling server additions
This section describes how GIGA+ adapts to the addition
of servers in a running directory service.4

When new servers are added to an existing configuration,
the system is immediately no longer load balanced, and it
should re-balance itself by migrating a minimal number of
directory entries from all existing servers equally. Using
the round-robin partition-to-server mapping, shown in
Figure 1, a naive server addition scheme would require
re-mapping almost all directory entries whenever a new
server is added.

GIGA+ avoids re-mapping all directory entries on ad-
dition of servers by differentiating the partition-to-server

4Server removal (i.e., decommissioned, not failed and later replaced)
is not as important for high performance systems so we leave it to be
done by user-level data copy tools.

Figure 2 – Server additions in GIGA+. To minimize the
amount of data migrated, indicated by the arrows that show
splits, GIGA+ changes the partition-to-server mapping from
round-robin on the original server set to sequential on the newly
added servers.

mapping for initial directory growth from the mapping for
additional servers. For additional servers, GIGA+ does
not use the round-robin partition-to-server map (shown
in Figure 1) and instead maps all future partitions to the
new servers in a “sequential manner”. The benefit of
round-robin mapping is faster exploitation of parallelism
when a directory is small and growing, while a sequen-
tial mapping for the tail set of partitions does not disturb
previously mapped partitions more than is mandatory for
load balancing.

Figure 2 shows an example where the original configu-
ration has 5 servers with 3 partitions each, and partitions
P0 to P14 use a round-robin rule (for Pi, server is i mod
N, where N is number of servers). After the addition of
two servers, the six new partitions P15-P20 will be mapped
to servers using the new mapping rule: i div M, where
M is the number of partitions per server (e.g., 3 parti-
tions/server).

In GIGA+ even the number of servers can be stale at
servers and clients. The arrival of a new server and its
order in the global server list is declared by the cluster
file system’s configuration management protocol, such as
Zookeeper for HDFS [29], leading to each existing server
eventually noticing the new server. Once it knows about
new servers, an existing server can inspect its partitions
for those that have sufficient directory entries to warrant
splitting and would split to a newly added server. The
normal GIGA+ splitting mechanism kicks in to migrate
only directory entries that belong on the new servers. The
order in which an existing server inspects partitions can
be entirely driven by client references to partitions, bias-
ing migration in favor of active directories. Or based on
an administrator control, it can also be driven by a back-
ground traversal of a list of partitions whose size exceeds
the splitting threshold.

5

182 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

4 GIGA+ Implementation
GIGA+ indexing mechanism is primarily concerned with
distributing the contents and work of large file system
directories over many servers, and client interactions with
these servers. It is not about the representation of directory
entries on disk, and follows the convention of reusing
mature local file systems like ext3 or ReiserFS (in Linux)
for disk management found as is done by many modern
cluster file systems [39, 46, 54, 63, 66].

The most natural implementation strategy for GIGA+
is as an extension of the directory functions of a cluster
file system. GIGA+ is not about striping the data of huge
files, server failure detection and failover mechanism, or
RAID/replication of data for disk fault tolerance. These
functions are present and, for GIGA+ purposes, adequate
in most cluster file systems. Authors of a new version of
PVFS, called OrangeFS, and doing just this by integrating
GIGA+ into OrangeFS [2, 45]. Our goal is not to compete
with most features of these systems, but to offer technol-
ogy for advancing their support of high rates of mutation
of large collections of small files.

For the purposes of evaluating GIGA+ on file system
directory workloads, we have built a skeleton cluster file
system; that is, we have not implemented data striping,
fault detection or RAID in our experimental framework.
Figure 3 shows our user-level GIGA+ directory prototypes
built using the FUSE API [19]. Both client and server pro-
cesses run in user-space, and communicate over TCP using
SUN RPC [56]. The prototype has three layers: unmodi-
fied applications running on clients, the GIGA+ indexing
modules (of the skeletal cluster file system on clients and
servers) and a backend persistent store at the server. Ap-
plications interact with a GIGA+ client using the VFS
API (e.g., open(), creat() and close() syscalls).
The FUSE kernel module intercepts and redirects these
VFS calls the client-side GIGA+ indexing module which
implements the logic described in the previous section.

4.1 Server implementation
The GIGA+ server module’s primary purpose is to syn-
chronize and serialize interactions between all clients and
a specific partition. It need not “store” the partitions, but
it owns them by performing all accesses to them. Our
server-side prototype is currently layered on lower level
file systems, ext3 and ReiserFS. This decouples GIGA+
indexing mechanisms from on-disk representation.

Servers map logical GIGA+ partitions to directory ob-
jects within the backend file system. For a given (huge)
directory, its entry in its parent directory names the "ze-
roth partition", P(0,1]

0 , which is a directory in a server’s
underlying file system. Most directories are not huge and
will be represented by just this one zeroth partition.

GIGA+ stores some information as extended attributes
on the directory holding a partition: a GIGA+ directory ID

FUSE

Figure 3 – GIGA+ experimental prototype.

(unique across servers), the the partition identifier Pi and
its range (x,y]. The range implies the leaf in the directory’s
logical tree view of the huge directory associated with
this partition (the center column of Figure 1) and that
determines the prior splits that had to have occurred to
cause this partition to exist (that is, the split history).

To associate an entry in a cached index (a partition) with
a specific server, we need the list of servers over which
partitions are round robin allocated and the list of servers
over which partitions are sequentially allocated. The set
of servers that are known to the cluster file system at the
time of splitting the zeroth partition is the set of servers
that are round robin allocated for this directory and the set
of servers that are added after a zeroth partition is split are
the set of servers that are sequentially allocated.5

Because the current list of servers will always be avail-
able in a cluster file system, only the list of servers at the
time of splitting the zeroth server needs to be also stored
in a partition’s extended attributes. Each split propagates
the directory ID and set of servers at the time of the zeroth
partition split to the new partition, and sets the new parti-
tion’s identifier Pi and range (x,y] as well as providing the
entries from the parent partition that hash into this range
(x,y].

Each partition split is handled by the GIGA+ server by
locally locking the particular directory partition, scanning
its entries to build two sub-partitions, and then transac-
tionally migrating ownership of one partition to another
server before releasing the local lock on the partition [55].
In our prototype layered on local file systems, there is no
transactional migration service available, so we move the
directory entries and copy file data between servers. Our
experimental splits are therefore more expensive than they
should be in a production cluster file system.

4.2 Client implementation
The GIGA+ client maintains cached information, some
potentially stale, global to all directories. It caches the cur-
rent server list (which we assume only grows over time)

5The contents of a server list are logical server IDs (or names) that are
converted to IP addresses dynamically by a directory service integrated
with the cluster file system. Server failover (and replacement) will bind a
different address to the same server ID so the list does not change during
normal failure handling.

6

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 183

and the number of partitions per server (which is fixed)
obtained from whichever server GIGA+ was mounted on.
For each active directory GIGA+ clients cache the cluster-
wide i-node of the zeroth partition, the directory ID, and
the number of servers at the time when the zeroth parti-
tion first split. The latter two are available as extended
attributes of the zeroth partition. Most importantly, the
client maintains a bitmap of the global index built accord-
ing to Section 3, and a maximum tree-depth, r = �log(i)�,
of any partition Pi present in the global index.

Searching for a file name with a specific hash value,
H, is done by inspecting the index bitmap at the offset j
determined by the r lower-order bits of H. If this is set
to ‘1’ then H is in partition Pj. If not, decrease r by one
and repeat until r = 0 which refers to the always known
zeroth partition P0. Identifying the server for partition Pj
is done by lookup in the current server list. It is either
jmodN, where N is the number of servers at the time the
zeroth partition split), or jdivM, where M is the number
of partitions per server, with the latter used if j exceeds
the product of the number of servers at the time of zeroth
partition split and the number of partitions per server.

Most VFS operations depend on lookups; readdir()
however can be done by walking the bitmaps, enumer-
ating the partitions and scanning the directories in the
underlying file system used to store partitions.

4.3 Handling failures
Modern cluster file systems scale to sizes that make fault
tolerance mandatory and sophisticated [8, 20, 65]. With
GIGA+ integrated in a cluster file system, fault tolerance
for data and services is already present, and GIGA+ does
not add major challenges. In fact, handling network parti-
tions and client-side reboots are relatively easy to handle
because GIGA+ tolerates stale entries in a client’s cached
index of the directory partition-to-server mapping and be-
cause GIGA+ does not cache directory entries in client
or server processes (changes are written through to the
underlying file system). Directory-specific client state can
be reconstructed by contacting the zeroth partition named
in a parent directory entry, re-fetching the current server
list and rebuilding bitmaps through incorrect addressing
of server partitions during normal operations.

Other issues, such as on-disk representation and disk
failure tolerance, are a property of the existing cluster file
system’s directory service, which is likely to be based on
replication even when large data files are RAID encoded
[66]. Moreover, if partition splits are done under a lock
over the entire partition, which is how our experiments are
done, the implementation can use a non-overwrite strategy
with a simple atomic update of which copy is live. As a
result, recovery becomes garbage collection of spurious
copies triggered by the failover service when it launches
a new server process or promotes a passive backup to be
the active server [9, 29, 65].

While our architecture presumes GIGA+ is integrated
into a full featured cluster file system, it is possible to layer
GIGA+ as an interposition layer over and independent of a
cluster file system, which itself is usually layered over mul-
tiple independent local file systems [20, 46, 54, 66]. Such
a layered GIGA+ would not be able to reuse the fault toler-
ance services of the underlying cluster file system, leading
to an extra layer of fault tolerance. The primary function
of this additional layer of fault tolerance is replication
of the GIGA+ server’s write-ahead logging for changes
it is making in the underlying cluster file system, detec-
tion of server failure, election and promotion of backup
server processes to be primaries, and reprocessing of the
replicated write-ahead log. Even the replication of the
write-ahead log may be unnecessary if the log is stored in
the underlying cluster file system, although such logs are
often stored outside of cluster file systems to improve the
atomicity properties writing to them [12, 26]. To ensure
load balancing during server failure recovery, the layered
GIGA+ server processes could employ the well-known
chained-declustering replication mechanism to shift work
among server processes [28], which has been used in other
distributed storage systems [33, 60].

5 Experimental Evaluation
Our experimental evaluation answers two questions: (1)
How does GIGA+ scale? and (2) What are the tradeoffs
of GIGA+’s design choices involving incremental growth,
weak index consistency and selection of the underlying
local file system for out-of-core indexing (when partitions
are very large)?

All experiments were performed on a cluster of 64 ma-
chines, each with dual quad-core 2.83GHz Intel Xeon
processors, 16GB memory and a 10GigE NIC, and Arista
10 GigE switches. All nodes were running the Linux
2.6.32-js6 kernel (Ubuntu release) and GIGA+ stores par-
titions as directories in a local file system on one 7200rpm
SATA disk (a different disk is used for all non-GIGA+
storage). We assigned 32 nodes as servers and the remain-
ing 32 nodes as load generating clients. The threshold for
splitting a partition is always 8,000 entries.

We used the synthetic mdtest benchmark [41] (used
by parallel file system vendors and users) to insert zero-
byte files in to a directory [27, 63]. We generated three
types of workloads. First, a concurrent create workload
that creates a large number of files concurrently in a single
directory. Our configuration uses eight processes per client
to simultaneously create files in a common directory, and
the number of files created is proportional to the number of
servers: a single server manages 400,000 files, a 800,000
file directory is created on 2 servers, a 1.6 million file
directory on 4 servers, up to a 12.8 million file directory
on 32 servers. Second, we use a lookup workload that
performs a stat() on random files in the directory. And

7

184 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

File creates/second
File System in one directory

GIGA+ Library API 17,902
(layered on Reiser) VFS/FUSE API 5,977

Local Linux ext3 16,470
file systems Linux ReiserFS 20,705

Networked NFSv3 filer 521
file systems HadoopFS 4,290

PVFS 1,064

Table 1 – File create rate in a single directory on a single
server. An average of five runs (with 1% standard deviation).

finally, we use a mixed workload where clients issue create
and lookup requests in a pre-configured ratio.

5.1 Scale and performance
We begin with a baseline for the performance of various
file systems running the mdtest benchmark. First we
compare mdtest running locally on Linux ext3 and Reis-
erFS local file systems to mdtest running on a separate
client and single server instance of the PVFS cluster file
system (using ext3) [46], Hadoop’s HDFS (using ext3)
[54] and a mature commercial NFSv3 filer. In this experi-
ment GIGA+ always uses one partition per server. Table 1
shows the baseline performance.

For GIGA+ we use two machines with ReiserFS on
the server and two ways to bind mdtest to GIGA+: di-
rect library linking (non-POSIX) and VFS/FUSE linkage
(POSIX). The library approach allows mdtest to use
custom object creation calls (such as giga_creat())
avoiding system call and FUSE overhead in order to com-
pare to mdtest directly in the local file system. Among
the local file systems, with local mdtest threads generat-
ing file creates, both ReiserFS and Linux ext3 deliver high
directory insert rates.6 Both file systems were configured
with -noatime and -nodiratime option; Linux ext3
used write-back journaling and the dir_index option
to enable hashed-tree indexing, and ReiserFS was config-
ured with the -notail option, a small-file optimization
that packs the data inside an i-node for high performance
[47]. GIGA+ with mdtest workload generating threads
on a different machine, when using the library interface
(sending only one RPC per create) and ReiserFS as the
backend file system, creates at better than 80% of the
rate of ReiserFS with local load generating threads. This
comparison shows that remote RPC is not a huge penalty
for GIGA+. We tested this library version only to gauge
GIGA+ efficiency compared to local file systems and do
not use this setup for any remaining experiments.

To compare with the network file systems, GIGA+
uses the VFS/POSIX interface. In this case each VFS

6We tried XFS too, but it was extremely slow during the create-
intensive workload and do not report those numbers in this paper.

10K

20K

30K

40K

50K

60K

70K

80K

90K

100K

 1 2 4 8 16 32

A
g
g
re

g
a
te

 T
h
ro

u
g
h
p
u
t

 (
fi
le

 c
re

a
te

s
/s

e
c
o
n
d
)

Cluster size (# of servers)

Ceph

HBASE

GIGA+

Figure 4 – Scalability of GIGA+ FS directories. GIGA+ direc-
tories deliver a peak throughput of roughly 98,000 file creates per
second. The behavior of underlying local file system (ReiserFS)
limits GIGA+’s ability to match the ideal linear scalability.

file creat() results in three RPC calls to the server:
getattr() to check if a file exists, the actual creat()
and another getattr() after creation to load the cre-
ated file’s attributes. For a more enlightening comparison,
cluster file systems were configured to be functionally
equivalent to the GIGA+ prototype; specifically, we dis-
abled HDFS’s write-ahead log and replication, and we
used default PVFS which has no redundancy unless a
RAID controller is added. For the NFSv3 filer, because
it was in production use, we could not disable its RAID
redundancy and it is correspondingly slower than it might
otherwise be. GIGA+ directories using the VFS/FUSE
interface also outperforms all three networked file systems,
probably because the GIGA+ experimental prototype is
skeletal while others are complex production systems.

Figure 4 plots aggregate operation throughput, in file
creates per second, averaged over the complete concurrent
create benchmark run as a function of the number of
servers (on a log-scale X-axis). GIGA+ with partitions
stored as directories in ReiserFS scales linearly up to the
size of our 32-server configuration, and can sustain 98,000
file creates per second - this exceeds today’s most rigorous
scalability demands [44].

Figure 4 also compares GIGA+ with the scalability of
the Ceph file system and the HBase distributed key-value
store. For Ceph, Figure 4 reuses numbers from experi-
ments performed on a different cluster from the original
paper [63]. That cluster used dual-core 2.4GHz machines
with IDE drives, with equal numbered separate nodes as
workload generating clients, metadata servers and disk
servers with object stores layered on Linux ext3. HBase
is used to emulate Google’s Colossus file system which
plans to store file system metadata in BigTable instead
of internally on single master node[18]. We setup HBase
on a 32-node HDFS configuration with a single copy (no
replication) and disabled two parameters: blocking while
the HBase servers are doing compactions and write-ahead
logging for inserts (a common practice to speed up insert-

8

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 185

50,000

100,000

150,000

200,000

250,000

(N
u

m
b

e
r

o
f

fi
le

s

 c
re

a
te

d
 p

e
r

s
e

c
o

n
d

)

8 servers

16 servers

32 servers

5,000

10,000

15,000

20,000

25,000

1 2 3 4 5 6 7 8

In
s
ta

n
ta

n
e

o
u

s

 T
h

ro
u

g
h

p
u

t

Running Time (seconds)

1 server

2 servers

4 servers

Figure 5 – Incremental scale-out growth. GIGA+ achieves lin-
ear scalability after distributing one partition on each available
server. During scale-out, periodic drops in aggregate create rate
correspond to concurrent splitting on all servers.

ing data in HBase). This configuration allowed HBase
to deliver better performance than GIGA+ for the single
server configuration because the HBase tables are striped
over all 32-nodes in the HDFS cluster. But configurations
with many HBase servers scale poorly.

GIGA+ also demonstrated scalable performance for the
concurrent lookup workload delivering a throughput of
more than 600,000 file lookups per second for our 32-
server configuration (not shown). Good lookup perfor-
mance is expected because the index is not mutating and
load is well-distributed among all servers; the first few
lookups fetch the directory partitions from disk into the
buffer cache and the disk is not used after that. Section
5.4 gives insight on addressing errors during mutations.

5.2 Incremental scaling properties
In this section, we analyze the scaling behavior of the
GIGA+ index independent of the disk and the on-disk di-
rectory layout (explored later in Section 5.5). To eliminate
performance issues in the disk subsystem, we use Linux’s
in-memory file system, tmpfs, to store directory parti-
tions. Note that we use tmpfs only in this section, all
other analysis uses on-disk file systems.

We run the concurrent create benchmark to create a
large number of files in an empty directory and measure
the aggregate throughput (file creates per second) continu-
ously throughout the benchmark. We ask two questions
about scale-out heuristics: (1) what is the effect of split-
ting during incremental scale-out growth? and (2) how
many partitions per server do we keep?

Figure 5 shows the first 8 seconds of the concurrent
create workload when the number of partitions per server
is one. The primary result in this figure is the near linear
create rate seen after the initial seconds. But the initial
few seconds are more complex. In the single server case,
as expected, the throughput remains flat at roughly 7,500
file creates per second due to the absence of any other

1,000

10,000

100,000

(N
u
m

b
e
r

o
f
fi
le

s

 c
re

a
te

d
 p

e
r

s
e
c
o
n
d
)

(a) Policy: Stop splitting after distributing on all servers

Splits to partition data over servers

1,000

10,000

100,000

10 20 30 40 50 60 70 80

In
s
ta

n
ta

n
e
o
u
s

 T
h
ro

u
g
h
p
u
t

Running Time (seconds)

(b) Policy: Keep splitting continuously

Periodic splits cause throughput drop

Figure 6 – Effect of splitting heuristics. GIGA+ shows that
splitting to create at most one partition on each of the 16 servers
delivers scalable performance. Continuous splitting, as in clas-
sic database indices, is detrimental in a distributed scenario.

server. In the 2-server case, the directory starts on a single
server and splits when it has more than 8,000 entries in
the partition. When the servers are busy splitting, at the
0.8-second mark, throughput drops to half for a short time.

Throughput degrades even more during the scale-out
phase as the number of directory servers goes up. For
instance, in the 8-server case, the aggregate throughput
drops from roughly 25,000 file creates/second at the 3-
second mark to as low as couple of hundred creates/second
before growing to the desired 50,000 creates/second. This
happens because all servers are busy splitting, i.e., parti-
tions overflow at about the same time which causes all
servers (where these partitions reside) to split without any
co-ordination at the same time. And after the split spreads
the directory partitions on twice the number of servers, the
aggregate throughput achieves the desired linear scale.

In the context of the second question about how many
partitions per server, classic hash indices, such as ex-
tendible and linear hashing [17, 34], were developed for
out-of-core indexing in single-node databases. An out-of-
core table keeps splitting partitions whenever they over-
flow because the partitions correspond to disk allocation
blocks [23]. This implies an unbounded number of par-
titions per server as the table grows. However, the splits
in GIGA+ are designed to parallelize access to a directory
by distributing the directory load over all servers. Thus
GIGA+ can stop splitting after each server has a share
of work, i.e., at least one partition. When GIGA+ limits
the number of partitions per server, the size of partitions
continue to grow and GIGA+ lets the local file system
on each server handle physical allocation and out-of-core
memory management.

Figure 6 compares the effect of different policies for the
number of partitions per server on the system throughput
(using a log-scale Y-axis) during a test in which a large di-
rectory is created over 16 servers. Graph (a) shows a split
policy that stops when every server has one partition, caus-

9

186 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

 0

 20

 40

 60

 80

 100

 0 4 8 12 16 20 24 28 32

A
v
g
.
lo

a
d
 v

a
ri
a
n
c
e
 (

%
)

Cluster size (# of servers)

(a) GIGA+ indexing

1 partition/server
4 partitions/server
8 partitions/server

16 partitions/server

 0 4 8 12 16 20 24 28 32

Cluster size (# of servers)

(b) Consistent hashing

32 partitions/server
64 partitions/server

128 partitions/server
1024 partitions/server

Figure 7 – Load-balancing in GIGA+. These graphs show the
quality of load balancing measured as the mean load deviation
across the entire cluster (with 95% confident interval bars). Like
virtual servers in consistent hashing, GIGA+ also benefits from
using multiple hash partitions per server. GIGA+ needs one to
two orders of magnitude fewer partitions per server to achieve
comparable load distribution relative to consistent hashing.

ing partitions to ultimately get much bigger than 8,000
entries. Graph (b) shows the continuous splitting policy
used by classic database indices where a split happens
whenever a partition has more than 8,000 directory entries.
With continuous splitting the system experiences periodic
throughput drops that last longer as the number of parti-
tions increases. This happens because repeated splitting
maps multiple partitions to each server, and since uniform
hashing will tend to overflow all partitions at about the
same time, multiple partitions will split on all the servers
at about the same time.

Lesson #1: To avoid the overhead of continuous split-
ting in a distributed scenario, GIGA+ stops splitting a
directory after all servers have a fixed number of partitions
and lets a server’s local file system deal with out-of-core
management of large partitions.

5.3 Load balancing efficiency
The previous section showed only configurations where
the number of servers is a power-of-two. This is a spe-
cial case because it is naturally load-balanced with only a
single partition per server: the partition on each server is
responsible for a hash-range of size 2r-th part of the total
hash-range (0,1]. When the number of servers is not a
power-of-two, however, there is load imbalance. Figure 7
shows the load imbalance measured as the average frac-
tional deviation from even load for all numbers of servers
from 1 to 32 using Monte Carlo model of load distribu-
tion. In a cluster of 10 servers, for example, each server is
expected to handle 10% of the total load; however, if two
servers are experiencing 16% and 6% of the load, then
they have 60% and 40% variance from the average load
respectively. For different cluster sizes, we measure the
variance of each server, and use the average (and 95%
confidence interval error bars) over all the servers.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 4 8 12 16 20 24 28 32

T
im

e
 t

o
 c

o
m

p
le

te
 d

ir
e

c
to

ry

 c
re

a
ti
o

n
 b

e
n

c
h

m
a

rk
 (

s
e

c
o

n
d

s
)

Cluster size (# of servers)

1 partition/server

32 partitions/server

4 partitions/server

8 partitions/server

16 partitions/server

Figure 8 – Cost of splitting partitions. Using 4, 8, or 16 parti-
tions per server improves the performance of GIGA+ directories
layered on Linux ext3 relative to 1 partition per server (better
load-balancing) or 32 partitions per server (when the cost of
more splitting dominates the benefit of load-balancing).

We compute load imbalance for GIGA+ in Figure 7(a)
as follows: when the number of servers N is not a power-
of-two, 2r < N < 2r+1, then a random set of N −2r par-
titions from tree depth r, each with range size 1/2r, will
have split into 2(N−2r) partitions with range size 1/2r+1.
Figure 7(a) shows the results of five random selections
of N − 2r partitions that split on to the r + 1 level. Fig-
ure 7(a) shows the expected periodic pattern where the
system is perfectly load-balanced when the number of
servers is a power-of-two. With more than one partition
per server, each partition will manage a smaller portion
of the hash-range and the sum of these smaller partitions
will be less variable than a single large partition as shown
in Figure 7(a). Therefore, more splitting to create more
than one partition per server significantly improves load
balance when the number of servers is not a power-of-two.

Multiple partitions per server is also used by Amazon’s
Dynamo key-value store to alleviate the load imbalance
in consistent hashing [15]. Consistent hashing associates
each partition with a random point in the hash-space (0,1]
and assigns it the range from this point up to the next
larger point and wrapping around, if necessary. Figure 7(b)
shows the load imbalance from Monte Carlo simulation
of using multiple partitions (virtual servers) in consistent
hashing by using five samples of a random assignment
for each partition and how the sum, for each server, of
partition ranges selected this way varies across servers.
Because consistent hashing’s partitions have more ran-
domness in each partition’s hash-range, it has a higher
load variance than GIGA+ – almost two times worse. In-
creasing the number of hash-range partitions significantly
improves load distribution, but consistent hashing needs
more than 128 partitions per server to match the load vari-
ance that GIGA+ achieves with 8 partitions per server – an
order of magnitude more partitions.

More partitions is particularly bad because it takes
longer for the system to stop splitting, and Figure 8 shows
how this can impact overall performance. Consistent hash-

10

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 187

 0.0001

 0.001

 0.01

 0.1

 0 4 8 12 16 20 24 28 32

%
 o

f
re

q
u

e
s
ts

 p
e

r
c
lie

n
t

 t
h

a
t

w
e

re
 r

e
-r

o
u

te
d

Cluster size (# of servers)

(a) Total client re-routing overhead

1 partition/server

16 partitions/server

 0 1
 2 3

 1 10 100 1000 10000

(a) Client creating 50,000 files in a growing directory

 0 1 2 3

 1 10 100 1000 10000

(a) Client creating 50,000 files in a growing directory

 0
 1
 2
 3

 1 10 100 1000 10000

(b) Client creating 50,000 files in a growing directory

 0
 1
 2
 3

 1 10 100 1000 10000

N
u
m

b
e
r

o
f
a
d
d
re

s
s
in

g
 e

rr
o
rs

 b

e
fo

re
 r

e
a
c
h
in

g
 t
h
e
 c

o
rr

e
c
t
s
e
rv

e
r

Request Number

(c) Client performing 10,000 lookups in an existing directory

Figure 9 – Cost of using inconsistent mapping at the clients.
Using weak consistency for mapping state at the clients has a
very negligible overhead on client performance (a). And this
overhead – extra message re-addressing hops – occurs for initial
requests until the client learns about all the servers (b and c).

ing theory has alternate strategies for reducing imbalance
but these often rely on extra accesses to servers all of the
time and global system state, both of which will cause
impractical degradation in our system [10].

Since having more partitions per server always improves
load-balancing, at least a little, how many partitions should
GIGA+ use? Figure 8 shows the concurrent create bench-
mark time for GIGA+ as a function of the number of
servers for 1, 4, 8, 16 and 32 partitions per server. We ob-
serve that with 32 partitions per server GIGA+ is roughly
50% slower than with 4, 8 and 16 partitions per server.
Recall from Figure 7(a) that the load-balancing efficiency
from using 32 partitions per server is only about 1% bet-
ter than using 16 partitions per server; the high cost of
splitting to create twice as many partitions outweighs the
minor load-balancing improvement.

Lesson #2: Splitting to create more than one partition
per server significantly improves GIGA+ load balancing
for non power-of-two numbers of servers, but because of
the performance penalty during extra splitting the overall
performance is best with only a few partitions per server.

5.4 Cost of weak mapping consistency
Figure 9(a) shows the overhead incurred by clients when
their cached indices become stale. We measure the per-
centage of all client requests that were re-routed when run-

ning the concurrent create benchmark on different cluster
sizes. This figure shows that, in absolute terms, fewer than
0.05% of the requests are addressed incorrectly; this is
only about 200 requests per client because each client is
doing 400,000 file creates. The number of addressing er-
rors increases proportionally with the number of partitions
per server because it takes longer to create all partitions. In
the case when the number of servers is a power-of-two, af-
ter each server has at least one partition, subsequent splits
yield two smaller partitions on the same server, which will
not lead to any additional addressing errors.

We study further the worst case in Figure 9(a), 30 servers
with 16 partitions per server, to learn when addressing er-
rors occur. Figure 9(b) shows the number of errors encoun-
tered by each request generated by one client thread (i.e.,
one of the eight workload generating threads per client) as
it creates 50,000 files in this benchmark. Figure 9(b) sug-
gests three observations. First, the index update that this
thread gets from an incorrectly addressed server is always
sufficient to find the correct server on the second probe.
Second, that addressing errors are bursty, one burst for
each level of the index tree needed to create 16 partitions
on each of 30 servers, or 480 partitions (28 < 480 < 29).
And finally, that the last 80% of the work is done after the
last burst of splitting without any addressing errors.

To further emphasize how little incorrect server address-
ing clients generate, Figure 9(c) shows the addressing
experience of a new client issuing 10,000 lookups after
the current create benchmark has completed on 30 servers
with 16 partitions per server.7 This client makes no more
than 3 addressing errors for a specific request, and no
more than 30 addressing errors total and makes no more
addressing errors after the 40th request.

Lesson #3: GIGA+ clients incur neglible overhead (in
terms of incorrect addressing errors) due to stale cached
indices, and no overhead shortly after the servers stop
splitting partitions. Although not a large effect, fewer
partitions per server lowers client addressing errors.
5.5 Interaction with backend file systems
Because some cluster file systems represent directories
with equivalent directories in a local file system [39] and
because our GIGA+ experimental prototype represents
partitions as directories in a local file system, we study
how the design and implementation of Linux ext3 and
ReiserFS local file systems affects GIGA+ partition splits.
Although different local file system implementations can
be expected to have different performance, especially for
emerging workloads like ours, we were surprised by the
size of the differences.

Figure 10 shows GIGA+ file create rates when there are
16 servers for four different configurations: Linux ext3

7Figure 9 predicts the addressing errors of a client doing only
lookups on a mutating directory because both create(filename)
and lookup(filename) do the same addressing.

11

188 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

1,000

10,000

100,000

1 partition per server on ReiserFS

1,000

10,000

100,000

20 40 60 80 100 120 140 160 180N
u
m

b
e
r

o
f

fi
le

s
 c

re
a
te

d
 p

e
r

s
e
c
o
n
d
 (

o
n
 1

6
 s

e
rv

e
rs

)

Running Time (seconds)

1 partition per server on ext3

16 partitions per server on ReiserFS

100 200 300 400 500 600 700

Running Time (seconds)

16 partitions per server on ext3

Figure 10 – Effect of underlying file systems. This graph shows the concurrent create benchmark behavior when the GIGA+
directory service is distributed on 16 servers with two local file systems, Linux ext3 and ReiserFS. For each file system, we show two
different numbers of partitions per server, 1 and 16.

or ReiserFS storing partitions as directories, and 1 or 16
partitions per server. Linux ext3 directories use h-trees
[11] and ReiserFS uses balanced B-trees [47]. We ob-
served two interesting phenomenon: first, the benchmark
running time varies from about 100 seconds to over 600
seconds, a factor of 6, and second, the backend file system
yielding the faster performance is different when there are
16 partitions on each server than with only one.

Comparing a single partition per server in GIGA+ over
ReiserFS and over ext3 (left column in Figure 10), we ob-
serve that the benchmark completion time increases from
about 100 seconds using ReiserFS to nearly 170 seconds
using ext3. For comparison, the same benchmark com-
pleted in 70 seconds when the backend was the in-memory
tmpfs file system. Looking more closely at Linux ext3,
as a directory grows, ext3’s journal also grows and period-
ically triggers ext3’s kjournald daemon to flush a part
of the journal to disk. Because directories are growing
on all servers at roughly the same rate, multiple servers
flush their journal to disk at about the same time leading
to troughs in the aggregate file create rate. We observe
this behavior for all three journaling modes supported by
ext3. We confirmed this hypothesis by creating an ext3
configuration with the journal mounted on a second disk
in each server, and this eliminated most of the throughput
variability observed in ext3, completing the benchmark
almost as fast as with ReiserFS. For ReiserFS, however,
placing the journal on a different disk had little impact.

The second phenomenon we observe, in the right col-
umn of Figure 10, is that for GIGA+ with 16 partitions
per server, ext3 (which is insensitive to the number of par-
titions per server) completes the create benchmark more
than four times faster than ReiserFS. We suspect that this
results from the on-disk directory representation. Reis-
erFS uses a balanced B-tree for all objects in the file
system, which re-balances as the file system grows and
changes over time [47]. When partitions are split more

often, as in case of 16 partitions per server, the backend
file system structure changes more, which triggers more
re-balancing in ReiserFS and slows the create rate.

Lesson #4: Design decisions of the backend file system
have subtle but large side-effects on the performance of a
distributed directory service. Perhaps the representation
of a partition should not be left to the vagaries of whatever
local file system is available.

6 Conclusion
In this paper we address the emerging requirement for
POSIX file system directories that store massive number
of files and sustain hundreds of thousands of concurrent
mutations per second. The central principle of GIGA+
is to use asynchrony and eventual consistency in the dis-
tributed directory’s internal metadata to push the limits of
scalability and concurrency of file system directories. We
used these principles to prototype a distributed directory
implementation that scales linearly to best-in-class per-
formance on a 32-node configuration. Our analysis also
shows that GIGA+ achieves better load balancing than
consistent hashing and incurs a neglible overhead from
allowing stale lookup state at its clients.

Acknowledgements. This work is based on research supported in
part by the Department of Energy, under award number DE-FC02-
06ER25767, by the Los Alamos National Laboratory, under contract
number 54515-001-07, by the Betty and Gordon Moore Foundation,
by the National Science Foundation under awards CCF-1019104 and
SCI-0430781, and by Google and Yahoo! research awards. We thank
Cristiana Amza, our shepherd, and the anonymous reviewers for their
thoughtful reviews of our paper. John Bent and Gary Grider from LANL
provided valuable feedback from the early stages of this work; Han Liu
assisted with HBase experimental setup; and Vijay Vasudevan, Wolf-
gang Richter, Jiri Simsa, Julio Lopez and Varun Gupta helped with early
drafts of the paper. We also thank the member companies of the PDL
Consortium (including APC, DataDomain, EMC, Facebook, Google,
Hewlett-Packard, Hitachi, IBM, Intel, LSI, Microsoft, NEC, NetApp,
Oracle, Seagate, Sun, Symantec, and VMware) for their interest, insights,
feedback, and support.

12

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 189

References
[1] Private Communication with Frank Schmuck and Roger Haskin,

IBM, February 2010.
[2] Private Communication with Walt Ligon, OrangeFS (http://

orangefs.net), November 2010.
[3] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Silberschatz,

and A. Rasin. HadoopDB: An Architectural Hybrid of MapReduce
and DBMS Technologies for Analytical Workloads. In Proceedings
of the 35th International Conference on Very Large Data Bases
(VLDB ’09), Lyon, France, August 2009.

[4] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A
Five-Year Study of File-System Metadata. In Proceedings of the
5th USENIX Conference on File and Storage Technologies (FAST
’07), San Jose CA, February 2007.

[5] R. Agrawal, A. Ailamaki, P. A. Bernstein, E. A. Brewer, M. J.
Carey, S. Chaudhuri, A. Doan, D. Florescu, M. J. Franklin,
H. Garcia-Molina, J. Gehrke, L. Gruenwald, L. M. Haas, A. Y.
Halevy, J. M. Hellerstein, Y. E. Ioannidis, H. F. Korth, D. Koss-
mann, S. Madden, R. Magoulas, B. C. Ooi, T. O’Reilly, R. Ramakr-
ishnan, S. Sarawagi, M. Stonebraker, A. S. Szalay, and G. Weikum.
The Claremont report on database research. ACM SIGMOD Record,
37(3), September 2008.

[6] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding a
Needle in Haystack: Facebook’s Photo Storage. In Proceedings
of the 9th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’10), Vancouver, Canada, October 2010.

[7] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski,
J. Nunez, M. Polte, and M. Wingate. PLFS: A Checkpoint Filesys-
tem for Parallel Applications. In Proceedings of the ACM/IEEE
Transactions on Computing Conference on High Performance Net-
working and Computing (SC ’09), Portland OR, November 2009.

[8] P. Braam and B. Neitzel. Scalable Locking and Recovery for
Network File Systems. In Proceedings of the 2nd International
Petascale Data Storage Workshop (PDSW ’07), Reno NV, Novem-
ber 2007.

[9] M. Burrows. The Chubby lock service for loosely-coupled dis-
tributed systems. In Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’06), Seattle
WA, November 2006.

[10] J. Byers, J. Considine, and M. Mitzenmacher. Simple Load Balanc-
ing for Distributed Hash Tables. In Proceedings of the 2nd Inter-
national Workshop on Peer-to-Peer Systems (IPTPS ’03), Berkeley
CA, February 2003.

[11] M. Cao, T. Y. Ts’o, B. Pulavarty, S. Bhattacharya, A. Dilger, and
A. Tomas. State of the Art: Where we are with the ext3 filesystem.
In Proceedings of the Ottawa Linux Symposium (OLS ’07), Ottawa,
Canada, June 2007.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: A
Distributed Storage System for Structured Data. In Proceedings
of the 7th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’06), Seattle WA, November 2006.

[13] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-area cooperative storage with CFS. In Proceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP
’01), Banff, Canada, October 2001.

[14] S. Dayal. Characterizing HEC Storage Systems at Rest. Technical
Report CMU-PDL-08-109, Carnegie Mellon University, July 2008.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels. Dynamo: Amazon’s Highly Available Key-Value Store. In
Proceedings of the 21st ACM Symposium on Operating Systems
Principles (SOSP ’07), Stevenson WA, October 2007.

[16] J. R. Douceur and J. Howell. Distributed Directory Service in the
Farsite File System. In Proceedings of the 7th USENIX Symposium

on Operating Systems Design and Implementation (OSDI ’06),
Seattle WA, November 2006.

[17] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Extendible
Hashing – A Fast Access Method for Dynamic Files. ACM Trans-
actions on Database Systems, 4(3), September 1979.

[18] A. Fikes. Storage Architecture and Challenges. Presentation at the
2010 Google Faculty Summit. Talk slides at http://static.
googleusercontent.com/external_content/
untrusted_dlcp/research.google.com/en/us/
university/relations/facultysummit2010/
storage_architecture_and_challenges.pdf.

[19] FUSE. Filesystem in Userspace. http://fuse.sf.net/.
[20] S. Ghemawat, H. Gobioff, and S.-T. Lueng. Google file system. In

Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP ’03), Bolton Landing NY, October 2003.

[21] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang,
H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka. A
Cost-Effective, High-Bandwidth Storage Architecture. In Proceed-
ings of the 8th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS

’98), San Jose CA, October 1998.
[22] GPFS. An Introduction to GPFS Version 3.2.1.

http://publib.boulder.ibm.com/infocenter/
clresctr/vxrx/index.jsp, November 2008.

[23] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann Publishers, 1992.

[24] S. Gribble, E. Brewer, J. Hellerstein, and D. Culler. Scalable
Distributed Data Structures for Internet Service Construction. In
Proceedings of the 4th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’00), San Diego CA, October
2000.

[25] J. H. Hartman and J. K. Ousterhout. The Zebra Striped Network
File System. In Proceedings of the 14th ACM Symposium on Op-
erating Systems Principles (SOSP ’93), Asheville NC, December
1993.

[26] HBase. The Hadoop Database. http://hadoop.apache.
org/hbase/, December 2010.

[27] R. Hedges, K. Fitzgerald, M. Gary, and D. M. Stearman.
Comparison of leading parallel NAS file systems on commodity
hardware. Poster at the Petascale Data Storage Workshop 2010.
http://www.pdsi-scidac.org/events/PDSW10/
resources/posters/parallelNASFSs.pdf, November
2010.

[28] H.-I. Hsaio and D. J. DeWitt. Chained Declustering: A New
Availability Strategy for Multiprocessor Database Machines. In
Proceedings of the 6th International Conference on Data Engineer-
ing (ICDE ’90), Washington D.C., February 1990.

[29] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper: Wait-
free Coordination for Internet-scale Systems. In Proceedings of the
USENIX Annual Technical Conference (USENIX ATC ’10), Boston
MA, June 2010.

[30] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and
R. Panigrahy. Consistent Hashing and Random Trees: Distributed
Caching Protocols for Relieving Hot Spots on the World Wide Web.
In Proceedings of the ACM Symposium on Theory of Computing
(STOC ’97), El Paso TX, May 1997.

[31] P. Kogge. ExaScale Computing Study: Technology Chal-
lenges in Achieving Exascale Systems. DARPA IPTO
Report at http://www.er.doe.gov/ascr/Research/
CS/DARPAexascale-hardware(2008).pdf, September
2008.

[32] A. Lakshman and P. Malik. Cassandra - A Decentralized Structured
Storage System. In Proceedings of the Workshop on Large-Scale
Distribued Systems and Middleware (LADIS ’09), Big Sky MT,
October 2009.

[33] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual disks.

13

190 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

In Proceedings of the 7th International Conference on Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS ’96), Cambridge MA, October 1996.

[34] W. Litwin. Linear Hashing: A New Tool for File and Table Ad-
dressing. In Proceedings of the 6th International Conference on
Very Large Data Bases (VLDB ’80), Montreal, Canada, October
1980.

[35] W. Litwin, M.-A. Neimat, and D. A. Schneider. LH* - Linear
Hashing for Distributed Files. In Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data (SIG-
MOD ’93), Washington D.C., June 1993.

[36] W. Litwin, M.-A. Neimat, and D. A. Schneider. LH* - A Scal-
able, Distributed Data Structure. ACM Transactions on Database
Systems, 21(4), December 1996.

[37] Lustre. Clustered Metadata Design. http://wiki.lustre.
org/images/d/db/HPCS_CMD_06_15_09.pdf, Septem-
ber 2009.

[38] Lustre. Clustered Metadata. http://wiki.lustre.org/
index.php/Clustered_Metadata, September 2010.

[39] Lustre. Lustre File System. http://www.lustre.org, De-
cember 2010.

[40] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and
L. Zhou. Boxwood: Abstractions as the Foundation for Storage
Infrastructure. In Proceedings of the 6th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’04), San
Francisco CA, November 2004.

[41] MDTEST. mdtest: HPC benchmark for metadata performance.
http://sourceforge.net/projects/mdtest/,
December 2010.

[42] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A
Read/Write Peer-to-peer File System. In Proceedings of the 5th
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI ’02), Boston MA, November 2002.

[43] NetApp-Community-Form. Millions of files in a single direc-
tory. Discussion at http://communities.netapp.com/
thread/7190?tstart=0, February 2010.

[44] H. Newman. HPCS Mission Partner File I/O Scenarios, Revision
3. http://wiki.lustre.org/images/5/5a/Newman_
May_Lustre_Workshop.pdf, November 2008.

[45] OrangeFS. Distributed Directories in OrangeFS v2.8.3-
EXP. http://orangefs.net/trac/orangefs/wiki/
Distributeddirectories.

[46] PVFS2. Parallel Virtual File System, Version 2. http://www.
pvfs2.org, December 2010.

[47] H. Reiser. ReiserFS. http://www.namesys.com/.
[48] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Ku-

biatowicz. Pond: the Oceanstore Prototype. In Proceedings of the
2nd USENIX Conference on File and Storage Technologies (FAST
’03), San Francisco CA, March 2003.

[49] R. A. Rivest. The MD5 Message Digest Algorithm. Internet RFC
1321, April 1992.

[50] R. Ross, E. Felix, B. Loewe, L. Ward, J. Nunez, J. Bent,
E. Salmon, and G. Grider. High End Computing Revitalization
Task Force (HECRTF), Inter Agency Working Group (HECIWG)
File Systems and I/O Research Guidance Workshop 2006.
http://institutes.lanl.gov/hec-fsio/docs/
HECIWG-FSIO-FY06-Workshop-Document-FINAL6.
pdf, 2006.

[51] A. Rowstron and P. Druschel. Storage Management and Caching
in PAST, A Large-scale, Persistent Peer-to-peer Storage Utility. In
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), Banff, Canada, October 2001.

[52] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File System for
Large Computing Clusters. In Proceedings of the 1st USENIX Con-
ference on File and Storage Technologies (FAST ’02), Monterey

CA, January 2002.
[53] M. Seltzer. Beyond Relational Databases. Communications of the

ACM, 51(7), July 2008.
[54] K. Shvachko, H. Huang, S. Radia, and R. Chansler. The Hadoop

Distributed File System. In Proceedings of the 26th IEEE Trans-
actions on Computing Symposium on Mass Storage Systems and
Technologies (MSST ’10), Lake Tahoe NV, May 2010.

[55] S. Sinnamohideen, R. R. Sambasivan, J. Hendricks, L. Liu, and
G. R. Ganger. A Transparently-Scalable Metadata Service for the
Ursa Minor Storage System. In Proceedings of the USENIX Annual
Technical Conference (USENIX ATC ’10), Boston MA, June 2010.

[56] R. Srinivasan. RPC: Remote Procedure Call Protocol Specification
Version 2. Internet RFC 1831, August 1995.

[57] StackOverflow. Millions of small graphics files and how to
overcome slow file system access on XP. Discussion at http:
//stackoverflow.com/questions/1638219/, Octo-
ber 2009.

[58] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrish-
nan. Chord: A Scalable Peer-To-Peer Lookup Service for Internet
Applications. In Proceedings of the ACM SIGCOMM 2001 Confer-
ence on Applications, Technologies, Architectures, and Protocols
for Computer Communication (SIGCOMM ’01), San Diego CA,
August 2001.

[59] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherni-
ack, M. Ferreira, E. Lau, A. Lin, S. R. Madden, E. J. O’Neil,
P. E. O’Neil, A. Rasin, N. Tran, and S. B. Zdonik. C-Store: A
Column-Oriented DBMS. In Proceedings of the 31st International
Conference on Very Large Data Bases (VLDB ’05), Trondheim,
Norway, September 2005.

[60] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A Scalable
Distributed File System. In Proceedings of the 16th ACM Sym-
posium on Operating Systems Principles (SOSP ’97), Saint-Malo,
France, October 1997.

[61] TOP500. Top 500 Supercomputer Sites. http://www.top500.
org, December 2010.

[62] D. Tweed. One usage of up to a million files/directory.
Email thread at http://leaf.dragonflybsd.org/
mailarchive/kernel/2008-11/msg00070.html,
November 2008.

[63] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn. Ceph: A Scalable, High-Performance Distributed
File System. In Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’06), Seattle
WA, November 2006.

[64] S. A. Weil, K. Pollack, S. A. Brandt, and E. L. Miller. Dynamic
Metadata Management for Petabyte-Scale File Systems. In Pro-
ceedings of the ACM/IEEE Transactions on Computing Conference
on High Performance Networking and Computing (SC ’04), Pitts-
burgh PA, November 2004.

[65] B. Welch. Integrated System Models for Reliable Petascale Storage
Systems. In Proceedings of the 2nd International Petascale Data
Storage Workshop (PDSW ’07), Reno NV, November 2007.

[66] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou. Scalable Performance of the Panasas
Parallel File System. In Proceedings of the 6th USENIX Confer-
ence on File and Storage Technologies (FAST ’08), San Jose CA,
February 2008.

[67] R. Wheeler. One Billion Files: Scalability Limits in Linux
File Systems. Presentation at LinuxCon ’10. Talk Slides at
http://events.linuxfoundation.org/slides/
2010/linuxcon2010_wheeler.pdf, August 2010.

[68] ZFS-discuss. Million files in a single directory. Email thread
at http://mail.opensolaris.org/pipermail/
zfs-discuss/2009-October/032540.html, October
2009.

14

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 191

AONT-RS:

Blending Security and Performance in Dispersed Storage Systems

Jason K. Resch

Development

Cleversafe, Inc.

222 S. Riverside Plaza, Suite 1700

Chicago, IL 60606

jresch@cleversafe.com

James S. Plank

EECS Department

University of Tennessee

203 Claxton Complex

Knoxville, TN 37996

plank@cs.utk.edu

Abstract

Dispersing files across multiple sites yields a variety of

obvious benefits, such as availability, proximity and reli-

ability. Less obviously, it enables security to be achieved

without relying on encryption keys. Standard approaches

to dispersal either achieve very high security with corre-

spondingly high computational and storage costs, or low

security with lower costs. In this paper, we describe a

new dispersal scheme, called AONT-RS, which blends an

All-Or-Nothing Transform with Reed-Solomon coding

to achieve high security with low computational and stor-

age costs. We evaluate this scheme both theoretically and

as implemented with standard open source tools. AONT-

RS forms the backbone of a commercial dispersed stor-

age system, which we briefly describe and then use as a

further experimental testbed. We conclude with details

of actual deployments.

1 Introduction

Dispersed storage systems coalesce multiple storage sites

into a collective whole. Files are decomposed into

smaller blocks which are computationally massaged and

then dispersed to the storage sites. When a client desires

to read a file, it retrieves some subset of the blocks, which

are combined to reconstitute the original file. Compared

to traditional single-site storage systems, dispersed stor-

age systems offer a variety of benefits. Multiple indepen-

dent storage sites offer greater availability than a single

site, since they have no single point of failure. When

sites are physically distributed across a wide area, they

offer physical proximity to distributed clients, which can

improve performance and scalability. Finally, the mas-

saging of data typically includes adding redundancy in

the form of erasure codes or secret sharing, which im-

proves reliability in the face of failures.

There have been many dispersed storage systems

developed in the past ten years. Examples in-

clude storage systems such as Oceanstore [23], Perga-

mum [29], POTSHARDS [30], PASIS [9], Gridshar-

ing [31], Glacier [11], Cleversafe [4] and Tahoe-

LAFS [32] among others. Related to dispersed storage

systems are distributed or peer-to-peer storage systems

which use replication rather than coding to achieve relia-

bility. Examples include LOCKSS [14], Google file sys-

tem [8], Elephant [27], PAST [26] and BitTorrent [5].

A side benefit of dispersal is the ability to provide

security without the use of encryption keys. The basic

techniques are classics from computer science literature:

Shamir’s secret sharing [28] and Rabin’s information dis-

persal based on non-systematic erasure codes [21]. Each

technique is a (k,n) threshold scheme: The storage sys-

tem transforms a file into n distinct blocks. A client or

attacker must retrieve at least k of the n blocks to re-

construct the file. With fewer than k blocks, the client

or attacker gets no information. Several of the above-

mentioned systems [9, 30, 31] use these techniques to

achieve security by storing each of the n pieces at a dif-

ferent site, and assuming that an attacker will not be able

to authenticate himself to at least k of them. This avoids

encryption strategies which require the secure storage

of encryption keys, a difficult and dangerous practice

(see [30] for a thorough discussion of this problem).

Each technique achieves a different level of security

with different performance and storage requirements. If

the original file is b bytes in size, Shamir’s scheme re-

quires a total of nb bytes, while Rabin’s requires nb
k

.

Shamir’s requires more computation as well. To com-

pensate for the extra storage and computation, Shamir’s

scheme is more secure, achieving information theoretic

security. Rabin’s security is far less, and would be unac-

ceptable in many environments.

In this paper, we describe a further modification to

Rabin’s scheme that achieves improved computational

performance, security and integrity. We achieve this by

combining the All-Or-Nothing Transform (AONT) [24]

with systematic Reed-Solomon erasure codes [13].

192 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Hence, we call it AONT-RS. We describe the technique,

evaluate it both theoretically and experimentally and de-

tail how it fits into a commercial dispersed storage sys-

tem. We conclude with some field data of actual deploy-

ments.

2 Dispersal Algorithms

At the heart of all (k,n) threshold schemes (which we

heretofore call dispersal algorithms) is a matrix-vector

product, illustrated in Figure 1. The data to be stored is

broken into words or elementswhich are w bits in length.

A generator or dispersalmatrixG is created, which has n

rows and k columns. This matrix is multiplied by a k-

element vector D (called the data or message) to yield

a n-element vectorC called the codeword. Each element

of the codeword is stored on a different storage node.

Figure 1: The central matrix-vector product for all dis-

persal algorithms.

The dispersal matrix is constructed so that all combi-

nations of k rows yield invertible matrices. This gives

us a technique to reconstructD from any k surviving ele-

ments of the codeword: each row ofG corresponds to the

calculation of a codeword element. We create a new k×k
matrix A from the rows ofG that correspond to the k sur-

viving elements. We invert A and multiply A−1 by the

surviving elements to yield D. The construction of G

guarantees that A is invertible.

So that elements may fit into computer words, it is

convenient that w be a power of two. To achieve this,

we employ Galois Field arithmetic, GF(2w), where ad-

dition is equal to bitwise exclusive-or (XOR) and mul-

tiplication is implemented in a variety of ways either in

hardware or software. In this way, dispersal is simply a

variant of the well known Reed-Solomon codes [13, 22].

A tutorial on implementing Reed-Solomon codes in this

manner is available in [17], and a thorough discussion of

implementing Galois Field arithmetic is provided in [10].

There is also a methodology that converts multiplica-

tions into XOR’s described in [3]. There are open-

source implementations of these codes and methodolo-

gies in [16, 20, 25, 36].

Shamir’s secret sharing algorithm encodes w bits of

data in d0. The remaining elements of D are randomly

chosen w-bit words. The matrix G is a Vandermonde

matrix, where gi, j = i j, which guarantees that any k rows

are invertible so long as n ≤ 2w [28]. Thus, when one

uses Shamir’s algorithm on a b-byte file, the total stor-

age requirement is nb bytes, and the act of encoding re-

quires O(knb) XOR and multiplication operations (we

will characterize this further in Section 6 below). The se-

curity guarantees of Shamir’s algorithm are very strong

— even with an infinite amount of computing power, un-

less an attacker has possession of k words, he cannot de-

termine anything about the initial data. Moreover, this is

done without the necessity of storing encryption keys.

Rabin’s information dispersal algorithm (IDA) weak-

ens the security, but improves both storage efficiency and

performance. Each element of D now contains a word of

data. Thus the storage requirement is nb
k

bytes, improv-

ing both storage efficiency and encoding performance by

a factor of k. Like Shamir, k elements of the codeword

are required to reconstruct the original data. However,

the security guarantees of Rabin are far less than Shamir.

We will analyze this below in Section 5, but attackers

looking for known or patterned data can find it more eas-

ily from elements of the codeword. To combat this prob-

lem, Rabin suggests a technique to generate the rows

of G randomly, embed the row id’s within each code-

word element, then encrypt the codewords [21]. Unfor-

tunately, this requires storing an external encryption key,

which does not solve the main problem we wish to solve

(providing security without securely storing encryption

keys).

In 1993, Krawczyk proposed a blending of Rabin and

Shamir, by encrypting the data with a key-based en-

cryption algorithm, and then dispersing the encrypted

data with an IDA and the key with a secret sharing

scheme [12]. This is called Secret Sharing Made Short

(SSMS). Our dispersal algorithm, described in the next

section, also enriches Rabin’s IDA with security. Unlike

SSMS, it does so without secret sharing, and with the

integration of integrity checking for corruption.

3 A New Dispersal Algorithm: AONT-RS

We enrich Rabin’s IDA in two ways. First, we employ

a variant of Rivest’s All-or-nothing Transform (AONT)

as a preprocessing pass over the data [24]. The AONT

2

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 193

may be viewed as a (s+1,s+1) threshold scheme. Data

composed of s words of size wA
1 is encoded into s+ 1

different words so that none of the original words may

be decoded unless all s+1 encoded words are present, or

an attacker possesses enough computing power to crack

an encryption key. The key, however, is encoded with

the data. If a file’s size is b bytes, the performance of

encoding is O(b). The benefits of the AONT are:

• No external keys are necessary.

• Very little extra storage is required.

• The computational requirements of the attacker may

be a parameter of the encoding.

• The performance is good.

The AONT works as follows. The data is composed

of swords d0, . . . ,ds−1, each of which iswA bits in length.

A random key K is chosen, and each codeword c i is cal-

culated as:

ci = di⊕E(K, i+ 1),

where E is a key-based encryption algorithm such as

AES [6]. A final codeword, ck, is calculated to be a func-

tion of K and a hash of the other codewords. The AONT

has computational security, which means that unless an

attacker possesses all s+1 codewords or can guessK, the

attacker cannot get information about any word or data.

We will discuss this further in section 5 below.

We modify this scheme slightly. We add an extra word

of data ds, called a canary [2]. This word has a known,

fixed value, which allows us to check the integrity of the

data when it is decoded.

We generate c0, . . . ,cs as described above and then cal-

culate a hash h of the s+ 1 codewords using a standard

hash algorithm such as SHA-256 [15] having an output

at least as long as K. We then calculate a final block cs+1

as:

cs+1 = K⊕h.

Our second modification of Rabin’s IDA is to employ

a systematic erasure code instead of a non-systematic

one. A systematic code is defined to be one where the

codeword contains the original elements of D. Without

loss of generality, the first k elements of C are equal to

the elements of D: ci = di for 0 ≤ i< k. This means that

the first k rows of G compose a k× k identity matrix as

pictured in Figure 2.

Employing a systematic erasure code instead of a non-

systematic one (as in both the Shamir and Rabin algo-

rithms) improves performance because it eliminates the

1Since AONT-RS mixes AONT with dispersal, we differentiate its

word size from the dispersal’s word size using wA instead of w.

Figure 2: A systematic erasure code.

need to encode the first k codewords. Since many sys-

tems use values of k that are large relative to n (e.g. POT-

SHARDS’ evaluation uses a (3,5) Shamir scheme [30])

the savings during encoding with a systematic erasure

code are substantial. Moreover, when decoding, code-

word elements that are equal to data elements do not have

to be decoded, which improves performance further.

We call our dispersal technique AONT-RS, as it is a

combination of the All-Or-Nothing Transform and Reed-

Solomon coding. The intuition is that we use the AONT

for security and the dispersal for availability, proximity

and fault-tolerance. This is unlike Shamir, Rabin and

SSMS which use dispersal to achieve both functions.

Figure 3: Encoding operation of AONT.

Several diagrams depict the operation of AONT-RS

and interaction between AONT and Reed-Solomon cod-

ing. In Figure 3, data is processed by AONT. A canary

is appended to the data, and the data and canary are en-

crypted with a random key. A hash value of the encrypted

data is computed. The hash value and random key are

then combined via bitwise exclusive-or to form a differ-

ence, which is appended to the encrypted data to form

the AONT package.

Once processed by AONT, the result is treated as nor-

mal input to a systematic IDA, as depicted in Figure 4.

3

194 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Figure 4: Dispersal of AONT package using a systematic

IDA such as Reed-Solomon coding.

Figure 5: Recovering the AONT package from a thresh-

old number of slices.

The IDA splits the input into k slices formed directly

from the input and computes n− k coding slices. Slices

are then stored to separate locations.

At a future time, slices may be retrieved and used to

recover the data. The first step in this process requires

obtaining a threshold number of slices, as in Figure 5.

Short of a threshold number of slices the entire AONT

package cannot be recovered; there is not enough infor-

mation contained in m< k slices to yield the original in-

put, whose length is k times the slice length. However, if

one possesses any k of the slices, they may compute the

original input to the IDA which in this case is the AONT

package.

As shown in Figure 6, Reversing the AONT operation

is trivial when one possesses the entire package. The

first step is to compute the hash, h, of the encrypted data.

Since the last block contains K⊕h and we know the hash

value h, we may exclusive-or the last block with the hash

to find (K⊕ h⊕ h). Since h⊕ h equals zero, the result

is the random key K. The random key is then used to

decrypt the encrypted data, and the canary is checked to

detect corruption.

4 A Concrete Example

To help illustrate, we present a concrete example. Sup-

pose we have a 4KB block of data, D that we wish to

massage into 16 slices on 16 storage nodes so that we

may reconstruct and verify the data so long as we pos-

Figure 6: Restoring data from an AONT package.

sess any 10 slices.

Shamir: To apply Shamir’s algorithm, we view the

data as 4096 individual bytes, d0, . . . ,d4095. Each of the

16 slices S0, . . .S15 will also be composed of 4096 in-

dividual bytes si,0, . . . ,si,4095 such that si, j is a function

of d j and nine random bytes. Specifically,

si, j = d j⊕
9

!
x=1

(i+ 1)xr j,x,

where r j,x is a random byte and arithmetic is

over GF(28). The total storage requirement is 64 KB.

Rabin: To apply Rabin, we pad D to be 4100 bytes

and then partition it into ten data slices DS0, . . . ,DS9

of 410 bytes each. As with Shamir, we view each

data slice DSi to be composed of 410 individual

bytes DSi,0, . . .Dsi,409. We then calculate each of the

16 slices using Reed-Solomon coding on the individual

bytes: 2

si, j =
9

!
x=0

(i+ 1)xdx, j.

Again, arithmetic is over GF(28). The total storage re-

quirement is 16*410 = 6.41 KB.

SSMS: With SSMS, we select a random 16-byte en-

cryption key and encrypt the data with an encryption al-

gorithm such as AES. We then disperse it using Rabin

and disperse the key using Shamir. The total storage re-

quirement is 16*(410+16) = 6.65 KB.

AONT-RS: We will be adding 34 additional bytes to

the data, and we will first view it as being composed

of 257 16-byte words, d0, . . . ,d256, where the first 256

words are the original data. We set d256 to be a 16-byte

canary value. We choose K to be sixteen random bytes

and set each ci to equal di⊕ E(K, i+ 1) where E is a

standard encryption algorithm. Next we calculate h to

be a 16-byte hash of c0, . . . ,c256. Finally, we set c257 to

equal h⊕K. The last 2 bytes are immaterial – they are

simply padding so that the data may be partitioned into

ten equal slices. They could be used as additional ca-

naries if desired.

2While Rabin does not use a Vandermonde matrix in [21], the ma-

trix he employs has the same properties.

4

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 195

As with Rabin, we partition the 4130 bytes into ten

data slices DS0, . . . ,DS9 of 413 bytes each. These will

be stored on the first ten storage nodes. Six additional

coding slices CS0, . . . ,CS5 will be calculated using a dif-

ferent dispersal matrix, such as the one depicted in Fig-

ure 7, which is derived from the Vandermonde matrix for

systematic coding (see [18] for an explanation of why a

Vandermonde matrix is inadequate for this purpose). The

total storage requirement is 16*413 = 6.45 KB.

1 1 1 1 1 1 1 1 1 1

1 147 138 73 93 161 103 58 99 178

1 103 156 151 123 187 166 175 244 83

1 58 203 60 48 51 175 52 16 30

1 93 151 205 212 44 123 48 197 244

1 220 166 123 82 143 245 40 167 122

Figure 7: Dispersal matrix for the systematic (10,16)
Reed-Solomon code over GF(28).

In each of the four methods, a client or attacker needs

to acquire 10 of the 16 slices to read the data. Each

method has different security and performance charac-

teristics, which are included in the sections of Security

and Performance below.

5 Security Evaluation

The threat model that we use is one where individual

storage servers belong to different domains, both admin-

istrative and physical. Servers may be lost due to non-

security-related events like power failure or water dam-

age, or their security may be compromised; for example a

rogue system administrator or outside attacker can steal

data. Moreover, servers may become corrupted either

maliciously or due to the natural process of time. We

assume that the physical dispersal of storage servers is

limiting on an attacker, and that the difficulty of breach-

ing servers in multiple domains, along with a judicious

choice of k and n, is sufficient to make the system se-

cure.

All of these schemes provide a good level of security –

if one cannot truly decode the data without acquiring all k

slices, then an attacker without some a priori information

about the data will not be able to glean anything from

fewer than k slices. In the words of Rabin, “We do not

see a way of fully reconstructing even small portions ofD

from k−1 pieces” [21]. 3

However, if an attacker has some notion of what data

he or she is seeking but possesses fewer than k−1 slices,

then the schemes differ greatly. We will consider the

most pathological example: An attacker possesses m< k

3We have changed the variables in the quote to match our paper.

slices of the codewordC and wants to verify whether the

data that it encodes matches some predetermined value.

Further, if the attacker can verify that one slice of D

matches, then the attacker can be assured that the rest

matches. While this seems rather generous to the at-

tacker, there are many realistic attacking scenarios that

can be reduced to this one [7]. For each algorithm, we

assume that the attacker knows how the slices were gen-

erated, except for the random numbers.

Shamir: Shamir’s security is guaranteed. Attackers

cannot get any information from fewer than k slices,

regardless of their computing power. For example,

with k− 1 slices each of size w, there are 2w potential

values of d0 that can generate those slices. Thus, every

possible value of d0 is equally likely. One needs the k-th

slice to determine the actual value of d0. This is informa-

tion theoretic security.

Rabin: Since Rabin’s IDA has no randomness, it has

no security, even if the attacker owns just one slice. Since

the attacker knows how the slices are generated, com-

promise consists solely of verifying that a slice has a

predetermined value. Further, if the generator matrix is

known and the data has recognizable patterns (i.e. it is

not random looking) then it is possible to guess the con-

tent of missing slices. If one has k−1 slices, trying each

of the 2w possibilities for words of a missing slice will

yield k recognizable words when the correct value is at-

tempted.

SSMS: SSMS has computational security [12]. With-

out the key, one has to break the encryption, which can

be made computationally intractible with a large enough

key. Moreover, since Shamir protects the key with in-

formation theoretic security, there is no way get the key

with fewer than k slices.

AONT-RS: AONT has the property that unless one

has all of the encrypted data, one cannot decode any

of it. This is because one needs all of the data to dis-

cover K, and one cannot decode any of the data with-

outK. However, if an attacker ownsK and one slice, then

the attacker can easily verify that D has a predetermined

value, just as in Rabin. Thus, we analyze the difficulty

in having the attacker figure out K’s value. Suppose the

attacker owns the first slice, which contains the first en-

coded word ofD, which is equal to d0⊕E(K,1). The en-

coding function guarantees that enumeration is the only

way to discover K’s value, which means that an attacker

must test up to 2wA potential values of K to discover its

real value. Like SSMS, this is computational security.

Thus, both AONT-RS and SSMS have computational

security. If an attacker owns any data slice, then com-

promise can only occur by discovering K as above. If

an attacker owns a coding slice, then the attacker must

again enumerate potential values of K, calculate poten-

tial values of the slice and verify them. Owning k− 1

5

196 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Algorithm Running Time Storage

Shamir Perf(n,k,kb) nb

Rabin Perf(n,k,b) nb
k

AONT-RS AONT(b)+ Perf(n− k,k,b) n(b+wA)
k

Table 1: Running time and storage requirements of the three dispersal algorithms.

slices adds no information – the act of verification still

boils down to enumerating all potential values of K. The

encryption and therefore missing words in other slices

cannot be guessed in the same way they can under Ra-

bin.

Special mention must be made of storing K ⊕ h as

the last element of the codeword. Cryptographic hash

functions are designed to have an unpredictable and uni-

formly distributed output. Further, they are designed to

follow the strict avalanche criterion [35], meaning h is

dependent on every bit of input. Therefore unless an at-

tacker knows all code words c0, . . . ,cs, h cannot be pre-

dicted. Modeling the hash function as a random oracle, h

encrypts K in the same manner as a One-Time-Pad [34]

and provides information theoretic security since h is the

same length as K. Therefore K⊕h yields no information

about K when h is unknown.

Moreover, the avalance criterion allows the canary to

be sufficient to check integrity. If any bit of the stored

slices is modified, then with sufficient probability, the

calculated hash h′ will be different from the one used

to calculate the difference. Since h ′ differs from h, the

calculated encryption key K will be incorrect, and as a

result, the value in the calculated canary will differ from

its known value.

While computational security is not as strong as infor-

mation theoretic security, in our view it is functionally

equivalent. As long as wA is sufficiently large, it is com-

putationally infeasible for an attacker to even verify that

slices hold given data. For example, when w= 256 as in

Section 4, compromise requires the enumeration of 2 256

keys. To put this in perspective, if each person on earth

had access to a trillion computers that can test a trillion

keys per second, it would take over 1035 years on average

to correctly guess the key. According to some estimates

of proton half-life, most matter in the universe will have

decayed before the key would be found [1].

6 Theoretical Performance

Let Perf(R,C,S) be the CPU time that it takes to en-

code D, composed of S total bytes, with a R×C disper-

sal matrix. In terms of big-O notation, Perf(R,C,S) =
O(RCS). A more precise evaluation of Perf(R,C,S) is

difficult, because of the variety of ways that the encod-

ing may be implemented. If one implements the encod-

ing with standard finite field arithmetic, then:

Perf(R,C,S) =
S

C

(
(R−1)(C−1)

Mult
+
R(C−1)

XOR

)
,

where Mult is the bandwidth of performing Galois Field

multiplication and XOR is the bandwidth of perform-

ing XOR operations. This is because encoding becomes

a series of dot products to create R coding slices each

of whose size is S
C

bytes. The difference in the num-

ber of multiplications vs. XORs arises becuase nearly

all dispersal matrices are like Figure 7 and have ones in

their top rows and leftmost columns. Implementations

of Reed-Solomon coding do, however, differ in their per-

formance characteristics. Using Cauchy Reed-Solomon

coding [3], for example, substitutes additional XOR op-

erations for the multiplication and can improve perfor-

mance significantly [19].

Additionally, let AONT(S) be the time that it takes

to perform the AONT on S bytes of data. The choice

of wA, encryption and hashing technique will all af-

fect AONT(S). In general, though, it is O(S) and is also

easy to parallelize [24].

Given the parameters k, n, b, Perf(R,C,S), and

AONT(S) the performance of the three main dispersal

algorithms and their storage requirements are given in

Table 1. Since SSMS doesn’t specify a recommended

dispersal or encryption algorithm, we omit it from the

remaining analyses. Roughly, its performance will be

close to AONT-RS.

7 Microbenchmark Performance

To assess actual performance, we used open-source C li-

braries to perform the various functionalities. All tests

were performed on a 4-core Intel Xeon W3530 at 2.80

GHz with 6 GB of memory at 1066 MHz running Linux

kernel 2.6.32. Despite having multiple cores, all bench-

marks were performed using a single thread. For Reed-

Solomon coding, we used Luigi Rizzo’s open source li-

brary over GF(28) [25]. We tested a variety of k-of-n

configurations, ranging from 3-of-6 to 32-of-64, measur-

ing ce, defined as the bandwidth of creating each coding

slice, times k. For a given machine, ce should be rela-

tively constant, since the time to create each coding slice

6

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 197

0 10 20 30

n

0

50

100

150

200

E
n

co
d

in
g
 S

p
ee

d
 (

M
B

 o
f

d
a
ta

/s
)

k/n = 1/6

Shamir

0 10 20 30

n

0

50

100

150

200

k/n = 2/6 = 1/3

Rabin

0 10 20 30

n

0

50

100

150

200

k/n = 3/6 = 1/2

AONT-RS_fast

0 10 20 30

n

0

50

100

150

200

k/n = 4/6 = 2/3

AONT-RS_secure

0 10 20 30

n

0

50

100

150

200

k/n = 5/6

Figure 8: Performance comparison of the dispersal algorithms. Each graph affixes the k-to-n rate and plots speed of

encoding with each dispersal algorithm.

should be linear in k. Despite the wide disparity in con-

figurations, we observe that ce is fairly consistent, with

a minimum of 921.60 MB/s in the 3-of-6 configuration,

to a maximum of 994.00 MB/s in 27-of-54. The average

performance for the 30 configurations tested is 965.61

MB/s with a standard deviation of 11.42 MB/s. Thus, we

can use ce to approximate Perf as:

Perf(R,C,S) =
RCS

965.61MB/s
.

The encoding time for AONT is dependent on the

choice of cipher and hash function. To encode S bytes

using AONT, both the cipher and hash function must pro-

cess S bytes. Therefore the time equals the sum of the

time to encrypt S bytes plus the time to hash S bytes.

We tested the performance of two pairs of cipher/hash

algorithms, one tailored for high security (AES-256 and

SHA-256) and the other tailored for performance (RC4-

128 and MD5). For this test, we used OpenSSL 0.9.8k

with a block size of 8 KB. The results are in Table 2.

Encoding Rate (MB/s)

AES-256 143.30

RC4-128 414.17

SHA-256 160.03

MD5 559.47

Table 2: Performance of two encryption algorithms

(AES-256 and RC4-128) and two hash algorithms (SHA-

256 and MD5).

Thus, we come up with two functions for AONT(S),
one which we call secure (AES-256 and SHA-256), and

one which we call fast (RC4-128 and MD5):

AONTsecure(S) =
S

75.60MB/s

AONTfast(S) =
S

237.99MB/s

We now have the necessary information to use Table 1

to evaluate the performance of the three dispersal algo-

rithms for any k-of-n configuration. We do so in Figure 8.

Each graph affixes a k-of-n ratio called a rate and then

plots the speed of encoding in MB of data per second.

The rates increase by 1
6

for each successive graph, start-

ing with a very low rate of 1
6

and proceeding to a very

high rate of 5
6
.

The trade-offs of the various formulas are apparent

from the graph. There is a dispersal cost for all three

algorithms and an AONT cost for the AONT-RS algo-

rithms. The AONT cost is constant, since it depends

solely on the size of the data. Thus, when disper-

sal is very fast, as in the 1-of-6 and 2-of-6 cases, Ra-

bin outperforms AONT-RSfast and Shamir outperforms

AONT-RSsecure. As k and n grow, however, the dispersal

costs increase. This increase is most pronounced with

Shamir, then with Rabin and finally with AONT-RS. For

each rate except the very low 1
6
, there is a point where

the performance of AONT-RSfast becomes the best, and

a point where AONT-RSsecure’s performance surpasses

both Shamir and Rabin. These points come at lower val-

ues of n for higher k-of-n rates.

A schematic of Cleversafe’s storage architecture is de-

picted in Figure 9. Although not plotted above, of spe-

cial interest is the 3-of-5 data point, since this is the k-

of-n configuration measured by POTSHARDS [30], an

archival storage system that uses Shamir for both fault-

tolerance and security. For this configuration, the perfor-

7

198 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Figure 9: A high-level picture of Cleversafe’s storage architecture.

mance of AONT-RSsecure (65.4 MB/s) is nearly identical

to Shamir (64.4 MB/s), which means that a system like

POTSHARDS can achieve computational security rather

than information theoretic security for the same perfor-

mance, but with a factor of three less storage.

8 Commercial Dispersed Storage System

AONT-RS is a feature in the storage software and appli-

ances sold by Cleversafe, which developed the technique

to address the threat model of compromise, theft or loss

of disks and devices. By appropriately tuning the disper-

sal configuration, all disks or devices at an entire site can

be stolen and the data will remain confidential. Similarly,

as long as a minimum threshold of servers are available,

subsets of servers may be brought offline temporarily for

maintenance, or permanently for replacement. Since the

servers are protected by AONT-RS, storage owners may

dispose of servers without having to “wipe” the drives

clean, since the information on the servers is impossible

to obtain without gaining access to some subset of the

remaining servers.

Two paradigms are exposed to clients — a block

paradigm that supports standard protocols like NFS,

CIFS, FTP and iSCSI, and an object paradigm that sup-

ports larger storage units for better performance. An

Accesser calculates mappings that associate blocks or

objects to slices on dispersed storage servers (termed

“Slicestores” in Cleversafe’s product). A common con-

figuration is to encode each block or object into 16 slices

using a (10,16)-threshold AONT-RS scheme.

Block reads and writes that use iSCSI go through the

Accesser. The Accesser performs the block-to-slice en-

coding and decoding, and also manages the traffic to and

from the servers. The other protocols require a Gate-

way, typically co-located with the Accesser, that trans-

lates between the various file protocols and iSCSI. Since

this path has two hops and interacts with the servers

with small messages, the performance of the block pro-

tocols is limited by the networking hardware and not the

AONT-RS protocol. Storage servers do support multiple

Accessers, which relieves one bottleneck of the block-

based system.

To achieve better performance, Cleversafe also exports

a protocol for large objects. Objects are partitioned into

Megabyte-sized chunks, which are then encoded into

slices for dispersal. Clients may either read and write ob-

jects through the Accesser using HTTP, or they may use a

SDK to perform their own AONT-RS encoding/decoding

so that they may interact directly with the servers. In

both cases, the client manages the context of the object

name. A common software architecture is that clients

use a database to maintain the the meaning and relation-

ships of the content, and they store the object names in a

column of the database.

Slice pointers are 48 bytes in length and are com-

posed of three parts: routing information that enables

slices to be routed to and from the correct servers, the

source name which identifies the slice, and vault infor-

mation which enables access control. The source name

is opaque – its interpretation is dependent on the specific

client and server. Vaults are logical containers of stor-

age. Each vault has its own quotas, data coding param-

eters and access controls. Access controls are identity-

based; each vault may have an arbitrary number of ac-

counts granted read or write permissions to it.

Each slice is stored with metadata that identifies the

slice’s coding parameters and a version number. The ver-

sion number is increased for each distinct write of the

block or object, and concurrency control is maintained

via the SDK with transactions and a three-phase com-

mit. An additional parameter of each system is the write

threshold, z, where k ≤ z ≤ n. This specifies how many

slices must be written before a write can be committed.

Setting z closer to k improves latency at the expense of

reliability for a window of time. The remaining (n− z)
writes are processed in the background, which reduces

this window of exposure.

8

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 199

W
rite: A

ctu
al

R
ead

: A
ctu

al

0

50

100

150

200
B

a
n

d
w

id
th

 (
M

B
/s

)
Control

W
rite: P

ro
jected

W
rite: A

ctu
al

R
ead

: A
ctu

al

AONT-RS

Fast

W
rite: P

ro
jected

W
rite: A

ctu
al

R
ead

: A
ctu

al

AONT-RS

Secure

W
rite: P

ro
jected

W
rite: A

ctu
al

R
ead

: A
ctu

al

Rabin

W
rite: P

ro
jected

Shamir

W
rite: P

ro
jected

W
rite: C

lien
t 1

W
rite: C

lien
t 2

R
ead

: C
lien

t 1

R
ead

: C
lien

t 2

0

50

100

150

200

B
a

n
d

w
id

th
 (

M
B

/s
)

AONT-RS

Fast

W
rite: P

ro
jected

W
rite: C

lien
t 1

W
rite: C

lien
t 2

R
ead

: C
lien

t 1

R
ead

: C
lien

t 2

AONT-RS

Secure

W
rite: P

ro
jected

W
rite: C

lien
t 1

W
rite: C

lien
t 2

R
ead

: C
lien

t 1

R
ead

: C
lien

t 2
Rabin

(a) One client (b) Two clients

Figure 10: Actual and projected performance of dispersed storage of 10 MB objects on a (5,8) test configuration.

Authentication in the system is two-way: servers au-

thenticate themselves to clients by means of a digital

certificate, which identifies it within the dispersed stor-

age system and allows TLS sessions to be created. The

method of authentication of the client to the server is

flexible — both password and certificate-based authen-

tication are supported. Despite use of AONT-RS, se-

cure network communication is still required for security

since a threshold number of slices travel together over

the ‘last mile’ of the client’s connection.

All components are written in Java. Reed-Solomon

erasure coding is performed using Java’s FEC li-

brary [16], and encryption using SunJCE.

9 Measured Performance

To measure performance, we use a commercial config-

uration with one or two clients and eight servers. The

client and Accesser machines each have a 4-core Intel(R)

Xeon(R) X3430 processor running at 2.40 GHz with 8

MB cache and 16 GB of ECC RAM. Four GB of memory

is allocated to the JVM when executing the software. We

use the Java HotSpot(TM) 64-Bit Server VM (build 17.0-

b16, mixed mode) running Java 1.6.0 21. The storage

servers each have a 4-core Intel(R) Xeon(R) X3460 pro-

cessor at 2.80 GHz with 8 MB cache and 16 GB of ECC

RAM. For storage, each server has twelve 2 TB Seagate

SATA drives. The networking between components con-

sists of a 10 Gb Ethernet switch. To handle simultaneous

connections to multiple servers, the Accessers have 10

Gb network interface cards. The servers’ cards are 1 Gb.

Our main test has the client spend 10 minutes reading

and writing 10 MB objects, held in main memory, to the

eight-server storage network, using the SDK and object

interface. The coding parameters are k= 5 and n= 8, and

five threads are employed by the client to leverage all of

its cores. As in section 7, we recorded microbenchmarks

of the various components of dispersal:

AONTsecure(S) =
S

104.77MB/s

AONTfast(S) =
S

249.03MB/s

ce = 2628MB/s

The performance of a control and the dispersal algo-

rithms is shown in Figure 10(a). The control has the

client perform no encoding, but still sends 8 slices to the

servers. While the Cleversafe implementation is flexible,

allowing us to embed Rabin and both AONT-RS disper-

sal algorithms, we did not implement Shamir within the

framework. This is because the blowup of storage re-

quirements by a factor of five would be unreasonable.

We show the actual performance of writes and reads

for the control, the two AONT-RS implementations and

Rabin. We also include the projected write performance

of the dispersal algorithms, including Shamir, using the

performance equations from section 7, the microbench-

marks, plus the performance of the control as the actual

dispersal bandwidth (214 MB/s).

For the three dispersal algorithms that we tested, the

projected performance was within ten percent of the ac-

tual performance. We find this result compelling be-

cause the system on which the tests were performed was

a production-level system, implementing the full func-

tionality of Cleversafe’s commercial storage system, in-

cluding access control and metadata management.

In the tests with coding, the CPU utilization of the

client is measured to be 90%. Since the closest I/O bot-

tlenecks are the eight 1-Gbps links to the storage servers,

it is clear that the limiting factor in these tests is the

ability of the client computer to process data. To fur-

ther affirm the client as bottleneck, we ran two clients

9

200 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

simultaneously and present their performance in Fig-

ure 10(b). The clients’ performance is nearly identical

to Figure 10(a).

It is worth noting that AONT-RSsecure exhibits worse

performance when reading than when writing; we ex-

pected that during reads, less CPU resources would be

required, since some slices do not need to be processed

by the IDA. The worse performance is due to the SunJCE

implementation of AES, which is significantly slower

when decrypting than when encrypting. In a stand-alone

benchmark we observed 31.51 MB/s vs. 44.77 MB/s

when encrypting.

10 Tales of Deployment

Today, there are over 20 Cleversafe dispersed storage

installations in pilot and production around the world,

with customers drawing from a diverse set of industries

including financial, health care, entertainment, and de-

fense. Several customers (who have asked to remain

anonymous) have cited one important factor in their

purchasing decision: that the contents of small sets of

servers are meaningless in isolation. Thus, one can de-

commission disk drives or potentially even server sites

without having to “wipe” them, which can be expen-

sive 4. Since nearly all U.S. states have “data breach

laws,” that require companies to proactively disclose the

loss of storage that is not encrypted [33], using AONT-

RS can save companies time, attorney fees and bad pub-

licity that results from having to alert consumers to a data

breach.

One of Cleversafe’s deployments is for The Museum

of Broadcast Communications that serves its video col-

lections on the Internet. In particular, over 8,500 hours

of historical audio and video content have been digitized

and stored on tens of terabytes in one of Cleversafe’s dis-

persed storage systems. Roughly 200,000 monthly visi-

tors access the archives over the web.

The Museum deployment is composed of 16 storage

servers, each having 4 TB of raw capacity and spread

across 8 sites: Chicago, Dallas (two locations) Denver,

New Jersey, San Francisco, Seattle and Tampa. The sites

are situated across three power grids in the continental

United States, and the data is dispersed in a 10-of-16

configuration. In this way, even if one entire power grid

shuts down, enough servers will remain accessible to re-

trieve all the data. The Museum uses the object store

interface inside its internal database, so that users em-

ploy the database to search a rich set of metadata about

the movies, which can then be retrieved using the object

handle.

4For example, see http://www.east-tec.com/enterprise/

disposesecureent/.

Internally, Cleversafe maintains dispersed storage sys-

tems having over 1 PB of capacity. These are used in-

ternally for development, testing and storing production

data. Employees have their own personal vaults with ac-

cess to a 30 TB pool of dispersed storage, which is imple-

mented over 8 geographically separated storage servers

across the United States.

In one case, Cleversafe initially deployed a system

across four sites, but at a later time decided that it should

be migrated to 8 sites to provide better tolerance to site

and power grid outages. To accomplish this without

bringing the system down, machines were incrementally

boxed up and shipped across the country, such that at

all times a threshold number remained online. There-

fore the system remained accessible for reads and writes

throughout the process. The same essential technique is

now used to apply software updates. Nodes are upgraded

individually allowing the system to maintain availability

throughout the upgrade process.

11 Conclusion

Dispersed storage systems enable availability, scalabil-

ity, and performance based on physical proximity. They

also enable security via (k,n) threshold schemes that re-

quire attackers to authenticate themselves to k of n stor-

age nodes in order to read data. The threshold schemes

provide this security without relying on the secure stor-

age of encryption keys, which is a notoriously difficult

problem.

We have described a new dispersal algorithm called

AONT-RS, which combines the All-Or-Nothing Trans-

form with systematic Reed-Solomon codes to achieve

computational security. Compared to traditional ap-

proaches to dispersal, AONT-RS has a very attractive

blend of properties. Its storage and computational foot-

print is much less than Shamir secret sharing. While

Shamir achieves information theoretic security AONT-

RS’s security can be tuned so that compromise is com-

putationally infeasible. Compared to Rabin’s classic dis-

persal algorithm, AONT-RS achieves a far greater degree

of security, and also better performance for larger instal-

lations. This is because AONT-RS is based on a sys-

tematic Reed-Solomon erasure code rather than the non-

systematic code employed by Rabin. We have detailed

the theoretical and applied performance of the dispersal

algorithms, and described a commercial dispersed stor-

age product that is based upon the dispersal algorithm.

AONT-RS is not specific to our dispersal solution. For

example, the POTSHARDS archival storage system [30]

could use AONT-RS to implement computational rather

than information theoretic security and reduce their stor-

age requirements by a factor of three. Other solutions

such as Gridsharing [31] can improve their security by

10

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 201

employing AONT-RS rather than a standard systematic

Reed-Solomon code.

In future work, we would like to collect data from

our private and commercial deployments concerning fail-

ures, node availability, compromise and attack. Such

data will enable us to make better policy decisions con-

cerning configurations of dispersed storage. These deci-

sions will allow us to tune the AONT and erasure code

configuration used, and will also allow us to make the

most efficient use of our storage.

12 Acknowledgements

This material is based upon work supported by the Na-

tional Science Foundation under grants CNS-0615221

and CSR-1016636. The authors gratefully acknowledge

Ilya Volvovski’s contribution to the work, plus Steve

Hand for shepherding the paper through the final review-

ing process.

References

[1] AMSLER et al, C. Review of particle physics.

Physics Letters B 667, 1 (2008).

[2] AYCOCK, J. Computer Viruses and Malware (Ad-

vances in Information Security). Springer-Verlag,

New York, 2006.

[3] BLOMER, J., KALFANE, M., KARPINSKI, M.,

KARP, R., LUBY, M., AND ZUCKERMAN, D. An

XOR-based erasure-resilient coding scheme. Tech.

Rep. TR-95-048, International Computer Science

Institute, August 1995.

[4] CLEVERSAFE, INC. Cleversafe dispersed storage.

Community portal:www.cleversafe.org, 2010.

[5] COHEN, B. Incentives build robustness in BitTor-

rent. In Workshop on Economics of Peer-to-Peer

Systems (Berkely, CA, June 2003).

[6] DAEMEN, J., AND RIJMEN, V. The Design of Ri-

jndael, AES— The Advanced Encryption Standard.

Springer-Verlag, New York, 2002.

[7] FERGUSON, N., SCHNEIER, B., AND KOHNO, T.

Cryptography Engineering. John Wiley & Sons

Ltd, Chichester, 2010.

[8] GHEMAWAT, S., GOBIOFF, H., AND LEUNG,

S. T. The Google file system. In 19th ACM Sympo-

sium on Operating Systems Principles (SOSP ’03)

(2003).

[9] GOODSON, G. R., WYLIE, J. J., GANGER, G. R.,

AND REITER, M. K. Efficient byzantine-tolerant

erasure-coded storage. In DSN-04: International

Conference on Dependable Systems and Networks

(Florence, Italy, 2004), IEEE.

[10] GREENAN, K., MILLER, E., AND SCHWARTZ,

T. J. Optimizing Galois Field arithmetic for diverse

processor architectures and applications. In MAS-

COTS 2008: 16th IEEE Symposium on Modeling,

Analysis and Simulation of Computer and Telecom-

munication Systems (Baltimore, MD, September

2008).

[11] HAEBERLEN, A., MISLOVE, A., AND DR-

USCHEL, P. Glacier: Highly durable decentralized

storage despite massive corrolated failures. In 2nd

Symposium on Networked Systems Design and Im-

plementation (NSDI) (2005).

[12] KRAWCZYK, H. Secret sharing made short. In

13th Annual International Conference on Advances

in Cryptology (1993).

[13] MACWILLIAMS, F. J., AND SLOANE, N. J. A.

The Theory of Error-Correcting Codes, Part I.

North-Holland Publishing Company, Amsterdam,

New York, Oxford, 1977.

[14] MANIATIS, P., ROSENTHAL, D. S. H., ROUS-

SOPOULOS, M., AND BAKER, M. LOCKSS:

A peer-to-peer digital preservation system. ACM

Transactions on Computer Systems 23 (2003).

[15] NATIONAL INSTITUTE OF STANDARDS

AND TECHNOLOGY. Secure hash stan-

dard (shs). FIPS PUB 180-3, http:
//csrc.nist.gov/publications/fips/
fips180-3/fips180-3 final.pdf, October

2008.

[16] ONION NETWORKS. Java FEC Library

v1.0.3. Open source code distribution:

http://onionnetworks.com/fec/javadoc/,

2001.

[17] PLANK, J. S. A tutorial on Reed-Solomon coding

for fault-tolerance in RAID-like systems. Software

– Practice & Experience 27, 9 (September 1997),

995–1012.

[18] PLANK, J. S., AND DING, Y. Note: Correc-

tion to the 1997 tutorial on Reed-Solomon coding.

Software – Practice & Experience 35, 2 (February

2005), 189–194.

11

202 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

[19] PLANK, J. S., LUO, J., SCHUMAN, C. D., XU,

L., AND WILCOX-O’HEARN, Z. A performance

evaluation and examination of open-source erasure

coding libraries for storage. In FAST-2009: 7th

Usenix Conference on File and Storage Technolo-

gies (February 2009), pp. 253–265.

[20] PLANK, J. S., SIMMERMAN, S., AND SCHUMAN,

C. D. Jerasure: A library in C/C++ facilitating era-

sure coding for storage applications - Version 1.2.

Tech. Rep. CS-08-627, University of Tennessee,

August 2008.

[21] RABIN, M. O. Efficient dispersal of information

for security, load balancing, and fault tolerance.

Journal of the Association for Computing Machin-

ery 36, 2 (April 1989), 335–348.

[22] REED, I. S., AND SOLOMON, G. Polynomial

codes over certain finite fields. Journal of the

Society for Industrial and Applied Mathematics 8

(1960), 300–304.

[23] RHEA, S., WELLS, C., EATON, P., GEELS, D.,

ZHAO, B., WEATHERSPOON, H., AND KUBIA-

TOWICZ, J. Maintenance-free global data storage.

IEEE Internet Computing 5, 5 (2001), 40–49.

[24] RIVEST, R. All-or-nothing encryption and the

package transform. In 4th International Workshop

on Fast Software Encryption (1997), pp. 210–218.

[25] RIZZO, L. Erasure codes based on Vander-

monde matrices. Gzipped tar file posted at

http://planete-bcast.inrialpes.fr/
rubrique.php3?id rubrique=10, 1998.

[26] ROWSTRON, A., AND DRUSCHEL, P. Stor-

age management and caching in PAST, a large-

scale, persistent peer-to-peer storage utility. ACM

SIGOPS Operating Systems Review 35, 5 (2001),

188–201.

[27] SANTRY, D. S., FEELEY, M. J., HUTCHINSON,

N. C., VEITCH, A. C., CARTON, W., AND OFIR,

J. The Google file system. In 17th ACM Sympo-

sium on Operating Systems Principles (SOSP ’99)

(1999).

[28] SHAMIR, A. How to share a secret. Communica-

tions of the ACM 22, 11 (November 1979), 612–

613.

[29] STORER, M. W., GREENAN, K. M., MILLER,

E. L., AND VORUGANTI, K. Pergamum: Replac-

ing tape with energy efficient, reliable, disk-based

archival storage. In FAST-2008: 6th Usenix Confer-

ence on File and Storage Technologies (San Jose,

February 2008), pp. 1–16.

[30] STORER, M. W., GREENAN, K. M., MILLER,

E. L., AND VORUGANTI, K. POTSHARDS – a

secure, long-term storage system. ACM Transac-

tions on Storage 5, 2 (June 2009).

[31] SUBBIAH, A., AND BLOUGH, D. M. An approach

for fault tolerant and secure data storage in collab-

orative work environments. In ACM Workshop on

Storage Security and Survivability (2005).

[32] TAHO-LAFS. Tahoe least authority file sys-

tem. Open source code distribution: http://
tahoe-lafs.org/trac/tahoe-lafs, 2010.

[33] VANCE, K. Keeping pace with data encryp-

tion laws. www.esecurityplanet.com/trends/
article.php/3887111, June 2010.

[34] VERNAM, G. S. Cipher printing telegraph systems

for secret wire and radio telegraphic communica-

tions. Journal of the IEEE 55 (1926), 109–115.

[35] WEBSTER, A. F., AND TAVARES, S. E. On the

design of S-boxes. In Advances in Cryptology -

Crypto ’85 (1985), Springer-Verlag, pp. 523–534.

[36] WILCOX-O’HEARN, Z. Zfec 1.4.0. Open source

code distribution: http://pypi.python.org/
pypi/zfec, 2008.

12

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 203

Emulating Goliath Storage Systems with David

Nitin Agrawal†, Leo Arulraj∗, Andrea C. Arpaci-Dusseau∗, Remzi H. Arpaci-Dusseau∗
NEC Laboratories America† University of Wisconsin–Madison∗

nitin@nec-labs.com {arulraj, dusseau, remzi}@cs.wisc.edu

Abstract
Benchmarking file and storage systems on large file-

system images is important, but difficult and often in-
feasible. Typically, running benchmarks on such large
disk setups is a frequent source of frustration for file-
system evaluators; the scale alone acts as a strong deter-
rent against using larger albeit realistic benchmarks. To
address this problem, we develop David: a system that
makes it practical to run large benchmarks using modest
amount of storage or memory capacities readily available
on most computers. David creates a “compressed” ver-
sion of the original file-system image by omitting all file
data and laying out metadata more efficiently; an online
storage model determines the runtime of the benchmark
workload on the original uncompressed image. David
works under any file system as demonstrated in this pa-
per with ext3 and btrfs. We find that David reduces stor-
age requirements by orders of magnitude; David is able
to emulate a 1 TB target workload using only an 80 GB
available disk, while still modeling the actual runtime ac-
curately. David can also emulate newer or faster devices,
e.g., we show how David can effectively emulate a multi-
disk RAID using a limited amount of memory.

1 Introduction

File and storage systems are currently difficult to bench-
mark. Ideally, one would like to use a benchmark work-
load that is a realistic approximation of a known appli-
cation. One would also like to run it in a configuration
representative of real world scenarios, including realistic
disk subsystems and file-system images.

In practice, realistic benchmarks and their realistic
configurations tend to be much larger and more com-
plex to set up than their trivial counterparts. File system
traces (e.g., from HP Labs [17]) are good examples of
such workloads, often being large and unwieldy. Devel-
oping scalable yet practical benchmarks has long been
a challenge for the storage systems community [16]. In
particular, benchmarks such as GraySort [1] and SPEC-
mail2009 [22] are compelling yet difficult to set up and
use currently, requiring around 100 TB for GraySort and
anywhere from 100 GB to 2 TB for SPECmail2009.

Benchmarking on large storage devices is thus a fre-
quent source of frustration for file-system evaluators; the
scale acts as a deterrent against using larger albeit realis-
tic benchmarks [24], but running toy workloads on small
disks is not sufficient. One obvious solution is to contin-
ually upgrade one’s storage capacity. However, it is an
expensive, and perhaps an infeasible solution to justify
the costs and overheads solely for benchmarking.

Storage emulators such as Memulator [10] prove ex-
tremely useful for such scenarios – they let us prototype
the “future” by pretending to plug in bigger, faster stor-
age systems and run real workloads against them. Mem-
ulator, in fact, makes a strong case for storage emulation
as the performance evaluation methodology of choice.
But emulators are particularly tough: if they are to be
big, they have to use existing storage (and thus are slow);
if they are to be fast, they have to be run out of memory
(and thus they are small).

The challenge we face is how can we get the best of
both worlds? To address this problem, we have devel-
oped David, a “scale down” emulator that allows one
to run large workloads by scaling down the storage re-
quirements transparently to the workload. David makes
it practical to experiment with benchmarks that were oth-
erwise infeasible to run on a given system.

Our observation is that in many cases, the benchmark
application does not care about the contents of individ-
ual files, but only about the structure and properties of
the metadata that is being stored on disk. In particular,
for the purposes of benchmarking, many applications do
not write or read file contents at all (e.g., fsck); the ones
that do, often do not care what the contents are as long as
some valid content is made available (e.g., backup soft-
ware). Since file data constitutes a significant fraction
of the total file system size, ranging anywhere from 90
to 99% depending on the actual file-system image [3]
avoiding the need to store file data has the potential to
significantly reduce the required storage capacity during
benchmarking.

The key idea in David is to create a “compressed” ver-
sion of the original file-system image for the purposes of
benchmarking. In the compressed image, unneeded user

204 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

data blocks are omitted using novel classification tech-
niques to distinguish data from metadata at scale; file
system metadata blocks (e.g., inodes, directories and in-
direct blocks) are stored compactly on the available back-
ing store. The primary benefit of the compressed image
is to reduce the storage capacity required to run any given
workload. To ensure that applications remain unaware of
this interposition, whenever necessary, David syntheti-
cally generates file data on the fly; metadata I/O is redi-
rected and accessed appropriately. David works under
any file system; we demonstrate this using ext3 [25] and
btrfs [26], two file systems very different in design.

Since David alters the original I/O patterns, it needs
to model the runtime of the benchmark workload on the
original uncompressed image. David uses an in-kernel
model of the disk and storage stack to determine the
run times of all individual requests as they would have
executed on the uncompressed image. The model pays
special attention to accurately modeling the I/O request
queues; we find that modeling the request queues is cru-
cial for overall accuracy, especially for applications issu-
ing bursty I/O.

The primary mode of operation of David is the timing-
accurate mode in which after modeling the runtime, an
appropriate delay is inserted before returning to the ap-
plication. A secondary speedup mode is also available
in which the storage model returns instantaneously after
computing the time taken to run the benchmark on the
uncompressed disk; in this mode David offers the poten-
tial to reduce application runtime and speedup the bench-
mark itself. In this paper we discuss and evaluate David
in the timing-accurate mode.

David allows one to run benchmark workloads that re-
quire file-system images orders of magnitude larger than
the available backing store while still reporting the run-
time as it would have taken on the original image. We
demonstrate that David even enables emulation of faster
and multi-disk systems like RAID using a small amount
of memory. David can also aid in running large bench-
marks on storage devices that are expensive or not even
available in the market as it requires only a model of the
non-existent storage device; for example, one can use a
modified version of David to run benchmarks on a hypo-
thetical 1TB SSD.

We believe David will be useful to file and storage
developers, application developers, and users looking to
benchmark these systems at scale. Developers often like
to evaluate a prototype implementation at larger scales
to identify performance bottlenecks, fine-tune optimiza-
tions, and make design decisions; analyses at scale of-
ten reveal interesting and critical insights into the sys-
tem [16]. David can help obtain approximate perfor-
mance estimates within limits of its modeling error. For
example, how does one measure performance of a file

Figure 1: Capacity Savings. Shows the savings in stor-
age capacity if only metadata is stored, with varying file-size
distribution modeled by (µ , σ) parameters of a lognormal dis-
tribution, (7.53, 2.48) and (8.33, 3.18) for the two extremes.

system on a multi-disk multi-TB mirrored RAID con-
figuration without having access to one? An end-user
looking to select an application that works best at larger
scale may also use David for emulation. For example,
which anti-virus application scans a terabyte file system
the fastest?

One challenge in building David is how to deal with
scale as we experiment with larger file systems contain-
ing many more files and directories. Figure 1 shows the
percentage of storage space occupied by metadata alone
as compared to the total size of the file-system image
written; the different file-system images for this experi-
ment were generated by varying the file size distribution
using Impressions [2]. Using publicly available data on
file-system metadata [4], we analyzed how file-size dis-
tribution changes with file systems of varying sizes.

We found that larger file systems not only had more
files, they also had larger files. For this experiment,
the parameters of the lognormal distribution controlling
the file sizes were changed along the x-axis to gen-
erate progressively larger file systems with larger files
therein. The relatively small fraction belonging to meta-
data (roughly 1 to 10%) as shown on the y-axis demon-
strates the potential savings in storage capacity made
possible if only metadata blocks are stored; David is de-
signed to take advantage of this observation.

For workloads like PostMark, mkfs, Filebench

WebServer, Filebench VarMail, and other mi-
crobenchmarks, we find that David delivers on its
promise in reducing the required storage size while still
accurately predicting the benchmark runtime for both
ext3 and btrfs. The storage model within David is fairly
accurate in spite of operating in real-time within the ker-
nel, and for most workloads predicts a runtime within
5% of the actual runtime. For example, for the Filebench
webserver workload, David provides a 1000-fold reduc-
tion in required storage capacity and predicts a runtime
within 0.08% of the actual.

2

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 205

File System

Metadata block Data block Unoccupied

Benchmark

Target Backing Store

Available Backing Store

David

Figure 2: Metadata Remapping and Data Squashing
in David. The figure shows how metadata gets remapped and
data blocks are squashed. The disk image above David is the
target and the one below it is the available.

2 David Overview

2.1 Design Goals for David
• Scalability: Emulating a large device requires David

to maintain additional data structures and mimic sev-
eral operations; our goal is to ensure that it works well
as the underlying storage capacity scales.

• Model accuracy: An important goal is to model
a storage device and accurately predict performance.
The model should not only characterize the physical
characteristics of the drive but also the interactions un-
der different workload patterns.

• Model overhead: Equally important to being accu-
rate is that the model imposes minimal overhead; since
the model is inside the OS and runs concurrently with
workload execution, it is required to be fairly fast.

• Emulation flexibility: David should be able to emu-
late different disks, storage subsystems, and multi-disk
systems through appropriate use of backing stores.

• Minimal application modification: It should allow
applications to run unmodified without knowing the
significantly less capacity of the storage system under-
neath; modifications can be performed in limited cases
only to improve ease of use but never as a necessity.

2.2 David Design
David exports a fake storage stack including a fake de-
vice of a much higher capacity than available. For the
rest of the paper, we use the terms target to denote the
hypothetical larger storage device, and available to de-
note the physically available system on which David is
running, as shown in Figure 2. It also shows a schematic
of how David makes use of metadata remapping and data
squashing to free up a large percentage of the required
storage space; a much smaller backing store can now ser-
vice the requests of the benchmark.

David is implemented as a pseudo-device driver that

is situated below the file system and above the backing
store, interposing on all I/O requests. Since the driver
appears as a regular device, a file system can be created
and mounted on it. Being a loadable module, David can
be used without any change to the application, file system
or the kernel. Figure 3 presents the architecture of David
with all the significant components and also shows the
different types of requests that are handled within. We
now describe the components of David.

First, the Block Classifier is responsible for classify-
ing blocks addressed in a request as data or metadata
and preventing I/O requests to data blocks from going
to the backing store. David intercepts all writes to data
blocks, records the block address if necessary, and dis-
cards the actual write using the Data Squasher. I/O re-
quests to metadata blocks are passed on to the Metadata
Remapper.

Second, the Metadata Remapper is responsible for lay-
ing out metadata blocks more efficiently on the backing
store. It intercepts all write requests to metadata blocks,
generates a remapping for the set of blocks addressed,
and writes out the metadata blocks to the remapped loca-
tions. The remapping is stored in the Metadata Remap-
per to service subsequent reads.

Third, writes to data blocks are not saved, but reads to
these blocks could still be issued by the application; in
order to allow applications to run transparently, the Data
Generator is responsible for generating synthetic content
to service subsequent reads to data blocks that were writ-
ten earlier and discarded. The Data Generator contains a
number of built-in schemes to generate different kinds of
content and also allows the application to provide hints
to generate more tailored content (e.g., binary files).

Finally, by performing the above-mentioned tasks
David modifies the original I/O request stream. These
modifications in the I/O traffic substantially change the
application runtime rendering it useless for benchmark-
ing. The Storage Model carefully models the (potentially
different) target storage subsystem underneath to predict
the benchmark runtime on the target system. By doing
so in an online fashion with little overhead, the Storage
Model makes it feasible to run large workloads in a space
and time-efficient manner. The individual components
are discussed in detail in §3 through §6.

2.3 Choice of Available Backing Store
David is largely agnostic to the choice of the backing
store for available storage: HDDs, SSDs, or memory can
be used depending on the performance and capacity re-
quirements of the target device being emulated. Through
a significant reduction in the number of device I/Os,
David compensates for its internal book-keeping over-
head and also for small mismatches between the emu-
lated and available device. However, if one wishes to

3

206 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Delay
TimeTarget

Device Model

Available
Backing Store

Available
I/O Request

Queue

Inode Journal Unclassified
Block StoreParser Snooper

Data

Data Or Metadata
Metadata

Storage Model Block Classifier

Original Disk RequestCloned Disk Request

Process
Status

Waiting Requests
List

Read
Read

Write
Or After Write

Write

Read
Target I/O Request Queue

Data GeneratorMetadata
Remapper Remap Table

Remap Bitmap

Reads
Sync

Data Squasher

Disk Request From File System

MechanismImplicit Notification

Mechanism

Explicit Notification

Figure 3: David Architecture. Shows the components of David and the flow of requests handled within.

emulate a device much faster than the available device,
using memory is a safer option. For example, as shown
in §6.3, David successfully emulates a RAID-1 configu-
ration using a limited amount of memory. If the perfor-
mance mismatch is not significant, a hard disk as backing
store provides much greater scale in terms of storage ca-
pacity. Throughout the paper, “available storage” refers
to the backing store in a generic sense.

3 Block Classification

The primary requirement for David to prevent data writes
using the Data Squasher is the ability to classify a block
as metadata or data. David provides both implicit and ex-
plicit block classification. The implicit approach is more
laborious but provides a flexible approach to run unmod-
ified applications and file systems. The explicit notifica-
tion approach is straightforward and much simpler to im-
plement, albeit at the cost of a small modification in the
operating system or the application; both are available in
David and can be chosen according to the requirements
of the evaluator. The implicit approach is demonstrated
using ext3 and the explicit approach using btrfs.

3.1 Implicit Type Detection
For ext2 and ext3, the majority of the blocks are stati-
cally assigned for a given file system size and configu-
ration at the time of file system creation; the allocation
for these blocks doesn’t change during the lifetime of the
file system. Blocks that fall in this category include the
super block, group descriptors, inode and data bitmaps,
inode blocks and blocks belonging to the journal; these
blocks are relatively straightforward to classify based on
their on-disk location, or their Logical Block Address
(LBA). However, not all blocks are statically assigned;
dynamically-allocated blocks include directory, indirect
(single, double, or triple indirect) and data blocks. Un-
less all blocks contain some self-identification informa-

tion, in order to accurately classify a dynamically allo-
cated block, the system needs to track the inode pointing
to the particular block to infer its current status.

Implicit classification is based on prior work on
Semantically-Smart Disk Systems (SDS) [21]; an SDS
employs three techniques to classify blocks: direct and
indirect classification, and association. With direct clas-
sification, blocks are identified simply by their location
on disk. With indirect classification, blocks are identified
only with additional information; for example, to iden-
tify directory data or indirect blocks, the corresponding
inode must also be examined. Finally, with association,
a data block and its inode are connected.

There are two significant additional challenges David
must address. First, as opposed to SDS, David has
to ensure that no metadata blocks are ever misclassi-
fied. Second, benchmark scalability introduces addi-
tional memory pressure to handle delayed classification.
In this paper we only discuss our new contributions (the
original SDS paper provides details of the basic block-
classification mechanisms).

3.1.1 Unclassified Block Store
To infer when a file or directory is allocated and deallo-
cated, David tracks writes to inode blocks, inode bitmaps
and data bitmaps; to enumerate the indirect and directory
blocks that belong to a particular file or directory, it uses
the contents of the inode. It is often the case that the
blocks pointed to by an inode are written out before the
corresponding inode block; if a classification attempt is
made when a block is being written, an indirect or di-
rectory block will be misclassified as an ordinary data
block. This transient error is unacceptable for David
since it leads to the “metadata” block being discarded
prematurely and could cause irreparable damage to the
file system. For example, if a directory or indirect block
is accidentally discarded, it could lead to file system cor-
ruption.

4

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 207

To rectify this problem, David temporarily buffers in
memory writes to all blocks which are as yet unclassi-
fied, inside the Unclassified Block Store (UBS). These
write requests remain in the UBS until a classification is
made possible upon the write of the corresponding inode.
When a corresponding inode does get written, blocks that
are classified as metadata are passed on to the Metadata
Remapper for remapping; they are then written out to
persistent storage at the remapped location. Blocks clas-
sified as data are discarded at that time. All entries in the
UBS corresponding to that inode are also removed.

The UBS is implemented as a list of block I/O (bio) re-
quest structures. An extra reference to the memory pages
pointed to by these bio structures is held by David as long
they remain in the UBS; this reference ensures that these
pages are not mistakenly freed until the UBS is able to
classify and persist them on disk, if needed. In order
to reduce the inode parsing overhead otherwise imposed
for each inode write, David maintains a list of recently
written inode blocks that need to be processed and uses
a separate kernel thread for parsing.

3.1.2 Journal Snooping
Storing unclassified blocks in the UBS can cause a strain
on available memory in certain situations. In particular,
when ext3 is mounted on top of David in ordered jour-
naling mode, all the data blocks are written to disk at
journal-commit time but the metadata blocks are written
to disk only at the checkpoint time which occurs much
less frequently. This results in a temporary yet precari-
ous build up of data blocks in the UBS even though they
are bound to be squashed as soon as the corresponding
inode is written; this situation is especially true when
large files (e.g., 10s of GB) are written. In order to en-
sure the overall scalability of David, handling large files
and the consequent explosion in memory consumption is
critical. To achieve this without any modification to the
ext3 filesystem, David performs Journal Snooping in the
block device driver.

David snoops on the journal commit traffic for inodes
and indirect blocks logged within a committed transac-
tion; this enables block classification even prior to check-
point. When a journal-descriptor block is written as part
of a transaction, David records the blocks that are being
logged within that particular transaction. In addition, all
journal writes within that transaction are cached in mem-
ory until the transaction is committed. After that, the in-
odes and their corresponding direct and indirect blocks
are processed to allow block classification; the identified
data blocks are squashed from the UBS and the iden-
tified metadata blocks are remapped and stored persis-
tently. The challenge in implementing Journal Snooping
was to handle the continuous stream of unordered journal
blocks and reconstruct the journal transaction.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 10 20 30 40 50 60 70 80 90

N
um

be
r o

f 4
KB

 U
nc

la
ss

ifi
ed

 B
lo

ck
s

Time in units of 10 secs

system out of memory

Maximum memory limit

Without Ext3 Journal Snooping
With Ext3 Journal Snooping

Figure 4: Memory usage with Journal Snooping.
Figure 4 compares the memory pressure with and

without Journal Snooping demonstrating its effective-
ness. It shows the number of 4 KB block I/O requests
resident in the UBS sampled at 10 sec intervals during
the creation of a 24 GB file on ext3; the file system is
mounted on top of David in ordered journaling mode
with a commit interval of 5 secs. This experiment was
run on a dual core machine with 2 GB memory. Since
this workload is data write intensive, without Journal
Snooping, the system runs out of memory when around
450,000 bio requests are in the UBS (occupying roughly
1.8 GB of memory). Journal Snooping ensures that the
memory consumed by outstanding bio requests does not
go beyond a maximum of 240 MB.

3.2 Explicit Metadata Notification
David is meant to be useful for a wide variety of file sys-
tems; explicit metadata notification provides a mecha-
nism to rapidly adopt a file system for use with David.
Since data writes can come only from the benchmark ap-
plication in user-space whereas metadata writes are is-
sued by the file system, our approach is to identify the
data blocks before they are even written to the file sys-
tem. Our implementation of explicit notification is thus
file-system agnostic – it relies on a small modification
to the page cache to collect additional information. We
demonstrate the benefits of this approach using btrfs, a
file system quite unlike ext3 in design.

When an application writes to a file, David captures
the pointers to the in-memory pages where the data con-
tent is stored, as it is being copied into the page cache.
Subsequently, when the writes reach David, they are
compared against the captured pointer addresses to de-
cide whether the write is to metadata or data. Once the
presence is tested, the pointer is removed from the list
since the same page can be reused for metadata writes in
the future.

There are certainly other ways to implement explicit
notification. One way is to capture the checksum of the
contents of the in-memory pages instead of the pointer
to track data blocks. One can also modify the file system

5

208 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

to explicitly flag the metadata blocks, instead of identi-
fying data blocks with the page cache modification. We
believe our approach is easier to implement, does not re-
quire any file system modification, and is also easier to
extend to software RAID since parity blocks are auto-
matically classified as metadata and not discarded.

4 Metadata Remapping

Since David exports a target pseudo device of much
higher capacity to the file system than the available stor-
age device, the bio requests issued to the pseudo device
will have addresses in the full target range and thus need
to be suitably remapped. For this purpose, David main-
tains a remap table called Metadata Remapper which
maps “target” addresses to “available” addresses. The
Metadata Remapper can contain an entry either for one
metadata block (e.g., super block), or a range of metadata
blocks (e.g., group descriptors); by allowing an arbitrary
range of blocks to be remapped together, the Metadata
Remapper provides an efficient translation service that
also provides scalability. Range remapping in addition
preserves sequentiality of the blocks if a disk is used as
the backing store. In addition to the Metadata Remapper,
a remap bitmap is maintained to keep track of free and
used blocks on the available physical device; the remap
bitmap supports allocation both of a single remapped
block and a range of remapped blocks.

The destination (or remapped) location for a request
is determined using a simple algorithm which takes as
input the number of contiguous blocks that need to be
remapped and finds the first available chunk of space
from the remap bitmap. This can be done statically or at
runtime; for the ext3 file system, since most of the blocks
are statically allocated, the remapping for these blocks
can also be done statically to improve performance. Sub-
sequent writes to other metadata blocks are remapped dy-
namically; when metadata blocks are deallocated, corre-
sponding entries from the Metadata Remapper and the
remap bitmap are removed. From our experience, this
simple algorithm lays out blocks on disk quite efficiently.
More sophisticated allocation algorithms based on local-
ity of reference can be implemented in the future.

5 Data Generator

David services the requirements of systems oblivious to
file content with data squashing and metadata remapping.
However, many real applications care about file content;
the Data Generator with David is responsible for gener-
ating synthetic content to service read requests to data
blocks that were previously discarded. Different systems
can have different requirements for the file content and
the Data Generator has various options to choose from;

figure 5 shows some examples of the different types of
content that can be generated.

Many systems that read back previously written data
do not care about the specific content within the files as
long as there is some content (e.g., a file-system backup
utility, or the Postmark benchmark). Much in the same
way as failure-oblivious computing generates values to
service reads to invalid memory while ignoring invalid
writes [18], David randomly generates content to service
out-of-bound read requests.

Some systems may expect file contents to have valid
syntax or semantics; the performance of these systems
depend on the actual content being read (e.g., a desk-
top search engine for a file system, or a spell-checker).
For such systems, naive content generation would either
crash the application or give poor benchmarking results.
David produces valid file content leveraging prior work
on generating file-system images [2].

Finally, some systems may expect to read back data
exactly as they wrote earlier (i.e., a read-after-write or
RAW dependency) or expect a precise structure that can-
not be generated arbitrarily (e.g., a binary file or a con-
figuration file). David provides additional support to run
these demanding applications using the RAW Store, de-
signed as a cooperative resource visible to the user and
configurable to suit the needs of different applications.

Our current implementation of RAW Store is very sim-
ple: in order to decide which data blocks need to be
stored persistently, David requires the application to sup-
ply a list of the relevant file paths. David then looks up
the inode number of the files and tracks all data blocks
pointed to by these inodes, writing them out to disk us-
ing the Metadata Remapper just as any metadata block.
In the future, we intend to support more nuanced ways to
maintain the RAW Store; for example, specifying direc-
tories instead of files, or by using Memoization [14].

For applications that must exactly read back a signif-
icant fraction of what they write, the scalability advan-
tage of David diminishes; in such cases the benefits are
primarily from the ability to emulate new devices.

6 Storage Model and Emulation

Not having access to the target storage system requires
David to precisely capture the behavior of the entire stor-
age stack with all its dependencies through a model. The
storage system modeled by David is the target system
and the system on which it runs is the available system.
David emulates the behavior of the target disk by send-
ing requests to the available disk (for persistence) while
simultaneously sending the target request stream to the
Storage Model; the model computes the time that would
have taken for the request to finish on the target system
and introduces an appropriate delay in the actual request

6

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 209

rand.txt pangrams.txt compress.pdf config.RAW

weqw ueqw 8((0jkw
weqwe0 289402qw
qw (*())) hhkjh)) 2a
900 bgt GG*&& aa

kja kjwert jhuyfg aa
sdnjo abcd2 dsll**(1
wqw 421−0 e−w1‘vc)
2323 d−−POs&^! aab
qw HUK;0922 dds 12

%PDF−1.4
%<C7>[]
5 0 obj
<</Length 6 0 R/Filter
/FlateDecode>>
stream
x<9C><CD>]%<B7>q
<8D><H7><A0><80>
trailer << /Size 75 /Root
1 0 R /Info 2 0 R /ID>>
startxref 1052 %%EOF

umask 027
if (! $?TERM)

if ($TERM==unknown)
 then set noglob;

$TERM"‘; unset noglob
endif
if($TERM==unknown)
 goto loop endif

eval ‘tset −s −r −Q"?

 then setenv TERM
endif

the quick brown fox
jumps over the lazy dog

a quick movement of
the enemy will
jeopardize six gunboats

the jaded zombies acted
quietly but kept driving
their oxen forward

Figure 5: Examples of content generation by Data Generator. The figure shows a randomly generated text file, a text file
with semantically meaningful content, a well-formatted PDF file, and a config file with precise syntax to be stored in the RAW Store.

Parameter H1 H2 Parameter H1 H2
Disk size 80 GB 1 TB Cache segments 11 500
Rotational Speed 7200 RPM 7200 RPM Cache R/W partition Varies Varies
Number of cylinders 88283 147583 Bus Transfer 133 MBps 133 MBps
Number of zones 30 30 Seek profile(long) 3800+(cyl*116)/103 3300+(cyl*5)/106

Sectors per track 567 to 1170 840 to 1680 Seek profile(short) 300+
√

(cyl ∗2235) 700+
√

cyl
Cylinders per zone 1444 to 1521 1279 to 8320 Head switch 1.4 ms 1.4 ms
On-disk cache size 2870 KB 300 MB Cylinder switch 1.6 ms 1.6 ms
Disk cache segment 260 KB 600 KB Dev driver req queue∗ 128-160 128-160
Req scheduling∗ FIFO FIFO Req queue timeout∗ 3 ms (unplug) 3 ms (unplug)

Table 1: Storage Model Parameters in David. Lists important parameters obtained to model disks Hitachi
HDS728080PLA380 (H1) and Hitachi HDS721010KLA330 (H2). ∗denotes parameters of I/O request queue (IORQ).

stream before returning control. Figure 3 presented in §2
shows this setup more clearly.

As a general design principle, to support low-overhead
modeling without compromising accuracy, we avoid us-
ing any technique that either relies on storing empiri-
cal data to compute statistics or requires table-based ap-
proaches to predict performance [6]; the overheads for
such methods are directly proportional to the amount
of runtime statistics being maintained which in turn de-
pends on the size of the disk. Instead, wherever applica-
ble, we have adopted and developed analytical approxi-
mations that did not slow the system down; our resulting
models are sufficiently lean while being fairly accurate.

To ensure portability of our models, we have refrained
from making device-specific optimizations to improve
accuracy; we believe current models in David are fairly
accurate. The models are also adaptive enough to be eas-
ily configured for changes in disk drives and other pa-
rameters of the storage stack. We next present some de-
tails of the disk model and the storage stack model.

6.1 Disk Model
David’s disk model is based on the classical model pro-
posed by Ruemmler and Wilkes [19], henceforth referred
as the RW model. The disk model contains informa-
tion about the disk geometry (i.e., platters, cylinders and
zones) and maintains the current disk head position; us-
ing these sources it models the disk seek, rotation, and
transfer times for any request. The disk model also keeps
track of the effects of disk caches (track prefetching,
write-through and write-back caches). In the future, it

will be interesting to explore using Disksim for the disk
model. Disksim is a detailed user-space disk simulator
which allows for greater flexibility in the types of device
properties that can be simulated along with their degree
of detail; we will need to ensure it does not appreciably
slow down the emulation when used without memory as
backing store.

6.1.1 Disk Drive Profile
The disk model requires a number of drive-specific pa-
rameters as input, a list of which is presented in the first
column of Table 1; currently David contains models for
two disks: the Hitachi HDS728080PLA380 80 GB disk,
and the Hitachi HDS721010KLA330 1 TB disk. We
have verified the parameter values for both these disks
through carefully controlled experiments. David is en-
visioned for use in environments where the target drive
itself may not be available; if users need to model addi-
tional drives, they need to supply the relevant parameters.
Disk seeks, rotation time and transfer times are modeled
much in the same way as proposed in the RW model. The
actual parameter values defining the above properties are
specific to a drive; empirically obtained values for the
two disks we model are shown in Table 1.

6.1.2 Disk Cache Modeling
The drive cache is usually small (few hundred KB to a
few MB) and serves to cache reads from the disk me-
dia to service future reads, or to buffer writes. Unfortu-
nately, the drive cache is one of the least specified com-
ponents as well; the cache management logic is low-level
firmware code which is not easy to model.

7

210 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

David models the number and size of segments in the
disk cache and the number of disk sector-sized slots in
each segment. Partitioning of the cache segments into
read and write caches, if any, is also part of the informa-
tion contained in the disk model. David models the read
cache with a FIFO eviction policy. To model the effects
of write caching, the disk model maintains statistics on
the current size of writes pending in the disk cache and
the time needed to flush these writes out to the media.
Write buffering is simulated by periodically emptying a
fraction of the contents of the write cache during idle
periods of the disk in between successive foreground re-
quests. The cache is modeled with a write-through policy
and is partitioned into a sufficiently large read cache to
match the read-ahead behavior of the disk drive.

6.2 Storage Stack Model
David also models the I/O request queues (IORQs) main-
tained in the OS; Table 1 lists a few of its impor-
tant parameters. While developing the Storage Model,
we found that accurately modeling the behavior of the
IORQs is crucial to predict the target execution time cor-
rectly. The IORQs usually have a limit on the maximum
number of requests that can be held at any point; pro-
cesses that try to issue an I/O request when the IORQ is
full are made to wait. Such waiting processes are wo-
ken up when an I/O issued to the disk drive completes,
thereby creating an empty slot in the IORQ. Once wo-
ken up, the process is also granted privilege to batch a
constant number of additional I/O requests even when
the IORQ is full, as long as the total number of requests
is within a specified upper limit. Therefore, for applica-
tions issuing bursty I/O, the time spent by a request in the
IORQ can outweigh the time spent at the disk by several
orders of magnitude; modeling the IORQs is thus crucial
for overall accuracy.

Disk requests arriving at David are first enqueued into
a replica queue maintained inside the Storage Model.
While being enqueued, the disk request is also checked
for a possible merge with other pending requests: a com-
mon optimization that reduces the number of total re-
quests issued to the device. There is a limit on the num-
ber of disk requests that can be merged into a single disk
request; eventually merged disk requests are dequeued
from the replica queue and dispatched to the disk model
to obtain the service time spent at the drive. The replica
queue uses the same request scheduling policy as the tar-
get IORQ.

6.3 RAID Emulation
David can also provide effective RAID emulation. To
demonstrate simple RAID configurations with David,
each component disk is emulated using a memory-
backed “compressed” device underneath software RAID.

David exports multiple block devices with separate ma-
jor and minor numbers; it differentiates requests to dif-
ferent devices using the major number. For the pur-
pose of performance benchmarking, David uses a sin-
gle memory-based backing store for all the compressed
RAID devices. Using multiple threads, the Storage
Model maintains separate state for each of the devices
being emulated. Requests are placed in a single request
queue tagged with a device identifier; individual Storage
Model threads for each device fetch one request at a time
from this request queue based on the device identifier.
Similar to the single device case, the servicing thread cal-
culates the time at which a request to the device should
finish and notifies completion using a callback.

David currently only provides mechanisms for simple
software RAID emulation that do not need a model of a
software RAID itself. New techniques might be needed
to emulate more complex commercial RAID configura-
tions, for example, commercial RAID settings using a
hardware RAID card.

7 Evaluation

We seek to answer four important questions. First, what
is the accuracy of the Storage Model? Second, how ac-
curately does David predict benchmark runtime and what
storage space savings does it provide? Third, can David
scale to large target devices including RAID? Finally,
what is the memory and CPU overhead of David?

7.1 Experimental Platform
We have developed David for the Linux operating sys-
tem. The hard disks currently modeled are the 1 TB
Hitachi HDS721010KLA330 (referred to as D1TB) and
the 80 GB Hitachi HDS728080PLA380 (referred to as
D80GB); table 1 lists their relevant parameters. Unless
specified otherwise, the following hold for all the experi-
ments: (1) machine used has a quad-core Intel processor
and 4GB RAM running Linux 2.6.23.1 (2) ext3 file sys-
tem is mounted in ordered-journaling mode with a com-
mit interval of 5 sec (3) microbenchmarks were run di-
rectly on the disk without a file system (4) David predicts
the benchmark runtime for a target D1TB while in fact
running on the available D80GB (5) to validate accuracy,
David was instead run directly on D1TB.

7.2 Storage Model Accuracy
First, we validate the accuracy of Storage Model in pre-
dicting the benchmark runtime on the target system.
Since our aim is to validate the accuracy of the Stor-
age Model alone, we run David in a model only mode
where we disable block classification, remapping and
data squashing. David just passes down the requests that
it receives to the available request queue below. We run

8

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 211

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 100 200 300 400 500

Fr
ac

tio
n

of
 I/

O
s

Time in units of 1 us

Sequential Reads [Demerit: 24.39]

Measured
Modeled

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 100 200 300 400 500

Fr
ac

tio
n

of
 I/

O
s

Time in units of 100 us

Random Reads [Demerit: 5.51]

Measured
Modeled

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 100 200 300 400 500

Fr
ac

tio
n

of
 I/

O
s

Time in units of 100 us

Sequential Writes [Demerit: 0.08]

Measured
Modeled

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 100 200 300 400 500

Fr
ac

tio
n

of
 I/

O
s

Time in units of 100 us

Random Writes [Demerit: 0.02]

Measured
Modeled

Figure 6: Storage Model accuracy for Sequential and Random Reads and Writes. The graph shows the cumulative
distribution of measured and modeled times for sequential and random reads and writes.

Figure 7: Storage Model accuracy. The graphs show the cumulative distribution of measured and modeled times for the
following workloads from left to right: Postmark, Webserver, Varmail and Tar.

Implicit Classification – Ext3 Explicit Notification – Btrfs
Benchmark Original David Storage Original David Runtime Original David Runtime
Workload Storage Storage Savings Runtime Runtime Error Runtime Runtime Error

(KB) (KB) (%) (Secs) (Secs) (%) (Secs) (Secs) (%)
mkfs 976762584 7900712 99.19 278.66 281.81 1.13 - - -
imp 11224140 18368 99.84 344.18 339.42 -1.38 327.294 324.057 0.99
tar 21144 628 97.03 257.66 255.33 -0.9 146.472 135.014 7.8

grep - - - 250.52 254.40 1.55 141.960 138.455 2.47
virus scan - - - 55.60 47.95 -13.75 27.420 31.555 15.08

find - - - 26.21 26.60 1.5 - - -
du - - - 102.69 101.36 -1.29 - - -

postmark 204572 404 99.80 33.23 29.34 -11.69 22.709 22.243 2.05
webserver 3854828 3920 99.89 127.04 126.94 -0.08 125.611 126.504 0.71

varmail 7852 3920 50.07 126.66 126.27 -0.31 126.019 126.478 0.36
sr - - - 40.32 44.90 11.34 40.32 44.90 11.34
rr - - - 913.10 935.46 2.45 913.10 935.46 2.45
sw - - - 57.28 58.96 2.93 57.28 58.96 2.93
rw - - - 308.74 291.40 -5.62 308.74 291.40 -5.62

Table 2: David Performance and Accuracy. Shows savings in capacity, accuracy of runtime prediction, and the overhead
of storage modeling for different workloads. Webserver and varmail are generated using FileBench; virus scan using AVG.

David on top of D1TB and set the target drive to be the
same. Note that the available system is the same as the
target system for these experiments since we only want
to compare the measured and modeled times to validate
the accuracy of the Storage Model. Each block request
is traced along its path from David to the disk drive and
back. This is done in order to measure the total time that
the request spends in the available IORQ and the time
spent getting serviced at the available disk. These mea-
sured times are then compared with the modeled times
obtained from the Storage Model.

Figure 6 shows the Storage Model accuracy for four
micro-workloads: sequential and random reads, and se-
quential and random writes; these micro-workloads have

demerit figures of 24.39, 5.51, 0.08, and 0.02 respec-
tively, as computed using the Ruemmler and Wilkes
methodology [19]. The large demerit for sequential reads
is due to a variance in the available disk’s cache-read
times; modeling the disk cache in greater detail in the fu-
ture could potentially avoid this situation. However, se-
quential read requests do not contribute to a measurably
large error in the total modeled runtime; they often hit
the disk cache and have service times less than 500 mi-
croseconds while other types of disk requests take around
20 to 35 milliseconds to get serviced. Any inaccuracy in
the modeled times for sequential reads is negligible when
compared to the service times of other types of disk re-
quests; we thus chose to not make the disk-cache model

9

212 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

more complex for the sake of sequential reads.
Figure 7 shows the accuracy for four different macro

workloads and application kernels: Postmark [13], web-
server (generated using FileBench [15]), Varmail (mail
server workload using FileBench), and a Tar workload
(copy and untar of the linux kernel of size 46 MB).

The FileBench Varmail workload emulates an NFS
mail server, similar to Postmark, but is multi-threaded
instead. The Varmail workload consists of a set of
open/read/close, open/append/close and deletes in a
single directory, in a multi-threaded fashion. The
FileBench webserver workload comprises of a mix of
open/read/close of multiple files in a directory tree. In
addition, to simulate a webserver log, a file append oper-
ation is also issued. The workload consists of 100 threads
issuing 16 KB appends to the weblog every 10 reads.

Overall, we find that storage modeling inside David is
quite accurate for all workloads used in our evaluation.
The total modeled time as well as the distribution of the
individual request times are close to the total measured
time and the distribution of the measured request times.

7.3 David Accuracy
Next, we want to measure how accurately David predicts
the benchmark runtime. Table 2 lists the accuracy and
storage space savings provided by David for a variety of
benchmark applications for both ext3 and btrfs. We have
chosen a set of benchmarks that are commonly used and
also stress various paths that disk requests take within
David. The first and second columns of the table show
the storage space consumed by the benchmark workload
without and with David. The third column shows the
percentage savings in storage space achieved by using
David. The fourth column shows the original bench-
mark runtime without David on D1TB. The fifth column
shows the benchmark runtime with David on D80GB. The
sixth column shows the percentage error in the predic-
tion of the benchmark runtime by David. The final three
columns show the original and modeled runtime, and the
percentage error for the btrfs experiments; the storage
space savings are roughly the same as for ext3. The sr,
rr, sw, and rw workloads are run directly on the raw de-
vice and hence are independent of the file system.

mkfs creates a file system with a 4 KB block size over
the 1 TB target device exported by David. This workload
only writes metadata and David remaps writes issued by
mkfs sequentially starting from the beginning of D80GB;
no data squashing occurs in this experiment.

imp creates a realistic file-system image of size 10 GB
using the publicly available Impressions tool [2]. A total
of 5000 regular files and 1000 directories are created with
an average of 10.2 files per directory. This workload is
a data-write intensive workload and most of the issued
writes end up being squashed by David.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800
 0

 100

 200

 300

 400

 500

 600

 700

 800

Ac
tu

al
 S

to
ra

ge
 s

pa
ce

 u
se

d
(G

B)

R
un

tim
e

(1
00

s
of

 s
ec

on
ds

)

File System Impression size (GB)

WOD Spa
ce

D Space

WOD Time

D Time

WOD Space
D Space

WOD Time
D Time

Figure 8: Storage Space Savings and Model Accu-
racy. The “Space” lines show the savings in storage space
achieved when using David for the impressions workload with
file-system images of varying sizes until 800GB; “Time” lines
show the accuracy of runtime prediction for the same workload.
WOD: space/time without David, D: space/time with David.

tar uses the GNU tar utility to create a gzipped archive
of the file-system image of size 10 GB created by imp;
it writes the newly created archive in the same file sys-
tem. This workload is a data read and data write inten-
sive workload. The data reads are satisfied by the Data
Generator without accessing the available disk, while the
data writes end up being squashed.

grep uses the GNU grep utility to search for the ex-
pression “nothing” in the content generated by both imp
and tar. This workload issues significant amounts of data
reads and small amounts of metadata reads. virus scan
runs the AVG virus scanner on the file-system image cre-
ated by imp. find and du run the GNU find and GNU du
utilities over the content generated by both imp and tar.
These two workloads are metadata read only workloads.

David works well under both the implicit and ex-
plicit approaches demonstrating its usefulness across file
systems. Table 2 shows how David provides tremen-
dous savings in the required storage capacity, upwards of
99% (a 100-fold or more reduction) for most workloads.
David also predicts benchmark runtime quite accurately.
Prediction error for most workloads is less than 3%, al-
though for a few it is just over 10%. The errors in the
predicted runtimes stem from the relative simplicity of
our in-kernel Disk Model; for example, it does not cap-
ture the layout of physical blocks on the magnetic media
accurately. This information is not published by the disk
manufacturers and experimental inference is not possible
for ATA disks that do not have a command similar to the
SCSI mode page.

7.4 David Scalability
David is aimed at providing scalable emulation using
commodity hardware; it is important that accuracy is

10

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 213

Num Disks Rand R Rand W Seq R Seq W
Measured

3 232.77 72.37 119.29 119.98
2 156.76 72.02 119.11 119.33
1 78.66 71.88 118.65 118.71

Modeled
3 238.79 73.77 119.44 119.40
2 159.36 72.21 119.16 119.21
1 79.56 72.15 118.95 118.83

Table 3: David Software RAID-1 Emulation. Shows
IOPS for a software RAID-1 setup using David with memory as
backing store; workload issues 20000 read and write requests
through concurrent processes which equal the number of disks
in the experiment. 1 disk experiments run w/o RAID-1.

not compromised at larger scale. Figure 8 shows the
accuracy and storage space savings provided by David
while creating file-system images of 100s of GB. Using
an available capacity of only 10 GB, David can model the
runtime of Impressions in creating a realistic file-system
image of 800 GB; in contrast to the linear scaling of the
target capacity demanded, David barely requires any ex-
tra available capacity. David also predicts the benchmark
runtime within a maximum of 2.5% error even with the
huge disparity between target and available disks at the
800 GB mark, as shown in Figure 8.

The reason we limit these experiments to a target ca-
pacity of less than 1 TB is because we had access to only
a terabyte sized disk against which we could validate the
accuracy of David. Extrapolating from this experience,
we believe David will enable one to emulate disks of 10s
or 100s of TB given the 1 TB disk.

7.5 David for RAID
We present a brief evaluation and validation of software
RAID-1 configurations using David. Table 3 shows a
simple experiment where David emulates a multi-disk
software RAID-1 (mirrored) configuration; each device
is emulated using a memory-disk as backing store. How-
ever, since the multiple disks contain copies of the same
block, a single physical copy is stored, further reducing
the memory footprint. In each disk setup, a set of threads
which equal in number to the number of disks issue a to-
tal of 20000 requests. David is able to accurately emulate
the software RAID-1 setup upto 3 disks; more complex
RAID schemes are left as part of future work.

7.6 David Overhead
David is designed to be used for benchmarking and not
as a production system, thus scalability and accuracy are
the more relevant metrics of evaluation; we do however
want to measure the memory and CPU overhead of us-
ing David on the available system to ensure it is prac-
tical to use. All memory usage within David is tracked

0 %

20 %

40 %

60 %

80 %

100 %

 0 10 20 30 40 50 60 70

 0

 20

 40

 60

 80

 100

C
PU

 B
us

y
Pe

rc
en

ta
ge

M
em

or
y

us
ed

 (M
B)

Time (in units of 5 Seconds)

SM Mem

D Mem

CPU lines

WOD CPU
SM CPU

D CPU
SM Mem

D Mem

Figure 9: David CPU and Memory Overhead. Shows
the memory and percentage CPU consumption by David while
creating a 10 GB file-system image using impressions. WOD
CPU: CPU without David, SM CPU: CPU with Storage Model
alone, D CPU: total CPU with David, SM Mem: Storage
Model memory alone, D Mem: total memory with David.

using several counters; David provides support to mea-
sure the memory usage of its different components using
ioctls. To measure the CPU overhead of the Storage
Model alone, David is run in the model-only mode where
block classification, remapping and data squashing are
turned off.

In our experience with running different workloads,
we found that the memory and CPU usage of David is
acceptable for the purposes of benchmarking. As an ex-
ample, Figure 9 shows the CPU and memory consump-
tion by David captured at 5 second intervals while cre-
ating a 10 GB file-system image using Impressions. For
this experiment, the Storage Model consumes less than 1
MB of memory; the average memory consumed in total
by David is less than 90 MB, of which the pre-allocated
cache used by the Journal Snooping to temporarily store
the journal writes itself contributes 80 MB. Amount of
CPU used by the Storage Model alone is insignificant,
however implicit classification by the Block Classifier
is the primary consumer of CPU using 10% on average
with occasional spikes. The CPU overhead is not an is-
sue at all if one uses explicit notification.

8 Related Work

Memulator [10] makes a great case for why storage em-
ulation provides the unique ability to explore nonexistent
storage components and take end-to-end measurements.
Memulator is a “timing-accurate” storage emulator that
allows a simulated storage component to be plugged
into a real system running real applications. Memula-
tor can use the memory of either a networked machine or
the local machine as the storage media of the emulated

11

214 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

disk, enabling full system evaluation of hypothetical stor-
age devices. Although this provides flexibility in device
emulation, high-capacity devices requires an equivalent
amount of memory; David provides the necessary scala-
bility to emulate such devices. In turn, David can benefit
from the networked-emulation capabilities of Memula-
tor in scenarios when either the host machine has limited
CPU and memory resources, or when the interference of
running David on the same machine competing for the
same resources is unacceptable.

One alternate to emulation is to simply buy a larger ca-
pacity or newer device and use it to run the benchmarks.
This is sometimes feasible, but often not desirable. Even
if one buys a larger disk, in the future they would need
an even larger one; David allows one to keep up with this
arms race without always investing in new devices. Note
that we chose 1 TB as the upper limit for evaluation in
this paper because we could validate our results for that
size. Having a large disk will also not address the issue
of emulating much faster devices such as SSDs or RAID
configurations. David emulates faster devices through an
efficient use of memory as backing store.

Another alternate is to simulate the storage component
under test; disk simulators like Disksim [7] allow such an
evaluation flexibly. However, simulation results are often
far from perfect [9] – they fail to capture system depen-
dencies and require the generation of representative I/O
traces which is a challenge in itself.

Finally, one might use analytical modeling for the stor-
age devices; while very useful in some circumstances,
it is not without its own set of challenges and limita-
tions [20]. In particular, it is extremely hard to capture
the interactions and complexities in real systems. Wher-
ever possible, David does leverage well-tested analytical
models for individual components to aid the emulation.

Both simulation and analytical modeling are comple-
mentary to emulation, perfectly useful in their own right.
Emulation does however provide a reasonable middle
ground in terms of flexibility and realism.

Evaluation of how well an I/O system scales has been
of interest in prior research and is becoming increas-
ingly more relevant [28]. Chen and Patterson proposed
a “self-scaling” benchmark that scales with the I/O sys-
tem being evaluated, to stress the system in meaningful
ways [8]. Although useful for disk and I/O systems,
the self-scaling benchmarks are not directly applicable
for file systems. The evaluation of the XFS file sys-
tem from Silicon Graphics uses a number of benchmarks
specifically intended to test its scalability [23]; such an
evaluation can benefit from David to employ even larger
benchmarks with greater ease; SpecSFS [27] also con-
tains some techniques for scalable workload generation.

Similar to our emulation of scale in a storage system,
Gupta et al. from UCSD propose a technique called time

dilation for emulating network speeds orders of mag-
nitude faster than available [11]. Time dilation allows
one to experiment with unmodified applications running
on commodity operating systems by subjecting them to
much faster network speeds than actually available.

A key challenge in David is the ability to identify data
and meta-data blocks. Besides SDS [21], XN, the stable
storage system for the Xok exokernel [12] dealt with sim-
ilar issues. XN employed a template of metadata trans-
lation functions called UDFs specific to each file type.
The responsibility of providing UDFs rested with the file
system developer, allowing the kernel to handle arbitrary
metadata layouts without understanding the layout itself.
Specifying an encoding of the on-disk scheme can be
tricky for a file system such as ReiserFS that uses dy-
namic allocation; however, in the future, David’s meta-
data classification scheme can benefit from a more for-
mally specified on-disk layout per file-system.

9 Conclusion

David is born out of the frustration in doing large-scale
experimentation on realistic storage hardware – a prob-
lem many in the storage community face. David makes it
practical to experiment with benchmarks that were oth-
erwise infeasible to run on a given system, by transpar-
ently scaling down the storage capacity required to run
the workload. The available backing store under David
can be orders of magnitude smaller than the target de-
vice. David ensures accuracy of benchmarking results
by using a detailed storage model to predict the runtime.
In the future, we plan to extend David to include support
for a number of other useful storage devices and configu-
rations. In particular, the Storage Model can be extended
to support flash-based SSDs using an existing simulation
model [5]. We believe David will be a useful emulator
for file and storage system evaluation.

10 Acknowledgments

We thank the anonymous reviewers and Rob Ross (our
shepherd) for their feedback and comments, which have
substantially improved the content and presentation of
this paper. The first author thanks the members of the
Storage Systems Group at NEC Labs for their comments
and feedback.

This material is based upon work supported by
the National Science Foundation under the following
grants: CCF-0621487, CNS-0509474, CNS-0834392,
CCF-0811697, CCF-0811697, CCF-0937959, as well as
by generous donations from NetApp, Sun Microsystems,
and Google. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of
NSF or other institutions.

12

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 215

References

[1] GraySort Benchmark. http://sortbenchmark.

org/FAQ.htm#gray.

[2] N. Agrawal, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Generating Realistic Impressions
for File-System Benchmarking. In Proceedings
of the 7th Conference on File and Storage Tech-
nologies (FAST ’09), San Francisco, CA, February
2009.

[3] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R.
Lorch. A Five-Year Study of File-System Meta-
data. In Proceedings of the 5th USENIX Symposium
on File and Storage Technologies (FAST ’07), San
Jose, California, February 2007.

[4] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R.
Lorch. A five-year study of file-system metadata:
Microsoft longitudinal dataset. http://iotta.

snia.org/traces/list/Static, 2007.

[5] N. Agrawal, V. Prabhakaran, T. Wobber, J. D.
Davis, M. Manasse, and R. Panigrahy. Design
Tradeoffs for SSD Performance. In Proceedings of
the Usenix Annual Technical Conference (USENIX
’08), Boston, MA, June 2008.

[6] E. Anderson. Simple table-based modeling of stor-
age devices. Technical Report HPL-SSP-2001-04,
HP Laboratories, July 2001.

[7] J. S. Bucy and G. R. Ganger. The DiskSim Simu-
lation Environment Version 3.0 Reference Manual.
Technical Report CMU-CS-03-102, Carnegie Mel-
lon University, January 2003.

[8] P. M. Chen and D. A. Patterson. A New Approach
to I/O Performance Evaluation–Self-Scaling I/O
Benchmarks, Predicted I/O Performance. In Pro-
ceedings of the 1993 ACM SIGMETRICS Confer-
ence on Measurement and Modeling of Computer
Systems (SIGMETRICS ’93), pages 1–12, Santa
Clara, California, May 1993.

[9] G. R. Ganger and Y. N. Patt. Using system-level
models to evaluate i/o subsystem designs. IEEE
Trans. Comput., 47(6):667–678, 1998.

[10] J. L. Griffin, J. Schindler, S. W. Schlosser, J. S.
Bucy, and G. R. Ganger. Timing-accurate Storage
Emulation. In Proceedings of the 1st USENIX Sym-
posium on File and Storage Technologies (FAST
’02), Monterey, California, January 2002.

[11] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren,
A. Vahdat, and G. M. Voelker. To infinity and be-
yond: time-warped network emulation. In Proceed-
ings of the 3rd conference on Networked Systems
Design and Implementation (NSDI’06), San Jose,
CA, 2006.

[12] M. F. Kaashoek, D. R. Engler, G. R. Ganger,
H. Briceño, R. Hunt, D. Mazières, T. Pinckney,
R. Grimm, J. Jannotti, and K. Mackenzie. Applica-
tion Performance and Flexibility on Exokernel Sys-
tems. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles (SOSP ’97), pages
52–65, Saint-Malo, France, October 1997.

[13] J. Katcher. PostMark: A New File System Bench-
mark. Technical Report TR-3022, Network Appli-
ance Inc., oct 1997.

[14] J. Mayfield, T. Finin, and M. Hall. Using automatic
memoization as a software engineering tool in real-
world ai systems. Artificial Intelligence for Appli-
cations, Conference on, 0:87, 1995.

[15] R. McDougall. Filebench: Applica-
tion level file system benchmark. http:

//www.solarisinternals.com/si/tools/

filebench/index.php.

[16] E. L. Miller. Towards scalable benchmarks for mass
storage systems. In 5th NASA Goddard Conference
on Mass Storage Systems and Technologies, 1996.

[17] E. Riedel, M. Kallahalla, and R. Swaminathan. A
Framework for Evaluating Storage System Secu-
rity. In Proceedings of the 1st USENIX Symposium
on File and Storage Technologies (FAST ’02), pages
14–29, Monterey, California, January 2002.

[18] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy,
T. Leu, and J. William S. Beebe. Enhancing
Server Availability and Security Through Failure-
Oblivious Computing. In Proceedings of the 6th
Symposium on Operating Systems Design and Im-
plementation (OSDI ’04), San Francicso, CA, De-
cember 2004.

[19] C. Ruemmler and J. Wilkes. An Introduction to
Disk Drive Modeling. IEEE Computer, 27(3):17–
28, March 1994.

[20] E. Shriver. Performance modeling for realistic stor-
age devices. PhD thesis, New York, NY, USA,
1997.

[21] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E.
Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Semantically-Smart Disk Systems. In

13

216 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Proceedings of the 2nd USENIX Symposium on File
and Storage Technologies (FAST ’03), pages 73–88,
San Francisco, California, April 2003.

[22] Standard Performance Evaluation Corporation.
SPECmail2009 Benchmark. http://www.spec.

org/mail2009/.

[23] A. Sweeney, D. Doucette, W. Hu, C. Anderson,
M. Nishimoto, and G. Peck. Scalability in the XFS
File System. In Proceedings of the USENIX Annual
Technical Conference (USENIX ’96), San Diego,
California, January 1996.

[24] A. Traeger and E. Zadok. How to cheat at bench-
marking. In USENIX FAST Birds of a feather ses-
sion, San Francisco, CA, February 2009.

[25] S. C. Tweedie. Journaling the Linux ext2fs File
System. In The Fourth Annual Linux Expo,
Durham, North Carolina, May 1998.

[26] Wikipedia. Btrfs. en.wikipedia.org/wiki/Btrfs,
2009.

[27] M. Wittle and B. E. Keith. LADDIS: The next
generation in NFS file server benchmarking. In
USENIX Summer, pages 111–128, 1993.

[28] E. Zadok. File and storage systems benchmarking
workshop. UC Santa Cruz, CA, May 2008.

14

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 217

Just-In-Time Analytics on Large File Systems

H. Howie Huang1, Nan Zhang1, Wei Wang1, Gautam Das2, and Alexander S. Szalay3

1George Washington University
2University of Texas at Arlington

3Johns Hopkins University

Abstract

As file systems reach the petabytes scale, users and ad-
ministrators are increasingly interested in acquiring high-
level analytical information for file management and
analysis. Two particularly important tasks are the pro-
cessing of aggregate and top-k queries which, unfortu-
nately, cannot be quickly answered by hierarchical file
systems such as ext3 and NTFS. Existing pre-processing
based solutions, e.g., file system crawling and index
building, consume a significant amount of time and space
(for generating and maintaining the indexes) which in
many cases cannot be justified by the infrequent usage
of such solutions. In this paper, we advocate that user in-
terests can often be sufficiently satisfied by approximate -
i.e., statistically accurate - answers. We develop Glance,
a just-in-time sampling-based system which, after con-
suming a small number of disk accesses, is capable of
producing extremely accurate answers for a broad class
of aggregate and top-k queries over a file system with-
out the requirement of any prior knowledge. We use a
number of real-world file systems to demonstrate the ef-
ficiency, accuracy and scalability of Glance.

1 Introduction

Today a file system with billions of files, millions of di-
rectories and petabytes of storage is no longer an excep-
tion [29]. As file systems grow, users and administra-
tors are increasingly keen to perform complex queries
[37, 47], such as “How many files have been updated
since ten days ago?”, and “Which are the top five largest
files that belong to John?”. The first is an example of
aggregate queries which provide a high-level summary
of all or part of the file system, while the second is top-
k queries which locate the k files and/or directories that
have the highest score according to a scoring function.
Fast processing of aggregate and top-k queries are of-
ten needed by applications that require just-in-time ana-

lytics over large file systems, such as data management,
archiving, enterprise surveillance, etc. The just-in-time
requirement is defined by two properties: (1) file-system
analytics must be completed within a short amount of
time, and (2) the analyzer holds no prior knowledge (e.g.,
pre-processing results) of the file system being analyzed.
For example, in order for a librarian to determine how to
build an image archive from an external storage media
(e.g., a Blue-ray disc), he/she may have to first estimate
the total size of picture files stored on the external media
- the librarian needs to complete data analytics quickly,
over an alien file system that has never been seen before.

Unfortunately, hierarchical file systems (e.g., ext3 and
NTFS) are not well equipped for the task of just-in-time
analytics [43]. The deficiency is in general due to the
lack of a global view (i.e., high-level statistics) of meta-
data information (e.g., size, creation, access and modifi-
cation time). For efficiency concerns, a hierarchical file
system is usually designed to limit the update of meta-
data information to individual files and/or the immedi-
ately preceding directories, leading to localized views.
For example, while the last modification time of an indi-
vidual file is easily retrievable, the last modification time
of files that belong to user John is difficult to obtain be-
cause such metadata information is not available at the
global level.

Currently, there are two approaches for generating
high-level statistics from a hierarchical file system, and
thereby answering aggregate and top-k queries: (1) scan-
ning the file system upon the arrival of each query, e.g.,
the find command in Linux, which is inefficient for large
file systems. While storage capacity increases ∼60% per
year, storage throughput and latency have much slower
improvements, thus the amount of time required to scan
an off-the-shelf hard drive or external storage media has
increased significantly over time to become infeasible
for just-in-time analytics. The above-mentioned image-
archiving application is a typical example, as it is usu-
ally impossible to completely scan an alien Blue-ray disc

1

218 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

within a short amount of time. (2) utilizing pre-built in-
dexes which are regularly updated [3, 7, 26, 32, 36, 40].
Many desktop search products, e.g., Google Desktop
[23] and Beagle [5], belong to this category. While this
approach is capable of fast query processing once the
(slow) index building process is complete, it may not be
suitable or applicable to many just-in-time applications:

• Index building can be unrealistic for many applica-
tions that require just-in-time analytics over an alien
file system. An example is enterprise surveillance
[35], where portable machines and storage devices
must be quickly examined before being allowed to
join the enterprise network.

• Even if index can be built up-front, its signifi-
cant cost may not be justifiable if the index is not
frequently used afterwards. Unfortunately, this is
common for some large file systems, e.g., storage
archives or scratch data for scientific applications
rarely require the global search function offered by
the index, and may only need analytical queries
to be answered infrequently (e.g., once every few
days). In this case, building and updating an index
is often an overkill given the high amortized cost.

• There are also other limitations of maintaining an
index. For example, prior work [46] has shown that
even after a file has been completely removed (from
both the file system and the index), the (former) ex-
istence of this file can still be inferred from the in-
dex structure. Thus, a file system owner may choose
to avoid building an index for privacy concerns.

To enable just-in-time analytics, one must be able to
perform an on-the-fly processing of analytical queries,
over traditional file systems that normally have insuf-
ficient metadata to support such complex queries. We
achieve this goal by striking a balance between query
answer accuracy and cost - providing approximate (i.e.,
statistically accurate) answers which, with a high confi-
dence level, reside within a close distance from the pre-
cise answer. For example, when a user wants to count
the number of files in a directory (and all of its subdirec-
tories), an approximate answer of 105, 000 or 95, 000,
compared with the real answer of 100, 000, makes lit-
tle difference to the high-level knowledge desired by the
user. In general, the higher cost a user is willing to pay
for answering a query, more accurate the answer can be.

To this end, we design and develop Glance, a just-in-
time query processing system which produces accurate
query answers based on a small number of samples (files
or folders) that can be collected from a very large file
system with a few disk accesses. Glance is file-system
agnostic, i.e., it can be applied instantly over any new file
system and work seamlessly with the tree structure of the
system. Glance removes the need of disk crawling and

index building, providing just-in-time analytics without
a priori knowledge or pre-processing of the file systems.
This is desirable in situations when the metadata indexes
are not available, a query is not supported by the index,
or query processing is only scarcely needed.

Using sampling for processing analytical queries is by
no means new. Studies on sampling flat files, hashed
files, and files generated by a relational database system
(e.g., a B+-tree file) started more than 20 years ago - see
survey [39] - and were followed by a myriad of work on
database sampling for approximate query processing in
decision support systems - see tutorials [4, 15, 22]. A
wide variety of sampling techniques, e.g., simple ran-
dom sampling [38], stratified [10], reservoir [48] and
cluster sampling [11], have been used. Nonetheless, to
the best of our knowledge, there has been no existing
work on using sampling to support efficient aggregate
and top-k query processing over a large hierarchical file
system, i.e., one with numerous files organized in a com-
plex folder structure (tree-like or directed acyclic graph).

Our main contributions are two-fold: (1) Glance con-
sists of two algorithms, FS Agg and FS TopK, for the ap-
proximate processing of aggregate and top-k queries, re-
spectively. For just-in-time analytics over very large file
systems, we develop a random descent technique for un-
biased aggregate estimations and a pruning-based tech-
nique for top-k query processing. (2) We study the spe-
cific characteristics of real-world file systems and derive
the corresponding enhancements to our proposed tech-
niques. In particular, according to the distribution of files
in real-world file systems, we propose a high-level crawl-
ing technique to significantly reduce the error of query
processing. Based on an analysis of accuracy and ef-
ficiency for the descent process, we propose a breadth-
first implementation to reduce both error and overhead.
We evaluate Glance over both real-world (e.g., NTFS,
NFS, Plan 9) and synthetic file systems and find very
promising results - e.g., 90% accuracy at 20% cost. Fur-
thermore, we demonstrate that Glance is scalable to one
billion of files and millions of directories.

We would like to note, however, that Glance also has
its limitations - there are certain ill-formed file systems
that malicious users could potentially construct so that
Glance cannot effectively handle. While we plan to ad-
dress security applications in future work, our argument
of Glance being a practical system for just-in-time ana-
lytics is based upon the fact that these systems rarely ex-
ist in practice. For example, Glance cannot accurately
answer aggregate queries if a large number of folders
are hundreds of levels below root. Nonetheless, real-
world file systems would have far smaller depth, mak-
ing such a scenario unlikely to occur. Similarly, Glance
cannot efficiently handle cases where all files have ex-
tremely close scores. This, however, is contradicted by

2

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 219

the heavy-tailed distribution observed on most meta-data
attributes in real-world file systems [2].

The rest of the paper is organized as follows. Section
2 presents the problem definition. In Section 3 and 4, we
describe FS Agg and FS TopK for processing aggregate
and top-k queries, respectively. The evaluation results
are shown in Section 5. Section 6 reviews the related
work, followed by the conclusion in Section 7.

2 Problem Statement

We now define the analytical queries, i.e., aggregate and
top-k ones, which we focus on in this paper. The ex-
amples we list below will be used in the experimental
evaluation for testing the performance of Glance.

Aggregate Queries: In general, aggregate queries are
of the form SELECT AGGR(T) FROM D WHERE Selec-
tion Condition, where D is a file system or storage de-
vice, T is the target piece of information, which may be
a metadata attribute (e.g., size, timestamp) of a file or a
directory, AGGR is the aggregate function (e.g., COUNT,
SUM, AVG), and Selection Condition specifies which
files and/or directories are of interest. First, consider a
system administrator who is interested in the total num-
ber of files in the system. In this case, the aggregate
query that the administrator would like to issue can be
expressed as:

Q1: SELECT COUNT(files) FROM filesystem;

Further, the administrator may be interested in know-
ing the total size of various types of document files, e.g.,

Q2: SELECT SUM(file.size) FROM filesystem WHERE
file.extension IN { ‘txt’, ‘doc’};

If the administrator wants to compute the average size
of all exe files from user John, the query becomes:

Q3: SELECT AVG(file.size) FROM filesystem WHERE
file.extension = ‘exe’ AND file.owner = ‘John’;

Aggregate queries can also be more complex - the fol-
lowing example shows a nested aggregate query for sci-
entific computing applications. Suppose that each direc-
tory is corresponding to a sensor and contains a number
of files corresponding to the sensor readings received at
different time. A physicist may want to count the number
of sensors that has received at least one reading during
the last 12 hours, i.e.,

Q4: SELECT COUNT(directories) FROM filesystem
WHERE EXISTS (SELECT * FROM filesystem WHERE
file.dirname = directory.name AND file.mtime BE-
TWEEN (now − 12 hours) AND now);

Top-k Queries: In this paper, we also consider top-
k queries of the form SELECT TOP k FROM D

WHERE Selection Condition ORDER BY T DESCEND-
ING/ASCENDING, where T is the scoring function
based on which the top-k files or directories are selected.
For example, a system administrator may want to select
the 100 largest files, i.e.,

Q5: SELECT TOP 100 files FROM filesystem ORDER
BY file.size DESCENDING;

Another example is to find the ten most recently cre-
ated directories that were modified yesterday, i.e.,

Q6: SELECT TOP 10 directories FROM filesystem
WHERE directory.mtime BETWEEN (now − 24 hours)
AND now ORDER BY directory.ctime DESCENDING;

We note that, to approximately answer a top-k query,
one shall return a list of k items that share a large per-
centage of common ones with the precise top-k list.

Current operating systems and storage devices do not
provide APIs which directly support the above-defined
aggregate and top-k queries. The objective of just-in-
time analytics can be stated as follows.

Problem Statement (Objective of Just-In-Time Analyt-
ics over File Systems): To enable the efficient approx-
imate processing of aggregate and top-k queries over a
file system by using the file/directory access APIs pro-
vided by the operating system.

To complete the problem statement, we need to de-
termine how to measure the efficiency and accuracy of
query processing. For the purpose of this paper, we
measure the query efficiency in two metrics: 1) query
time, i.e., the runtime of query processing, and 2) query
cost, i.e., the ratio of the number of directories visited by
Glance to that of crawling the file system (i.e., the total
number of directories in the system). We assume that one
disk access is required for reading a new directory. Thus,
the query cost approximates the number of disk accesses
required by Glance. The two metrics, query time and
cost, are positively correlated - the higher the query cost
is, more directories the algorithm has to sample, leading
to a longer runtime.

While the efficiency measures are generic to both ag-
gregate and top-k query processing, the measures for
query accuracy are different. For aggregate queries, we
define the query accuracy as the relative error of the ap-
proximate answer apx compared with the precise one
ans - i.e., |apx − ans|/|ans|. For top-k queries, we
define the accuracy as the percentage of items that are
common in the approximate and precise top-k lists. The
accuracy level required for approximate query process-
ing depends on the intended application. For example,
while scientific computing usually requires a small error,
the above-mentioned surveillance application may sim-
ply need a ball-park figure to determine whether there is
a significant amount of sensitive files in the system.

3

220 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

3 Aggregate Query Processing

In this section, we develop FS Agg, our algorithm
for processing aggregate queries. We first describe
FS Agg Basic, a vanilla algorithm which illustrates our
main idea of aggregate estimation without bias through a
random descent process within a file system. Then, we
describe two ideas to make the vanilla algorithm practical
over very large file systems: high-level crawling lever-
ages the special properties of a file system to reduce the
standard error of estimation, and breadth-first implemen-
tation improves both accuracy and efficiency of query
processing. Finally, we combine all three techniques to
produce FS Agg.

3.1 FS Agg Basic
A Random Descent Process: In general, the folder or-
ganization of a file system can be considered as a tree or a
directed acyclic graph (DAG), depending on whether the
file system allows hard links to the same file. The random
descent process we are about to discuss can be applied to
both cases with little change. For the ease of understand-
ing, we first focus on the case of tree-like folder structure,
and then discuss a simple extension to DAG at the end of
this subsection.

Figure 1: Random descents on a tree-like structure

Figure 1 depicts a tree structure with root correspond-
ing to the root directory of a file system, which we shall
use as a running example throughout the paper. One can
see from the figure that there are two types of nodes in
the tree: folders (directories) and files. A file is always
a leaf node. The children of a folder consist of all sub-
folders and files in the folder. We refer to the branches
coming out of a folder node as subfolder-branches and
file-branches, respectively, according to their destination
type. We refer to a folder with no subfolder-branches
as a leaf-folder. Note that this differs from a leaf in the
tree, which can be either a file or a folder containing nei-
ther subfolder nor file. The random descent process starts
from the root and ends at a leaf-folder. At each node,
we choose a subfolder branch of the node uniformly at

random for further exploration. During the descent pro-
cess, we evaluate all file branches encountered at each
node along the path, and generate an aggregate estima-
tion based on these file branches.

To make the idea more concrete, consider an exam-
ple of estimating the COUNT of all files in the system.
At the beginning of random descent, we access the root
to obtain the number of its file- and subfolder-branches
f0 and s0, respectively, and record them as our evalua-
tion for the root. Then, we randomly choose a subfolder-
branch for further descent, and repeat this process until
we arrive at a folder with no subfolder. Suppose that the
numbers we recorded during such a descent process are
f0, s0, f1, s1, . . . , fh, sh, where sh = 0 because each de-
scent ends at a leaf-folder. We estimate the COUNT of
all files as

ñ =

h∑
i=0

fi ·

i−1∏
j=0

sj

 , (1)

where
∏i−1

j=0 sj is assumed to be 1 when i = 0. Two ex-
amples of such a random descent process are marked in
Figure 1 as red solid and blue dotted lines, respectively.
The solid descent produces 〈f0, f1, f2〉 = 〈2, 2, 2〉 and
〈s0, s1, s2〉 = 〈4, 1, 0〉, leading to an estimation of 2 +
8 + 8 = 18. The dotted one produces 〈f0, f1, f2〉 =
〈2, 0, 1〉 and 〈s0, s1, s2〉 = 〈4, 2, 0〉, leading to an esti-
mation of 2 + 0 + 8 = 10. The random descent process
can be repeated multiple times (by restarting from the
root) to produce a more accurate result (by taking the av-
erage of estimations generated by all descents).
Unbiasedness: Somewhat surprisingly, the estimation
produced by each random descent process is completely
unbiased - i.e., the expected value of the estimation is
exactly equal to the total number of files in the system.
To understand why, consider the total number of files at
the i-th level (with root being Level 0) of the tree (e.g.,
Files 1 and 2 in Figure 1 are at Level 3), denoted by Fi.
According to the definition of a tree, each i-level file be-
longs to one and only one folder at Level i − 1. For
each (i − 1)-level folder vi−1, let |vi−1| and p(vi−1) be
the number of (i-level) files in vi−1 and the probability
for vi−1 to be reached in the random descent process,
respectively. One can see that |vi−1|/p(vi−1) is an unbi-
ased estimation for F (i) because

E

(
|vi−1|
p(vi−1)

)
=

∑
vi−1

(
p(vi−1) ·

|vi−1|
p(vi−1)

)
= Fi. (2)

With our design of the random descent process, the prob-
ability p(vi−1) is

p(vi−1) =

i−2∏
j=0

1

sj(vi−1)
, (3)

4

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 221

where sj(vi−1) is the number of subfolder-branches for
each node encountered on the path from the root to vi−1.
Our estimation in (1) is essentially the sum of the unbi-
ased estimations in (2) for all i ∈ [1,m], where m is the
maximum depth of a file. Thus, the estimation generated
by the random descent is unbiased.

Processing of Aggregate Queries: While the above ex-
ample is for estimating the COUNT of all files, the same
random descent process can be used to process queries
with other aggregate functions (e.g., SUM, AVG), with
selection conditions (e.g., COUNT all files with exten-
sion ’.JPG’), and in file systems with a DAG instead of
tree structure. We now discuss these extensions. In par-
ticular, we shall show the only change required for all
these extensions is on the computation of fi.

SUM: For the COUNT query, we set fi to the num-
ber of files in a folder. To process a SUM query over
a file metadata attribute (e.g., file size), we simply set
fi as the SUM of such an attribute over all files in the
folder (e.g., total size of all files). In the running exam-
ple, consider the estimation of SUM of numbers shown
on all files in Figure 1. The solid and dotted random
walks will return 〈f0, f1, f2〉 = 〈15, 7, 3〉 and 〈15, 0, 5〉,
respectively, leading to the same estimation of 55. The
unbiasedness of such an estimation follows in analogy
from the COUNT case.

AVG: A simple way to process an AVG query is to
estimate the corresponding SUM and COUNT respec-
tively, and then compute AVG as SUM/COUNT. Note,
however, that such an estimation is no longer unbiased,
because the division of two unbiased estimations is not
necessarily unbiased. While an unbiased AVG estima-
tion may indeed be desired for certain applications, we
have proved a negative result that it is impossible to an-
swer an AVG query without bias unless one accesses the
file system for almost as many as times as crawling the
file system. We omit the detailed proof here due to the
space limitation. Nonetheless, for practical purposes, es-
timating AVG as SUM/COUNT is in general very accu-
rate, as we shall show in the experimental results.

Selection Conditions: To process a query with selec-
tion conditions, the only change required is, again, on the
computation of fi. Instead of evaluating fi over all file
branches of a folder, to answer a conditional query, we
only evaluate fi over the files that satisfy the selection
conditions. For example, to answer a query SELECT
COUNT(*) FROM Files WHERE file.extension =
’JPG’, we should set fi as the number of files under the
current folder with extension JPG. Similarly, to answer
“SUM(file size) WHERE owner = John”, we should
set fi to the SUM of sizes for all files (under the current
folder) which belong to John. Due to the computation
of fi for conditional queries, the descent process may be
terminated early to further reduce the cost of sampling.

Again consider the query condition of (owner = John).
If the random descent reaches a folder which cannot be
accessed by John, then it can terminate immediately be-
cause any deeper descent can only return fi = 0, leading
to no change in the estimation.
Extension to DAG Structure: Finally, for a file system
featuring a DAG (instead of tree) structure, we again only
need to change the computation of fi. Almost all DAG-
enabled file systems (e.g., ext2, ext3, NTFS) provide a
reference count for each file which indicates the number
of links in the DAG that point to the file1. For a file with
r links, if we use the original algorithm discussed above,
then the file will be counted r times in the estimation.
Thus, we should discount its impact on each estimation
with a factor of 1/r. For example, if the query being pro-
cessed is the COUNT of all files, then we should com-
pute fi =

∑
f∈F (1/r(f)), where F is the set of files

under the current folder, and r(f) is the number of links
to each file f . Similarly, to estimate the SUM of all file
sizes, we should compute fi =

∑
f∈F (size(f)/r(f)),

where size(f) is the file size of file f . One can see that
with this discount factor, we maintain an unbiased esti-
mation over a DAG file system structure.

3.2 Disadvantages of FS Agg Basic
While the estimations generated by FS Agg Basic is un-
biased for SUM and COUNT queries, it is important to
understand that the error of an estimation comes from not
only bias but also variance (i.e., standard error). A prob-
lem of FS Agg Basic is that it may produce a high esti-
mation variance for file systems with an undesired distri-
bution of files, as illustrated by the following theorem:

Theorem 1. The variance of estimation produced by a
random descent on the number of h-level files Fh is

σ(h)2 =

 ∑

v∈Lh−1

(|v|2 ·
h−2∏
j=0

sj(v))

 − F 2

h . (4)

where Lh−1 is the set of all folders at Level h− 1, |v| is
the number of files in a folder v, and sj(v) is the number
of subfolders for the Level-j node on the path from the
root to v.

Proof. Consider an (h − 1)-level folder v. If the ran-
dom descent reaches v, then the estimation it produces
for the number of h-level files is |v|/p(v), where p(v) is
the probability for the random descent to reach v. Let
δ(h) be the probability that a random descent terminates

1In ext2 and ext3, for example, the system provides the number of
hard links for each file. Note that for soft links, we can simply ignore
them during the descent process. Thus, they bear no impact on the final
estimation.

5

222 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

early before reaching a Level-(h− 1) folder. Since each
random descent reaches at most one Level-(h−1) folder,
the estimation variance for Fh is

σ(h)2 = δ(h) · F 2
h +

∑
v∈Lh−1

p(v) · (|v|
p(v)

− Fh)
2 (5)

= δ(h) · F 2
h +

∑
v∈Lh−1

(
|v|2

p(v)
− 2|v|Fh+

p(v) · F 2
h) (6)

=

 ∑

v∈Lh−1

|v|2

p(v)

 − F 2

h (7)

Since p(v) = 1/
∏h−2

j=0 sj(v), the theorem is proved.

One can see from the theorem that the existence of
two types of folders may lead to an extremely high esti-
mation variance: One type is high-level leaf-folders (i.e.,
“shallow” folders with no subfolders). Folder c in Fig-
ure 1 is an example. To understand why such folders
lead to a high variance, consider (7) in the proof of The-
orem 1. Note that for a large h, a high-level leaf-folder
(above Level-(h − 1)) reduces

∑
v∈Lh−1

p(v) because
once a random descent reaches such a folder, it will not
continue to retrieve any file in Level-h (e.g., Folder c in
Figure 1 stops further descents for h = 3 or 4). As a re-
sult, the first item in (7) becomes higher, increasing the
estimation variance. For example, after removing Folder
c from Figure 1, the estimation variance for the number
of files on Level 3 can be reduced from 24 to 9.

The other type of “ill-conditioned” folders are those
deep-level folders which reside at much lower levels than
others (i.e., with an extremely large h). An example is
Folder j in Figure 1. The key problem arising from such
a folder is that the probability for it to selected is usually
extremely small, leading to an estimation much larger
than the real value if the folder happens to be selected. As
shown in Theorem 1, a larger h leads to a higher

∏
sj(v),

which in turn leads to a higher variance. For example,
Folder j in Figure 1 has

∏
sj(v) = 4× 2× 3× 3 = 72,

leading to a estimation variance of 72 − 1 = 71 for the
number of files on Level 5 (which has a real value of 1).

3.3 FS Agg

To reduce the estimation variance, we propose high-level
crawling and breadth-first descent to address the two
above-described problems on estimation variance, high-
level leaf-folders and deep-level folders, respectively.
Also, we shall discuss how the variance generated by
FS Agg can be estimated in practice, effectively produc-
ing a confidence interval for the aggregate query answer.

High-Level Crawling is designed to eliminate the nega-
tive impact of high-level leaf-folders on estimation vari-
ance. The main idea of high-level crawling is to access
all folders in the highest i levels of the tree - by following
all subfolder-branches of folders accessed on or above
Level-(i − 1). Then, the final estimation becomes an
aggregate of two components: the precise value over the
highest i levels and the estimated value (produced by ran-
dom descents) over files below Level-i. One can see from
the design of high-level crawling that now leaf-folders in
the first i levels no longer reduce p(v) for folders v be-
low Level-i (and therefore no longer adversely affect the
estimation variance). Formally, we have the following
theorem2 which demonstrates the effectiveness of high-
level crawling on reducing the estimation variance:

Theorem 2. If r0 out of r folders crawled from the first i
levels are leaf-folders, then the estimation variance pro-
duced by a random descent for the number of Level-h
files Fh satisfies

σHLC(h)
2 ≤ (r − r0) · σ2

h − r0 · F 2
h

r
. (8)

According to this theorem, if we apply high-level
crawling over the first level in Figure 1, then the esti-
mation variance for the number of files on Level 3 is at
most (3 ·24−1 ·36)/4 = 9. Recall from Section 4.2 that
the variance of estimation after removing Folder c (the
only leaf-folder at the first level) is exactly 9. Thus, the
bound in Theorem 2 is tight in this case.

Breadth-First Descent is designed to bring two advan-
tages over FS Agg Basic: variance reduction and run-
time improvement, which we shall explain as follows.
Variance Reduction: breadth-first descent starts from the
root of the tree. Then, at any level of the tree, it generates
a set of folders to access at the next level by randomly
selecting from subfolders of all folders it accesses at the
currently level. Note that any random selection process
would work - as long as we know the probability for a
folder to be selected, we can answer aggregate queries
without bias in the same way as the original random de-
scent process. For example, to COUNT the number of
all files in the system, an unbiased estimation of the total
number of files at Level i is the SUM of |vi−1|/p(vi−1)
for all Level-(i−1) folders vi−1 accessed by the breadth-
first implementation, where |vi−1| and p(vi−1) are the
number of file-branches and the probability of selection
for vi−1, respectively.

We use the following random selection process in
Glance: Consider a folder accessed at the current level
which has n0 subfolders. From these n0 subfold-
ers, we sample without replacement min(n0,max(psel ·

2In the rest part of the paper, we do not include the proof of theo-
rems due to the space limitation.

6

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 223

n0, smin)) ones for access at the next level. Here psel ∈
(0, 1] (where sel stands for selection) represents the prob-
ability of which a subfolder will be selected for sampling,
and smin ≥ 1 states the minimum number of subfolders
that will be sampled. Both psel and smin are user-defined
parameters, the settings for which we shall further dis-
cuss in the experiments section based on characteristics
of real-world file systems.

Compared with the original random descent design,
this breadth-first random selection process significantly
increases the selection probability for a deep folder. Re-
call that with the original design, while drilling down
one level down the tree, the selection probability can de-
crease rapidly by a factor of the fan-out (i.e., the number
of subfolders) of the current folder. With breadth-first
descent, on the other hand, the decrease is limited to at
most a factor of 1/psel, which can be much smaller than
the fanout when psel is reasonably high (e.g., =0.5 as we
shall suggest in the experiments section). As a result,
the estimation generated by a deep folder becomes much
smaller. Formally, we have the following theorem.

Theorem 3. With breadth-first descent, the variance of
estimation on the number of h-level files Fh satisfies

σBFS(h)
2 ≤

 ∑

v∈Lh−1

|v|2

ph−1
sel

 − F 2

h . (9)

One can see from a comparison with Theorem 1 that
the factor of

∏
sj(v) in the original variance, which can

grow to an extremely large value, is now replaced by
1/ph−1

sel which can be better controlled by the Glance sys-
tem to remain at a low level even when h is large.
Runtime Improvement: In the original design of
FS Agg Basic, random descent has to be performed mul-
tiple times to reduce the estimation variance. Such mul-
tiple descents are very likely to access the same folders,
especially the high-level ones. While one can leverage
the history of hard-drive accesses by caching all his-
toric accesses in memory, such repeated accesses can
still take significant CPU time for in-memory look up.
The breadth-first design, on the other hand, ensures that
each folder is accessed at most once, reducing the run-
time overhead of the Glance system.

Variance Produced by FS Agg: An important issue
for applying FS Agg in practice is how one can esti-
mate the error of approximate query answers it produces.
Since FS Agg generates unbiased answers for SUM and
COUNT queries, the key enabling factor for error estima-
tion here is an accurate computation of the variance. One
can see from Theorem 3 that variance depends on the
specific structure of the file system, in particular the dis-
tribution of selection probability psel for different fold-
ers. Since our sampling-based algorithm does not have

a global view of the hierarchical structure, it cannot pre-
cisely compute the variance.

Fortunately, the variance can still be accurately ap-
proximated in practice. To understand how, consider first
the depth-first descents used in FS Agg Basic. Each de-
scent returns an independent aggregate estimation, while
the average for multiple descents becomes the final ap-
proximate query answer. Let q̃1, . . . , q̃h be the indepen-
dent estimations and q̃ = (

∑
q̃i)/h be the final answer.

A simple method of variance approximation is to com-
pute var(q̃1, . . . , q̃h)/h, where var(·) is the variance of
independent estimations returned by the descents. Note
that if we consider a population consisting of estimations
generated by all possible descents, then q̃1, . . . , q̃h form
a sample of the population. As such, the variance compu-
tation is approximating the population variance by sam-
ple variance, which are asymptotically equal (for an in-
creasing number of descents).

We conducted extensive experiments described in Sec-
tion 5 to verify the accuracy of such an approximation.
Figure 2 shows two examples for counting the total num-
ber of files in an NTFS and a Plan 9 file system, re-
spectively. Observe from the figure that the real vari-
ance oscillates in the beginning of descents. For exam-
ple, we observe at least one spike on each file system
within the first 100 descents. Such a spike occurs when
one descent happens to end with a deep-level file which
returns an extremely large estimation, and is very likely
to happen with our sampling-based technique. Nonethe-
less, note that the real variance converges to a small
value when the number of descents is sufficiently large
(e.g., > 400). Also note that for two file systems after
a small number of descents (about 50), the sample vari-
ance var(q̃1, . . . , q̃h)/h becomes an extremely accurate
approximation for the real (population) variance (over-
lapping shown in Figure 2), even during the spikes. One
can thereby derive an accurate confidence interval for the
query answer produced by FS Agg Basic.

1

2

3

 0 200 400 600

Va
ria

nc
e

Number of Descents

x 104

Real Variance
Sample Variance

(a) NTFS

1

2

3

 0 200 400 600

Va
ria

nc
e

Number of Descents

x 106

Real Variance
Sample Variance

(b) Plan 9
Figure 2: Variance approximation for (a) an NTFS file
system and (b) a Plan 9 system. Real and sample vari-
ances are overlapped when the number of descents is suf-
ficiently large.

While FS Agg no longer performs individual depth-
first descents, the idea of using sample variance to ap-

7

224 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

proximate population variance still applies. In partic-
ular, note that for any given level, say Level-i, of the
tree structure, each folder randomly chosen by FS Agg
at Level-(i − 1) produces an independent, unbiased, es-
timation for SUM or COUNT aggregate over all files
in Level-i. Thus, the variance for an aggregate query
answer over Level-i can be approximated based on the
variance of estimations generated by the individual fold-
ers. The variance of final SUM or COUNT query answer
(over the entire file system) can then be approximated by
the SUM of variances for all levels.

4 Top-k Query Processing

Recall that for a given file system, a top-k query is de-
fined by two elements: the scoring function and the se-
lection conditions. Without loss of generality, we con-
sider a top-k query which selects k files (directories) with
the highest scores. For the sake of simplicity, we focus
on top-k queries without selection conditions, and con-
sider a tree-like structure of the file system. The exten-
sions to top-k queries with selection conditions and file
systems with DAG structures follow in analogy from the
same extensions for FS Agg.

4.1 Main Idea

A simple way to answer a top-k query is to access ev-
ery directory to find the k files with the highest scores.
The objective of FS TopK is to generate an approximate
top-k list with far fewer hard-drive accesses. To do so,
FS TopK consists of the following three steps. We shall
describe the details of these steps in the next subsection.

1. A Lower-Bound Estimation: The first step uses a
random descent similar to FS Agg to generate an
approximate lower bound on the k-th highest score
over the entire file system (i.e., among files that sat-
isfy the selection conditions specified in the query).

2. Highest-Score Estimations and Tree Pruning: In the
second step, we prune the tree structure of the file
system according to the lower bound generated in
Step 1. In particular, for each subtree, we use the
results of descents to generate an upper-bound esti-
mate on the highest score of all files in the subtree.
If the estimation is smaller than the lower bound
from Step 1, we remove the subtree from search
space because it is unlikely to contain a top-k file.
Note that in order for such a pruning process to have
a low false negative rate - i.e., not to falsely remove
a large number of real top-k files, a key assumption
we are making here is the “locality” of scores - i.e.,
files with similar scores are likely to co-locate in the

same directory or close by in the tree structure. In-
tuitively, the files in a directory are likely to have
similar creation and update times. In some cases
(e.g., images in the ”My Pictures” directory, and
outputs from a simulation program), the files will
likely have similar sizes too. Note that the strength
of this locality is heavily dependent on the type of
the query and the semantics of the file system on
which the query is running. We plan to investigate
this issue as part of the future work.

3. Crawling of the Selected Tree: Finally, we crawl the
remaining search space - i.e., the selected tree - by
accessing every folder in it to locate the top-k files
as the query answer. Such an answer is approximate
because some real top-k files might exist in the se-
lected subtrees, albeit with a small probability, as
we shall show in the experimental results.

In the running example, consider a query for the top-3
files with the highest numbers shown in Figure 1. Sup-
pose that Step 1 generates a (conservative) lower bound
of 8, and the highest scores estimated in Step 2 for sub-
trees with roots a, c, d, and m are 5, -1 (i.e., no file),
7, and 15, respectively - the details of these estimations
will be discussed shortly. Then, the pruning step will re-
move the subtrees with roots a, c, and d, because their
estimated highest scores are lower than the lower bound
of 8. Thus, the final crawling step only needs to access
the subtree with root of a. In this example, the algorithm
would return the files identified as 8, 9, and 10, locating
two top-3 files while crawling only a small fraction of the
tree. Note that the file with the highest number 11 could
not be located here because the pruning step removes the
subtree with root of d.

4.2 Detailed Design
The design of FS TopK is built upon a hypothesis that
the highest scores estimated in Step 2, when compared
with the lower bound estimated in Step 1, can prune a
large portion of the tree, significantly reducing the over-
head of crawling in Step 3. In the following, we first de-
scribe the estimations of the lower bound and the highest
scores in Steps 1 and 2, and then discuss the validity of
the hypothesis for various types of scoring functions.

Both estimations in the two steps can be made from
the order statistics [20] of files retrieved by the random
descent process in FS Agg. The reason is that both esti-
mations are essentially on the order statistics of the pop-
ulation (i.e., all files in the system) - The lower bound in
Step 1 is the k-th largest order statistics of all files, while
the highest scores are on the largest order statistics of the
subtrees. We refer readers to [20] for details of how the
order statistics of a sample can be used to estimate that
of the population and how accurate such an estimation is.

8

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 225

While sampling for order statistics is a problem of its
own right, for the purpose of this paper, we consider the
following simple approach which, according to our ex-
periments over real-world file systems, suffices for an-
swering top-k queries accurately and efficiently over al-
most all tested systems: For the lower-bound estimation
in Step 1, we use the sample quantile as an estimation
of the population quantile. For example, to estimate the
100-th largest score of a system with 10, 000 files, we use
the largest score of a 100-file sample as an estimation.
Our tests show that for many practical scoring functions
(which usually have a positive skew, as we shall discuss
below), the result serves as a conservative lower bound
desired by FS TopK. For the highest-score estimation
in Step 2, we simply compute γ · max(sample scores),
where γ is a constant correction parameter. The setting
of γ captures a tradeoff between the crawling cost and
the chances of finding top-k files - when a larger γ is se-
lected, less number of the subtrees are likely be removed.

We now discuss when the hypothesis of heavy prun-
ing is valid and when it is not. Ideally, two conditions
should be satisfied for the hypothesis to hold: (1) If a
subtree includes a top-k file, then it should include a (rel-
atively) large number of highly scored files, in order for
the sampling process (in Step 2) to capture one (and to
thereby produce a highest-score estimation that surpasses
the lower bound) with a small query cost. And (2) on the
other hand, most subtrees (which do not include a top-
k file) should have a maximum score significantly lower
than the k-th highest score. This way, a large number
of subtrees can be pruned to improve the efficiency of
top-k query processing. In general, one can easily con-
struct a scoring function that satisfy both or neither of
the above two conditions. We focus on a special class
of scoring functions: those following a heavy-tailed dis-
tributions (i.e., its cumulative distribution function F (·)
satisfies limx→∞ eλx(1 − F (x)) = ∞ for all λ > 0).
Existing studies on real-world file system traces showed
that many file/directory metadata attributes, which are
commonly used as scoring functions, belong to this cat-
egory [2]. For example, the distributions of file size, last
modified time, creation time, etc., in the entire file sys-
tem or in a particular subtree are likely to have a heavy
tail on one or both extremes of the distribution.

A key intuition here is that scoring functions defined
as such attribute values (e.g., finding the top-k files with
the maximum sizes or the latest modified time) usually
satisfy both conditions: First, because of the long tail,
a subtree which includes a top-k scored file is likely to
include many other highly scored files as well. Second,
since the vast majority of subtrees have their maximum
scores significantly smaller than the top-k lower bound,
the pruning process is likely to be effective with such a
scoring function.

We would also like to point out an “opposite” class of
scoring functions for which the pruning process is not ef-
fective: the inverse of the above scoring functions - e.g.,
the top-k files with the smallest sizes. Such a scoring
function, when used in a top-k query, selects k files from
the “crowded” light-tailed side of the distribution. The
pruning is less likely to be effective because many other
folders may have files with similar scores, violating the
second condition stated above. Fortunately, asking for
top-k smallest files is not particularly useful in practice,
also because of the fact that it selects from the crowded
side - e.g., the answer is likely to be a large number of
empty files.

5 Implementation and Evaluation

5.1 Implementation
We implemented Glance, including all three algorithms
(FS Agg Basic, FS Agg and FS TopK) in 1,600 lines of
C code in Linux. We also built and used a simulator in
Matlab to complete a large number of tests within a short
period of time. While the implementation was built upon
the ext3 file system, the algorithms are generic to any
hierarchical file system and the current implementation
can be easily ported to other platforms, e.g., Windows
and Mac OS. FS Agg Basic has only one parameter: the
number of descents. FS Agg has three parameters: the
selection probability psel, the minimum number of selec-
tions smin and the number of (highest) levels for crawling
h. Our default parameter settings are psel = 50%, smin =
3, and h = 4. We also tested with other combinations of
parameter settings. FS TopK has one additional param-
eter, the (estimation) enlargement ratio γ. The setting of
γ depends on the query to be answered, which shall be
explained later.

5.2 Experiment Setup
Test Platform: We ran all experiments on Linux ma-
chines with Intel Core 2 Duo processor, 4GB RAM, and
1TB Samsung 7200RPM hard drive. Unless otherwise
specified, we ran each experiment for five times and re-
ported the averages.
Windows File Systems: The Microsoft traces [2] in-
cludes the snapshots of around 63,000 file systems, 80%
of which are NTFS and the rest are FAT. To test Glance
over file systems with a wide range of sizes, we first
selected from the traces two file systems, m100K and
m1M (the first ‘m’ stands for Microsoft trace), which
are the largest file systems with less than 100K and 1M
files, respectively. Specifically, m100K has 99,985 files
and 16,013 directories, and m1M has 998,472 files and
106,892 directories. We also tested the largest system in

9

226 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

the trace, m10M , which has the maximum number of
files (9,496,510) and directories (789,097). We put to-
gether the largest 33 file systems in the trace to obtain
m100M that contains over 100M files and 7M directo-
ries. In order to evaluate next-generation billion-level file
systems for which there are no available traces, we chose
to replicate m100M for 10 times to create m1B with
over 1 billion files and 70M directories. While a similar
scale-up approach has been used in the literature [26,49],
we would like to note that the duplication-filled system
may exhibit different properties from a real system with
100M or 1B files. As part of future work, we shall evalu-
ate our techniques in real-world billion-level file systems.
Plan 9 File Systems: Plan 9 is a distributed file system
developed and used at the Bell Labs [41, 42]. We re-
played the trace data collected on two central file servers
bootes and emelie, to obtain two file systems, pb (for
bootes) and pe (for emelie), each of which has over 2M
files and 70-80K directories.
NFS: Here we used the Harvard trace [21, 45] that con-
sists of workloads on NFS servers. The replay of one-
day trace created about 1,500 directories and 20K files.
Again, we scaled up the one-day system to a larger
file system nfs (2.3M files and 137K folders), using the
above-mentioned approach.
Synthetic File Systems: To conduct a more compre-
hensive set of experiments on file systems with differ-
ent file and directory counts, we used Impressions [1]
to generate a set of synthetic file systems. By adjust-
ing the file count and the (expected) number of files per
directory, we used Impressions to generate three file sys-
tems, i10K, i100K, and i1M (here ‘i’ stands for Im-
pressions), with file counts 10K, 100K, and 1M, and di-
rectory counts 1K, 10K, and 100K, respectively.

5.3 Aggregate Queries
We first considered Q1 discussed in Section 2, i.e., the to-
tal number of files in the system. To provide a more intu-
itive understanding of query accuracy (than the arguably
abstract measure of relative error), we used the Matlab
simulator (for quick simulation) to generate a box plot
(Figure 3(a)) of estimations and overhead produced by
Glance on Q1 over five file systems, m100K to m10M,
pb and pe. Remember as defined in Section 2, the query
cost (in Figure 3(b) and the following figures) is the ratio
between the number of directories visited by Glance and
that by file-system crawling. One can see that Glance
consistently generates accurate query answers, e.g., for
m10M, sampling 30% of directories produces an answer
with 2% average error. While there are outliers, the num-
ber of outliers is small and their errors never exceed 7%.

We also evaluated Glance with other file systems and
varied the input parameter settings. This test was con-

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

m100K m1M m10M pb pe

R
el

at
iv

e
es

tim
at

io
n

(a) Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

m100K m1M m10M pb pe

C
os
t

(b) Cost

Figure 3: Box plots of accuracy and cost of 100 trials

ducted on the Linux and ext3 implementation, and so
were the following tests on aggregate queries. In this
test, we varied the minimum number of selections smin

from 3 to 6, the number of crawled levels h from 3 to 5,
and set the selection probability as psel = 50% (i.e., half
of the subfolders will be selected if the amount is more
than smin). Figure 4 shows the query accuracy and cost
on the eleven file systems we tested. For all file systems,
Glance was able to produce very accurate answers (with
<10% relative error) when crawling four or more levels
(i.e., h ≥ 4). Also note from Figure 4 that the perfor-
mance of Glance is less dependent on the type of the file
system than its size - it achieves over 90% accuracy for
NFS, Plan 9, and NTFS (m10M to m1B). Depending on
the individual file systems, the cost ranges from less than
12% of crawling for large systems with 1B files and 80%
for the small 100K system. The algorithm scales very
well to large file systems e.g., m100M and m1B - the
relative error is only 1-3% when Glance accesses only
10-20% of all directories. For m1B, the combination of
psel = 50%, smin = 3 and h = 4 produces 99% accuracy
with very little cost (12%).

0.7

0.8

0.9

1.0

 0 50 100 150 200 250 300 350 400 450

A
cc

ur
ac

y

Time (sec)
m100K m1M m10M pb pe NFS

Figure 5: Query accuracy vs. run time in seconds. Three
points of each line (from left to right) represent h of 3, 4,
and 5, respectively.

Figure 5 illustrates the runtimes (in seconds) for ag-
gregate queries. The absolute runtime depends heavily
on the size of the file system, e.g., seconds for m100K,
several minutes for nfs (2.3M files), and 1.2 hours for
m100M (not shown in the figure). Note that in this paper
we only used a single hard drive; parallel IO to multiple
hard drives (e.g., RAID) will be able to utilize the aggre-
gate bandwidth to further improve the performance. As
the value of h increases, the query runs slightly longer

10

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 227

0.0
0.2
0.4
0.6
0.8
1.0

A
cc
ur
ac
y

0.0
0.2
0.4
0.6
0.8
1.0

m100K m1M m10M m100M m1B pb pe nfs i10K i100K i1M

C
os

t

File Systems
h - Smin

3-3 3-6 4-3 4-6 5-3 5-6

Figure 4: Accuracy and cost of aggregate queries under different settings of the input parameters. Label 3-3 stands for
h of 3 and smin of 3, 3-6 for h of 3 and smin of 6, etc., while psel is 50% for all cases.

but the accuracy improves by about 10% for pb and 20%
for pe. The accuracy improvements for m10M and nfs
are smaller. The value of smin is 3 in this test.

0.0
0.2
0.4
0.6
0.8
1.0

m100K m1M m10M 0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

C
os

t

File Systems
COUNT SUM size AVG size Cost

(a) No condition

0.0
0.2
0.4
0.6
0.8
1.0

m100K m1M m10M 0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

C
os

t

File Systems
COUNT SUM size AVG size Cost

(b) With condition

Figure 6: Accuracy and cost of queries

We also considered other aggregate queries with vari-
ous aggregate functions and with/without selection con-
ditions. Figure 6(a) presents the accuracy and cost of
evaluating the SUM and AVG of file sizes for all files
in the system, while Figure 6(b) depicts the same for
exe files. We included in both figures the accuracy of
COUNT because AVG is calculated as SUM/COUNT.
Both SUM and AVG queries receive very accurate an-
swers, e.g., only 2% relative error for m10M with or
without the selection condition of ‘.exe’. The query
costs are moderate for large systems - 30% for m1M and
m10M (higher for the small system m100K). We also

tested SUM and AVG queries with other selection condi-
tions (e.g., file type = ‘.dll ’) and found similar results.

5.4 Top-k Queries

To evaluate the performance of FS TopK, we considered
both Q5 and Q6 discussed in Section 2. For Q5, i.e., the k
largest files, we tested Glance over five file systems, with
k being 50 or 100. One can see from the results depicted
in Figure 7 that, in all but one case (m1M), Glance is
capable of locating at least 50% of all top-k files (for pb,
more than 95% are located). Meanwhile, the cost is as
little as 4% of crawling (for m10M). Figure 8 presents
the runtimes of the top-k queries, where one can see that
similar to aggregate queries, the runtime is correlated to
the size of the file system - the queries take only a few
seconds for small file systems, and up to ten minutes for
large systems (e.g., m10M).

0.0
0.2
0.4
0.6
0.8
1.0

A
cc
ur
ac
y Top50 Top100

0.0
0.2
0.4
0.6
0.8
1.0

m100K m1M m10M pb pe

C
os

t

File Systems

Figure 7: Accuracy and cost of Top-k queries on file size

Figure 9 presents the query accuracy and cost for Top-
k queries on file size, when γ varies from 1, 5, 10, to
100,000. The trend is clear - the query cost increases as
γ does, because a higher value of γ is to scale the highest-
score estimation up to a larger degree, that is, to crawl a

11

228 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

0.4

0.6

0.8

1.0

 0 100 200 300 400 500 600

A
cc

ur
ac

y

Time (sec)
m100K m1M m10M pb pe

Figure 8: Top-k query accuracy vs. run time in seconds.
The first point of each line stands for top-50 and the sec-
ond for top-100.

larger portion of the file system. Fortunately, a moderate
γ of 5 and 10 presents a good tradeoff point - achieving
a reasonable accuracy without incurring too much cost.

We also tested Q6, i.e., the k most recently modified
files over m100K, m1M, and pb. The results are shown
in Figure 10. One can see that Glance is capable of locat-
ing more than 90% of top-k files for pb, and about 60%
for m100K and m1M. The cost, meanwhile, is 28% of
crawling for m100K, 1% for m1M, and 36% for pb.

0.0
0.2
0.4
0.6
0.8
1.0

100 101 102 103 104 105

A
cc
ur
ac
y

ϒ

0.0
0.2
0.4
0.6
0.8
1.0

100 101 102 103 104 105

C
os
t

ϒ

m100K Top50
m100K Top100

m1M Top50
m1M Top100

Figure 9: Query accuracy and cost when varying γ

0.0
0.2
0.4
0.6
0.8
1.0

m100K m1M pb
0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

C
os

t

File Systems
Accuracy Cost

Figure 10: Top-k queries on file time

6 Related Work

Metadata query on file systems: Prior research on file-
system metadata query [26, 32] has extensively focused
on databases, which utilizes indexes on file metadata.
However, the results [26,31,32] reviewed the inefficiency
of this paradigm due to metadata locality and distribution
skewness in large file systems. To solve this problem,
Spyglass [30, 32], SmartStore [26], and Magellan [31]
utilize multi-demensional structures (e.g., K-D trees and
R-trees) to build indexes upon subtree partitions or se-
mantic groups. SmartStore attempts to reorganize the
files based on their metadata semantics. Conversely,
Glance avoids any file-specific optimizations, aiming in-
stead to maintain file system agnosticism. It works seam-
lessly with the tree structure of a file system and avoids
the time and space overheads from building and main-
taining the metadata indexes.

Comparison with Database Sampling: Traditionally
database sampling has been used to reduce the cost of
retrieving data from a DBMS. Random sampling mech-
anisms have been extensively studied [4, 6, 9, 12, 14, 15,
22, 34]. Applications of random sampling include esti-
mation methodologies for histograms and approximate
query processing (see tutorial in [15]). However, these
techniques do not apply when there is no direct random
access to all elements of interest - e.g., in a file system,
where there is no complete list of all files/directories.

Another particularly relevant topic is the sampling of
hidden web databases [8,24,25,28], for which a random
descent process has been used to construct queries is-
sued over the web interfaces of these databases [16–19].
While both these techniques and Glance use random de-
scents, a unique challenge for sampling a file system is its
much more complex distribution of files. If we consider
a hidden database in the context of a file system, then
all files (i.e., tuples) appear under folders with no sub-
folders. Thus, the complex distribution of files in a file
system calls for a different sampling technique which we
present in the paper .

Top-k Query Processing: Top-k query processing has
been extensively studied over both databases (e.g., see a
recent survey [27]) and file systems [3,7,26,32]. For file
systems, a popular application is to locate the top-k most
frequent (or space-consuming) files/blocks for redun-
dancy detection and removal. For example, Lillibridge
et al. [33] proposed the construction of an in-memory
sparse index to compare an incoming block against a few
(most similar) previously stored blocks for duplicate de-
tections (which can be understood as a top-k query with
a scoring function of similarity). Top-k query process-
ing has also been discussed in other index-building tech-
niques, e.g., in Spyglass [32] and SmartStore [26].

12

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 229

7 Discussion

At present, Glance takes several pre-defined parameters
as the inputs and needs to complete the execution in
whole. That is, Glance is not an any-time algorithm and
cannot be stopped in the middle of the execution, because
our current approach relies on a complete sample to re-
duce query variance and achieve high accuracy. One lim-
itation of this approach is that its runtime over an alien
file system is unknown in advance, making it unsuitable
for the applications with absolute time constraints. For
example, a border patrol agent may need to count the
amount of encrypted files in a traveler’s hard drive, in
order to determine whether the traveler could be trans-
porting sensitive documents across the border [13, 44].
In this case, the agent must make a fast decision as the
amount of time each traveler can be detained for is ex-
tremely limited. We envision that in the future Glance
shall offer a time-out knob that a user can use to decide
the query time over a file system. This calls for new algo-
rithms that allow Glance get smarter - be predictive about
the run-time and self-adjust the work flow based on the
real-time requirements.

Glance currently employs a ”static” strategy over file
systems and queries, i.e., it does not modify its tech-
niques and traversals for a query. A dynamic approach
is attractive because in that case Glance would be able to
adjust the algorithms and parameters depending on the
current query and file system. New sampling techniques,
e.g., stratified and weighted sampling, shall be investi-
gated to further improve query accuracy on large file sys-
tems. The semantic knowledge of a file system can also
help in this approach. For example, most images can
be found in a special directory, e.g. “/User/Pictures/” in
MacOS X, or “\Documents and Settings\User\My Doc-
uments\My Pictures\” in Windows XP.

Glance shall also leverage the results from the pre-
vious queries to significantly expedite the future ones,
which is beneficial in situations when the workload is a
set of queries that are executed very infrequently. The
basic idea is to store the previous estimations over parts
(e.g., subtrees) of the file system, and utilize the history
to limit the search space to the previously unexplored
part of the file system, unless it determines that the his-
tory is obsolete (e.g., according to a pre-defined valid-
ity period). Note that the history shall be continuously
updated to include newly discovered directories and to
update the existing estimations.

8 Conclusion

In this paper we have initiated an investigation of just-
in-time analytics over a large-scale file system through
its tree- or DAG-like structure. We proposed a ran-

dom descent technique to produce unbiased estimations
for SUM and COUNT queries and accurate estimations
for other aggregate queries, and a pruning-based tech-
nique for the approximate processing of top-k queries.
We proposed two improvements, high-level crawling and
breadth-first descent, and described a comprehensive set
of experiments which demonstrate the effectiveness of
our approach over real-world file systems.

9 Acknowledgments

We thank the anonymous reviewers and our shepherd
John Bent for their excellent comments that helped im-
prove the quality of this paper. We also thank Hong Jiang
and Yifeng Zhu for their help on replaying the NFS trace,
and Ron Chiang for his help on the artwork. This work
was supported by the NSF grants OCI-0937875, OCI-
0937947, IIS-0845644, CCF-0852674, CNS-0852673,
and CNS-0915834.

References
[1] AGRAWAL, N., ARPACI-DUSSEAU, A., AND ARPACI-

DUSSEAU, R. Generating realistic impressions for file-system
benchmarking. ACM Transactions on Storage (TOS) 5, 4 (2009),
1–30.

[2] AGRAWAL, N., BOLOSKY, W., DOUCEUR, J., AND LORCH,
J. A five-year study of file-system metadata. In Proceedings of
the 5th USENIX Conference on File and Storage Technologies
(2007), pp. 31–45.

[3] AMES, S., GOKHALE, M., AND MALTZAHN, C. Design and
implementation of a metadata-rich file system. Tech. Rep. UCSC-
SOE-10-07, University of California, Santa Cruz, 2010.

[4] BARBARA, D., DUMOUCHEL, W., FALOUTSOS, C., HAAS, P.,
HELLERSTEIN, J., IOANNIDIS, Y., JAGADISH, H., JOHNSON,
T., NG, R., POOSALA, V., ET AL. The New Jersey data reduc-
tion report. IEEE Data Eng. Bull. 20, 4 (1997), 3–45.

[5] BEAGLE. http://beagle-project.org/ .

[6] BETHEL, J. Sample allocation in multivariate surveys. Survey
methodology 15, 1 (1989), 47–57.

[7] BRANDT, S., MALTZAHN, C., POLYZOTIS, N., AND TAN, W.-
C. Fusing data management services with file systems. In Pro-
ceedings of the 4th Annual Workshop on Petascale Data Storage
(PDSW ’09) (New York, NY, USA, 2009), ACM, pp. 42–46.

[8] CALLAN, J., AND CONNELL, M. Query-based sampling of text
databases. ACM Trans. Inf. Syst. 19 (April 2001), 97–130.

[9] CAUSEY, B. Computational aspects of optimal allocation in mul-
tivariate stratified sampling. SIAM Journal on Scientific and Sta-
tistical Computing 4 (1983), 322.

[10] CHAUDHURI, S., DAS, G., AND NARASAYYA, V. Optimized
stratified sampling for approximate query processing. ACM
Transactions on Database Systems (TODS) 32, 2 (2007), 9.

[11] CHAUDHURI, S., DAS, G., AND SRIVASTAVA, U. Effective use
of block-level sampling in statistics estimation. In Proceedings
of the 2004 ACM SIGMOD international conference on Manage-
ment of data (2004), ACM, p. 298.

[12] CHROMY, J. Design optimization with multiple objectives. In
Proceedings on the Research Methods of the American Statistical
Association (1987), pp. 194–199.

13

230 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

[13] CNET. Security guide to customs-proofing your laptop.
http://news.cnet.com/8301-13578 3-9892897-38.html (2009).

[14] COCHRAN, W. Sampling technique. New York: John Willey &
Sons (1977).

[15] DAS, G. Survey of approximate query processing techniques (tu-
torial). In International Conference on Scientific and Statistical
Database Management (SSDBM ’03) (2003).

[16] DASGUPTA, A., DAS, G., AND MANNILA, H. A random walk
approach to sampling hidden databases. In Proceedings of the
2007 ACM SIGMOD international conference on Management
of data (SIGMOD ’07) (2007), pp. 629–640.

[17] DASGUPTA, A., JIN, X., JEWELL, B., ZHANG, N., AND DAS,
G. Unbiased estimation of size and other aggregates over hidden
web databases. In Proceedings of the 2010 international confer-
ence on Management of data (SIGMOD) (2010), pp. 855–866.

[18] DASGUPTA, A., ZHANG, N., AND DAS, G. Leveraging count
information in sampling hidden databases. In Proceedings of
the 2009 IEEE International Conference on Data Engineering
(2009), pp. 329–340.

[19] DASGUPTA, A., ZHANG, N., DAS, G., AND CHAUDHURI, S.
Privacy preservation of aggregates in hidden databases: why and
how? In Proceedings of the 35th SIGMOD international confer-
ence on Management of data (2009), pp. 153–164.

[20] DAVID, H. A., AND NAGARAJA, H. N. Order Statistics (3rd
Edition). Wiley, New Jersey, 2003.

[21] ELLARD, D., LEDLIE, J., MALKANI, P., AND SELTZER, M.
Passive nfs tracing of email and research workloads. In Proceed-
ings of the 2nd USENIX Conference on File and Storage Tech-
nologies (FAST ’03) (Berkeley, CA, USA, 2003), USENIX Asso-
ciation, pp. 203–216.

[22] GAROFALAKIS, M. N., AND GIBBON, P. B. Approximate
query processing: Taming the terabytes. In Proceedings of the
27th International Conference on Very Large Data Bases (VLDB)
(2001).

[23] GOOGLE. Google desktop. http://desktop.google.com/ .

[24] HEDLEY, Y. L., YOUNAS, M., JAMES, A., AND SANDERSON,
M. A two-phase sampling technique for information extraction
from hidden web databases. In Proceedings of the 6th annual
ACM international workshop on Web information and data man-
agement (WIDM ’04) (2004), pp. 1–8.

[25] HEDLEY, Y.-L., YOUNAS, M., JAMES, A. E., AND SANDER-
SON, M. Sampling, information extraction and summarisation of
hidden web databases. Data and Knowledge Engineering 59, 2
(2006), 213–230.

[26] HUA, Y., JIANG, H., ZHU, Y., FENG, D., AND TIAN, L. Smart-
Store: a new metadata organization paradigm with semantic-
awareness for next-generation file systems. In Proceedings of the
Conference on High Performance Computing Networking, Stor-
age and Analysis (SC) (2009), ACM, pp. 1–12.

[27] ILYAS, I. F., BESKALES, G., AND SOLIMAN, M. A. A survey of
top-k query processing techniques in relational database systems.
ACM Computing Surveys 40, 4 (2008), 1–58.

[28] IPEIROTIS, P. G., AND GRAVANO, L. Distributed search over
the hidden web: hierarchical database sampling and selection. In
Proceedings of the 28th international conference on Very Large
Data Bases (VLDB ’02) (2002), pp. 394–405.

[29] KOGGE, P., BERGMAN, K., BORKAR, S., CAMPBELL, D.,
CARLSON, W., DALLY, W., DENNEAU, M., FRANZON, P.,
HARROD, W., HILL, K., ET AL. Exascale computing study:
technology challenges in achieving exascale systems. DARPA In-
formation Processing Techniques Office 28 (2008).

[30] LEUNG, A. Organizing, indexing, and searching large-scale file
systems. Tech. Rep. UCSC-SSRC-09-09, University of Califor-
nia, Santa Cruz, Dec. 2009.

[31] LEUNG, A., ADAMS, I., AND MILLER, E. Magellan: a search-
able metadata architecture for large-scale file systems. Tech. Rep.
UCSC-SSRC-09-07, University of California, Santa Cruz, Nov.
2009.

[32] LEUNG, A. W., SHAO, M., BISSON, T., PASUPATHY, S., AND
MILLER, E. L. Spyglass: fast, scalable metadata search for
large-scale storage systems. In Proccedings of the 7th conference
on File and Storage Technologies (FAST) (Berkeley, CA, USA,
2009), USENIX Association, pp. 153–166.

[33] LILLIBRIDGE, M., ESHGHI, K., BHAGWAT, D., DEOLALIKAR,
V., TREZISE, G., AND CAMBLE, P. Sparse indexing: large scale,
inline deduplication using sampling and locality. In Proccedings
of the 7th conference on File and Storage Technologies (FAST)
(Berkeley, CA, USA, 2009), USENIX Association, pp. 111–123.

[34] LOHR, S. Sampling: design and analysis. Pacific Grove (1999).

[35] LYNN, W. J. Defending a new domain: the pentagon’s cyber-
strategy. Foreign Affairs (September/October 2010).

[36] MURPHY, N., TONKELOWITZ, M., AND VERNAL, M.
The design and implementation of the database file system.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.8068.

[37] NUNEZ, J. High end computing file system and IO R&D gaps
roadmap. HEC FSIO R&D Conference (Aug. 2008).

[38] OLKEN, F., AND ROTEM, D. Simple random sampling from
relational databases. In Proceedings of the 12th International
Conference on Very Large Data Bases (1986), pp. 160–169.

[39] OLKEN, F., AND ROTEM, D. Random sampling from database
files: a survey. In Proceedings of the fifth international confer-
ence on Statistical and scientific database management (1990),
Springer-Verlag New York, Inc., pp. 92–111.

[40] OLSON, M. The design and implementation of the Inversion file
system. In Proceedings of the Winter 1993 USENIX Technical
Conference (1993), pp. 205–217.

[41] PIKE, R., PRESOTTO, D., DORWARD, S., FLANDRENA, B.,
THOMPSON, K., TRICKEY, H., AND WINTERBOTTOM, P. Plan
9 from bell labs. Computing systems 8, 3 (1995), 221–254.

[42] PLAN 9 FILE SYSTEM TRACES.
http://pdos.csail.mit.edu/p9trace/ .

[43] SELTZER, M., AND MURPHY, N. Hierarchical file systems are
dead. In Proceedings of the 12th conference on Hot topics in
Operating Systems (HotOS ’09) (2009), pp. 1–1.

[44] SLASHDOT. Laptops can be searched at the border.
http://yro.slashdot.org/article.pl?sid=08/04/22/1733251 (2008).

[45] SNIA. NFS traces. http://iotta.snia.org/traces/list/NFS (2010).

[46] STAHLBERG, P., MIKLAU, G., AND LEVINE, B. N. Threats
to privacy in the forensic analysis of database systems. In Pro-
ceedings of the 2007 ACM SIGMOD international conference
on Management of data (SIGMOD ’07) (New York, NY, USA,
2007), ACM, pp. 91–102.

[47] SZALAY, A. New challenges in petascale scientific databases.
In Proceedings of the 20th international conference on Scientific
and Statistical Database Management (SSDBM ’08) (Berlin, Hei-
delberg, 2008), Springer-Verlag, pp. 1–1.

[48] VITTER, J. Random sampling with a reservoir. ACM Transac-
tions on Mathematical Software (TOMS) 11, 1 (1985), 57.

[49] ZHU, Y., JIANG, H., WANG, J., AND XIAN, F. HBA: Dis-
tributed Metadata Management for Large Cluster-Based Storage
Systems. IEEE Transactions on Parallel and Distributed Systems
19 (2008), 750–763.

14

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 231

Making the Common Case the Only Case with
Anticipatory Memory Allocation

Swaminathan Sundararaman, Yupu Zhang, Sriram Subramanian,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Computer Sciences Department, University of Wisconsin–Madison
{swami,yupu,srirams,dusseau,remzi}@cs.wisc.edu

Abstract
We present Anticipatory Memory Allocation (AMA), a
new method to build kernel code that is robust to memory-
allocation failures. AMA avoids the usual difficulties in
handling allocation failures through a novel combination
of static and dynamic techniques. Specifically, a devel-
oper, with assistance from AMA static analysis tools, de-
termines how much memory a particular call into a kernel
subsystem will need, and then pre-allocates said amount
immediately upon entry to the kernel; subsequent alloca-
tion requests are serviced from the pre-allocated pool and
thus guaranteed never to fail. We describe the static and
run-time components of AMA, and then present a thor-
ough evaluation of Linux ext2-mfr, a case study in which
we transform the Linux ext2 file system into a memory-
failure robust version of itself. Experiments reveal that
ext2-mfr avoids memory-allocation failures successfully
while incurring little space or time overhead.

1 Introduction
A great deal of recent activity in systems research has fo-
cused on new techniques for finding bugs in large code
bases [13, 16, 17, 20, 24, 26, 38]. Whether using static
analysis [16, 20], model checking [25, 40], symbolic ex-
ecution [10, 39], machine learning [24], or other testing-
based techniques [3, 4, 31], all seem to agree: there are
hundreds of bugs in commonly-used systems.

One important class of software defect is found in re-
covery code, i.e., code that is run in reaction to failure.
These failures, whether from hardware (e.g., a disk) or
software (e.g., a memory allocation), tend to occur quite
rarely in practice, but the correctness of the recovery code
is critical. For example, Yang et al. found a large num-
ber of bugs in file-system recovery code; when such bugs
were triggered, the results were often catastrophic, result-
ing in data corruption or unmountable file systems [40].
Recovery code has the worst possible property: it is rarely
run, but absolutely must work correctly.

Memory-allocation failure serves as an excellent and
important example of the recovery-code phenomenon.
Woven throughout a complex system such as Linux are
memory allocations of various flavors (e.g., kmalloc,

kmem cache alloc, etc.) in conjunction with small
snippets of recovery code to handle those rare cases
when a memory allocation fails. As previous work has
shown [17, 28, 40], and as we further demonstrate in this
paper (§2), this recovery code does not work very well,
often crashing the system or worse when run.

Thus, in this paper, we take a different approach to solv-
ing the problem presented by memory-allocation failures.
We follow one simple mantra: the most robust recovery
code is recovery code that never runs at all.

Our approach is called Anticipatory Memory Allocation
(AMA). The basic idea behind AMA is simple. First, us-
ing both a static analysis tool plus domain knowledge, the
developer determines a conservative estimate of the to-
tal memory allocation demand of each call into the ker-
nel subsystem of interest. Using this information, the de-
veloper then augments their code to pre-allocate the req-
uisite amount of memory at run-time, immediately upon
entry into the kernel subsystem. The AMA run-time then
transparently redirects existing memory-allocation calls to
use memory from the pre-allocated chunk. Thus, when a
memory allocation takes place deep in the heart of the ker-
nel subsystem, it is guaranteed never to fail.

With AMA, kernel code is written naturally, with mem-
ory allocations inserted wherever the developer needs
them to be; however, with AMA, the developer need not
be concerned with downstream memory-allocation fail-
ures and the scattered (and often buggy) recovery code
that would otherwise be required. Further, by allocat-
ing memory in one large chunk upon entry, failure of the
anticipatory pre-allocation is straightforward to handle; a
uniform failure-handling policy (such as retry with expo-
nential backoff) can trivially be implemented.

To demonstrate the benefits of AMA, we apply it to
the Linux ext2 file system to build a memory-failure ro-
bust version of ext2 called ext2-mfr. File systems are
one of the most critical components of the kernel, as they
store persistent state, and bugs within the file system can
lead to serious problems [40]; hence, they serve as an
excellent case study for AMA (although much of AMA
is generic and could be applied elsewhere in the kernel).
Through experiment, we show that ext2-mfr is robust to

1

232 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

memory-allocation failure, and runs without noticeable
performance or space overheads; key to the reduction in
space overheads are two novel optimizations we intro-
duce, cache peeking and page recycling. Further, very
little code change is required, thus demonstrating the ease
of transforming a significant subsystem. Overall, we find
that AMA achieves its goals, and thus altogether avoids
of one important class of recovery bug commonly found
in kernel code.

In our current prototype, the static analysis tool in
AMA is semi-automated. AMA requires developer in-
volvement at the last stage of the static analysis to com-
pute the memory requirements for each call. More pro-
gramming effort is required to fully automate the static
analysis tool. Hence, in its current form, our AMA proto-
type serves as a feasibility study of applying static analy-
sis techniques inside operating systems to avoid a class of
recovery code.

The rest of this paper is structured as follows. We
first present more background on Linux memory alloca-
tion (§2), including a further study of how Linux file sys-
tems react to memory failure. We then present the design
and implementation of AMA (§3,§4,§5), and evaluate its
robustness and performance (§6). Finally, we discuss re-
lated work (§7) and conclude (§8).

2 Background
Before delving into the depths of AMA, we provide some
background on kernel memory allocation. We first de-
scribe the many different ways in which memory is ex-
plicitly allocated within the kernel. Then, through fault
injection, we show that many problems still exist in han-
dling memory-allocation failures. Our discussion re-
volves around the Linux kernel (with a focus on file sys-
tems), although in our belief the issues that arise here
likely exist in other modern operating systems.

2.1 Linux Allocators
2.1.1 Memory Zones
At the lowest level of memory allocation within Linux
is a buddy-based allocator of physical pages [7],
with low-level routines such as alloc pages() and
free pages() called to request and return pages, re-
spectively. These functions serve as the basis for the al-
locators used for kernel data structures (described below),
although they can be called directly if so desired.

2.1.2 Kernel Allocators
Most dynamic memory requests in the kernel use the
Linux slab allocator, which is based on Bonwick’s orig-
inal slab allocator for Solaris [6] (a newer SLUB alloca-
tor provides the same interfaces but is internally simpler).
One simply calls the generic memory allocation routines
kmalloc() and kfree() to use these facilities.

kmem
cache mempool alloc

kmalloc alloc vmalloc create pages
btrfs 93 7 3 0 1
ext2 8 1 0 0 0
ext3 12 1 0 0 0
ext4 26 10 1 0 0
jfs 18 1 2 1 0
reiser 17 1 5 0 0
xfs 11 1 0 1 1

Table 1: Usage of Different Allocators. The table shows the
number of different memory allocators used within Linux file systems.
Each column presents the number of times a particular routine is found
in each file system.

For objects that are particularly popular, specialized
caches can be explicitly created. To create such a cache,
one simply calls kmem cache create(), which (if
successful) returns a reference to the newly-created object
cache; subsequent calls to kmem cache alloc() are
passed this reference and return memory for the specific
object. Hundreds of these specialized allocation caches
exist in a typical system (see /proc/slabinfo); a
common usage for a file system, for example, is an inode
cache.

Beyond these commonly-used routines, there are a few
other ways to request memory in Linux. A memory pool
interface allows one to reserve memory for use in emer-
gency situations. Finally, the virtual malloc interface re-
quests in-kernel pages that are virtually (but not necessar-
ily physically) contiguous.

To demonstrate the diversity of allocator usage, we
present a study of the popularity of these interfaces within
a range of Linux file systems. We study file systems as
they are an important and complex kernel subsystem, and
one in which memory-allocation failure can lead to se-
rious problems [40]. Table 1 presents our results. As
one can see, although the generic interface kmalloc()
is most popular, the other allocation routines are used as
well. For kernel code to be robust, it must handle failures
from all of these allocation routines.

2.2 Failure Modes
When calling into an allocator, flags determine the ex-
act behavior of the allocator, particularly in response
to failure. Of greatest import to us is the use of the
GFP NOFAIL flag, which a developer can use when

they know their code cannot handle an allocation failure;
using the flag is the only way to guarantee that an alloca-
tor will either return successfully or not return at all (i.e.,
keep trying forever). However, this flag is rarely used. As
lead Linux kernel developer Andrew Morton said [27]:
“ GFP NOFAIL should only be used when we have no

2

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 233

Process State File-System State
Error Abort Unusable Inconsistent

btrfs0 0 0 0 0
btrfs10 0 14 15 0
btrfs50 0 15 15 0
ext20 0 0 0 0
ext210 10 5 5 0
ext250 10 5 5 0
ext30 0 0 0 0
ext310 10 5 5 4
ext350 10 5 5 5
ext40 0 0 0 0
ext410 10 5 5 5
ext450 10 5 5 5
jfs0 0 0 0 0
jfs10 15 0 2 5
jfs50 15 0 5 5
reiserfs0 0 0 0 0
reiserfs10 10 4 4 0
reiserfs50 10 5 5 0
xfs0 0 0 0 0
xfs10 13 1 0 3
xfs50 10 5 0 5

Table 2: Fault Injection Results. The table shows the reac-
tion of the Linux file systems to memory-allocation failures as the prob-
ability of a failure increases. We randomly inject faults into the three
most-used allocation calls: kmalloc(), kmem cache alloc(),
and alloc pages(). For each file system and each probability
(shown as subscript), we run a micro benchmark 15 times and report
the number of runs in which certain failures happen in each column. We
categorize all failures into process state and file-system state, in which
’Error’ means that file system operations fail (gracefully), ’Abort’ indi-
cates that the process was terminated abnormally, ’Unusable’ means the
file system is no longer accessible, and ’Inconsistent’ means file system
metadata has been corrupted and data may have been lost. Ideally, we
expect the file systems to gracefully handle the error (i.e., return error)
or retry the failed allocation request. Aborting a process, inconsistent
file-system state, and unusable file system are unacceptable actions on
an memory allocation failure.

way of recovering from failure. ... Actually, nothing in
the kernel should be using GFP NOFAIL. It is there as a
marker which says ’we really shouldn’t be doing this but
we don’t know how to fix it’.” In all other uses of kernel
allocators, failure is thus a distinct possibility.

2.3 Bugs in Memory Allocation
Earlier work has repeatedly found that memory-allocation
failure is often mishandled [16, 40]. In Yang et al.’s
model-checking work, one key to finding bugs is to follow
the code paths where memory-allocation has failed [40].

We now perform a brief study of memory-allocation
failure handling within Linux file systems. We use fault
injection to fail calls to the various memory allocators and
determine how the code reacts as the number of such fail-
ures increases. Our injection framework picks a certain
allocation call (e.g., kmalloc()) within the code and

empty_dir() [file: namei.c]
if (...|| !(bh = ext4_bread(..., &err)))

...
return 1; // XXX: should have returned 0

ext4_rmdir() [file: namei.c]
retval = -ENOTEMPTY;
if (!empty_dir(inode))

goto end_rmdir;
retval = ext4_delete_entry(handle, dir, de, bh);
if (retval)

goto end_rmdir;

Figure 1: Improper Failure Propagation. The code shown
in the figure is from the ext4 file system, and shows a case where a failed
low-level allocation (in ext4 bread()) is not properly handled, which
eventually leads to an inconsistent file system.

fails it probabilistically; we then vary the probability and
observe how the kernel reacts as an increasing percent-
age of memory-allocation calls fail. Table 2 presents our
results, which sums the failures seen in 15 runs per file
system, while increasing the probability of an allocation
request failing from 0% to 50% of the time.

The table reports what happens as the probability of al-
location failure occurring increases, from 0% (base case),
to 10% and then 50% of calls. We report the outcomes
in two categories: process state and file-system state. The
process state results are further divided into two groups:
the number of times (in 15 runs) that a running process
received an error (such as ENOMEM), and the number
of times that a process was terminated abnormally (i.e.,
killed). The file system results are split into two categories
as well: a count of the number of times that the file sys-
tem became unusable (i.e., further use of the file system
was not possible after the trial), and the number of times
the file system became inconsistent as a result, possible
losing user data.

From the table, we can make the following observa-
tions. First, we can see that even a simple, well-tested,
and slowly-evolving file system such as Linux ext2 still
does not handle memory-allocation failures very well; we
take this as evidence that doing so is challenging. Second,
we observe that all file systems have difficulty handling
memory-allocation failure, often resulting in an unusable
or inconsistent file system.

An example of how a file-system inconsistency can
arise is found in Figure 1. In this example, in try-
ing to remove a directory (in ext4 rmdir()), the
routine first checks if the directory is empty by call-
ing empty dir(). This routine, in turn, calls
ext4 bread() to read the directory data. Unfortu-
nately, due to our fault injection, ext4 bread() tries
to allocate memory but fails to do so, and thus the call to

3

234 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

ext4 bread() returns an error (correctly). The routine
empty dir() incorrectly propagates this error, simply
returning a 1 and thus accidentally indicating that the di-
rectory is empty and can be deleted. Deleting a non-empty
directory not only leads to a hard-to-detect file-system in-
consistency (despite the presence of journaling), but also
could render inaccessible a large portion of the directory
tree.

Finally, a closer look at the code of some of these file
systems reveals a third interesting fact: in a file system
under active development (such as btrfs), there are many
places within the code where memory-allocation failure
is never checked for; our inspection thus far has yielded
over 20 places within btrfs such as this. Such trivial mis-
handling is rarer inside more mature file systems.

Overall, our results hint at a broader problem, which
matches intuition: developers write code as if memory
allocation will never fail; only later do they (possibly)
go through the code and attempt to “harden” it to handle
the types of failures that might arise. Proper handling of
such errors, as seen in the ext4 example, is a formidable
task, and as a result, such hardening sometimes remains
“softer” than desired.

2.3.1 Summary
Kernel memory allocation is complex, and handling fail-
ures still proves challenging even for code that is relatively
mature and generally stable. We believe these problems
are fundamental given the way current systems are de-
signed; specifically, to handle failure correctly, a deep re-
covery must take place, where far downstream in the call
path, one must either handle the failure, or propagate the
error up to the appropriate error-handling location while
concurrently making sure to unwind all state changes that
have taken place on the way down the path. Earlier work
has shown that the simple act of propagating an error cor-
rectly in a complex file system is challenging [19]; doing
so and correctly reverting all other state changes presents
further challenges. Although deep recovery is possible,
we believe it is usually quite hard, and thus error-prone.
More sophisticated bug-finding tools could be built, and
further bugs unveiled; however, to truly solve the problem,
an alternate approach to deep recovery is likely required.

3 Anticipatory Memory Allocation:
An Overview

We now present an overview of Anticipatory Memory Al-
location (AMA), a novel approach to solve the memory-
allocation failure-handling problem. The basic idea is
simple: first, we analyze the code paths of a kernel sub-
system to determine what their memory requirements are.
Second, we augment the code with a call to pre-allocate
the necessary amounts. Third, we transparently redi-

void f2() {
void *p = malloc(100);
f3();

}

void f3() {
void *q = malloc(25);

}

int f1() {
// AMA: Pre-allocate 100- and 25-byte chunks
f2();
// AMA: Free any unused chunks

}

Figure 2: Simple AMA Example. The code presents a simple
example of how AMA is used. In the unmodified case, routine f1()
calls f2(), which calls f3(), each of which allocate some memory
(and perhaps incorrectly handle their failure). With AMA, f1() pre-
allocates the full amount needed; subsequent calls to allocate memory
are transparently redirected to use the pre-allocated chunks instead of
calling into the real allocators, and any remaining memory is freed.

rect allocation requests during run-time to use the pre-
allocated chunks of memory.

Figure 2 shows a simple example of the transforma-
tion. In the figure, a simple entry-point routine f1() calls
one other downstream routine, f2(), which in turn calls
f3(). Each of these routines allocates some memory dur-
ing their normal execution, in this case 100 bytes by f2()
and 25 bytes by f3().

With AMA, we analyze the code paths to discover the
worst-case allocation possible; in this example, the anal-
ysis would be simple, and the result is that two memory
chunks, of size 100 and 25 bytes, are required. Then, be-
fore calling into f2(), one should call into the anticipa-
tory memory allocator to pre-allocate chunks of 100 and
25 bytes. The modified run-time then redirects all down-
stream allocation requests to use this pre-allocated pool.
Thus the calls to allocate 100 and 25 bytes in f2() and
f3() (respectively) will use memory already allocated by
AMA, and are guaranteed not to fail.

The advantages of this approach are many. First,
memory-allocation failures never happen downstream,
and thus there is no need to handle said failures; the com-
plex unwinding of kernel state and error propagation are
thus avoided entirely. Second, because allocation failure
can only happen in only one place in the code (at the top),
it is easy to provide a unified handling mechanism; for ex-
ample, if the call to pre-allocate memory fails, the devel-
oper could decide to immediately return a failure, retry,
or perhaps implement a more sophisticated exponential
backoff-and-retry approach, all excellent examples of the
shallow recovery AMA enables. Third, very little code
change is required; except for the calls to pre-allocate and
perhaps free unused memory, the bulk of the code remains

4

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 235

void
ext2 init block alloc info(struct inode *inode)
{

struct ext2 inode info *ei = EXT2 I(inode);
struct ext2 block alloc info *block i =

ei→i block alloc info;
block i = kmalloc(sizeof(*block i), GFP NOFS);
...

}

Figure 3: A Simple Call.

unmodified, as the run-time transparently redirects down-
stream allocation requests to use the pre-allocated pool.

Unfortunately, code in real systems is not as simple as
that found in the figure, and indeed, the problem of deter-
mining how much memory needs to be allocated given an
entry point into a complex code base is generally unde-
cidable. Thus, the bulk of our challenge is transforming
the code and gaining certainty that we have done so cor-
rectly and efficiently. To gain a better understanding of
the problem, we must choose a subsystem to focus upon,
and transform it to use AMA.

3.1 A Case Study: Linux ext2-mfr
The case study we use is the Linux ext2 file system.
Although simpler than its modern journaling cousins,
ext2 is a real file system and certainly has enough com-
plex memory-allocation behavior (as described below) to
demonstrate the intricacies of developing AMA for a real
kernel subsystem.

We describe our effort to transform the Linux ext2 file
system into a memory-robust version of itself, which we
call Linux ext2-mfr (i.e., a version of ext2 that is Memory-
Failure Robust). In our current implementation, the trans-
formation requires some human effort and is aided by a
static analysis tool that we have developed. The process
could be further automated, thus easing the development
of other memory-robust file systems; we leave such efforts
to future work.

We now highlight the various types of allocation re-
quests that are made, from simpler to more complex. By
doing so, we are showing what work needs to be done
to be able to correctly pre-allocate memory before calling
into ext2 routines, and thus shedding light on the types
of difficulties we encountered during the transformation
process.

3.1.1 Simple Calls
Most of the memory-allocation calls made by the kernel
are of a fixed size. Allocating file system objects such as
dentry, file, inode, page have pre-determined sizes. For
example, file systems often maintain a cache of inode ob-
jects, and thus must have memory allocated for them be-
fore being read from disk. Figure 3 shows one example of
such a call from ext2.

struct dentry *d alloc(..., struct qstr *name) {
...
if (name→len > DNAME INLINE LEN-1) {

dname = kmalloc(name→len + 1, GFP KERNEL);
if (!dname)

return NULL;
...

}
}

Figure 4: A Parameterized and Conditional Call.

ext2 find entry (struct inode * dir, ...)
{
unsigned long npages = dir pages(dir);
unsigned long n = 0;
do {

page = ext2 get page(dir, n,..); // allocate a page
...
if (ext2 match entry (...));

goto found;
...
n++;

} while (n != npages); // worst case: n = npages
found:
return entry;

}

Figure 5: Loop Calls.

3.1.2 Parameterized and Conditional Calls
Some allocated objects have variable lengths (e.g., a file
name, extended attributes, and so forth) and the exact size
of the of the allocation is determined at run-time; some-
times allocations are not performed due to conditionals.
Figure 4 shows how ext2 allocates memory for a directory
entry, which uses a length field (plus one for the end-of-
string marker) to request the proper amount of memory.
This allocation is only performed if the name is too long
and requires more space to hold it.

3.1.3 Loops
In many cases file systems allocate objects inside a loop
or inside nested loops. In ext2, the upper bound of the
loop execution is determined by the object passed to the
individual calls. For example, allocating pages to search
for directory entries are done inside a loop. Another good
example is searching for a free block within the block
bitmaps of the file system. Figure 5 shows the page al-
location code during directory lookups in ext2.

3.1.4 Function Calls
Of course, a file system is spread across many functions,
and hence any attempt to understand the total memory
allocation of a call graph given an entry point must be
able to follow all such paths, sometimes into other ma-
jor kernel subsystems. For example, one memory allo-
cation request in ext2 is invoked 21 calls deep; this ex-
ample path starts at sys open, traverses through some
link-traversal and lookup code, and ends with a call to
kmem cache alloc.

5

236 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

static void
ext2 free branches(struct inode *inode,

.., int depth){
if (depth--) {
...
// allocate a page and buffer head
bh = sb bread(inode→i sb, ..);
...
ext2 free branches(inode,

(le32*) bh→b data,
(le32*) bh→b data +

addr per block,
depth);

} else
ext2 free data(inode, ...);

}

Figure 6: Recursion.

3.1.5 Recursions
A final example of an in-kernel memory allocation is one
that is performed within a recursive call. Some portions of
file systems are naturally recursive (e.g., pathname traver-
sal), and thus perhaps it is no surprise that recursion is
commonplace. Figure 6 shows the block-freeing code that
is called when a file is truncated or removed in ext2; in the
example, ext2 free branches calls itself to recurse
down indirect-block chains and free blocks as need be.

3.2 Summary
To be able to pre-allocate enough memory for a call,
one must handle parameterized calls, conditionals, loops,
function calls, and recursion. If file systems only con-
tained simple allocations and minimal amounts of code,
pre-allocation would be rather straightforward. The rele-
vant portion of the call graph for ext2 (and all related com-
ponents of the kernel) contains nearly 2000 nodes (one per
relevant function) and roughly 7000 edges (calls between
functions) representing roughly 180,000 lines of kernel
source code. Even for a relatively-simple file system such
as ext2, the task of manually computing the pre-allocation
amount would be daunting, without automated assistance.

4 The Static Transformation:
From ext2 to ext2-mfr

We now present the static-analysis portion of AMA, in
which we develop a tool, the AMAlyzer, to help decide
how much memory to pre-allocate at each entry point
into the kernel subsystem that is being transformed (in
this case, Linux ext2). The AMAlyzer takes in the entire
relevant call graph and produces a skeletal version, from
which the developer can derive the proper pre-allocation
amounts. After describing the tool, we also present two
novel optimizations we employ, cache peeking and page
recycling, to reduce memory demands. We end the section
with a discussion of the limits of our current approach.

We build the AMAlyzer on top of CIL [29], a tool

which allows us to readily analyze kernel source code.
CIL does not resolve function pointers automatically,
which we require for our complete call graph, and hence
we perform a small amount of extra work to ensure we
cover all calls made in the context of the file system; be-
cause of the limited and stylized use of function point-
ers within the kernel, this process is straightforward. The
AMAlyzer in its current form is comprised of a few thou-
sand lines of OCaml code.

4.1 The AMAlyzer
We now describe the AMAlyzer in more detail, which
consists of two phases. In the first phase, the tool searches
through the entire subsystem to construct the allocation-
relevant call graph, i.e., the complete set of downstream
functions that contain kernel memory-allocation requests.
In the second phase, a more complex analysis determines
which variables and state are relevant to allocation calls,
and prunes away other irrelevant code. The result is a
skeletal form of the subsystem in question, from which
the pre-allocation amounts are readily derived.

4.1.1 Phase 1: Allocation-Relevant Call Graph
The first step of our analysis prunes the entire call graph,
which, as we have seen, is quite large, and generates what
we refer to as the allocation-relevant call graph (ARCG).
The ARCG contains only nodes and edges in which a
memory allocation occurs, either within a node of the
graph or somewhere downstream of it.

We perform a Depth First Search (DFS) on the call
graph to generate ARCG. An additional attribute namely
calls memory allocation is added to each node (i.e., func-
tion) in the call graph to speed up the ARCG gen-
eration. The calls memory allocation attribute is set
on two occasions. First, when a memory allocation
routine is encountered during the DFS. Second, the
calls memory allocation attribute is set if at least one of
the node’s children has its calls memory allocation at-
tribute set.

At the end of the DFS, the functions that do not have
calls memory allocation attribute set are safely deleted
from the call graph. The remaining nodes in the call graph
constitute the ARCG.

4.1.2 Phase 2: Loops and Recursion
At this point, the tool has reduced the number of functions
that must be examined. In this part of the analysis, we add
logic to handle loops and recursions, and where possible,
to help identify their termination conditions. The AM-
Alyzer searches for all for, while, and goto-based
loops, and walks through each function within such a loop
to find either direct calls to kernel memory allocators or
indirect calls through other routines. To identify goto-
based loops, AMA uses the line numbers of the labels that
the goto statements point to. To identify both recursions

6

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 237

Entry point Pre-allocation required
truncate() (Worst(Bitmap) + Worst(Indirect))× (PageSize + BufferHead)
lookup() (1 + Size(ParentDir)) × (PageSize + BufferHead) + Inode + Dentry + NameLength+

NamesCache

lookuphash() (1 + Size(ParentDir)) × (PageSize + BufferHead) + Inode + Dentry + NameLength + Filp

sysopen() lookup() + lookuphash() + (4 + Depth(Inode) + Worst(Bitmap))× PageSize+
(5 + Depth(Inode) + Worst(Bitmap))× BufferHead + Inode + truncate()

sysread() (count + ReadAhead + Worst(Bitmap) + Worst(Indirect))× (PageSize + BufferHead)
syswrite() (count + Worst(Bitmap))× (PageSize + BufferHead) + sizeof(ext2 block allocinfo)
mkdir() lookup() + lookuphash() + (Depth(ParentInode) + 4) × PageSize+

(Depth(Inode) + 8) × BufferHead

unlink() lookup() + lookuphash() + (1 + Depth(Inode)) × (PageSize + BufferHead)
rmdir() lookup() + lookuphash() + (3 + Depth(Inode)) × (PageSize + BufferHead)
access() lookup() + NamesCache

chdir() lookup() + NamesCache

chroot() lookup() + NamesCache

statfs() lookup() + NamesCache

Table 3: Pre-Allocation Requirements for ext2-mfr. The table shows the worst-case memory requirements of the various system
calls in terms of the kmem cache, kmalloc, and page allocations. The following types of kmem cache are used: NamesCache (4096 bytes),
BufferHead (52 bytes), Inode (476 bytes), F ilp (128 bytes), and Dentry (132 bytes). The PageSize is constant at 4096 bytes. The other
terms used above include: Count: the number of blocks read/written, ReadAhead: the number of read-ahead blocks, Worst(Bitmap):
the number of bitmap blocks that needs to be read, Worst(Indirect): the number of indirect blocks to be read for that particular block,
Depth(inode): the maximum number of indirect blocks to be read for that particular inode, and Size(inode): the number of pages in the
inode.

and function-call based loops, AMA performs a DFS on
the ARCG and for every function encountered during the
search, it checks if the function has been explored before.
Once these loops are identified, the tool searches for and
outputs the expressions that affect termination.

4.1.3 Phase 3: Slicing and Backtracking
The goal of this next step is to perform a bottom-up crawl
of the graph, and produce a minimized call graph with
only the memory-relevant code left therein. We use a form
of backward slicing [37] to achieve this end.

In our current prototype, the AMAlyzer only performs
a bottom-up crawl until the beginning of each function. In
other words, the slicing is done at the function level and
developer involvement is required to perform backtrack-
ing. To backtrack until the beginning of a system call,
the developer has to manually use the output of slicing
for each function (including the dependent input variables
that affect the allocation size/count) and invoke the slic-
ing routine on its caller functions. The caller functions
are identified using the ARCG.

4.2 AMAlyzer Summary
As we mentioned above, the final output is a skeletal
graph which can be used by the developer to arrive at
the final pre-allocations with the help of slicing support
in the AMAlyzer. For ext2-mfr, the reduction in code is
dramatic: from nearly 200,000 lines of code across 2000
functions (7000 function calls) down to less than 9,000
lines across 300 functions (400 function calls), with all

relevant variables highlighted. Arriving upon the final
pre-allocation amounts then becomes a straightforward
process.

Table 3 summarizes the results of our efforts. In the
table, we present the parameterized memory amounts that
must be pre-allocated for the 13 most-relevant entry points
into the file system.

4.3 Optimizations
As we transformed ext2 into ext2-mfr, we noticed a num-
ber of opportunities for optimization, in which we could
reduce the amount of memory pre-allocated along some
paths. We now describe two novel optimizations.

4.3.1 Cache Peeking
The first optimization, cache peeking, can greatly reduce
the amount of pre-allocated memory. An example is
found in code paths that access a file block (such as a
sys read()). To access a file block in a large file, it
is possible that a triple-indirect, double-indirect, and in-
direct block, inode, and other blocks may need to be ac-
cessed to find the address of the desired block and read it
from disk.

With repeated access to a file, such blocks are likely to
be in the page cache. However, the pre-allocation code
must account for the worst case, and thus in the normal
case must pre-allocate memory to potentially read those
blocks. This pre-allocation is often a waste, as the blocks
will be allocated, remain unused during the call, and then
finally be freed by AMA.

7

238 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

With cache peeking, the pre-allocation code performs a
small amount of extra work to determine if the requisite
pages are already in cache. If so, it pins them there and
avoids the pre-allocation altogether; upon completion, the
pages are unpinned.

The pin/unpin is required for this optimization to be
safe. Without this step, it would be possible that a page
gets evicted from the cache after the pre-allocation phase
but before the use of the page, which would lead to an
unexpected memory allocation request downstream. In
this case, if the request then failed, AMA would not have
served its function in ensuring that no downstream failures
occur.

Cache peeking works well in many instances as the
cached data is accessible at the beginning of a system call
and does not require any new memory allocations. Even
if cache peeking requires additional memory, the memory
allocation calls needed for cache peeking can be easily
performed as part of the pre-allocation phase.

4.3.2 Page Recycling
A second optimization we came upon was the notion of
page recycling. The idea for the optimization arose when
we discovered that ext2 often uses far more pages than
needed for certain tasks (such as file/directory truncates,
searches on free/allocated entries inside block bitmaps
and large directories).

For example, consider truncate. In order to truncate a
file, one must read every indirect block (and double in-
direct block, and so forth) into memory to know which
blocks to free. In ext2, each indirect block is read into
memory and given its own page; the page holding an in-
direct block is quickly discarded, after ext2 has freed the
blocks pointed to by that indirect block.

To reduce this cost, we implement page recycling. With
this approach, the pre-allocation phase allocates the mini-
mal number of pages that need to be in memory during the
operation. For a truncate, this number is proportional to
the depth of the indirect-block tree, instead of the size of
the entire tree. Instead of allocating thousands of blocks
to truncate a file, we only allocate a few (for the triple-
indirect, a double indirect, and an indirect block). When
the code has finished freeing the current indirect block,
we recycle that page for the next indirect block instead
of adding the page back to the LRU page cache, and so
forth. In this manner, substantial savings in memory is
made possible.

4.4 Limitations and Discussion
We now discuss some of the limitations of our anticipa-
tory approach.

Not all pieces are yet automated; instead, the tool cur-
rently helps turn the intractable problem of examining
180,000 lines of code into a tractable one providing a
lot of assistance in finding the correct pre-allocations.

Further work is required in slicing and backtracking to
streamline this process, but is not the focus of our current
effort: rather our goal here is to demonstrate the feasibility
of the anticipatory approach.

The anticipatory approach could fail requests in cases
where normal execution would successfully complete.
Normal execution need not always take the worst case (or
longest) path. As a result, it might be able to complete
with fewer memory allocations than the anticipatory ap-
proach. In contrast, anticipatory approach has to always
allocate memory for the worst case scenario, as it cannot
afford to fail on a memory allocation call after the pre-
allocation phase.

Cache peeking can only be used when sufficient infor-
mation is available at the time of allocation to determine
if the required data is in the cache. Sufficient informa-
tion is available for file systems at the beginning of a sys-
tem call in the context of file/directory reads and lookup
of file-system objects, this allows cache peeking to avoid
pre-allocation with little implementation effort. More im-
plementation effort could be required in other systems to
help determine if the required data is in its cache.

5 The AMA Run-Time
The final piece of AMA is the runtime component. There
are two major pieces to consider. First is the pre-
allocation itself, which is inserted at every relevant en-
try point in the kernel subsystem of interest, and subse-
quent cleanup of pre-allocated memory. Second is the
use of the pre-allocated memory, in which the run-time
must transparently redirect allocation requests (such as
kmalloc()) to use the pre-allocated memory. We dis-
cuss these in turn, and then present the other run-time de-
cision a file system such as Linux ext2-mfr must make:
what to do when a pre-allocation request fails?

5.1 Pre-allocating and Freeing Memory
To add pre-allocation to a specific file system, we require
that the file system to implement a single new VFS-level
call, which we call vfs get mem requirements().
This call takes as arguments information about which call
is about to be made, any relevant arguments about the cur-
rent operation (such as the file position or bytes to be read)
and state of the file system, and then returns a structure to
the caller (in this case, the VFS layer) which describes
all of the necessary allocations that must take place. The
structure is referred to as the anticipatory allocation de-
scription (AAD).

The VFS layer unpacks the AAD, allocates memory
chunks (perhaps using different allocators) as need be, and
links them into the task structure of the calling process
for downstream use (described further below). With the
pre-allocated memory in place, the VFS layer then calls
the desired routine (such as vfs read()), which then

8

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 239

loff t pos = file pos read(file);
AMA CHECK AND ALLOCATE(file,

AMA SYS READ, pos, count);
ret = vfs read(file, buf, count, &pos);
file pos write(file, pos);

AMA CLEANUP();

Figure 7: A VFS Read Example.

utilizes the pre-allocated memory during its execution.
When the operation completes, a generic AMA cleanup
routine is called to free any unused memory.

To give a better sense of this code flow, we provide a
simplified example from the read() system call code
path in Figure 7. Without the AMA additions, the code
simply looks up the current file position (i.e., where to
read from next), calls into vfs read() to do the file-
system-specific read, updates the file offset, and returns.
As described in the original VFS paper [23], this code is
generic across all file systems.

With AMA, two extra steps are required, as shown in
the figure. First, before calling into the vfs read()
call, the VFS layer now checks if the underlying file
system is using AMA, and if so, calls the file system’s
vfs get mem requirements() routine to deter-
mine the pending call’s memory requirements, and finally
allocates the needed memory. All of this work is neatly
encapsulated by the AMA CHECK AND ALLOCATE()
call in the figure.

Second, after the call is complete, a cleanup routine
AMA CLEANUP() is called. This call is required because
the AMAlyzer provides us with a worst-case estimate of
possible memory usage, and hence not all pre-allocated
memory is used during the course of a typical call into the
file system. In order to free this unused memory, the extra
call to AMA CLEANUP() is made.

5.2 Using Pre-allocated Memory
Central to our implementation is transparency; we do not
change the specific file system (ext2) or other kernel code
to explicitly use or free pre-allocated memory. File sys-
tems and the rest of the kernel thus continue to use regular
memory-allocation routines.

To support this transparency, we modified each of the
kernel allocation routines as follows. Specifically, when
a process calls into ext2-mfr, the pre-allocation code (in
AMA CHECK AND ALLOCATE() above) sets a new flag
within the per-task task structure. This anticipatory flag
is then checked upon each entry into any kernel memory-
allocation routine. If the flag is set, the routine attempts
to use pre-allocated memory and if so completes by re-
turning one of the pre-allocated chunks; if the flag is not
set, the normal allocation code is executed (and failure
is a possibility). Calls to kfree() and other memory-
releasing routines operate as normal, and thus we leave

those unchanged.
Allocation requests are matched with the pre-allocated

objects using the parameters passed to the allocation call
at runtime. The parameters passed to the allocation call
are size, order or the cachep pointer and the GFP flag. The
type of the desired memory object is inferred through the
invocation of the allocation call at runtime. The size (for
kmalloc and vmalloc) or order (for alloc pages) helps to
exactly match the allocation request with the pre-allocated
object. For cache objects, the cachep pointer help identify
the correct pre-allocated object.

One small complication arises during interrupt han-
dling. Specifically, we do not wish to redirect memory
allocation requests to use pre-allocated memory when re-
quested by interrupt-handling code. Thus, when inter-
rupted, we take care to save the anticipatory flag of the
currently-running process and restore it when the inter-
rupt handling is complete.

5.3 What If Pre-Allocation Fails?
Adding the pre-allocation into the code raises a new pol-
icy question: how should the code handle the failure of
the pre-allocation itself? We believe there are a number of
different policy alternatives, which we now describe:

• Fail-immediate. This policy immediately returns an
error to the caller (such as ENOMEM).

• Retry-forever (with back-off). This policy simply
keeps retrying forever, perhaps inserting a delay of
some kind (e.g., exponential) between retry requests
to reduce the load on the system and control better
the load on the memory system.

• Retry-alternate (with back-off). This form of retry
also requests memory again, but uses an alternate
code path that uses less memory than the original
through page/memory recycling and thus is more
likely to succeed. This retry can also back-off as
need be.

Using AMA to implement these policies is superior
to the existing approach, as it enables shallow recovery,
immediately upon entry into the subsystem. For exam-
ple, consider the fail-immediate option above. Clearly
this policy could be implemented in the traditional system
without AMA, but in our opinion doing so is prohibitively
complex. To do so, one would have to ensure that the fail-
ure was propagated correctly all the way through the many
layers of the file system code, which is difficult [19, 34].
Further, any locks acquired or other state changes made
would have to be undone. Deep recovery is difficult and
error-prone; shallow recovery is the opposite.

Another benefit that the shallow recovery of AMA per-
mits is a unified policy. The policy, whether failing imme-
diately, retrying, or some combination, is specified in one

9

240 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Process State File-System State
Error Abort Unusable Inconsistent

ext2-mfr10 0 0 0 0
ext2-mfr50 0 0 0 0
ext2-mfr99 0 0 0 0

Table 4: Fault Injection Results: Retry. The table shows
the reaction of the Linux ext2-mfr file system to memory failures as the
probability of a failure increases. The file system uses a “retry-forever”
policy to handle each failure. A detailed description of the experiment is
found in Table 2.

or a few places in the code. Thus, the developer can easily
decide how the system should handle such a failure and be
confident that the implementation meets that desire.

A third benefit of our approach: file systems could
expose some control over the policy to applications.
Whereas most applications may not be prepared to han-
dle such a failure, a more savvy application (such as a file
server or database) could set the file system to fail-fast and
thus enable better control over failure handling.

Pre-allocation failure is not a panacea, however. De-
pending on the installation and environment, the code
that handles pre-allocation failures will possibly run quite
rarely, and thus may not be as robust as normal-case code.
Although we believe this to be less of a concern for pre-
allocation recovery code (because it is small, simple, and
usually correct “by inspection”), further efforts could be
applied to harden this code. For example, some have sug-
gested constant “fire drilling” [9] as a way to ensure oper-
ators are prepared to handle failures; similarly, one could
regularly fail kernel subsystems (such as memory alloca-
tors) to ensure that this recovery code is run.

6 Analysis
We now analyze Linux ext2-mfr. We measure its ro-
bustness under memory-allocation failure, as well as its
baseline performance. We further study its space over-
heads, exploring cases where our estimates of memory-
allocation needs could be overly conservative, and
whether the optimizations introduced earlier are effective
in reducing these overheads. All experiments were per-
formed on a 2.2 GHz Opteron processor, with two 80GB
WDC disks, 2GB of memory, running Linux 2.6.32. We
also experimented with the ramfs file system and were
able to get similar performance results and better space
overheads (not shown in the evaluation results).

6.1 Robustness
Our first experiment with ext2-mfr reprises our earlier
fault injection study found in Table 2. In this experiment,
we vary the probability that the memory-allocation rou-
tines will fail from 10% all the way to 99%, and observe
how ext2-mfr behaves both in terms of how processes

ext2 ext2-mfr
Workload (secs) (secs)
Sequential Write 13.46 13.69 (1.02x)
Sequential Read 9.04 9.05 (1.01x)
Random Writes 11.58 11.67 (1.01x)
Random Reads 146.33 151.03 (1.03x)
Sort 129.64 136.50 (1.05x)
OpenSSH 48.30 49.80 (1.03x)
PostMark 55.90 59.60 (1.07x)

Table 5: Baseline Performance. The baseline performance of
ext2 and ext2-mfr are compared. The first four tests are microbench-
marks: sequential read and write either read or write 1-GB file in its
entirety; random read and write read or write 100 MB of data over a 1-
GB file. Note that random-write performance is good because the writes
are buffered and thus can be scheduled when written to disk. The three
application-level benchmarks: are a command-line sort of a 100MB
text file; the OpenSSH benchmark which copies, untars, configures, and
builds the OpenSSH 4.5.1 source code; and the PostMark benchmark run
for 60,000 transactions over 3000 files (from 4KB to 4MB) with 50/50
read/append and create/delete biases. All times are reported in seconds,
and are stable across repeated runs.

were affected as well as the overall file-system state. For
this experiment, the retry-forever (without any back-off)
policy is used. Table 4 reports our results.

As one can see from the table, ext2-mfr is highly robust
to memory allocation failure. Even when 99 out of 100
memory-allocation calls fail, ext2-mfr is able to retry and
eventually make progress. No application notices that the
failures are occurring, and file system usability and state
remain intact.

6.2 Performance
In our next experiment, we study the performance over-
heads of using AMA. We utilize both simple microbench-
marks as well as application-level tests to gauge the over-
heads incurred in ext2-mfr due to the extra work of mem-
ory pre-allocation and cleanup. Table 5 presents the re-
sults of our study.

From the table, we can see that the performance of our
relatively-untuned prototype is excellent across both mi-
crobenchmarks as well as application-level workloads. In
all cases, the extra work done by the AMA runtime to
pre-allocate memory, redirect allocation requests trans-
parently, and subsequently free unused memory has a
minimal cost. With further streamlining, we feel confi-
dent that the overheads could be reduced even further.

6.3 Space Overheads and Cache Peeking
We now study the space overheads of ext2-mfr, both with
and without our cache-peeking optimization. The largest
concern we have about conservative pre-allocation is that
excess memory may be allocated and then freed; although
we have shown there is little time overhead involved (Ta-

10

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 241

ext2-mfr
ext2 ext2-mfr (+peek)

Workload (GB) (GB) (GB)
Sequential Read 1.00 6.89 (6.87x) 1.00 (1.00x)
Sequential Write 1.01 1.01 (1.00x) 1.01 (1.00x)
Random Read 0.26 0.63 (2.41x) 0.28 (1.08x)
Random Write 0.10 0.10 (1.05x) 0.10 (1.00x)
PostMark 3.15 5.88 (1.87x) 3.28 (1.04x)
Sort 0.10 0.10 (1.00x) 0.10 (1.00x)
OpenSSH 0.02 1.56 (63.29x) 0.07 (3.50x)

Table 6: Space Overheads. The total amount of memory allo-
cated for both ext2 and ext2-mfr is shown. The workloads are identical
to those described in the caption of Table 5.

ble 5), the extra space requested could induce further
memory pressure on the system, (ironically) making al-
location failure more likely to occur. We run the same
set of microbenchmarks and application-level workloads,
and record information about how much memory was al-
located for both ext2 and ext2-mfr; we also turn on and off
cache-peeking for ext2-mfr. Table 6 presents our results.

From the table, we make a number of observations.
First, our unoptimized ext2-mfr does indeed conserva-
tively pre-allocate a noticeable amount more memory than
needed in some cases. For example, during a sequen-
tial read of a 1 GB file, normal ext2 allocates roughly
1 GB (mostly to hold the data pages), whereas unopti-
mized ext2-mfr allocates nearly seven times that amount.
The file is being read one 4-KB block at a time, which
means on average, the normal scan allocates one block
per read whereas ext2-mfr allocates seven. The reason
for these excess pre-allocations is simple: when reading
a block from a large file, it is possible that one would
have to read in a double-indirect block, indirect block, and
so forth. However, as those blocks are already in cache
for these reads, the conservative pre-allocation performs a
great deal of unnecessary work, allocating space for these
blocks and then freeing them immediately after each read
completes; the excess pages are not needed.

With cache peeking enabled, the pre-allocation space
overheads improve significantly, as virtually all blocks
that are in cache need not be allocated. Cache peek-
ing clearly makes the pre-allocation quite space-effective.
The only workload which do not approach the minimum
is OpenSSH. OpenSSH, however, places small demand on
the memory system in general and hence is not of great
concern.

6.4 Page Recycling
We also study the benefits of page recycling. In this exper-
iment, we investigate the memory overheads of that arise
during truncate. Figure 8 plots the results.

In the figure, we compare the space overheads of stan-
dard ext2, ext2-mfr (without cache peeking), and ext2-mfr

Process State File-System State
Error Abort Unusable Inconsistent

ext2-mfr10 15 0 0 0
ext2-mfr50 15 0 0 0
ext2-mfr99 15 0 0 0

Table 7: Fault Injection Results: Fail-Fast. The table
shows the reaction of Linux ext2-mfr using a fail-fast policy file system.
A detailed description of the experiment is found in Table 2.

10KB 10MB 4GB

10KB

100KB

1MB

8MB
Truncate Overheads

Log (File Size)

Lo
g

(M
em

 A
llo

ca
te

d)

ext2-mfr
ext2-mfr (+recycle)
ext2

Figure 8: Space Costs with Page Recycling. The figure
shows the measured space overheads of page recycling during
the truncate of a file. The file size is varied along the x-axis, and
the space cost is plotted on the y-axis (both are log scales).

with page recycling. As one can see from the figure, as
the file system grows, the space overheads of both ext2
and ext2-mfr converge, as numerous pages are allocated
for indirect blocks. Page recycling obviates the need for
these blocks, and thus uses many fewer pages than even
standard ext2.

6.5 Conservative Pre-allocation
We also were interested in whether, despite our best ef-
forts, ext2-mfr ever under-allocated memory in the pre-
allocation phase. Thus, we ran our same set of work-
loads and checked for this case. In no run during these
experiments and other stress-tests did we ever encounter
an under-allocation, giving us further confidence that our
static transformation of ext2 was properly done.

6.6 Policy Alternatives
We also were interested in seeing how hard it is to use
a different policy to react to allocation failures. Table 7
shows the results of our fault-injection experiment, but
this time with a “fail-fast” policy which immediately re-
turns to the user should the pre-allocation attempt fail.

The results show the expected outcome. In this case,
the process running the workload immediately returns the
ENOMEM error code; the file system remains consistent
and usable. By changing only a few lines of code, an en-
tirely different failure-handling behavior can be realized.

11

242 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

7 Related Work
A large body of related work is found in the programming
languages community on heap usage analysis, wherein
researchers have developed static analyses to determine
how much heap (or stack) space a program will use [1, 8,
11, 12, 21, 22, 35, 36]. The general use-case suggested for
said analyses is in the embedded domain, where memory
and time resources are generally quite constrained [11].
Whereas many of the analyses focus on functional or
garbage-collected languages, and thus are not directly ap-
plicable to our problem domain, we do believe that some
of the more recent work in this space could be applicable
to anticipatory memory allocation. In particular, Chin et
al.’s work on analyzing “low-level” code [11] and the live
heap analysis implemented by Albert et al. [1] are promis-
ing candidates for further automating the AMA transfor-
mation process.

The more general problem of handling “memory bugs”
has also been investigated in great detail [2, 5, 14, 32, 33];
see Berger and Zorn for an excellent discussion of the
range of common problems, including dangling pointers,
double frees, and buffer overruns [5]. Many interesting
and novel solutions have been proposed, including rolling
back and trying again with a small change to the envi-
ronment (e.g., more padding) [32], using multiple ran-
domized heaps and voting to determine correctness [5],
and even returning “made up” values when out-of-bounds
memory is accessed [33]. The problem we tackle is both
narrower and broader at once: narrower in that one could
view the poor handling of an allocation failure as just one
class of memory bug; broader in that true recovery from
such a failure in a complex code base is quite intricate
and reaches beyond the scope of typical solutions to these
classic memory bugs.

Our approach of using static analysis to predict
memory-requirement is similar in spirit to that taken by
Garbervetsky et al. [18]. Their approach helps to come
up with estimates of memory allocation within a given re-
gion. Moreover, their system does not consider the al-
locations done by native methods or internal allocation
performed by the runtime system, and do not handle re-
cursive calls. In contrast, AMA comes with the estimate
for the entire file-system operation. Also, AMA estimates
the allocations done by the kernel along with handling re-
cursive calls inside file systems.

Our approach to avoiding memory-allocation failure
is reminiscent of the banker’s algorithm [15] and other
deadlock-avoidance techniques. Indeed, with AMA, one
could build a sort of “memory scheduler” that avoided
memory over-commitment by delaying some requests un-
til others frees had taken place, another avenue we plan to
explore in future work.

Finally, our approach draws on concurrency control in
its resemblance to two-phase locking [30], in which all

locks are first acquired in an “expanding phase”, then
used, and then all released during a “shrinking phase”.
The expanding phase thus bears likeness to our pre-
allocation request, in that all necessary resources are ac-
quired up front before they are needed.

8 Conclusions
“Act as if it were impossible to fail.” (Dorothea Brande)

It is common sense in the world of programming that
code that is rarely run rarely works. Unfortunately, some
of the most important code in systems falls into this cate-
gory, including any code that is run during a “recovery”.
If the problem that leads to the recovery code being en-
acted is rare enough, the recovery code itself is unlikely
to be battle tested, and is thus prone to failure.

We have presented Anticipatory Memory Allocation
(AMA), a new approach to avoiding memory-allocation
failures deep within the kernel. By pre-allocating the
worst-case allocation immediately upon entry into the ker-
nel, AMA ensures that requests further downstream will
never fail, in those places within the code where handling
failure has proven difficult over the years. The small bits
of recovery code that are scattered throughout the code
need never run, and system robustness is improved by de-
sign.

As we build increasingly complex systems, perhaps
we should consider new methods and approaches that
help build robustness into the system by design. AMA
presents one method (early resource allocation) to handle
one problem (memory-allocation failure), but we believe
that the approach could be applied more generally. Our
long term goal is to unify mainline code and recovery code
into one; put another way, the only true manner in which
to have working recovery code is to have none at all.

9 Acknowledgments
We thank the anonymous reviewers and Wilson Hsieh (our shep-
herd) for their feedback and comments, which have substantially
improved the content and presentation of this paper. We also
thank Joe Meehean and Laxman Visampalli for their comments
on earlier drafts of the paper.

This material is based upon work supported by the National
Science Foundation under the following grants: CCF-0621487,
CNS-0509474, CNS-0834392, CCF-0811697, CCF-0811697,
CCF-0937959, as well as by generous donations from NetApp,
Sun Microsystems, and Google.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of NSF or other institutions.

12

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 243

References
[1] Elvira Albert, Samir Genaim, and Miguel Gomez-

Zamalloa. Live Heap Space Analysis for Languages for
Garbage Collection. In International Symposium on Mem-
ory Management (ISMM ’09), Dublin, Ireland, June 2009.

[2] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient Detec-
tion of All Pointer and Array Access Errors. In Proceed-
ings of the ACM SIGPLAN 2005 Conference on Program-
ming Language Design and Implementation (PLDI ’04),
pages 290–301, Washington, DC, June 2004.

[3] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Dependability Analysis of
Virtual Memory Systems. In Proceedings of the Interna-
tional Conference on Dependable Systems and Networks
(DSN ’06), Philadelphia, Pennsylvania, June 2006.

[4] Lakshmi N. Bairavasundaram, Meenali Rungta, Nitin
Agrawal, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Michael M. Swift. Systematically Bench-
marking the Effects of Disk Pointer Corruption. In Pro-
ceedings of the International Conference on Dependable
Systems and Networks (DSN ’08), Anchorage, Alaska,
June 2008.

[5] Emery D. Berger and Benjamin G. Zorn. DieHard: Proba-
bilistic Memory Safety for Unsafe Languages. In Proceed-
ings of the ACM SIGPLAN 2005 Conference on Program-
ming Language Design and Implementation (PLDI ’06),
Ottawa, Canada, June 2006.

[6] Jeff Bonwick. The Slab Allocator: An Object-Caching
Kernel Memory Allocator. In Proceedings of the USENIX
Summer Technical Conference (USENIX Summer ’94),
Boston, Massachusetts, June 1994.

[7] Daniel P. Bovet and Marco Cesati. Understanding the
Linux Kernel. O’Reilly, 2006.

[8] V. Braberman, F. Fernandez, D. Garbervetsky, and
S. Yovine. Parametric Prediction of Heap Memory Re-
quirements. In International Symposium on Memory Man-
agement (ISMM ’08), Tucson, Arizona, June 2008.

[9] Aaron B. Brown and David A. Patterson. To Err is Human.
In EASY ’01, 2001.

[10] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski,
David L. Dill, and Dawson R. Engler. EXE: Automati-
cally Generating Inputs of Death. In Proceedings of the
13th ACM Conference on Computer and Communications
Security (CCS ’06), Alexandria, Virginia, November 2006.

[11] Wei-Ngan Chin, Huu Hai Nguyen, Corneliu Popeea, and
Shengchao Qin. Analysing Memory Resource Bounds
for Low-Level Programs. In International Symposium on
Memory Management (ISMM ’08), Tucson, Arizona, June
2008.

[12] Wei-Ngan Chin, Huu Hai Nguyen, Shengchao Qin, and
Martin Rinard. Memory Usage Verification for OO Pro-
grams. In Static Analysis Symposium (SAS ’05), 2005.

[13] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem,
and Dawson Engler. An Empirical Study of Operating Sys-
tem Errors. In Proceedings of the 18th ACM Symposium

on Operating Systems Principles (SOSP ’01), pages 73–
88, Banff, Canada, October 2001.

[14] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory
Safety Without Runtime Checks Or Garbage Collection. In
LCTES ’03, 2003.

[15] E. W. Dijkstra. EWD623: The Mathematics Behind The
Bankers Algorithm. Selected Writings on Computing: A
Personal Perspective (Springer-Verlag), 1977.

[16] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou,
and Benjamin Chelf. Bugs as Deviant Behavior: A Gen-
eral Approach to Inferring Errors in Systems Code. In Pro-
ceedings of the 18th ACM Symposium on Operating Sys-
tems Principles (SOSP ’01), pages 57–72, Banff, Canada,
October 2001.

[17] Dawson Engler and Madanlal Musuvathi. Static Analy-
sis versus Software Model Checking for Bug Finding. In
5th International Conference Verification, Model Checking
and Abstract Interpretation (VMCAI ’04), Venice, Italy,
January 2004.

[18] Diego Garbervetsky, Sergio Yovine, Vı́ctor Braberman,
Martı́n Rouaux, and Alejandro Taboada. On transform-
ing java-like programs into memory-predictable code. In
JTRES ’09: Proceedings of the 7th International Workshop
on Java Technologies for Real-Time and Embedded Sys-
tems, pages 140–149, New York, NY, USA, 2009. ACM.

[19] Haryadi S. Gunawi, Cindy Rubio-Gonzalez, Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Ben Li-
blit. EIO: Error Handling is Occasionally Correct. In Pro-
ceedings of the 6th USENIX Symposium on File and Stor-
age Technologies (FAST ’08), pages 207–222, San Jose,
California, February 2008.

[20] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson R.
Engler. A System and Language for Building System-
Specific, Static Analyses. In Proceedings of the 2002 ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’02), Berlin, Germany, June
2002.

[21] M. Hofmann and S. Jost. Static Prediction of Heap Space
Usage for First Order Functional Languages. In The 30th
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL ’03), New Orleans, Louisiana,
January 2003.

[22] Martin Hofmann and Steffen Jost. Type-based amortised
heap-space analysis. In In ESOP 2006, LNCS 3924, pages
22–37. Springer, 2006.

[23] Steve R. Kleiman. Vnodes: An Architecture for Multiple
File System Types in Sun UNIX. In Proceedings of the
USENIX Summer Technical Conference (USENIX Summer
’86), pages 238–247, Atlanta, Georgia, June 1986.

[24] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan
Zhou. CP-Miner: A Tool for Finding Copy-paste and Re-
lated Bugs in Operating System Code. In Proceedings of
the 6th Symposium on Operating Systems Design and Im-
plementation (OSDI ’04), San Francisco, California, De-
cember 2004.

13

244 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

[25] David Lie, Andy Chou, Dawson Engler, and David L. Dill.
A Simple Method for Extracting Models from Protocol
Code. In Proceedings of the 28th Annual International
Symposium on Computer Architecture (ISCA ’01), Gote-
borg, Sweden, June 2001.

[26] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.
Learning from Mistakes — A Comprehensive Study on
Real World Concurrency Bug Characteristics. In Proceed-
ings of the 13th International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems (ASPLOS XIII), Seattle, Washington, March 2008.

[27] Andrew Morton. Re: [patch] jbd slab
cleanups. kerneltrap.org/mailarchive/linux-fsdevel/
2007/9/19/322280/thread#mid-322280, September 2007.

[28] Madanlal Musuvathi, David Y.W. Park, Andy Chou, Daw-
son R. Engler, and David L. Dill. CMC: A Pragmatic Ap-
proach to Model Checking Real Code. In Proceedings of
the 5th Symposium on Operating Systems Design and Im-
plementation (OSDI ’02), Boston, Massachusetts, Decem-
ber 2002.

[29] George C. Necula, Scott McPeak, S. P. Rahul, and Westley
Weimer. Cil: An infrastructure for c program analysis and
transformation. In International Conference on Compiler
Construction (CC ’02), pages 213–228, April 2002.

[30] Nathan Goodman Philip A. Bernstein, Vassos Hadzilacos.
Concurrency Control and Recovery in Database Systems.
Addison Wesley, 1987.

[31] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin
Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. IRON File Systems. In
Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP ’05), pages 206–220, Brighton,
United Kingdom, October 2005.

[32] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and
Yuanyuan Zhou. Rx: Treating Bugs As Allergies. In Pro-
ceedings of the 20th ACM Symposium on Operating Sys-
tems Principles (SOSP ’05), Brighton, United Kingdom,
October 2005.

[33] Martin Rinard, Christian Cadar, Daniel Dumitran,
Daniel M. Roy, Tudor Leu, and Jr. William S. Beebe. En-
hancing Server Availability and Security Through Failure-
Oblivious Computing. In Proceedings of the 6th Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’04), San Francisco, California, December 2004.

[34] Cindy Rubio-Gonzalez, Haryadi S. Gunawi, Ben Lib-
lit, Remzi H. Arpaci-Dusseau, and Andrea C. Arpaci-
Dusseau. Error Propagation Analysis for File Systems.
In Proceedings of the ACM SIGPLAN 2009 Conference
on Programming Language Design and Implementation
(PLDI ’09), Dublin, Ireland, June 2009.

[35] TUGS. StackAnalyzer Stack Usage Analysis.
http://www.absint.com/stackanalyzer/, September 2010.

[36] Leena Unnikrishnan and Scott D. Stoller. Parametric Heap
Usage Analysis for Functional Programs. In International
Symposium on Memory Management (ISMM ’09), Dublin,
Ireland, June 2009.

[37] Mark Weiser. Program Slicing. In International Confer-
ence on Software Engineering (ICSE ’81), pages 439–449,
San Diego, California, May 1981.

[38] Junfeng Yang, Can Sar, and Dawson Engler. EXPLODE:
A Lightweight, General System for Finding Serious Stor-
age System Errors. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation (OSDI
’06), Seattle, Washington, November 2006.

[39] Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar,
and Dawson Engler. Automatically Generating Malicious
Disks using Symbolic Execution. In IEEE Security and
Privacy (SP ’06), Berkeley, California, May 2006.

[40] Junfeng Yang, Paul Twohey, Dawson Engler, and Madan-
lal Musuvathi. Using Model Checking to Find Serious
File System Errors. In Proceedings of the 6th Symposium
on Operating Systems Design and Implementation (OSDI
’04), San Francisco, California, December 2004.

14

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 245

Exploiting Memory Device Wear-Out Dynamics to Improve NAND Flash
Memory System Performance

Yangyang Pan, Guiqiang Dong, and Tong Zhang
Electrical, Computer and Systems Engineering Department

Rensselaer Polytechnic Institute, USA.

Abstract
This paper advocates a device-aware design strategy to
improve various NAND flash memory system perfor-
mance metrics. It is well known that NAND flash
memory program/erase (PE) cycling gradually degrades
memory device raw storage reliability, and sufficiently
strong error correction codes (ECC) must be used to en-
sure the PE cycling endurance. Hence, memory man-
ufacturers must fabricate enough number of redundant
memory cells geared to the worst-case device reliability
at the end of memory lifetime. Given the memory de-
vice wear-out dynamics, the existing worst-case oriented
ECC redundancy is largely under-utilized over the en-
tire memory lifetime, which can be adaptively traded for
improving certain NAND flash memory system perfor-
mance metrics. This paper explores such device-aware
adaptive system design space from two perspectives, in-
cluding (1) how to improve memory program speed, and
(2) how to improve memory defect tolerance and hence
enable aggressive fabrication technology scaling. To en-
able quantitative evaluation, we for the first time develop
a NAND flash memory device model to capture the ef-
fects of PE cycling from the system level. We carry
out simulations using the DiskSim-based SSD simula-
tor and a variety of traces, and the results demonstrate
up to 32% SSD average response time reduction. We
further demonstrate that the potential on achieving very
good defect tolerance, and finally show that these two
design approaches can be readily combined together to
noticeably improve SSD average response time even in
the presence of high memory defect rates.

1 Introduction

The steady bit cost reduction over the past decade has en-
abled NAND flash memory to enter increasingly diverse

∗This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 0937794

applications, from consumer electronics to personal and
enterprise computing. In particular, it is now economi-
cally viable to implement solid-state drives (SSDs) using
NAND flash memory, which is expected to fundamen-
tally change the memory and storage hierarchy in future
computing systems. As the semiconductor industry is
aggressively pushing NAND flash memory technology
scaling and the use of multi-bit-per-cell storage scheme,
NAND flash memory increasingly relies on error correc-
tion codes (ECC) to ensure the data storage integrity. It
is well known that NAND flash memory cells gradually
wear out with the program/erase (PE) cycling [6], which
is reflected as gradually diminishing memory cell storage
noise margin (or increasing raw storage bit error rate). To
meet a specified PE cycling endurance limit, NAND flash
memory manufacturers must fabricate enough number
of redundant memory cells that can tolerate the worst-
case raw storage reliability at the end of memory life-
time. Clearly, the memory cell wear-out dynamics tend
to make the existing worst-case oriented ECC redun-
dancy largely under-utilized over the entire lifetime of
memory, especially at its early lifetime when PE cycling
number is relatively small.

Very intuitively, we may adaptively trade such under-
utilized ECC redundancy for improving certain NAND
flash memory system performance metrics throughout
the memory lifetime. This naturally leads to a PE-
cycling-aware adaptive NAND flash memory system de-
sign paradigm. Based upon extensive open literature on
flash memory devices, we first develop an approximate
NAND flash memory device model that quantitatively
captures the dynamic PE cycling effects, including ran-
dom telegraph noise [15, 17] and interface trap recovery
and electron detrapping [26, 31, 45], and another major
noise source: cell-to-cell interference [25]. Such a device
model makes it possible to explores and quantitatively
evaluate possible adaptive system design strategies. In
particular, this paper explores the adaptive system de-
sign space from two perspectives: (1) Since NAND flash

1

246 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

memory program speed also strongly affects the mem-
ory cell storage noise margin, we could trade the under-
utilized ECC redundancy to adaptively improve NAND
flash memory program speed; (2) We could also exploit
the under-utilized ECC redundancy to realize stronger
memory cell defect tolerance and hence enable more ag-
gressive technology scaling. We elaborate on the under-
lying rationale and realizations of these two design ap-
proaches. In addition, for the latter one, we propose a
simple differential wear-leveling strategy in order to min-
imize its impact on effective PE cycling endurance.

For the purpose of evaluation, using the developed
NAND flash memory device model, we first obtain de-
tailed quantitative memory cell characteristics under dif-
ferent PE cycling times and different program speed for
a hypothetical 2bit/cell NAND flash memory. Accord-
ingly, with the sector size of 512B user data, we construct
a binary BCH code (4798, 4096, 54) with 1.1% coding
redundancy that can ensure the data storage integrity at
the PE cycling limit of 10K. Using representative work-
load traces and the SSD model [3] in DiskSim [8], we
carry out extensive simulations to evaluate the potential
of trading under-utilized ECC redundancy to improve
memory program speed while assuming the memory is
defect-free. The simulation results show that we could
reduce the SSD average response time by up to 32%. As-
suming memory defects follow Poisson distributions, we
further show that the proposed differential wear-leveling
technique can very effectively improve the effectiveness
of allocating ECC redundancy for improving memory
defect tolerance. Finally, we study the combined effects
when we trade the under-utilized ECC redundancy to im-
prove memory program speed and realize defect toler-
ance at the same time. DiskSim-based simulations show
that, even in the presence of high defect rates, we can still
achieve noticeable SSD average response time reduction.

2 Background

2.1 Memory Erase and Program Basics
Each NAND flash memory cell is a floating gate tran-
sistor whose threshold voltage can be configured (or pro-
grammed) by injecting certain amount of charges into the
floating gate. Hence, data storage in NAND flash mem-
ory is realized by programming the threshold voltage
of each memory cell into two or more non-overlapping
voltage windows. Before one memory cell can be pro-
grammed, it must be erased (i.e., remove the charges
in the floating gate, which sets its threshold voltage to
the lowest voltage window). NAND flash memory uses
Fowler-Nordheim (FN) tunneling to realize both erase
and program [7], because FN tunneling requires very
low current and hence enables high erase/program par-

allelism. It is well known that the threshold voltage of
erased memory cells tends to have a wide Gaussian-like
distribution [41]. Hence, we can approximately model
the threshold voltage distribution of erased state as

pe(x) =
1

σe
√

2π
e
− (x−µe)2

2σ2e , (1)

where µe and σe are the mean and standard deviation
of the erased state threshold voltage. Regarding mem-
ory program, a tight threshold voltage control is typi-
cally realized by using incremental step pulse program
(ISPP) [6, 39], i.e., all the memory cells on the same
word-line are recursively programmed using a program-
and-verify approach with a stair case program word-line
voltage Vpp. Let ∆Vpp denote the incremental program
step voltage. For the k-th programmed state with the ver-
ify voltage V (k)

p , ideally ISPP program results in a uni-
form threshold voltage distribution:

p(k)
p (x) =

{
1

∆Vpp
, if V (k)

p ≤ x ≤V (k)
p +∆Vpp

0, else
. (2)

Unfortunately, the above ideal memory cell thresh-
old voltage distribution can be (significantly) distorted
in practice, mainly due to PE cycling and cell-to-cell in-
terference, which will be discussed in the remainder of
this section.

2.2 Effects of PE Cycling
Flash memory PE cycling causes damage to the tunnel
oxide of floating gate transistors in the form of charge
trapping in the oxide and interface states [9, 30, 34],
which directly results in threshold voltage shift and fluc-
tuation and hence gradually degrades memory device
noise margin. Major distortion sources include

1. Electrons capture and emission events at charge
trap sites near the interface developed over PE cy-
cling directly result in memory cell threshold volt-
age fluctuation, which is referred to as random tele-
graph noise (RTN) [15, 17];

2. Interface trap recovery and electron detrapping [26,
31,45] gradually reduce memory cell threshold volt-
age, leading to the data retention limitation.

Moreover, electrons trapped in the oxide over PE cy-
cling make it difficult to erase the memory cells, leading
to a longer erase time, or equivalently, under the same
erase time, those trapped electrons make the threshold
voltage of the erased state increase [4, 21, 27, 42]. Most
commercial flash chips employ erase-and-verify opera-
tion to prevent the increase of erase state threshold volt-
age at the penalty of gradually longer erase time with PE
cycling.

2

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 247

Ideal

Programming

Memory

Erase

),(ee !µ

Distorted by

RTN

r"

Distorted by Cell-to-Cell

Interference

#

Distorted by interface trap

recovery and electron detrapping

Final Threshold

Voltage Distribution

),(dd !µ t

PE cycling number N

ppV$

Figure 1: Illustration of the approximate NAND flash memory device model to incorporate major threshold voltage
distortion sources.

RTN causes random fluctuation of memory cell
threshold voltage, where the fluctuation magnitude is
subject to exponential decay. Hence, we can model
the probability density function pr(x) of RTN-induced
threshold voltage fluctuation as a symmetric exponential
function [15]:

pr(x) =
1

2λr
e−

|x|
λr . (3)

Let N denote the PE cycling number, λr scales with N
in an approximate power-law fashion, i.e., λr is approxi-
mately proportional to Nα , where α tends to be less than
1.

Interface trap recovery and electron detrapping pro-
cesses approximately follow Poisson statistics [30],
hence threshold voltage reduction due to interface trap
recovery and electron detrapping can be approximately
modeled as a Gaussian distribution N (µd ,σ2

d). Both µd
and σ2

d scale with N in an approximate power-law fash-
ion, and scale with the retention time t in a logarithmic
fashion. Moreover, the significance of threshold voltage
reduction induced by interface trap recovery and electron
detrapping is also proportional to the initial threshold
voltage magnitude [27], i.e., the higher the initial thresh-
old voltage is, the faster the interface trap recovery and
electron detrapping occur and hence the larger threshold
voltage reduction will be.

2.3 Cell-to-Cell Interference
In NAND flash memory, the threshold voltage shift of
one floating gate transistor can influence the thresh-
old voltage of its neighboring floating gate transistors
through parasitic capacitance-coupling effect [25]. This
is referred to as cell-to-cell interference, which has been
well recognized as the one of major noise sources in
NAND flash memory [24,29,36]. Threshold voltage shift
of a victim cell caused by cell-to-cell interference can be
estimated as [25]

F = ∑
k

(∆V (k)
t · γ(k)), (4)

where ∆V (k)
t represents the threshold voltage shift of one

interfering cell which is programmed after the victim

cell, and the coupling ratio γ(k) is defined as

γ(k) =
C(k)

Ctotal
, (5)

where C(k) is the parasitic capacitance between the in-
terfering cell and the victim cell, and Ctotal is the total
capacitance of the victim cell. Cell-to-cell interference
significance is affected by NAND flash memory bit-line
structure. In current design practice, there are two differ-
ent bit-line structures, including conventional even/odd
bit-line structure [35,40] and emerging all-bit-line struc-
ture [10,28]. For write, all-bit-line structure writes all the
cells on the same wordline. In even/odd bit-line struc-
ture, memory cells on one word-line are alternatively
connected to even and odd bit-lines and they are pro-
grammed at different time. Therefore, an even cell is
mainly interfered by five neighboring cells and an odd
cell is interfered by only three neighboring cells. There-
fore even cells and odd cells experience largely differ-
ent amount of cell-to-cell interference. Cells in all-bit-
line structure suffers less cell-to-cell inference than even
cells in odd/even structure, and the all-bit-line structure
can most effectively support high-speed current sensing
to improve the memory read and verify speed. Therefore,
throughout the remainder of this paper, we mainly con-
sider NAND flash memory with the all-bit-line structure.

2.4 An Approximate NAND Flash Memory
Device Model

Based on the above discussions, we can approximately
model NAND flash memory device characteristics as
shown in Fig. 1. Accordingly, we can simulate memory
cell threshold voltage distribution and the corresponding
memory cell raw storage reliability. Based upon Eq.(1)
and Eq.(2), we can obtain the distortion-less threshold
voltage distribution function pp(x). Recall that ppr(x)
denotes the RTN distribution function (see Eq.(3)), and
let par(x) denote the threshold voltage distribution af-
ter incorporating RTN, which is obtained by convoluting
pp(x) and pr(x):

par(x) = pp(x)
⊗

pr(x). (6)

3

248 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Cell-to-cell interference is further incorporated based on
Eq.(4). To capture the inevitable process variability, we
set both the vertical coupling ratio γy and diagonal cou-
pling ratio γxy are random variables with bounded Gaus-
sian distributions:

pc(x) =

cc
σc

√
2π

· e
− (x−µc)2

2σ2c , if |x−µc| ≤ wc

0, else
, (7)

where µc and σc are the mean and standard deviation,
and cc is chosen to ensure the integration of this bounded
Gaussian distribution equals to 1. We set wc = 0.1µc and
σc = 0.4µc in this work.

Let pac denote the threshold voltage distribution after
incorporating cell-to-cell interference, pt(x) denote the
distribution of threshold voltage fluctuation induced by
interface trap recovery and electron detrapping, the final
threshold voltage distribution p f is obtained as

p f (x) = pac(x)
⊗

pt(x). (8)

Example 2.1 Let us consider 2bits/cell NAND flash
memory. We set normalized σe and µe of the erased state
as 0.35 and 1.4, respectively. For the three programmed
states, we set the normalized program step voltage ∆Vpp
as 0.3, and the normalized verify voltages Vp as 2.85,
3.55 and 4.25, respectively. For the RTN distribution
function pr(x), we set the parameter λr = Kλ ·N0.5 where
Kλ equals to 4× 10−4. Regarding cell-to-cell interfer-
ence, according to [36, 38], we set the means of γy and
γxy as 0.08 and 0.0048, respectively. For the function
N (µd ,σ2

d) to capture interface trap recovery and elec-
tron detrapping, according to [30, 31], we set that µd
scale with N0.5 and σ2

d scales with N0.6, and both scale
with ln(1 + t/t0), where t denotes the memory retention
time and t0 is an initial time and can be set as 1 hour.
In addition, as pointed out earlier, both µd and σ2

d also
depend on the initial threshold voltage. Hence, we set
that both approximately scale with Ks(x−x0), where x is
the initial threshold voltage, and x0 and Ks are constants.
Therefore, we have

{
µd = Ks(x− x0)KdN0.5 ln(1+ t/t0)
σ2

d = Ks(x− x0)KmN0.6 ln(1+ t/t0)
, (9)

where we set Ks = 0.333, x0 = 1.4, Kd = 4× 10−4, and
Km = 2×10−6 by fitting the measurement data presented
in [30,31]. Accordingly, we carry out Monte Carlo com-
puter simulations to obtain the cell threshold voltage dis-
tribution as shown in Fig. 2, which illustrates how RTN,
cell-to-cell interference, and retention noise affect the
threshold voltage distribution.

Figure 2: Simulated results to show the effects of RTN,
cell-to-cell interference, and retention noise on memory
cell threshold voltage distribution.

3 System Design Adaptive to PE Cycling

From the above discussions, it is clear that NAND flash
memory cell raw storage reliability gradually degrades
with the PE cycling: During the early lifetime of mem-
ory cells (i.e., the PE cycling number N is relatively
small), the aggregated PE cycling effects are relatively
small, which leads to a relatively large memory cell stor-
age noise margin and hence good raw storage reliabil-
ity (i.e., low raw storage bit error rate); since the ag-
gregated PE cycling effects scale with N in approximate
power-law fashions, the memory cell storage noise mar-
gin and hence raw storage reliability gradually degrade
as the PE cycling number N increases. Given the target
PE cycling endurance limit (e.g., 10K PE cycling), each
memory word-line must have enough redundant mem-
ory cells so that the corresponding ECC can ensure the
storage integrity as the PE cycling reaches the endurance
limit. Due to the memory cell raw storage reliability dy-
namics, the redundancy geared to the worst-case scenario
will over-protect the user data for most time throughout
the entire memory lifetime, especially at its early life-
time when memory cell operational noise margin is much
larger. This can be illustrated in Fig. 3, which clearly
suggests that the redundant memory cells are essentially
under-utilized at the memory early lifetime.

Very intuitively, we may trade such under-utilized re-
dundancy to improve certain memory system perfor-
mance metrics, which should be carried out adaptive to

4

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 249

00 01 11 10 00 01 11 10

Existing redundancy geared to the worst case

Under-utilized

Low raw bit error rate High raw bit error rate

Fully utilized

1K PE cycling 10K PE cycling

Figure 3: Illustration of the under-utilized ECC redundancy before reaching PE cycling endurance limit.

the memory PE cycling. In this work, we explore this
adaptive memory system design space from two perspec-
tives as discussed in the remainder of this section.

3.1 Approach I: Improve Memory Pro-
gram Speed

In this subsection, we elaborate on the potential of trad-
ing the under-utilized ECC redundancy to improve aver-
age memory program speed. As discussed in Section 2.1,
NAND flash memory program is carried out recursively
by sweeping over the entire memory cell threshold volt-
age range with a program step voltage ∆Vpp. As a re-
sult, the memory program latency is inversely propor-
tional to ∆Vpp, which suggests that we can improve the
memory program speed by increasing ∆Vpp. However, a
larger ∆Vpp directly results in a wider threshold voltage
distribution of each programmed state, leading to less
noise margin between adjacent programmed states and
hence worse raw storage bit error rate. Therefore, there
is an inherent trade-off between memory program speed
vs. memory raw bit error rate, which can be configured
by adjusting the program step voltage ∆Vpp. Since the
memory cell noise margin is further degraded by the PE
cycling effects as discussed above, a given ∆Vpp will re-
sult in different noise margin (hence different raw storage
bit error rate) as memory cells undergo different amount
of PE cycling.

In current design practice, ∆Vpp is fixed and its value is
sufficiently small so that the ECC can tolerate the worst-
case memory raw storage bit error rate as the PE cycling
reaches its endurance limit. As a result, the memory
program speed remains largely unchanged while the raw
storage bit error rate gradually degrades. Before the PE
cycling number reaches its endurance limit, the existing
redundancy is under-utilized as pointed out in the above.
Clearly, to eliminate such redundancy under-utilization,
we could intentionally increase the the program step volt-
age ∆Vpp according to the run-time PE cycling number in
such a way that the memory raw storage bit error rate is
always close to what can be maximally tolerated by the

existing redundancy. Therefore, the existing redundancy
is always almost fully utilized, and meanwhile the dy-
namically increased ∆Vpp leads to higher average mem-
ory program speed. The above discussion can be further
illustrated in Fig. 4.

Although it would be ideal if the program step voltage
∆Vpp can be smoothly adjusted with a very fine gran-
ularity, the limited reference voltage accuracy in real
NAND flash memory chips may only enable the use of
a few discrete program step voltages. Assume there are
m different program step voltages, i.e., ∆V (1)

pp > ∆V (2)
pp >

· · · > ∆V (m)
pp . Given the existing ECC redundancy, we

can obtain a sequence of PE cycling thresholds N0 = 0 <
N1 < · · ·< Nm so that, if the run-time PE cycling number
falls into the range of [Ni−1,Ni), we can use the program
step voltage V (i)

pp and still ensure the overall system data
storage integrity. If we follow the conventional design
practice where the program step voltage is fixed accord-
ing to the worst-case scenario, the smallest step voltage
∆V (m)

pp will be used throughout the entire memory life-
time. Therefore, we can estimate the average program
speed improvement over the entire memory lifetime as

s = 1−
∑m

i=1(Ni −Ni−1) · 1
∆V (i)

pp

Nm · 1
∆V (m)

pp

. (10)

3.2 Approach II: Improve Memory Tech-
nology Scalability

In this subsection, we elaborate on the potential of trad-
ing the under-utilized ECC redundancy to improve mem-
ory defect tolerance. With the help of very sophisticated
techniques such as double patterning [20], the decade-
long 193nm photolithography has successfully pushed
NAND flash memory into the sub-30nm region. How-
ever, as the industry is striving to push the NAND flash
memory technology scaling into the sub-20nm region
by using immersion photolithography or new lithogra-
phy technologies such as nanoimprint, defects in such
extremely dense memory arrays may inevitably increase.

5

250 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

00 01 11 10 00 01 11 10

fast
Programming speed

Raw bit error rate

1K PE cycling

Small
pp
V!

high
Large

pp
V!

slow

low

Figure 4: Illustration of the impact of program step voltage ∆Vpp on the program speed vs. raw storage bit error rate
trade-off.

As a result, conventional spare row/column repair tech-
niques may become inadequate to ensure a sufficiently
high yield.

Very intuitively, the existing ECC redundancy can be
leveraged to tolerate memory defects, especially random
memory cell defects. However, if certain portion of ECC
redundancy is used for defect tolerance, it will not be
able to ensure the specified PE cycling limit, leading to
PE cycling endurance degradation. Since all the pages
in each memory block undergo the same number of PE
cycling, the worst-case page (i.e., the page contains the
most defects) in each block sets the achievable PE cy-
cling endurance for this block. For example, assume the
existing ECC redundancy can tolerate up to 50 errors for
each page and survive up to 10K PE cycling in the ab-
sence of any memory cell defects. If the worst-case page
in one block contains 5 defective cells, then it can only
use the residual 45-error-correcting capability to toler-
ate memory operational noises such as PE cycling ef-
fects and cell-to-cell interference. Suppose this makes
the worst-case page can only survive up to 8K PE cy-
cling, this block can only be erased by 8K times instead
of 10K times before risking data loss.

Clearly, if we attempt to reserve certain ECC re-
dundancy for tolerating memory cell defects, we must
minimize the impact on overall memory PE cycling
endurance. In current design practice, NAND flash
memory uses wear-leveling to uniformly spread pro-
gram/erase operations among all the memory blocks to
maximize the overall memory lifetime. Since different
memory blocks with different amount of defective mem-
ory cells can survive different number of PE cycling, uni-
form wear-leveling is clearly not an optimal option. In-
stead, we should make wear-leveling fully aware of the
different achievable PE cycling limits among different
memory blocks, which is referred to as differential wear-
leveling. This can be illustrated in Fig. 5: instead of uni-
formly distributing program/erase operations among all
the memory blocks, the differential wear-leveling sched-
ule the program/erase operations among all the memory
blocks in proportional to their achievable PE cycling lim-
its. As a result, we may largely improve the overall mem-
ory lifetime compared with uniform wear-leveling.

Early lifetime
Block 0 Block 1 Block 2

Middle lifetime End lifetime

Endurance

Block 0 Block 1 Block 2 Block 0 Block 1 Block 2

Remained Life

(a)

Block 0 Block 1 Block 2

Early lifetime Middle lifetime End lifetime
Block 0 Block 1 Block 2Block 0 Block 1 Block 2

Endurance

Remained Life

(b)

Figure 5: Illustration of (a) conventional uniform wear-
leveling, and (b) proposed differential wear-leveling,
where the ECC is used to tolerate defective memory cells
and hence different blocks may have different achievable
PE cycling endurance.

Assume the worst-case page can at most contains M
defective memory cells, and let Pd denote the probability
that the worst-case page in one block contains d ∈ [0, M]
defective memory cells. Given the number of defective
memory cells in the worst-case page d, we can obtain
the corresponding achievable PE cycling endurance limit
N(d), i.e., the ECC can ensure a PE cycling number up to
N(d) while tolerating d defective memory cells. Clearly,
we have N(0) > N(1) > · · · > N(M), where N(0) is the
achievable PE cycling limit in the defect-free scenario.
Define the effective PE cycling endurance as the average
PE cycling limits of all the memory blocks. Under the
uniform wear-leveling, the memory chip can only sus-
tain PE cycling of N(M). Therefore, compared with the
defect-free scenario, the effective PE cycling endurance
degrades by N(0)/N(M), which can result in a significant
memory lifetime degradation. On the other hand, under
the ideal differential wear-leveling, each block can reach
its own PE cycling limit as illustrated in Fig. 5, hence
the effective PE cycling endurance will be ∑M

d=0 Pd ·N(d),

6

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 251

representing the improvement of

∑M
d=0 Pd ·N(d)

N(M) (11)

over the uniform wear-leveling. We note that this de-
sign approach can be combined with the one presented in
Section 3.1 to improve average memory program speed
in the presence of memory cell defects. Given the num-
ber of defective memory cells d and the set of m pro-
gram step voltage ∆V (i)

pp for 1 ≤ i ≤ m, we can obtain a
set of PE cycling thresholds Nd

0 = 0 < Nd
1 < · · · < Nd

m,
i.e., if present PE cycling number falls into the range of
[N(d)

i−1,N
(d)
i), we can use the program step voltage ∆V (i)

pp
and meanwhile ensure the tolerance to d defective mem-
ory cells. Therefore, for the blocks whose worst-case
page contains d defective memory cells, the average pro-
gram speed improvement is

sd = 1−
∑m

i=1(N
d
i −Nd

i−1) ·
1

∆V (i)
pp

Nd
m · 1

∆V (m)
pp

. (12)

The overall average program speed improvement can be
further estimated as ∑M

i=1 Pi · si.

4 Evaluation Results

We carried out simulations and analysis to future demon-
strate the effectiveness of the above two simple de-
sign approaches and their combination. To carry out
trace-based simulations, we use the SSD module [3] in
DiskSim [8], and use 6 workload traces including Iozone
and Postmark [3], Finance1 and Finance2 from [1], and
Trace1 and Trace2 from [16]. The simulator can sup-
port the use of several parallel packages that can work
in parallel to improve the SSD throughput. Each pack-
age contains 2 dies that share an 8-bit I/O bus and a
number of common control signals, and each die con-
tains 4 planes and each plane contains 2048 blocks. Each
block contains 64 4KB pages, each of which consists of
8 512B sectors. Following the version 2.1 of the Open
NAND Flash Interface (ONFI) [2], we set the NAND
flash chip interface bus frequency as 200MB/s. Re-
garding the ECC, we assume that binary (n, k, t) BCH
codes are being used, where n is the codeword length,
k is the user data length (i.e., 512B in this study), and
t is the error-correcting capability. We consider the use
of 2bit/cell NAND flash memory, and set the baseline
2bit/cell NAND flash memory using the equivalent mem-
ory channel model parameters presented in Example 2.1
in Section 2.4, for which a (4798, 4096, 54) BCH code
can ensure a PE cycling endurance limit of 10K under the
retention time of 1 year. We note that the target NAND

flash memory retention time is fixed as 1 year throughout
all the studies in this work.

In this section, we first present trace-based simulation
results to demonstrate how the first design approach can
reduce the overall request response time and hence im-
prove SSD speed performance. Then, we present anal-
ysis results to demonstrate the second design approach
by assuming memory cell defects follow Poisson distri-
bution. Finally, we demonstrate the effectiveness when
these two approaches are combined together to improve
SSD speed performance in the presence of memory cell
defects.

4.1 Improve SSD Speed Performance
In the baseline scenario with the parameters listed in Ex-
ample 2.1, the normalized program step voltage ∆Vpp is
0.3. As discussed in Section 3.1, we can use larger-than-
worst-case ∆Vpp over the memory lifetime to improve
memory program speed by exploiting the memory de-
vice wear-out dynamics. In this work, we assume that
memory chip voltage generators can increase ∆Vpp with a
step of 0.05, hence we consider four different normalized
values: ∆V (1)

pp = 0.45, ∆V (2)
pp = 0.4, ∆V (1)

pp = 0.35, and
∆V (4)

pp = 0.3. By carrying out Monte Carlo simulations
without changing the other memory model parameters,
we have that these four different program step voltages
can survive up to N1 = 2710, N2 = 4820, N3 = 7500, and
N4 = 10000 PE cycling, respectively, under the retention
time of 1 year. Therefore, according to Eq.(10), the av-
erage NAND flash memory program speed can be im-
proved by 18% compared with the baseline scenario. We
further carried out DiskSim-based simulations to investi-
gate how such improved memory program speed can re-
duce the SSD average response time (incorporating both
write and read request response time) for different traces
under different system configurations. We set that the
2bit/cell NAND flash memory program latency as 600µs
when the normalized program step voltage ∆Vpp is 0.3,
on-chip memory sensing latency as 30µs, and erase time
as 3ms.

In this study, we consider the use of 4 and 8 parallel
packages. Fig. 6 compares the normalized SSD average
response time when using 4 and 8 parallel packages, re-
spectively, where we set ∆Vpp as 0.3. It shows that using
more parallel packages can directly improve SSD speed
performance, which can be intuitively justified. Fig. 7(a)
and Fig. 7(b) show the normalized SSD average response
time under the 4 different normalized program step volt-
age ∆Vpp for all the 6 traces when the SSD contains 4 and
8 parallel packages, respectively. We use the first-come
first-serve (FCFS) scheduling scheme in the simulations.
Compared with the baseline scenario with ∆Vpp = 0.3,
the average response time can be reduced by up to ∼50%

7

252 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

0

0.2

0.4

0.6

0.8

1

1.2

Finance1 Finance2 Postmark Iozone Trace1 Trace2

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

ΔVpp=0.3 ΔVpp=0.35 ΔVpp=0.4 ΔVpp=0.45

(a)

1.2

ΔVpp=0.3 ΔVpp=0.35 ΔVpp=0.4 ΔVpp=0.45

1

ns
e

Ti
m

e

0.8

e
 R

es
po

n

0.6

d
Av

er
ag

e

0.4

or
m

al
iz

ed

0.2N
o

0
Finance1 Finance2 Postmark Iozone Trace1 Trace2

(b)

Figure 7: Simulated normalized average response time when the SSD contains (a) 4 parallel packages, and (b) 8
parallel packages.

1.2

Parallel Packages=4 Parallel Packages=8

1

1.2

se
 T

im
e

Parallel Packages=4 Parallel Packages=8

0.8

1

1.2

R
es

po
ns

e
Ti

m
e

Parallel Packages=4 Parallel Packages=8

0.6

0.8

1

1.2

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

Parallel Packages=4 Parallel Packages=8

0.4

0.6

0.8

1

1.2

rm
al

iz
ed

 A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Parallel Packages=4 Parallel Packages=8

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Parallel Packages=4 Parallel Packages=8

0

0.2

0.4

0.6

0.8

1

1.2

Finance1 Finance2 Postmark Iozone Trace1 Trace2

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Parallel Packages=4 Parallel Packages=8

0

0.2

0.4

0.6

0.8

1

1.2

Finance1 Finance2 Postmark Iozone Trace1 Trace2

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Parallel Packages=4 Parallel Packages=8

Figure 6: Comparison of normalized SSD average re-
sponse time with 4 and 8 parallel packages (∆Vpp = 0.3).

with 4 parallel packages and up to ∼40% with 8 parallel
packages. The results show that the use of larger program
step voltage can consistently improve SSD speed perfor-
mance under different number of parallel packages.

Given the PE cycling thresholds Ni for i = 1,2,3,4 as
presented in the above, the NAND flash memory should
employ the program step voltage ∆V (i)

pp when the present
PE cycling number falls into [Ni−1, Ni), where N0 is
set to 0. Therefore, based on the the simulation results
shown in Fig. 7, we can obtain the overall SSD average
response time reduction compared with the baseline sce-
nario, as shown in Fig. 8. It shows that this proposed
design approach can noticeably improve the overall SSD
speed performance. Intuitively, those traces with higher
write request ratios (e.g., Iozone, Trace1, and Trace2)
tend to benefit more from this design approach, as shown
in Fig. 8. In addition, as we increase the package par-

allelism from 4 to 8, the overall response time reduc-
tion consistently reduces over all the traces. This can be
explained as follows: As the SSD contains more paral-
lel packages, the increased architecture-level parallelism
will directly improve SSD speed performance, as illus-
trated in Fig. 6. As a result, this will make the improve-
ment on the device-level program speed become rela-
tively less significant with respect to the improvement
of overall system speed performance.

35%

n

Parallel Packages=4 Parallel Packages=8

30%

R
ed

uc
tio

n

20%

25%

se
 T

im
e

R

15%

20%

R
es

po
ns

10%

l A
ve

ra
ge

5%

O
ve

ra
ll

0%
Finance1 Finance2 Postmark Iozone Trace1 Trace2

Figure 8: Overall SSD average response time reduction
compared with the baseline scenario when using 4 and 8
parallel packages.

In the above simulations, the FCFS scheduling scheme
has been used. To study the sensitivity of this design ap-
proach to different scheduling schemes, we repeat the
above simulations using two other popular scheduling
schemes including ELEVATOR and SSTF (shortest seek
time first) [43]. Fig. 9 shows the overall SSD average

8

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 253

response time reduction compared with the baseline sce-
nario, where the SSD contains 4 parallel packages. The
results show the proposed design approach can consis-
tently improve overall SSD speed performance under dif-
ferent scheduling schemes.

35%

40%

io
n

FCFS ELEVATOR SSTF

30%

e
R

ed
uc

ti

25%

on
se

 T
im

e

15%

20%

ge
 R

es
po

10%

15%

al
l A

ve
ra

g

5%O
ve

ra

0%
Finance1 Finance2 Postmark Iozone Trace1 Trace2

Figure 9: Overall SSD average response time reduc-
tion compared with the baseline scenario under different
scheduling schemes.

4.2 Improve Defect Tolerance
To demonstrate the proposed design approach for im-
proving memory defect tolerance, we assume that the
number of defective memory cells in each worst-case
page follows a Poisson distribution that is widely used
to model defects in integrated circuits. Therefore, un-
der the Poisson-based distribution model, the probability
that the worst-case page in each block contains d defec-
tive memory cells is f (k;λ) = λ ke−λ

k! , where the param-
eter λ is the mean of the number of defective memory
cells in each worst-case page. Given the parameter λ ,
we find the value M so that ∑M

i=0 f (i;λ) ≥ 0.999, and
assume that any blocks whose worst-case page contains
more than M defective memory cells can be replaced by
a redundant block. In this work, we consider the mean λ
ranging from 1 to 4, and accordingly have that the maxi-
mum value of M is 12.

Using the baseline NAND flash memory model pa-
rameters as listed in Example 2.1, we can obtain the
achievable PE cycling limit N(d) for each d, i.e., we use
the (4798, 4096, 54) BCH code to tolerate d defective
memory cells and meanwhile use its residual (54− d)-
error-correcting capability to ensure a PE cycling en-
durance limit of N(d) under the retention time of 1 year.
Fig. 10 shows the achievable PE cycling limit N(d) with
d ranging from 0 to 12. Under different value of mean
λ , we have different value of M, denoted as M(λ). When
the uniform wear-leveling is being used, the effective PE

10000

12000

8000

10000

an
ce

6000

8000

g
E

nd
ur

a

4000

6000

C
yc

lin
g

2000

PE

0
0 1 2 3 4 5 6 7 8 9 10 11 12

Number of defects

Figure 10: Achievable PE cycling endurance under dif-
ferent value of defective memory cells in the worst-case
page.

cycling endurance is simply N(d) when d = M(λ). When
the proposed differential wear-leveling is being used, the
effective PE cycling endurance is

M(λ)

∑
d=0

λ ke−λ

k!
·N(d), (13)

for a given mean λ . Fig. 11 shows the effective PE cy-
cling endurance when these two different wear-leveling
schemes are being used under different value of λ . The
results show that the proposed differential wear-leveling
can noticeably improve the effective PE cycling en-

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

No
Defects

λ=1 λ=2 λ=3 λ=4

N
or

m
al

iz
ed

 E
ff

ec
tiv

e
E

nd
ur

an
ce

Differential wear-leveling with defects
Uniform wear-leveling with defects

Figure 11: Effective PE cycling endurance when using
uniform wear-leveling and differential wear-leveling un-
der different value of λ .

durance and hence SSD lifetime compared with uniform
wear-leveling. As the defects density increases (i.e., λ

9

254 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

increases), the gain of differential wear-leveling over uni-
form wear-leveling will accordingly improve (i.e., from
about 10% improvement at λ = 1 to about 30% improve-
ment at λ = 4).

4.3 Combination of the Two Design Ap-
proaches

As discussed earlier, we can combine the proposed two
design approaches in order to improve SSD speed perfor-
mance when ECC is also used to tolerate defective mem-
ory cells. Following the discussions in Section 4.2, we
assume that the number of defective memory cells in the
worst-case page has a Poisson distribution and consider
the cases when the mean λ ranges from 1 to 4. Follow-
ing the discussions in Section 4.1, beyond the normal-
ized program step voltage ∆Vpp of 0.3 in the baseline sce-
nario, we consider three larger values of ∆Vpp, including
0.35, 0.4, and 0.45. Denote ∆V (1)

pp = 0.45, ∆V (2)
pp = 0.4,

∆V (3)
pp = 0.35, and ∆V (4)

pp = 0.3. Given the memory cell
defects number d and the (4798, 4096, 54) BCH code
being used, we can obtain a set of PE cycling thresh-
olds Nd

0 = 0 < Nd
1 < · · · < Nd

4 so that, if present PE cy-
cling number falls into the range of [N(d)

i−1,N
(d)
i), we can

use the program step voltage ∆V (i)
pp and meanwhile en-

sure the tolerance of d defective memory cells. Fig. 12
shows the PE cycling thresholds when the defect number
increases from 0 to 12. The results can be intuitively jus-
tified: as the defect number increases, the residual ECC
error-correcting capability degrades, and consequently
the larger program step voltage can only be used over
a less number of PE cycling.

6000

8000

10000

12000

E
nd

ur
an

ce

ΔVpp=0.3 ΔVpp=0.35 ΔVpp=0.4 ΔVpp=0.45

0

2000

4000

6000

0 1 2 3 4 5 6 7 8 9 10 11 12

PE
 C

yc
lin

g

Number of defects

Figure 12: PE cycling thresholds corresponding to dif-
ferent number of defective cells in the worst-case page
of one block.

Given each program step voltage ∆V (i)
pp , we can obtain

the normalized SSD response time τi for each specific

trace, as shown in Fig. 7. Recall that, when the PE cy-
cling number falls into the range [N(d)

i−1,N
(d)
i), we can use

the program step voltage ∆V (i)
pp , and the baseline scenario

fixes the program step voltage as ∆V (4)
pp = 0.3 throughout

the entire memory lifetime. Therefore, we can calculate
the overall SSD average response time reduction over the
baseline scenario for each trace as

12

∑
d=0

f (d;λ)
∑4

i=1(N
(d)
i −N(d)

i−1) · τi

N(d)
4 · τ4

, (14)

and the results are shown in Fig. 13. The results suggest
that we still can maintain a noticeable SSD speed perfor-
mance improvement when ECC is also used to tolerate
defective memory cells.

5 Related Work

NAND flash memory system design has attracted many
recent attentions, where most work focused on improv-
ing system speed performance and endurance. Dirik and
Jacob [16] studied the effect on SSD system speed per-
formance by changing various SSD system parallelism
and concurrency at different levels such as the numbers
of planes on each channel and the number of channels,
and compared various existing disk access scheduling al-
gorithms. Agrawal et al. [3] analyzed the effect of page
size, striping and interleaving policy on the memory sys-
tem performance, and proposed a conception of gang as a
higher-level “superblock” to facilitate SSD system-level
parallelism configurations. Min and Nam [32] developed
several NAND flash memory performance enhancement
techniques such as write request interleaving. Seong
et al. [37] applied bus-level and chip-level interleaving
to exploit the inherent parallelism in multiple flash mem-
ory chips to improve the SSD speed performance. The
authors of [11,13] applied adaptive bank scheduling poli-
cies to achieve an even distribution of write request and
load balance to improve system speed performance.

Wear-leveling is used to improve NAND flash mem-
ory endurance. Gal and Toledo [18] surveyed many
patented and published wear-leveling algorithms and
data structures for NAND flash memory. Ben-Aroya
and Toledo [5] more quantitatively evaluated different
wear-leveling algorithms, including both on-line and
off-line algorithms. The combination of wear-leveling
and garbage collection and the involved design trade-
offs have been investigated by many researchers, e.g.,
see [12, 14, 22, 23, 44]. In current design practice, defect
tolerance has been mainly realized by bad block man-
agement that run-time monitors and disables the future
use of blocks with defects. Traditional redundant repair
can also be used to compensate certain memory defects,

10

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 255

30%

35%
ct

io
n

25%

30%

m
e

R
ed

uc

20%

on
se

 T
im

No Defects
λ=1

15%

ge
 R

es
po λ=1

λ=2
λ=3

10%

ll
Av

er
ag λ=4

5%

O
ve

ra
l

0%
Finance1 Finance2 Postmark Iozone Trace1 Trace2

(a)

0%

5%

10%

15%

20%

25%

Finance1 Finance2 Postmark Iozone Trace1 Trace2

O
ve

ra
ll

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

R
ed

uc
tio

n

No Defects
λ=1
λ=2
λ=3
λ=4

(b)

Figure 13: Overall average response time reduction over the baseline scenario under different λ when SSD contains
(a) 4 parallel packages and (b) 8 parallel packages.

e.g., see [19]. In addition, a NAND flash memory device
model was presented in [33], which nevertheless does
not take into account of RTN noise and cell-to-cell in-
terference, and the model was used to show that time-
dependent trap recovery can be leveraged to improve
memory endurance.

We note that most prior work on improving SSD sys-
tem speed performance and/or memory endurance are
carried out mainly from architecture/system perspective
to combat flash memory device issues. To the best of
our knowledge, this paper represents the first attempt to
adaptively exploit flash memory device characteristics,
in particular PE-cycling-dependent device wear-out dy-
namics, at the system level to improve SSD system speed
performance and NAND flash memory scalability. The
proposed design approaches are completely orthogonal
to prior architecture/system level techniques and can be
readily combined together.

6 Conclusion

This paper investigates the potential of adaptively lever-
aging NAND flash memory cell wear-out dynamics to
improve memory system performance. As memory PE
cycling increases, NAND flash memory cell storage
noise margin and hence raw storage reliability accord-
ingly degrade. Therefore, the specified PE cycling en-
durance limit determines the worst-case raw memory
storage reliability, which further sets the amount of re-
dundant memory cells that must be fabricated. Motivated
by the fact that such worst-case oriented redundancy is
essentially under-utilized over the entire memory life-
time, especially when the PE cycling number is relatively
small, this paper proposes to trade such under-utilized re-

dundancy to improve system speed performance and/or
tolerate defective memory cells. We further propose a
simple differential wear-leveling scheme to minimize the
impact on PE cycling endurance if the redundancy is
used to tolerate defective memory cells. To quantita-
tively evaluate such adaptive NAND flash memory sys-
tem design strategies, we first develop an approximate
NAND flash memory device model that can capture the
effects of PE cycling on memory cell storage reliabil-
ity. To evaluate the effectiveness on improving memory
system speed, we carry out extensive simulations over a
variety of traces using the DiskSim-based SSD simula-
tor under different system configurations, and the results
show up to 32% SSD average response time reduction
can be achieved. To evaluate the effectiveness on de-
fect tolerance, with a Poisson-based defect statics model,
we show that this design strategy can tolerate relatively
high defect rates at small degradation of effective PE cy-
cling endurance. Finally, we show that these two aspects
can be combined together so that we could noticeably
reduce SSD average response time even in the presence
of high memory defect densities. generate the the refer-
ences with alphatical order.

Acknowledgments
We thank Albert Fazio at Intel for his valuable com-
ments on NAND flash memory device modeling. We
also thank the anonymous reviewers and our shepherd
Eno Thereska for their feedback.

References

[1] “SPC Trace File Format Specification.
http://traces.cs.umass.edu/index.php/Storage/Storage,

11

256 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Last accessed on June 6, 2010,” Storage Perfor-
mance Council, Tech. Rep. Revision 1.0.1, 2002.

[2] “Open NAND Flash Interface Specification,”
Hynix Semiconductor and Intel Corporation and
Micron Technology, Inc. and Numonyx and Phison
Electronics Corp. and Sony Corporation and Span-
sion, Tech. Rep. Revision 2.1, Jan. 2009.

[3] N. Agrawal, V. Prabhakaran, T. Wobber, J. D.
Davis, M. Manasse, and R. Panigrahy, “Design
Tradeoffs for SSD Performance,” in Proc. of
USENIX Annual Technical Conference, 2008, pp.
57–70.

[4] S. Aritome, R. Shirota, G. Hemink, T. Endoh, and
F. Masuoka, “Reliability Issues of Flash Memory
Cells,” Proceedings of the IEEE, vol. 81, no. 5, pp.
776–788, 1993.

[5] A. Ben-Aroya and S. Toledo, “Competitive Analy-
sis of Flash-Memory Algorithms,” in Proc. of the
Annual European Symposium, 2006, pp. 100–111.

[6] R. Bez, E. Camerlenghi, A. Modelli, and A. Vis-
conti, “Introduction to Flash memory,” Proceedings
of the IEEE, vol. 91, pp. 489–502, April 2003.

[7] R. Bez and P. Cappelletti, “Flash Memory and Be-
yond,” in Proc. of IEEE VLSI-TSA International
Symposium on VLSI Technology, 2005, pp. 84–87.

[8] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R.
Ganger, “The DiskSim Simulation Environment
Version 4.0 Reference Manual,” Carnegie Mellon
University Parallel Data Lab, Tech. Rep. CMU-
PDL-08-101, May 2008.

[9] P. Cappelletti, R. Bez, D. Cantarelli, and L. Fratin,
“Failure Mechanisms of Flash Cell in Pro-
gram/erase Cycling,” in Proc. of International
Electron Devices Meeting (IEDM), 1994, pp. 291–
294.

[10] R.-A. Cernea and et al., “A 34 MB/s MLC Write
Throughput 16 Gb NAND With All Bit Line Archi-
tecture on 56 nm Technology,” IEEE J. Solid-State
Circuits, vol. 44, pp. 186–194, Jan. 2009.

[11] L.-P. Chang and T.-W. Kuo, “An Adaptive Strip-
ing Architecture for Flash Memory Storage Sys-
tems of Embedded Systems,” Proc. of IEEE Real-
Time and Embedded Technology and Applications
Symposium, pp. 187 – 196, 2002.

[12] L.-P. Chang, T.-W. Kuo, and S.-W. Lo, “Real-
time Garbage Collection for Flash-Memory Stor-
age Systems of Real-time Embedded Systems,”

ACM Transactions on Embedded Computing Sys-
tems, vol. 3, no. 4, pp. 837–863, 2004.

[13] Y.-B. Chang and L.-P. Chang, “A Self-Balancing
Striping Scheme for NAND-Flash Storage Sys-
tems,” in Proc. of the ACM Symposium on Applied
Computing, 2008, pp. 1715–1719.

[14] M.-L. Chiang and R.-C. Chang, “Cleaning Policies
in Mobile Computers Using Flash Memory,” Jour-
nal of Systems and Software, vol. 48, no. 3, pp.
213–231, 1999.

[15] C. Compagnoni, M. Ghidotti, A. Lacaita,
A. Spinelli, and A. Visconti, “Random Telegraph
Noise Effect on the Programmed Threshold-
Voltage Distribution of Flash Memories,” IEEE
Electron Device Letters, vol. 30, no. 9, 2009.

[16] C. Dirik and B. Jacob, “The Performance of
PC Solid-state disks (SSDs) as a Function of
Bandwidth, Concurrency, Device Architecture, and
System Organization,” SIGARCH Comput. Archit.
News, vol. 37, no. 3, pp. 279–289, 2009.

[17] K. Fukuda, Y. Shimizu, K. Amemiya,
M. Kamoshida, and C. Hu, “Random Telegraph
Noise in Flash Memories - Model and Technology
Scaling,” in Proc. of IEEE International Electron
Devices Meeting (IEDM), 2007, pp. 169–172.

[18] E. Gal and S. Toledo, “Algorithms and Data Struc-
tures for Flash Memories,” ACM Computing Sur-
veys, vol. 37, no. 2, pp. 138–163, 2005.

[19] Y.-Y. Hsiao, C.-H. Chen, and C.-W. Wu, “Built-In
Self-Repair Schemes for Flash Memories,” IEEE
Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 29, no. 8, pp.
1243 –1256, Aug. 2010.

[20] B. Hwang and et al, “Comparison of Double
Patterning Technologies in NAND Flash Mem-
ory With Sub-30nm Node,” in Proc. of the Eu-
ropean Solid State Device Research Conference
(ESSDERC), 2009, pp. 269 –271.

[21] T. Jung and et al., “A 117-mm 3.3-V only 128-Mb
Multilevel NAND Flash Memory for Mass Storage
Applications,” IEEE J. Solid-State Circuits, vol. 31,
no. 11, pp. 1575–1583, Nov. 1996.

[22] A. Kawaguchi, S. Nishioka, and H. Motoda, “A
Flash-Memory Based File System,” in Proc. of the
USENIX Technical Conference, 1995, pp. 13–13.

12

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 257

[23] H. Kim and S. Lee, “An Effective Flash Memory
Manager for Reliable Flash Memory Space Man-
agement,” IEICE Transactions on Information and
Systems, vol. 85, no. 6, pp. 950–964, 2002.

[24] K. Kim and et.al, “Future Memory Technology:
Challenges and Opportunities,” in Proc. of Inter-
national Symposium on VLSI Technology, Systems
and Applications, Apr. 2008, pp. 5–9.

[25] J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of
Floating-Gate Interference on NAND Flash Mem-
ory Cell Operation,” IEEE Electron Device Letters,
vol. 23, no. 5, pp. 264–266, May. 2002.

[26] J. Lee, J. Choi, D. Park, and K. Kim, “Data
Retention Characteristics of sub-100 nm NAND
Flash Memory Cells,” IEEE Electron Device Let-
ters, vol. 24, no. 12, pp. 748–750, 2003.

[27] J. Lee, J. Choi, D. Park, K. Kim, R. Center, S. Co,
and S. Gyunggi-Do, “Effects of Interface Trap
Generation and Annihilation on the Data Reten-
tion Characteristics of Flash Memory Cells,” IEEE
Transactions on Device and Materials Reliability,
vol. 4, no. 1, pp. 110–117, 2004.

[28] Y. Li and et. al, “A 16Gb 3b/Cell NAND Flash
Memory in 56nm with 8MB/s Write Rate,” in Proc.
of IEEE International Solid-State Circuits Confer-
ence (ISSCC), Feb. 2008, pp. 506–632.

[29] H. Liu, S. Groothuis, C. Mouli, J. Li, K. Parat, and
T. Krishnamohan, “ 3D Simulation Study of Cell-
Cell Interference in Advanced NAND Flash Mem-
ory,” in Proc. of IEEE Workshop on Microelectron-
ics and Electron Devices, April 2009.

[30] N. Mielke, H. Belgal, I. Kalastirsky, P. Kalavade,
A. Kurtz, Q. Meng, N. Righos, and J. Wu, “Flash
EEPROM Threshold Instabilities Due to Charge
Trapping During Program/erase Cycling,” IEEE
Transactions on Device and Materials Reliability,
vol. 4, no. 3, pp. 335–344, 2004.

[31] N. Mielke, H. Belgal, A. Fazio, Q. Meng, and
N. Righos, “Recovery Effects in the Distributed
Cycling of Flash Memories,” in Proc. of IEEE In-
ternational Reliability Physics Symposium, 2006,
pp. 29–35.

[32] S. L. Min and E. H. Nam, “Current Trends in Flash
Memory Technology,” Proc. of Asia and South Pa-
cific Conference on Design Automation., p. 2., Jan.
2006.

[33] V. Mohan, T. Siddiqua, S. Gurumurthi, and M. R.
Stan, “How I Learned to Stop Worrying and Love
Flash Endurance,” in Proc. of the 2nd USENIX con-
ference on Hot topics in storage and file systems,
2010, pp. 3–3.

[34] P. Olivo, B. Ricco, and E. Sangiorgi, “High Field
Induced Voltage Dependent Oxide Charge,” Ap-
plied Physics Letter, vol. 48, pp. 1135–1137, 1986.

[35] K.-T. Park and et al., “A Zeroing Cell-to-Cell In-
terference Page Architecture With Temporary LSB
Storing and Parallel MSB Program Scheme for
MLC NAND Flash Memories,” IEEE J. Solid-State
Circuits, vol. 40, pp. 919–928, Apr. 2008.

[36] K. Prall, “Scaling Non-Volatile Memory Below
30nm,” in Proc. of IEEE Non-Volatile Semiconduc-
tor Memory Workshop, Aug. 2007, pp. 5–10.

[37] Y. J. Seong, E. H. Nam, J. H. Yoon, H. Kim, J. Choi,
S. Lee, Y. H. Bae, J. Lee, Y. Cho, and S. L. Min,
“Hydra: A Block-Mapped Parallel Flash Memory
Solid-State Disk Architecture,” IEEE Transactions
on Computers, vol. 59, no. 7, pp. 905 –921, Jul.
2010.

[38] N. Shibata and et al., “A 70 nm 16 Gb 16-level-cell
NAND flash memory,” in Proc. of IEEE Symposium
on VLSI Circuits, 2007, pp. 190–191.

[39] K.-D. Suh and et al., “A 3.3 V 32 Mb NAND
Flash Memory with Incremental Step Pulse Pro-
gramming Scheme,” IEEE J. Solid-State Circuits,
vol. 30, no. 11, pp. 1149–1156, Nov. 1995.

[40] K. Takeuchi and et al., “A 56-nm CMOS 99-mm2

8-Gb Multi-Level NAND Flash Memory With 10-
MB/s Program Throughput,” IEEE J. Solid-State
Circuits, vol. 42, pp. 219–232, Jan. 2007.

[41] K. Takeuchi, T. Tanaka, and H. Nakamura, “A
Double-level-Vth Select Gate Array Architecture
for Multilevel NAND Flash Memories,” IEEE J.
Solid-State Circuits, vol. 31, no. 4, pp. 602–609,
Apr. 1996.

[42] D. Wellekens, J. Van Houdt, L. Faraone, G. Groe-
seneken, and H. Maes, “Write/erase Degradation in
Source Side Injection Flash EEPROM’s: Charac-
terization Techniques and Wearout Mechanisms,”
IEEE Transactions on Electron Devices, vol. 42,
no. 11, pp. 1992–1998, 1995.

[43] B. L. Worthington, G. R. Ganger, and Y. N.
Patt, “Scheduling Algorithms for Modern Disk
Drives,” in Proc. of the ACM SIGMETRICS Inter-
national Conference on Measurement and Model-
ing of Computer Systems, 1994, pp. 241–251.

13

258 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

[44] M. Wu and W. Zwaenepoel, “eNVy: a NonVolatile
Main Memory Storage System,” Proc. of Fourth
Workshop on Workstation Operating Systems, pp.
116 –118, Oct. 1993.

[45] H. Yang and et al., “Reliability Issues and Models
of sub-90nm NAND Flash Memory Cells,” in Proc.
of International Conference on Solid-State and In-
tegrated Circuit Technology, 2006, pp. 760–762.

14

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 259

FAST: Quick Application Launch on Solid-State Drives

Yongsoo Joo†, Junhee Ryu‡, Sangsoo Park†, and Kang G. Shin†∗

†Ewha Womans University, 11-1 Daehyun-dong Seodaemun-gu, Seoul 120-750, Korea

‡Seoul National University, 599 Kwanak-Gu Kwanak Rd., Seoul 151-744, Korea
∗ University of Michigan, 2260 Hayward St., Ann Arbor, MI 48109, USA

Abstract

Application launch performance is of great importance

to system platform developers and vendors as it greatly

affects the degree of users’ satisfaction. The single most

effective way to improve application launch performance

is to replace a hard disk drive (HDD) with a solid state

drive (SSD), which has recently become affordable and

popular. A natural question is then whether or not to

replace the traditional HDD-aware application launchers

with a new SSD-aware optimizer.

We address this question by analyzing the inefficiency

of the HDD-aware application launchers on SSDs and

then proposing a new SSD-aware application prefetching

scheme, called the Fast Application STarter (FAST). The

key idea of FAST is to overlap the computation (CPU)

time with the SSD access (I/O) time during an applica-

tion launch. FAST is composed of a set of user-level

components and system debugging tools provided by the

Linux OS (operating system). In addition, FAST uses a

system-call wrapper to automatically detect application

launches. Hence, FAST can be easily deployed in any

recent Linux versions without kernel recompilation. We

implemented FAST on a desktop PC with a SSD running

Linux 2.6.32 OS and evaluated it by launching a set of

widely-used applications, demonstrating an average of

28% reduction of application launch time as compared

to PC without a prefetcher.

1 Introduction

Application launch performance is one of the impor-

tant metrics for the design or selection of a desktop or

a laptop PC as it critically affects the user-perceived

performance. Unfortunately, application launch perfor-

mance has not kept up with the remarkable progress of

CPU performance that has thus far evolved according to

Moore’s law. As frequently-used or popular applications

get “heavier” (by adding new functions) with each new

release, their launch takes longer even if a new, power-

ful machine equipped with high-speed multi-core CPUs

and several GBs of main memory is used. This undesir-

able trend is known to stem from the poor random access

performance of hard disk drives (HDDs). When an ap-

plication stored in a HDD is launched, up to thousands

of block requests are sent to the HDD, and a significant

portion of its launch time is spent on moving the disk

head to proper track and sector positions, i.e., seek and

rotational latencies. Unfortunately, the HDD seek and

rotational latencies have not been improved much over

the last few decades, especially compared to the CPU

speed improvement. In spite of the various optimizations

proposed to improve the HDD performance in launch-

ing applications, users must often wait tens of seconds

for the completion of launching frequently-used applica-

tions, such as Windows Outlook.

A quick and easy solution to eliminate the HDD’s seek

and rotational latencies during an application launch is to

replace the HDD with a solid state drive (SSD). A SSD

consists of a number of NAND flash memory modules,

and does not use any mechanical parts, unlike disk heads

and arms of a conventional HDD. While the HDD ac-

cess latency—which is the sum of seek and rotational

latencies—ranges up to a few tens of milliseconds (ms),

depending on the seek distance, the SSD shows a rather

uniform access latency of about a few hundred micro-

seconds (us). Replacing a HDD with a SSD is, there-

fore, the single most effective way to improve applica-

tion launch performance.

Until recently, using SSDs as the secondary storage of

desktops or laptops has not been an option for most users

due to the high cost-per-bit of NAND flash memories.

However, the rapid advance of semiconductor technol-

ogy has continuously driven the SSD price down, and at

the end of 2009, the price of an 80 GB SSD has fallen be-

low 300 US dollars. Furthermore, SSDs can be installed

in existing systems without additional hardware or soft-

ware support because they are usually equipped with the

1

260 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

same interface as HDDs, and OSes see a SSD as a block

device just like a HDD. Thus, end-users begin to use a

SSD as their system disk to install the OS image and ap-

plications.

Although a SSD can significantly reduce the applica-

tion launch time, it does not give users ultimate satisfac-

tion for all applications. For example, using a SSD re-

duces the launch time of a heavy application from tens of

seconds to several seconds. However, users will soon be-

come used to the SSD launch performance, and will then

want the launch time to be reduced further, just as they

see from light applications. Furthermore, users will keep

on adding functions to applications, making them heav-

ier with each release and their launch time greater. Ac-

cording to a recent report [24], the growth of software is

rapid and limited only by the ability of hardware. These

call for the need to further improve application launch

performance on SSDs.

Unfortunately, most previous optimizers for applica-

tion launch performance are intended for HDDs and have

not accounted for the SSD characteristics. Furthermore,

some of themmay rather be detrimental to SSDs. For ex-

ample, running a disk defragmentation tool on a SSD is

not beneficial at all because changing the physical loca-

tion of data in the SSD does not affect its access latency.

Rather, it generates unnecessary write and erase opera-

tions, thus shortening the SSD’s lifetime.

In view of these, the first step toward SSD-aware op-

timization may be to simply disable the traditional op-

timizers designed for HDDs. For example, Windows 7

disables many functions, such as disk defragmentation,

application prefetch, Superfetch, and Readyboost when

it detects a SSD being used as a system disk [27]. Let’s

consider another example. Linux is equipped with four

disk I/O schedulers: NOOP, anticipatory, deadline, and

completely fair queueing. The NOOP scheduler almost

does nothing to improve HDD access performance, thus

providing the worst performance on a HDD. Surpris-

ingly, it has been reported that NOOP shows better per-

formance than the other three sophisticated schedulers on

a SSD [11].

To the best of our knowledge, this is the first attempt

to focus entirely on improving application launch perfor-

mance on SSDs. Specifically, we propose a new appli-

cation prefetching method, called the Fast Application

STarter (FAST), to improve application launch time on

SSDs. The key idea of FAST is to overlap the compu-

tation (CPU) time with the SSD access (I/O) time dur-

ing each application launch. To achieve this, we monitor

the sequence of block requests in each application, and

launch the application simultaneously with a prefetcher

that generates I/O requests according to the a priorimon-

itored application’s I/O request sequence. FAST consists

of a set of user-level components, a system-call wrap-

per, and system debugging tools provided by the Linux

OS. FAST can be easily deployed in most recent Linux

versions without kernel recompilation. We have imple-

mented and evaluated FAST on a desktop PC with a SSD

running Linux 2.6.32, demonstrating an average of 28%

reduction of application launch time as compared to PC

without a prefetcher.

This paper makes the following contributions:

• Qualitative and quantitative evaluation of the ineffi-

ciency of traditional HDD-aware application launch

optimizers on SSDs;

• Development of a new SSD-aware application

prefetching scheme, called FAST; and

• Implementation and evaluation of FAST, demon-

strating its superiority and deployability.

While FAST can be also applied to HDDs, its per-

formance improvements are only limited to high I/O re-

quirements of application launches on HDDs. We ob-

served that existing application prefetchers outperformed

FAST on HDDs by effectively optimizing disk head

movements, which will be discussed further in Section 5.

The paper is organized as follows. In Section 2, we re-

view other related efforts and discuss their performance

in optimizing application launch on SSDs. Section 3

describes the key idea of FAST and presents an upper

bound for its performance. Section 4 details the imple-

mentation of FAST on the Linux OS, while Section 5

evaluates its performance using various real-world appli-

cations. Section 6 discusses the applicability of FAST to

smartphones and Section 7 compares FAST with tradi-

tional I/O prefetching techniques. We conclude the paper

with Section 8.

2 Background

2.1 Application Launch Optimization

Application-level optimization. Application developers

are usually advised to optimize their applications for fast

startup. For example, they may be advised to postpone

loading non-critical functions or libraries so as to make

applications respond as fast as possible [2, 30]. They

are also advised to reduce the number of symbol reloca-

tions while loading libraries, and to use dynamic library

loading. There have been numerous case studies—based

on in-depth analyses and manual optimizations—of vari-

ous target applications/platforms, such as Linux desktop

suite platform [8], a digital TV [17], and a digital still

camera [33]. However, such an approach requires the

experts’ manual optimizations for each and every appli-

cation. Hence, it is economically infeasible for general-

purpose systems with many (dynamic) application pro-

grams.

2

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 261

Snapshot technique. A snapshot boot technique has

also been suggested for fast startup of embedded systems

[19], which is different from the traditional hibernate

shutdown function in that a snapshot of the main mem-

ory after booting an OS is captured only once, and used

repeatedly for every subsequent booting of the system.

However, applying this approach for application launch

is not practical for the following reasons. First, the page

cache in main memory is shared by all applications, and

separating only the portion of the cache content that is

related to a certain application is not possible without

extensive modification of the page cache. Furthermore,

once an application is updated, its snapshot should be in-

validated immediately, which incurs runtime overhead.

Prediction-based prefetch. Modern desktops are

equipped with large (up to several GBs) main memory,

and often have abundant free space available in the main

memory. Prediction-based prefetching, such as Super-

fetch [28] and Preload [12], loads an application’s code

blocks in the free space even if the user does not ex-

plicitly express his intent to execute that particular ap-

plication. These techniques monitor and analyze the

users’ access patterns to predict which applications to be

launched in future. Consequently, the improvement of

launch performance depends strongly on prediction ac-

curacy.

Sorted prefetch. The Windows OS is equipped with

an application prefetcher [36] that prefetches appli-

cation code blocks in a sorted order of their logical

block addresses (LBAs) to minimize disk head move-

ments. A similar idea has also been implemented for

Linux OS [15, 25]. We call these approaches sorted

prefetch. It monitors HDD activities to maintain a list

of blocks accessed during the launch of each application.

Upon detection of an application launch, the application

prefetcher immediately pauses its execution and begins

to fetch the blocks in the list in an order sorted by their

LBAs. The application launch is resumed after fetching

all the blocks, and hence, no page miss occurs during the

launch.

Application defragmentation. The block list informa-

tion can also be used in a different way to further reduce

the seek distance during an application launch. Modern

OSes commonly support a HDD defragmentation tool

that reorganizes the HDD layout so as to place each file in

a contiguous disk space. In contrast, the defragmentation

tool can relocate the blocks in the list of each application

by their access order [36], which helps reduce the total

HDD seek distance during the launch.

Data pinning on flash caches. Recently, flash cache has

been introduced to exploit the advantage of SSDs at a

cost comparable to HDDs. A flash cache can be inte-

grated into traditional HDDs, which is called a hybrid

HDD [37]. Also, a PCI card-type flash cache is available

[26], which is connected to the mother board of a desk-

top or laptop PC. As neither seek nor rotational latency is

incurred while accessing data in the flash cache, we can

accelerate application launch by storing the code blocks

of frequently-used applications, which is called a pinned

set. Due to the small capacity of flash cache, how to

determine the optimal pinned set subject to the capacity

constraint is a key to making performance improvement,

and a few results of addressing this problem have been

reported [16, 18, 22]. We expect that FAST can be in-

tegrated with the flash cache for further improvement of

performance, but leave it as part of our future work.

2.2 SSD Performance Optimization

SSDs have become affordable and begun to be deployed

in desktop and laptop PCs, but their performance char-

acteristics have not yet been understood well. So, re-

searchers conducted in-depth analyses of their perfor-

mance characteristics, and suggested ways to improve

their runtime performance. Extensive experiments have

been carried out to understand the performance dynam-

ics of commercially-available SSDs under various work-

loads, without knowledge of their internal implementa-

tions [7]. Also, SSD design space has been explored

and some guidelines to improve the SSD performance

have been suggested [10]. A new write buffer manage-

ment scheme has also been suggested to improve the ran-

dom write performance of SSDs [20]. Traditional I/O

schedulers optimized for HDDs have been revisited in

order to evaluate their performance on SSDs, and then

a new I/O scheduler optimized for SSDs has been pro-

posed [11, 21].

2.3 Launch Optimization on SSDs

As discussed in Section 2.1, various approaches have

been developed and deployed to improve the applica-

tion launch performance on HDDs. On one hand, many

of them are effective on SSDs as well, and orthogo-

nal to FAST. For example, application-level optimiza-

tion and prediction-based prefetch can be used together

with FAST to further improve application launch perfor-

mance.

On the other hand, some of them exploit the HDD

characteristics to reduce the seek and rotational delay

during an application launch, such as the sorted prefetch

and the application defragmentation. Such methods are

ineffective for SSDs because the internal structure of a

SSD is very different from that of a HDD. A SSD typi-

cally consists of multiple NAND flash memory modules,

and does not have any mechanical moving part. Hence,

unlike a HDD, the access latency of a SSD is irrelevant to

the LBA distance between the last and the current block

3

262 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

0

0

0

0

s1 s2 s3 s4

c1 c2 c3 c4

s1 s2 s3 s4c1 c2 c3 c4

s1 s2
s3 s4

c1 c2 c3 c4

c1 c2 c3 c4

tcpu > tssd

tcpu < tssd

tlaunch

tlaunch

tlaunch

tlaunch

Figure 1: Various application launch scenarios (n= 4).

requests. Thus, prefetching the application code blocks

according to the sorted order of their LBAs or changing

their physical locations will not make any significant per-

formance improvement on SSDs. As the sorted prefetch

has the most similar structure to FAST, we will quanti-

tatively compare its performance with FAST in Section

5.

3 Application Prefetching on SSDs

This section illustrates the main idea of FASTwith exam-

ples and derives a lower bound of the application launch

time achievable with FAST.

3.1 Cold and Warm Starts

We focus on the performance improvement in case of

a cold start, or the first launch of an application upon

system bootup, representing the worst-case application

launch performance. Figure 1(a) shows an example cold

start scenario, where si is the i-th block request gener-

ated during the launch and n the total number of block

requests. After si is completed, the CPU proceeds with

the launch process until another page miss takes place.

Let ci denote this computation.

The opposite extreme is a warm start in which all the

code blocks necessary for launch have been found in the

page cache, and thus, no block request is generated, as

shown in Figure 1(b). This occurs when the application

is launched again shortly after its closure. The warm start

represents an upper-bound of the application launch per-

formance improvement achievable with optimization of

the secondary storage.

Let the time spent for si and ci be denoted by t(si) and
t(ci), respectively. Then, the computation (CPU) time,

tcpu, is expressed as

tcpu =
n

∑
i=1

t(ci), (1)

and the SSD access (I/O) time, tssd , is expressed as

tssd =
n

∑
i=1

t(si). (2)

3.2 The Proposed Application Prefetcher

The rationale behind FAST is that the I/O request se-

quence generated during an application launch does not

change over repeated launches of the application in case

of cold-start. The key idea of FAST is to overlap the SSD

access (I/O) time with the computation (CPU) time by

running the application prefetcher concurrently with the

application itself. The application prefetcher replays the

I/O request sequence of the original application, which

we call an application launch sequence. An application

launch sequence S can be expressed as (s1, . . . ,sn).
Figure 1(c) illustrates how FAST works, where tcpu >

tssd is assumed. At the beginning, the target applica-

tion and the prefetcher start simultaneously, and compete

with each other to send their first block request to the

SSD. However, the SSD always receives the same block

request s1 regardless of which process gets the bus grant

first. After s1 is fetched, the application can proceed with

its launch by the time t(c1), while the prefetcher keeps

issuing the subsequent block requests to the SSD. After

completing c1, the application accesses the code block

corresponding to s2, but no page miss occurs for s2 be-

cause it has already been fetched by the prefetcher. It is

the same for the remaining block requests, and thus, the

resulting application launch time tlaunch becomes

tlaunch = t(s1)+ tcpu. (3)

Figure 1(d) shows another possible scenario where tcpu <

tssd . In this case, the prefetcher cannot complete fetching

s2 before the application finishes computation c1. How-

ever, s2 can be fetched by t(c1) earlier than that of the

cold start, and this improvement is accumulated for all

of the remaining block requests, resulting in tlaunch:

tlaunch = tssd + t(cn). (4)

Note that n ranges up to a few thousands for typical ap-

plications, and thus, t(s1)� tcpu and t(cn)� tssd . Con-

sequently, Eqs. (3) and (4) can be combined into a single

equation as:

tlaunch ≈max(tssd , tcpu), (5)

4

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 263

0

s1 s2 s3 s4

c1 c2 c3

c5 c6 c7 c8c4

s5 . . .s8 tactual
texpected

t(c8) tactual − texpected

Figure 2: A worst-case example (tcpu = tssd).

Figure 3: The proposed application prefetching.

which represents a lower bound of the application launch

time achievable with FAST.

However, FAST may not achieve application launch

performance close to Eq. (5) when there is a significant

variation of I/O intensiveness, especially if the beginning

of the launch process is more I/O intensive than the other.

Figure 2 illustrates an extreme example of such a case,

where the first half of this example is SSD-bound and the

second half is CPU-bound. In this example, tcpu is equal

to tssd , and thus the expected launch time texpected is given

to be tssd + t(c8), according to Eq. (4). However, the ac-

tual launch time tactual is much larger than texpected . The

CPU usage in the first half of the launch time is kept quite

low despite the fact that there are lots of remaining CPU

computations (i.e., c5, . . . ,c8) due to the dependency be-

tween si and ci. We will provide a detailed analysis for

this case using real applications in Section 5.

4 Implementation

We chose the Linux OS to demonstrate the feasibility and

the superior performance of FAST. The implementation

of FAST consists of a set of components: an application

launch manager, a system-call profiler, a disk I/O pro-

filer, an application launch sequence extractor, a LBA-

to-inode reverse mapper, and an application prefetcher

generator. Figure 3 shows how these components inter-

act with each other. In what follows, we detail the imple-

mentation of each of these components.

4.1 Application Launch Sequence

4.1.1 Disk I/O Profiler

The disk I/O profiler is used to track the block re-

quests generated during an application launch. We used

Blktrace [3], a built-in Linux kernel I/O-tracing tool

that monitors the details of I/O behavior for the evalua-

tion of I/O performance. Blktrace can profile various

I/O events: inserting an item into the block layer, merg-

ing the item with a previous request in the queue, remap-

ping onto another device, issuing a request to the device

driver, and a completion signal from the device. From

these events, we collect the trace of device-completion

events, each of which consists of a device number, a

LBA, the I/O size, and completion time.

4.1.2 Application Launch Sequence Extractor

Ideally, the application launch sequence should include

all of the block requests that are generated every time the

application is launched in the cold start scenario, with-

out including any block requests that are not relevant to

the application launch. We observed that the raw block

request sequence captured by Blktrace does not vary

from one launch to another, i.e., deterministic for mul-

tiple launches of the same application. However, we

observed that other processes (e.g., OS and application

daemons) sometimes generate their own I/O requests si-

multaneously with the application launch. To handle this

case, the application launch sequence extractor collects

two or more raw block request sequences to extract a

common sequence, which is then used as a launch se-

quence of the corresponding application. The imple-

mentation of the application launch sequence extractor

is simple: it searches for and removes any block requests

appearing in some of the input sequences. This proce-

dure makes all the input sequences the same, so we use

any of them as an application launch sequence.

4.2 LBA-to-Inode Map

4.2.1 LBA-to-Inode Reverse Mapper

Our goal is to create an application prefetcher that gen-

erates exactly the same block request sequence as the

obtained application launch sequence, where each block

request is represented as a tuple of starting LBA and

size. Since the application prefetcher is implemented as

a user-level program, every disk access should be made

via system calls with a file name and an offset in that file.

Hence, we must obtain the file name and the offset of

each block request in an application launch sequence.

Most file systems, including EXT3, do not support

such a reverse mapping from LBA to file name and off-

set. However, for a given file name, we can easily find

5

264 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

the LBA of all of the blocks that belong to the file and

their relative offset in the file. Hence, we can build a

LBA-to-inode map by gathering this information for ev-

ery file. However, building such a map of the entire file

system is time-consuming and impractical because a file

system, in general, contains tens of thousands of files and

their block locations on the disk change very often.

Therefore, we build a separate LBA-to-inode map

for each application, which can significantly reduce the

overhead of creating a LBA-to-inode map because (1)

the number of applications and the number of files used

in launching each application are very small compared

to the number of files in the entire file system; and (2)

most of them are shared libraries and application code

blocks, so their block locations remain unchanged unless

they are updated or disk defragmentation is performed.

We implement the LBA-to-inode reverse mapper that

receives a list of file names as input and creates a LBA-

to-inode map as output. A LBA-to-inode map is built

using a red-black tree in order to reduce the search time.

Each node in the red-black tree has the LBA of a block as

its key, and a block type as its data by default. According

to the block type, different types of data are added to

the node. A block type includes a super block, a group

descriptor, an inode block bitmap, a data block bitmap,

an inode table, and a data block. For example, a node for

a data block has a block type, a device number, an inode

number, an offset, and a size. Also, for a data block, a

table is created to keep the mapping information between

an inode number and its file name.

4.2.2 System-Call Profiler

The system-call profiler obtains a full list of file names

that are accessed during an application launch,1 and

passes it to the LBA-to-inode reverse mapper. We used

strace for the system-call profiler, which is a debugging

tool in Linux. We can specify the argument of strace

so that it may monitor only the system calls that have a

file name as their argument. As many of these system

calls are rarely called during an application launch, we

monitor only the following system calls that frequently

occur during application launches: open(), creat(),

execve(), stat(), stat64(), lstat(), lstat64(),

access(), truncate(), truncate64(), statfs(),

statfs64(), readlink(), and unlink().

4.3 Application Prefetcher

4.3.1 Application Prefetcher Generator

The application prefetcher is a user-level program that

replays the disk access requests made by a target appli-

1Files mounted on pseudo file systems such as procfs and sysfs

are not processed because they never generate any disk I/O request.

Table 1: System calls to replay access of blocks in an

application launch sequence

Block type System call

Inode table open()

Data block: a directory opendir() and readdir()

Data block: a regular file read() or posix_fadvise()

Data block: a symbolic

link file

readlink()

cation. We implemented the application prefetcher gen-

erator to automatically create an application prefetcher

for each target application. It performs the following op-

erations.

1. Read si one-by-one from S of the target application.

2. Convert si into its associated data items stored in the

LBA-to-inode map, e.g.,

(dev,LBA,size)→(datablk,filename,offset,size) or

(dev,LBA,size)→(inode,start_inode,end_inode).

3. Depending on the type of block, generate an appro-

priate system call using the converted disk access

information.

4. Repeat Steps 1–3 until processing all si.

Table 1 shows the kind of system calls used for each

block type. There are two system calls that can be

used to replay the disk access for data blocks of a reg-

ular file. If we use read(), data is first moved from

the SSD to the page cache, and then copying takes

place from the page cache to the user buffer. The sec-

ond step is unnecessary for our purpose, as the process

that actually manipulates the data is not the application

prefetcher but the target application. Hence, we chose

posix fadvise() that performs only the first step, from

which we can avoid the overhead of read(). We use

the POSIX FADV WILLNEED parameter, which informs

the OS that the specified data will be used in the near

future. When to issue the corresponding disk access af-

ter posix fadvise() is called depends on the OS im-

plementation. We confirmed that the current version of

Linux we used issues a block request immediately after

receiving the information through posix fadvise(),

thus meeting our need. A symbolic-linked file name is

stored in data block pointers in an inode entry when the

length of the file name is less than or equal to 60 bytes

(c.f., the space of data block pointers is 60 bytes, 4*12

for direct, 4 for single indirect, another 4 for double in-

direct, and last 4 for triple indirect data block pointer).

If the length of linked file name is more than 60 bytes,

the name is stored in the data blocks pointed to by data

block pointers in the inode entry. We use readlink() to

replay the data block access of symbolic-link file names

that are longer than 60 bytes.

6

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 265

int main(void) {

...
readlink("/etc/fonts/conf.d/90-ttf-arphic-uming-emb

olden.conf", linkbuf, 256);
int fd423;
fd423 = open("/etc/fonts/conf.d/90-ttf-arphic-uming

-embolden.conf", O_RDONLY);
posix_fadvise(fd423, 0, 4096, POSIX_FADV_WILLNEED);

posix_fadvise(fd351, 286720, 114688, POSIX_FADV_WIL
LNEED);

int fd424;
fd424 = open("/usr/share/fontconfig/conf.avail/90-tt

f-arphic-uming-embolden.conf", O_RDONLY);

posix_fadvise(fd424, 0, 4096, POSIX_FADV_WILLNEED);
int fd425;

fd425 = open("/root/.gnupg/trustdb.gpg", O_RDONLY);
posix_fadvise(fd425, 0, 4096, POSIX_FADV_WILLNEED);
dirp = opendir("/var/cache/");

if(dirp)while(readdir(dirp));
...

return 0;
}

Figure 4: An example application prefetcher.

Figure 4 is an example of automatically-generated ap-

plication prefetcher. Unlike the target application, the

application prefetcher successively fetches all the blocks

as soon as possible to minimize the time between adja-

cent block requests.

4.3.2 Implicitly-Prefetched Blocks

In the EXT3 file system, the inode of a file includes

pointers of up to 12 data blocks, so these blocks can

be found immediately after accessing the inode. If the

file size exceeds 12 blocks, indirect, double indirect, and

triple indirect pointer blocks are used to store the point-

ers to the data blocks. Therefore, requests for indirect

pointer blocks may occur in the cold start scenario when

the application is accessing files larger than 12 blocks.

We cannot explicitly load those indirect pointer blocks in

the application prefetcher because there is no such sys-

tem call. However, the posix fadvise() call for a data

block will first make a request for the indirect blockwhen

needed, so it can be fetched in a timely manner by run-

ning the application prefetcher.

The following types of block request are not listed in

Table 1: a superblock, a group descriptor, an inode entry

bitmap, a data block bitmap. We found that requests to

these types of blocks seldom occur during an application

launch, so we did not consider their prefetching.

4.4 Application Launch Manager

The role of the application launch manager is to detect

the launch of an application and to take an appropri-

ate action. We can detect the beginning of an applica-

tion launch by monitoring execve() system call, which

is implemented using a system-call wrapper. There are

three phases with which the application launch manager

Table 2: Variables and parameters used by the applica-

tion launch manager

Type Description

ninit A counter to record the number of application

launches done in the initial launch phase

npre f A counter to record the number of launches

done in the application prefetch phase after the

last check of the miss ratio of the application

prefetcher

Nrawseq The number of raw block request sequences that

are to be captured at the launch profiling phase

Nchk The period to check the miss ratio of the applica-

tion prefetcher

Rmiss A threshold value for the prefetcher miss ratio that

is used to determine if an update of the application

or shared libraries has taken place

Tidle A threshold value for the idle time period that is

used to determine if an application launch is com-

pleted

Ttimeout The maximum amount of time allowed for the

disk I/O profiler to capture block requests

deals: a launch profiling phase, a prefetcher generation

phase, and an application prefetch phase. The applica-

tion launch manager uses a set of variables and param-

eters for each application to decide when to change its

phase. These are summarized in Table 2.

Here we describe the operations performed in each

phase:

(1) Launch profiling. If no application prefetcher is

found for that application, the application launch man-

ager regards the current launch as the first launch of this

application, and enters the initial launch phase. In this

phase, the application launch manager performs the fol-

lowing operations in addition to the launch of the target

application:

1. Increase ninit of the current application by 1.

2. If ninit = 1, run the system call profiler.

3. Flush the page cache, dentries (directory entries),

and inodes in the main memory to ensure a cold start

scenario, which is done by the following command:

echo 3 > /proc/sys/vm/drop_caches

4. Run the disk I/O profiler. Terminate the disk I/O

profiler when any of the following conditions are

met: (1) if no block request occurs during the last

Tidle seconds or (2) the elapsed time since the start

of the disk I/O profiler exceeds Ttimeout seconds.

5. If ninit = Nrawseq, enter the prefetcher generation

phase after the current launch is completed.

(2) Prefetcher generation. Once application launch

profiling is done, it is ready to generate an application

7

266 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

prefetcher using the information obtained from the first

phase. This can be performed either immediately after

the application launch is completed, or when the system

is idle. The following operations are performed:

1. Run the application launch sequence extractor.

2. Run the LBA-to-inode reverse mapper.

3. Run the application prefetcher generator.

4. Reset the values of ninit and npre f to 0.

(3) Application prefetch. If the application prefetcher

for the current application is found, the application

launch manager runs the prefetcher simultaneously with

the target application. It also periodically checks the miss

ratio of the prefetcher to determine if there has been any

update of the application or shared libraries. Specifically,

the following operations are performed:

1. Increase npre f of the current application by 1.

2. If npre f = Nchk, reset the value of npre f to 0 and run

the disk I/O profiler. Its termination conditions are

the same as those in the first phase.

3. Run the application prefetcher simultaneously with

the target application.

4. If a raw block request sequence is captured, use it to

calculate the miss ratio of the application prefetcher.

If it exceeds Rmiss, delete the application prefetcher.

The miss ratio is defined as the ratio of the number of

block requests not issued by the prefetcher to the total

number of block requests in the application launch se-

quence.

5 Performance Evaluation

5.1 Experimental Setup

Experimental platform. We used a desktop PC

equipped with an Intel i7-860 2.8 GHz CPU, 4GB of

PC12800 DDR3 SDRAM and an Intel 80GB SSD (X25-

M G2Mainstream). We installed a Fedora 12 with Linux

kernel 2.6.32 on the desktop, in which we set NOOP

as the default I/O scheduler. For benchmark applica-

tions, we chose frequently used user-interactive appli-

cations, for which application launch performance mat-

ters much. Such an application typically uses graphical

user interfaces and requires user interaction immediately

after completing its launch. Applications like gcc and

gzip are not included in our set of benchmarks as launch

performance is not an issue for them. Our benchmark

set consists of the following Linux applications: Acro-

bat reader, Designer-qt4, Eclipse, F-Spot, Firefox, Gimp,

Gnome, Houdini, Kdevdesigner, Kdevelop, Konqueror,

Labview, Matlab, OpenOffice, Skype, Thunderbird, and

XilinxISE. In addition to these, we used Wine [1], which

is an implementation of the Windows API running on the

Linux OS, to test Access, Excel, Powerpoint, Visio, and

Word—typical Windows applications.

Test scenarios. For each benchmark application, we

measured its launch time for the following scenarios.

• Cold start: The application is launched immediately

after flushing the page cache, using the method de-

scribed in Section 4.4. The resulting launch time is

denoted by tcold .

• Warm start: We first run the application prefetcher

only to load all the blocks in the application launch

sequence to the page cache, and then launch the

application. Let twarm denote the resulting launch

time.

• Sorted prefetch: To evaluate the performance of the

sorted prefetch [15, 25, 36] on SSDs, we modify the

application prefetcher to fetch the block requests in

the application launch sequence in the sorted order

of their LBAs. After flushing the page cache, we

first run the modified application prefetcher, then

immediately run the application. Let tsorted denote

the resulting launch time.

• FAST: We flush the page cache, and then run

the application simultaneously with the application

prefetcher. The resulting launch time is denoted by

tFAST .

• Prefetcher only: We flush the page cache and run

the application prefetcher. The completion time

of the application prefetcher is denoted by tssd . It

is used to calculate a lower bound of the appli-

cation launch time tbound = max(tssd , tcpu), where
tcpu = twarm is assumed.

Launch-time measurement. We start an application

launch by clicking an icon or inputting a command, and

can accurately measure the launch start time by moni-

toring when execve() is called. Although it is difficult

to clearly define the completion of a launch, a reasonable

definition is the first moment the application becomes re-

sponsive to the user [2]. However, it is difficult to accu-

rately and automatically measure that moment. So, as

an alternative, we measured the completion time of the

last block request in an application launch sequence us-

ing Blktrace, assuming that the launch will be com-

pleted very soon after issuing the last block request. For

the warm start scenario, we executed posix fadvise()

with POSIX FADV DONTNEED parameter to evict the last

block request from the page cache. For the sorted

prefetch and the FAST scenarios, we modified the ap-

plication prefetcher so that it skips prefetching of the last

block request.

8

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 267

Figure 5: The size of application launch sequences.

5.2 Experimental Results

Application launch sequence generation. We captured

10 raw block request sequences during the cold start

launch of each application. We ran the application launch

sequence extractor with a various number of input block

request sequences, and observed the size of the result-

ing application launch sequences. Figure 5 shows that

for all the applications we tested, there is no significant

reduction of the application launch sequence size while

increasing the number of inputs from 2 to 10. Hence, we

set the value of Nrawseq in Table 2 to 2 in this paper. We

used the size of the first captured input sequence as the

number of inputs one in Figure 5 (the application launch

sequence extractor requires at least two input sequences).

For some applications, there are noticeable differences in

size between the number of inputs one and two. This is

because the first raw input request sequence includes a

set of bursty I/O requests generated by OS and user dae-

mons that are irrelevant to the application launch. Fig-

ure 5 shows that such I/O requests can be effectively

excluded from the resulting application launch sequence

using just two input request sequences.

The second and third columns of Table 3 summarize

the total number of block requests and accessed blocks of

the thus-obtained application launch sequences, respec-

tively. The last column shows the total number of files

used during the launch of each application.

Testing of the application prefetcher. Application

prefetchers are automatically generated for the bench-

mark applications using the application launch sequences

in Table 3. In order to see if the application prefetch-

ers fetch all the blocks used by an application, we

first flushed the page cache, and launched each applica-

tion immediately after running the application prefetcher.

During the application launch, we captured all the block

requests generated using Blktrace, and counted the

number of missed block requests. The average number of

missed block requests was 1.6% of the number of block

requests in the application launch sequence, but varied

among repeated launches, e.g., from 0% to 6.1% in the

experiments we performed.

Table 3: Collected launch sequences (Nrawseq = 2)

Application # of block # of fetched # of used

requests blocks files

Access 1296 106 992 555

Acrobat reader 960 73 784 178

Designer-qt4 2400 138 608 410

Eclipse 4163 155 216 787

Excel 1610 169 112 583

F-Spot 1180 49 968 304

Firefox 1566 60 944 433

Gimp 1939 66 928 799

Gnome 4739 228 872 538

Houdini 4836 290 320 724

Kdevdesigner 1537 44 904 467

Kdevelop 1970 63 104 372

Konqueror 1780 62 216 296

Labview 2927 154 768 354

Matlab 6125 267 312 742

OpenOffice 1425 104 600 308

Powerpoint 1405 120 808 576

Skype 892 41 560 197

Thunderbird 1533 64 784 429

Visio 1769 168 832 662

Word 1715 181 496 613

Xilinx ISE 4718 328 768 351

By examining themissed block requests, we could cat-

egorize them into three types: (1) files opened by OS

daemons and user daemons at boot time; (2) journaling

data or swap partition accesses; and (3) files dynamically

created or renamed at every launch (e.g., tmpfile()).

The first type occurs because we force the page cache to

be flushed in the experiment. In reality, they are highly

likely to reside in the page cache, and thus, this type of

misses will not be a problem. The second type is irrel-

evant to the application, and observed even during idle

time. The third type occurs more or less often, depend-

ing on the application. FAST does not prefetch this type

of block requests as they change at every launch.

Experiments for the test scenarios. We measured the

launch time of the benchmark applications for each test

scenario listed in Section 5.1. Figure 6 shows that the

average launch time reduction of FAST is 28% over the

cold start scenario. The performance of FAST varies

considerably among applications, ranging from 16% to

46% reduction of launch time. In particular, FAST shows

performance very close to tbound for some applications,

such as Eclipse, Gnome, and Houdini. On the other hand,

the gap between tbound and tFAST is relatively larger for

such applications as Acrobat reader, Firefox, OpenOf-

fice, and Labview.

Launch time behavior. We conducted experiments to

see if the application prefetcher works well as expected

when it is simultaneously run with the application. We

9

268 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

tcold

tsorted

tFAST

twarm

tssd

tbound

Figure 6: Measured application launch time (normalized to tcold).

tcoldtwarm tFAST tsorted

tcoldtwarm tFAST tsorted

Figure 7: Usage of CPU and SSD (sampling rate = 1 KHz).

chose Firefox because it shows a large gap between

tbound and tFAST . We monitored the generated block re-

quests during the launch of Firefox with the application

prefetcher, and observed that the first 12 of the entire

1566 block requests were issued by Firefox, which took

about 15 ms. As the application prefetcher itself should

be launched as well, FAST cannot prefetch these block

requests until finishing its launch. However, we ob-

served that all the remaining block requests were issued

by FAST, meaning that they are successfully prefetched

before the CPU needs them.

CPU and SSD usage patterns. We performed another

experiment to observe the CPU and SSD usage patterns

in each test scenario. We chose two applications, Eclipse

and Firefox, representing the two groups of applications

of which tFAST is close to and far from tbound , respec-

tively. We modified the OS kernel to sample the number

of CPU cores having runnable processes and to count the

number of cores in the I/O wait state. Figure 7 shows

the CPU and SSD usage of the two applications, where

the entire CPU is regarded as busy if at least one of its

cores is active. Similarly, the SSD is assumed busy if

there are one or more cores in the I/O wait state. In the

cold start scenario, there is almost no overlap between

CPU computation and SSD access for both applications.

In the warm start scenario, the CPU stays fully active

until the launch is completed as there is no wait. One ex-

ception we observed is the time period marked with Cir-

cle (a), during which the CPU seems to be in the event-

waiting state. FAST is shown to be successful in overlap-

ping CPU computation with SSD access as we intended.

However, CPU usage is observed to be low at the begin-

ning of launch for both applications, which can be ex-

plained with the example in Figure 2. As Eclipse shows

a shorter such time period (Circle (b)) than Firefox (Cir-

cle (c)), tFAST can reach closer to tbound . In the case of

Firefox, however, the ratio of tcpu to tssd is close to 1:1,

allowing FAST to achieve more reduction of launch time

for Firefox than for Eclipse.

Performance of sorted prefetch. Figure 6 shows that

the sorted prefetch reduces the application launch time

by an average of 7%, which is less efficient than FAST,

but non-negligible. One reason for this improvement is

the difference in I/O burstiness between the cold start

and the sorted prefetch. Most SSDs (including the one

we used) support the native command queueing (NCQ)

10

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 269

tcold

twarm

tFAST

tsorted

Figure 8: Simultaneous launch of multiple applications.

feature, which allows up to 31 block requests to be sent

to a SSD controller. Using this information, the SSD

controller can read as many NAND flash chips as possi-

ble, effectively increasing read throughput. The average

queue depth in the cold start scenario is close to 1, mean-

ing that for most of time there is only one outstanding

request in case of SSD. In contrast, in the sorted prefetch

scenario, the queue depth will likely grow larger than

1 because the prefetcher may successively issue asyn-

chronous I/O requests using posix fadvise(), at small

inter-issue intervals.

On the other hand, we could not find a clear evidence

that sorting block requests in their LBA order is advan-

tageous in case of SSD. Rather, the execution time of

the sorted prefetcher was slightly longer than its unsorted

version for most of the applications we tested. Also, the

sorted prefetch shows worse performance than the cold

start for Excel, Powerpoint, Skype, and Word. Although

these observations were consistent over repeated tests, a

further investigation is necessary to understand such a

behavior.

Simultaneous launch of applications. We performed

experiments to see how well FAST can scale up for

launching multiple applications. We launched multiple

applications starting from the top of Table 3, adding five

at a time, and measured the launch completion time of

all launched applications2. Figure 8 shows that FAST

could reduce the launch completion time for all the tests,

whereas the sorted prefetch does not scale beyond 10 ap-

plications. Note that the FAST improvement decreased

from 20% to 7% as the number of applications increased

from 5 to 20.

Runtime and space overhead. We analyzed the run-

time overhead of FAST for seven possible combinations

of running processes, and summarized the results in Ta-

ble 4. Cases 2 and 3 belong to the launch profiling phase,

which was described in Section 4.4. During this phase,

Case 2 occurs only once, and Case 3 occurs Nrawseq

times. Case 4 corresponds to the prefetcher generation

phase (the right side of Figure 3), and shows a relatively

long runtime. However, we can hide it from users by run-

ning it in background. Also, since we primarily focused

on functionality in the current implementation, there is

2Except for Gnome that cannot be launched with other applications,

and Houdini whose license had expired.

Table 4: Runtime overhead (application: Firefox)

Running processes Runtime (sec)

1. Application only (cold start scenario) 0.86

2. strace + blktrace + application 1.21

3. blktrace + application 0.88

4. Prefetcher generation 5.01

5. Prefetcher + application 0.56

6. Prefetcher + blktrace + application 0.59

7. Miss ratio calculation 0.90

room for further optimization. Cases 5, 6, and 7 belong

to the application prefetch phase, and repeatedly occur

until the application prefetcher is invalidated. Cases 6

and 7 occur only when npre f reaches Nchk, and Case 7

can be run in background.

FAST creates temporary files such as system call log

files and I/O traces, but these can be deleted after FAST

completes creating application prefetchers. However, the

generated prefetchers occupy disk space as far as ap-

plication prefetching is used. In addition, application

launch sequences are stored to check the miss ratio of

the corresponding application prefetcher. In our exper-

iment, the total size of the application prefetchers and

application launch sequences for all 22 applications was

7.2 MB.

FAST applicability. While previous examples clearly

demonstrated the benefits of FAST for a wide range of

applications, FAST does not guarantee improvements for

all cases. One such a scenario is when a target appli-

cation is too small to offset the overhead of loading the

prefetcher. We tested FASTwith the Linux utility uname,

which displays the name of the OS. It generated 3 I/O re-

quests whose total size was 32 KB. The measured tcold
was 2.2 ms, and tFAST was 2.3 ms, 5% longer than the

cold start time.

Another possible scenario is when the target applica-

tion experiences a major update. In this scenario, FAST

may fetch data that will not be used by the newly up-

dated application until it detects the application update

and enters a new launch profiling phase. We modified

the application prefetcher so that it fetches the same size

of data from the same file but from another offset that

is not used by the application. We tested the modi-

fied prefetcher with Firefox. Even in this case, FAST

reduced application launch time by 4%, because FAST

could still prefetch some of the metadata used by the ap-

plication. Assuming most of the file names are changed

after the update, we ran Firefox with the prefetcher for

Gimp, which fetches a similar number of blocks as Fire-

fox. In this experiment, the measured application launch

time was 7% longer than the cold start time, but the per-

formance degradation was not drastic due to the internal

parallelism of the SSD we used (10 channels).

11

270 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

Configuring application launch manager. The appli-

cation launch manager has a set of parameters to be con-

figured, as shown in Table 2. If Nrawseq is set too large,

users will experience the cold-start performance during

the initialization phase. If it is set too small, unnecessary

blocks may be included in the application prefetcher.

Figure 5 shows that setting it between 2 and 4 is a good

choice. The proper value of Nchk will depend on the run-

time overhead of Blktrace; if FAST is placed in the OS

kernel, the miss ratio of the application prefetchermay be

checked upon every launch (Nchk = 1) without noticeable

overhead. Also, setting Rmiss to 0.1 is reasonable, but it

needs to be adjusted after gaining enough experience in

using FAST. To find the proper value of Tidle, we investi-

gated the SSD’s maximum idle time during the cold-start

of applications, and found it to range from 24 ms (Thun-

derbird) to 826 ms (Xilinx ISE). Hence, setting Tidle to 2

seconds is proper in practice. As the maximum cold-start

launch time is observed to be less than 10 seconds, 30

seconds may be reasonable for Ttimeout . All these values

may need to be adjusted, depending on the underlying

OS and applications.

Running FAST on HDDs. To see how FAST works on

a HDD, we replaced the SSD with a Seagate 3.5” 1 TB

HDD (ST31000528AS) and measured the launch time of

the same set of benchmark applications. Although FAST

worked well as expected by hiding most of CPU com-

putation from the application launch, the average launch

time reduction was only 16%. It is because the applica-

tion launch on a HDD is mostly I/O bound; in the cold

start scenario, we observed that about 85% of the appli-

cation launch time was spent on accessing the HDD. In

contrast, the sorted prefetch was shown to be more ef-

fective; it could reduce the application launch time by an

average of 40% by optimizing disk head movements.

We performed another experiment by modifying the

sorted prefetch so that the prefetcher starts simultane-

ously with the original application, like FAST. However,

the resulting launch time reduction was only 19%, which

is worse than that of the unmodified sorted prefetch. The

performance degradation is due to the I/O contention be-

tween the prefetcher and the application.

6 Applicability of FAST to Smartphones

The similarity between modern smartphones and PCs

with SSDs in terms of the internal structure and the us-

age pattern, as summarized below, makes smartphones a

good candidate to which we can apply FAST:

• Unlike other mobile embedded systems, smart-

phones run different applications at different times,

making application launch performance matter

more;

Figure 9: Measured application launch time on iPhone 4

(CPU: 1 GHz, SDRAM: 512 MB, NAND flash: 32 GB).

• Smartphones use NAND flash as their secondary

storage, of which the performance characteristics

are basically the same as the SSD; and

• Smartphones often use slightly customized (if not

the same) OSes and file systems that are designed

for PCs, reducing the effort to port FAST to smart-

phones.

Furthermore, a smartphone has the characteristics that

enhance the benefit of using FAST as follows:

• Users tend to launch and quit applications more fre-

quently on smartphones than on PCs;

• Due to relatively smaller main memory of a smart-

phone, users will experience cold start performance

more frequently; and

• Its relatively slower CPU and flash storage speed

may increase the absolute reduction of application

launch time by applying FAST.

Although we have not yet implemented FAST on a

smartphone, we could measure the launch time of some

smartphone applications by simply using a stopwatch.

We randomly chose 14 applications installed on the

iPhone 4 to compare their cold and warm start times, of

which the results are plotted in Figure 9. The average

cold start time of the smartphone applications is 6.1 sec-

onds, which is more than twice of the average cold start

time of the PC applications (2.4 seconds) shown in Fig-

ure 6. Figure 9 also shows that the average warm start

time is 63% of the cold start time (almost the same ra-

tio as in Figure 6), implying that we can achieve similar

benefits from applying FAST to smartphones.

7 Comparison of FAST with Traditional

Prefetching

FAST is a special type of prefetching optimized for appli-

cation launch, whereas most of the traditional prefetch-

ing schemes focus on runtime performance improve-

ment. We compare FAST with the traditional prefetching

algorithms by answering the following three questions

that are inspired by previous work [32].

12

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 271

7.1 What to Prefetch

FAST prefetches the blocks appeared in the application

launch sequence. While many prediction-based prefetch-

ing schemes [9, 23, 39] suffer from the low hit ratio of

the prefetched data, FAST can achieve near 100% hit

ratio. This is because the application launch sequence

changes little over repeated launches of an application,

as observed by previous work [4, 18, 34].

Sequential pattern detection schemes like readahead

[13, 31] can achieve a fairly good hit ratio when acti-

vated, but they are applicable only when such a pattern

is detected. By contrast, FAST guarantees stable perfor-

mance improvement for every application launch.

One way to enhance the prefetch hit ratio for a com-

plicated disk I/O pattern is to analyze the application

source code to extract its access pattern. Using the thus-

obtained pattern, prefetching can be done by either in-

serting prefetch codes into the application source code

[29, 38] or converting the source code into a computa-

tion thread and a prefetch thread [40]. However, such

an approach does not work well for application launch

optimization because many of the block requests gener-

ated during an application launch are not from the ap-

plication itself but from other sources, such as loading

shared libraries, which cannot be analyzed by examin-

ing the application source code. Furthermore, both re-

quire modification of the source code, which is usually

not available for most commercial applications. Even

if the source code is available, modifying and recompil-

ing every application would be very tedious and incon-

venient. In contrast, FAST does not require application

source code and is thus applicable for any commercial

application.

Another relevant approach [6] is to deploy a shadow

process that speculatively executes the copy of the orig-

inal application to get hints for the future I/O requests.

It does not require any source modification, but con-

sumes non-negligibleCPU andmemory resources for the

shadow process. Although it is acceptable when CPU

is otherwise stalled waiting for the I/O completion, em-

ploying such a shadow process in FAST may degrade ap-

plication launch performance as there is not enough CPU

idle period as shown in Figure 7.

7.2 When to Prefetch

FAST is not activated until an application is launched,

which is as conservative as demand paging. Thus, un-

like prediction-based application prefetching schemes

[12, 28], there is no cache-pollution problem or addi-

tional disk I/O activity during idle period. However, once

activated, FAST aggressively performs prefetching: it

keeps on fetching subsequent blocks in the application

launch sequence asynchronously even in the absence of

page misses. As the prefetched blocks are mostly (if not

all) used by the application, the performance improve-

ment of FAST is comparable to that of the prediction-

based schemes when their prediction is accurate.

7.3 What to Replace

FAST does not modify the replacement algorithm of

page cache in main memory, so the default page replace-

ment algorithm is used to determine which page to evict

in order to secure free space for the prefetched blocks.

In general, prefetching may significantly affect the

performance of page replacement. Thus, previous work

[5, 14, 35] emphasized the need for integrated prefetch-

ing and caching. However, FAST differs from the tradi-

tional prefetching schemes since it prefetches only those

blocks that will be referenced before the application

launch completes (e.g., in next few seconds). If the page

cache in the main memory is large enough to store all

the blocks in the application launch sequence, which is

commonly the case, FAST will have minimal effect on

the optimality of the page replacement algorithm.

8 Conclusion

We proposed a new I/O prefetching technique called

FAST for the reduction of application launch time on

SSDs. We implemented and evaluated FAST on the

Linux OS, demonstrating its deployability and perfor-

mance superiority. While the HDD-aware application

launcher showed only 7% of launch time reduction on

SSDs, FAST achieved a 28% reduction with no addi-

tional overhead, demonstrating the need for, and the

utility of, a new SSD-aware optimizer. FAST with a

well-designed entry-level SSD can provide end-users the

fastest application launch performance. It also incurs

fairly low implementation overhead and has excellent

portability, facilitating its wide deployment in various

platforms.

Acknowledgments

We deeply appreciate Prof. Heonshik Shin for his sup-

port and providing research facility. We also thank our

shepherd Arkady Kanevsky, and the anonymous review-

ers for their invaluable comments that improved this pa-

per. This research was supported by WCU (World Class

University) program through National Research Founda-

tion of Korea funded by the Ministry of Education, Sci-

ence and Technology (R33-10085), and RP-Grant 2010

of Ewha Womans University. Sangsoo Park is the corre-

sponding author (email: sangsoo.park@ewha.ac.kr).

13

272 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Wine User Guide. http://www.winehq.org/docs/wineusr-guide/

index, Last accessed on: 17 November 2010.

[2] APPLE INC. Launch Time Performance Guidelines. http://

developer.apple.com/documentation/Performance/Conceptual/

LaunchTime/LaunchTime.pdf, 2006.

[3] AXBOE, J. Block IO Tracing. http://www.kernel.org/git/?p=

linux/kernel/git/axboe/blktrace.git;a=blob;f=README, 2006.

[4] BHADKAMKAR, M., GUERRA, J., USECHE, L., BURNETT, S.,

LIPTAK, J., RANGASWAMI, R., AND HRISTIDIS, V. BORG:

Block-reORGanization for self-optimizing storage systems. In

Proc. FAST (2009), pp. 183–196.

[5] CAO, P., FELTEN, E. W., KARLIN, A. R., AND LI, K. A study

of integrated prefetching and caching strategies. In Proc. SIG-

METRICS (1995), pp. 188–197.

[6] CHANG, F., AND GIBSON, G. A. Automatic I/O hint generation

through speculative execution. In Proc. OSDI (1999), pp. 1–14.

[7] CHEN, F., KOUFATY, D. A., AND ZHANG, X. Understanding

intrinsic characteristics and system implications of flash memory

based solid state drives. In Proc. SIGMETRICS (2009), pp. 181–

192.

[8] COLITTI, L. Analyzing and improving GNOME startup time. In

Proc. SANE (2006), pp. 1–11.

[9] CUREWITZ, K. M., KRISHNAN, P., AND VITTER, J. S. Practi-

cal prefetching via data compression. SIGMODRec. 22, 2 (1993),

257–266.

[10] DIRIK, C., AND JACOB, B. The performance of PC solid-state

disks (SSDs) as a function of bandwidth, concurrency, device

architecture, and system organization. In Proc. ISCA (2009),

pp. 279–289.

[11] DUNN, M., AND REDDY, A. L. N. A new I/O scheduler for

solid state devices. Tech. Rep. TAMU-ECE-2009-02, Depart-

ment of Electrical and Computer Engineering, Texas A&M Uni-

versity, 2009.

[12] ESFAHBOD, B. Preload—An adaptive prefetching daemon. Mas-

ter’s thesis, Graduate Department of Computer Science, Univer-

sity of Toronto, Canada, 2006.

[13] FENGGUANG, W., HONGSHENG, X., AND CHENFENG, X. On

the design of a new Linux readahead framework. SIGOPS Oper.

Syst. Rev. 42, 5 (2008), 75–84.

[14] GILL, B. S., AND MODHA, D. S. SARC: Sequential prefetching

in adaptive replacement cache. In Proc. USENIX (2005), pp. 293–

308.

[15] HUBERT, B. On faster application startup times: Cache stuff-

ing, seek profiling, adaptive preloading. In Proc. OLS (2005),

pp. 245–248.

[16] INTEL. Intel Turbo Memory with User Pinning. Intel,

http://www.intel.com/design/flash/nand/turbomemory/index.htm,

Last accessed on: 17 November 2010.

[17] JO, H., KIM, H., JEONG, J., LEE, J., AND MAENG, S. Optimiz-

ing the startup time of embedded systems: A case study of digital

TV. IEEE Trans. Consumer Electron. 55, 4 (2009), 2242–2247.

[18] JOO, Y., CHO, Y., LEE, K., AND CHANG, N. Improving ap-

plication launch times with hybrid disks. In Proc. CODES+ISSS

(2009), pp. 373–382.

[19] KAMINAGA, H. Improving Linux startup time using software

resume. In Proc. OLS (2006), pp. 25–34.

[20] KIM, H., AND AHN, S. BPLRU: A buffer management scheme

for improving random writes in flash storage. In Proc. FAST

(2008), pp. 1–14.

[21] KIM, J., OH, Y., KIM, E., CHOI, J., LEE, D., AND NOH, S. H.

Disk schedulers for solid state drivers. In Proc. EMSOFT (2009),

pp. 295–304.

[22] KIM, Y.-J., LEE, S.-J., ZHANG, K., AND KIM, J. I/O perfor-

mance optimization techniques for hybrid hard disk-based mobile

consumer devices. IEEE Trans. Consumer Electron. 53, 4 (2007),

1469–1476.

[23] KOTZ, D., AND ELLIS, C. S. Practical prefetching techniques

for parallel file systems. In Proc. PDIS (1991), pp. 182–189.

[24] LARUS, J. Spending Moore’s dividend. Commun. ACM 52, 5

(2009), 62–69.

[25] LICHOTA, K. Prefetch: Linux solution for prefetching necessary

data during application and system startup. http://code.google.

com/p/prefetch/, 2007.

[26] MATTHEWS, J., TRIKA, S., HENSGEN, D., COULSON, R.,

AND GRIMSRUD, K. Intel R©Turbo Memory: Nonvolatile disk

caches in the storage hierarchy of mainstream computer systems.

ACM Trans. Storage 4, 2 (2008), 1–24.

[27] MICROSOFT. Support and Q&A for Solid-State Drives. Mi-

crosoft, http://blogs.msdn.com/e7/archive/2009/05/05/support-

and-q-a-for-solid-state-drives-and.aspx, 2009.

[28] MICROSOFT. Windows PC Accelerators. http://www.microsoft.

com/whdc/system/sysperf/perfaccel.mspx, Last accessed on: 17

November 2010.

[29] MOWRY, T. C., DEMKE, A. K., AND KRIEGER, O. Automatic

compiler-inserted I/O prefetching for out-of-core applications. In

Proc. OSDI (1996), pp. 3–17.

[30] NEELAKANTH NADGIR. Reducing Application Startup Time

in the Solaris 8 OS. http://developers.sun.com/solaris/articles/

reducing app.html, 2002.

[31] PAI, R., PULAVARTY, B., AND CAO, M. Linux 2.6 perfor-

mance improvement through readahead optimization. In Proc.

OLS (2004), pp. 105–116.

[32] PAPATHANASIOU, A. E., AND SCOTT, M. L. Energy efficient

prefetching and caching. In Proc. USENIX (2004), pp. 22–22.

[33] PARK, C., KIM, K., JANG, Y., AND HYUN, K. Linux bootup

time reduction for digital still camera. In Proc. OLS (2006),

pp. 239–248.

[34] PARUSH, N., PELLEG, D., BEN-YEHUDA, M., AND TA-SHMA,

P. Out-of-band detection of boot-sequence termination events. In

Proc. ICAC (2009), pp. 71–72.

[35] PATTERSON, R. H., GIBSON, G. A., GINTING, E., STODOL-

SKY, D., AND ZELENKA, J. Informed prefetching and caching.

In Proc. SOSP (1995), pp. 79–95.

[36] RUSSINOVICH, M. E., AND SOLOMON, D. Microsoft Windows

Internals, 4th ed. Microsoft Press, 2004, pp. 458–462.

[37] SAMSUNG SEMICONDUCTOR. Samsung Hybrid Hard Drive.

http://www.samsung.com/global/business/semiconductor/support/

brochures/downloads/hdd/hd datasheet 200708.pdf, 2007.

[38] VANDEBOGART, S., FROST, C., AND KOHLER, E. Reducing

seek overhead with application-directed prefetching. In Proc.

USENIX (2009).

[39] VELLANKI, V., AND CHERVENAK, A. L. A cost-benefit scheme

for high performance predictive prefetching. In Proc. SC (1999).

[40] YANG, C.-K., MITRA, T., AND CHIUEH, T.-C. A decoupled

architecture for application-specific file prefetching. In Proc.

USENIX (2002), pp. 157–170.

14

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 273

Cost Effective Storage using Extent Based Dynamic Tiering

Jorge Guerra†, Himabindu Pucha∗, Joseph Glider∗, Wendy Belluomini∗, Raju Rangaswami†
†Florida International University, IBM Research Almaden∗

Abstract
Multi-tier systems that combine SSDs with SAS/FC and/or
SATA disks mitigate the capital cost burden of SSDs, while
benefiting from their superior I/O performance per unit cost and
low power. Though commercial SSD-based multi-tier solutions
are available, configuring such a system with the optimal num-
ber of devices per tier to achieve performance goals at mini-
mum cost remains a challenge. Furthermore, these solutions
do not leverage the opportunity to dynamically consolidate load
and reduce power/operating cost.

Our extent-based dynamic tiering solution, EDT, addresses
these limitations via two key components of its design. A Con-
figuration Adviser EDT-CA determines the adequate mix of
storage devices to buy and install to satisfy a given workload
at minimum cost, and a Dynamic Tier Manager EDT-DTM per-
forms dynamic extent placement once the system is running to
satisfy performance requirements while minimizing dynamic
power consumption. Key to the cost minimization of EDT-CA
is its ability to simulate the dynamic extent placement afforded
by EDT-DTM. Key to the overall effectiveness of EDT-DTM is
its ability to consolidate load within tiers when feasible, rapidly
respond to unexpected changes in the workload, and carefully
control the overhead due to extent migration. Our results us-
ing production workloads show that EDT incurs lower capital
and operating cost, consumes less power, and delivers similar
or better performance relative to SAS-only storage systems as
well as other simpler approaches to extent-based tiering.

1 Introduction
Enterprise storage systems strive to provide performance
and reliability at minimum capital and operating cost.
These systems use high performance disk drives (e.g.
SCSI/SAS/FC) to provide that performance. However,
solid-state drives (SSDs) offering superior random ac-
cess capability per GByte have become increasingly af-
fordable. On the other hand, SATA drives offering supe-
rior cost per GByte are also attractive for mass storage.
Systems with only SSDs are still too expensive, and those
built using only SATA would not provide enough perfor-
mance/GByte for most enterprise workloads. Multi-tier
systems containing a mix of devices can provide high
performing and lower cost storage by utilizing SSDs only
for the subset of the data that needs SSD performance.

Current commercial SSD-based multi-tier systems
from IBM [29], EMC [17], 3PAR [25] and Compel-

lent [23] provide performance gains and cost savings.
However, customer adoption has been slow. One of the
reasons for this is the difficulty in determining what mix
of devices will perform well at minimum cost in the
customer’s data center. This optimization task is highly
complex because of the number of device types available
along with the variability of workloads in the data center.

To address this challenge, two things are needed: con-
figuration tools to assist in building such systems and to
demonstrate potential benefits based on customer work-
load, and capabilities in the storage systems that can opti-
mize placement of data in the tiers of storage. The place-
ment should ensure that actively accessed data is co-
located to minimize latency while lightly accessed data is
placed most economically. There is also an opportunity
to improve operating cost by placing data on the min-
imum set of devices that can serve the workload while
powering down the rest. Current products address some
but not all of these challenges. Determining which mix
of devices to buy remains a difficult problem, and im-
provement of operating cost by consolidation and power
management has not yet been tackled.

To address these gaps, we develop an Extent-based
Dynamic Tiering (EDT) system that includes: 1) a
Configuration Adviser tool EDT-CA to calculate cost-
optimized mixes of devices that will service a customer’s
workload, and 2) a Dynamic Tier Management EDT-
DTM component that runs in the configured storage sys-
tem to place data by dynamically moving extents (fixed-
size portions of a volume) to the most suitable tiers
given current workload. EDT-CA works by simulating
the dynamic placement of extents within tiers that offer
the lowest cost to meet an extent’s I/O requirements as
they change over time, and thus suitably size each tier.
EDT-DTM monitors active workload and manages ex-
tent placement and migration in such a way that per-
formance goals are met while optimizing operating cost
where feasible by consolidating data into fewer devices
within each tier and powering off the rest.

We evaluated EDT-CA and EDT-DTM, using both
production and synthetic workloads on a storage system
with SSDs, SAS, and SATA drives. Our results show
that multi-tier systems using EDT have a device mix that
saves between 5% to 45% in cost, consume up to 54%

1

274 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

less peak power, and an additional 15-30% lower dy-
namic power (instantaneous power averaged over time),
at a better or comparable performance compared to a ho-
mogeneous SAS storage system. EDT’s design choices
are critical in achieving these savings. Dynamic extent
placement saves 25% in cost compared to a static extent-
based system. Including metrics in addition to IOPS in
EDT’s placement provides a 2× performance improve-
ment compared to a dynamic tiering system that allocates
extents based on IOPS alone.

Our work makes the following contributions:

• EDT is the first publicly available work that formal-
izes and explores the design space for storage con-
figuration and dynamic tier management in SSD-
based multi-tier systems. (Section 2)

• EDT consists of a novel configuration algorithm for
dynamic tiered systems that outputs lower cost con-
figurations. (Sections 3, 4)

• EDT proposes a novel dynamic placement algo-
rithm to satisfy performance requirements while
minimizing dynamic power. (Section 5)

• EDT outperforms SAS-only and other simpler
extent-based tiering approaches across a variety of
workloads in both cost and power. (Section 6)

2 Multi-Tiering: Design Choices
This section describes important design choices for a
multi-tier system that enable efficient use of the tiers.

2.1 Extent-based Tiering
The first we consider the granularity of data placement.
Previous studies [7, 11] suggest that I/O activity is highly
variable across LBAs in a volume. Therefore, if data
were placed at a volume level based on average volume
workload characteristics, a large percentage of the tier
will hold data that does not require the tier’s capabilities.

Thus, we perform data placement at the granularity of
an extent, a fixed-size portion of a volume. The smaller
the extent size, the more efficient will be the data place-
ment. However, operating at the extent level incurs meta-
data overhead to keep track of extent locations and other
statistics and this overhead increases as extent size is de-
creased. We choose an extent size with an acceptable
system overhead (details in § 6.2). Note that we expect
the extent size to be larger than the typical file system
block size and hence extents are not expected to align
with file boundaries. However, the reduced system over-
head for larger extents provides the right tradeoff com-
pared to finer grain approaches.

2.2 Dynamic Tiering
The next design choice deals with the time scale at which
extents move across tiers. One choice involves placing

extents once during system instantiation or moving them
at coarse grain intervals of the order of days or months.
However, since studies show that I/O rates of a workload
are typically below peak most of the time [16, 19], this
static or semi-static placement is not optimal—a place-
ment that configures for the peaks pays extra in both
cost and energy for a system that is over-provisioned at
off-peak times; and a placement that mitigates cost from
over-provisioning by configuring for the average I/O rate
suffers from decreased performance during peaks.

The alternate choice is to plan extent movement at in-
tervals on the order of minutes or hours. We refer to this
time interval as an epoch. Such a system exploits varia-
tion in extent I/O rate to improve its efficiency; an extent
is on a SATA tier when fairly inactive, and moves to the
SAS or SSD tier as its I/O rate goes up. This achieves
cost-effective use of resources and/or dynamic energy
savings. Similarly, when the performance demanded of
a single tier is below its peak capacity, extents placed on
the tier can be consolidated into fewer devices for power
savings. Often, the set of heavily loaded extents changes
over time [11]. Dynamic migration of the heavily loaded
extents into SAS or SSD when required enables cost-
effective use of the resources. Thus, we choose to per-
form dynamic data placement with an epoch length of
the order of minutes/hours.

The drawback of such a dynamic system, however, is
the cost of data migration, i.e., the potential adverse ef-
fect on foreground I/O latency and the migration latency
itself before the desired outcome. Longer epoch dura-
tions allow more time to execute migrations and amortize
overhead better. Thus, we pick an epoch duration whose
estimated migration overhead is below the allowable sys-
tem migration overhead (details in § 6.2). Additionally,
it is important to ascertain that the overhead of migrat-
ing data does not overwhelm its benefit. This depends on
the stability of the workload—extents that relocate often
benefit less from migration compared to extents that stay
longer in a particular tier. The workloads we have stud-
ied indicate that dynamic migration is typically benefi-
cial, but we believe that a dynamic system must also be
able to back off when lack of workload stability causes
dynamic migration to interfere with performance.

2.3 Beyond I/O Rate Based Tiering
This design choice determines the extent-level statistics
required to match an extent with the right tier. The avail-
able public documentation about commercial extent-
based multi-tier products indicates use of IOPS to mea-
sure load; in these systems high IOPS regions are placed
onto SSD while leaving the remainder of the data on SAS
or SATA. Although this method is intuitively correct,
our preliminary analysis reveals significant drawbacks:
IOPS-based placement does not factor in the bandwidth

2

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 275

Algorithm

I/O requests

SAS

...

Virtualization layer

SATASSD

Arrays

Volumes

App AppApp

I/O

Migration
requests

(b) EDT: Dynamic Tier Manager

I/O requests

SAS

...

Virtualization layer

Volumes

App AppApp

I/O

Migrator

Placement

Algorithm
Throttling

Detector/

Corrector

Tier configuration
advice

Arrays

eventsevents
Configuration

Resource
consumption
model

(a) EDT: Configuration Adviser

Resource
consumption
model

Collector

Data
Collector
Data

Buy
and install

Figure 1: EDT system architecture.

requirement of an extent. For example, consider an ex-
tent with a long sequential access pattern consisting of
small I/Os to contiguous locations. Such an extent will
have high IOPS and bandwidth requirements. Our anal-
ysis of production and SPC-1 [1] like workload traces
(§ 6), collected after the I/O scheduler show such pat-
terns. Using I/O rate statistics for this stream causes se-
quential streams, which are more cost-effectively served
on SAS or even SATA, to be inappropriately placed on
SSD. IOPS placement also ignores capacity of the ex-
tent. An extent with high IOPS relative to other extents
may not have high enough I/O density (IOPS/GByte) to
justify the high $/GByte cost of the SSD.

Our approach is to collect more than just I/O counts.
We employ a heuristic as in [22] to break down an
extent’s workload: I/Os that access LBAs within 512
KBytes of the previous ones are taken as part of a se-
quential stream and contribute to an extent’s bandwidth
requirement. I/Os further apart are characterized as ran-
dom I/Os and are used to compute a random I/O rate.
Thus, for each extent, we collect a random I/O rate and
bandwidth. Other methods for separating the I/Os into
random and sequential may also be applicable.

3 EDT: Design Overview
EDT consists of two elements as depicted in Figure 1:
a Configuration Adviser (EDT-CA) that determines the
right number of devices per tier to install into a storage
system, and a Dynamic Tier Manager (EDT-DTM) that
operates inside a running system and continuously man-
ages extent placement across tiers. EDT is expected to
be deployed in a commercial storage system as shown
in Figure 1 which exports many volumes, includes a vir-
tualization layer that allows volumes to be made up of
extents stored in arrays of different device types, is ca-
pable of collecting and exporting statistics about extent
workloads, and can execute requests to non-disruptively
move extents between storage devices.

An example usage scenario is as follows: A user

wishes to replace a SAS based storage array with a new,
tiered storage system with twice the capability. He col-
lects a trace of his workload over a 24 hour period that
he thinks is representative. The trace is then run through
EDT-CA which produces the minimum cost configura-
tion of SSD, SAS, and SATA that can provide 2x the
performance of the existing system. EDT-CA is aware
of the runtime migration capabilities of EDT-DTM and
takes them into account when determining the configura-
tion. The user installs the new system. During operation
of the new system, EDT-DTM manages migration be-
tween tiers by continuously collecting extent level statis-
tics, consolidates data onto lower-power tiers when pos-
sible, and monitors the system to ensure that the work-
load performance is not throttled.

In general, EDT-CA starts by determining the work-
load requirements for the system it is going to configure.
This can either be done with a user generated general
description of requirements including IOPS, seq/random
mix, length of I/O requests, and their distribution across
extents, or by using time series data collected from a
workload running on an existing system. For the scope
of this work, we assume availability of time series statis-
tics. In this approach, EDT-CA takes a epoch-granularity
trace of extent workload statistics sampled at times when
storage system usage is high. It then estimates the re-
sources required in different tiers to satisfy that workload
by simulating placement of each extent in a tier that min-
imizes its incurred cost while meeting its performance
requirements. It repeats this process every epoch and as-
signs extents to their lowest cost tier based on their per-
formance requirements in that epoch. At the end of this
simulation, EDT-CA determines the set of devices that
are needed based on the maximum number of devices
needed in each tier over all the epochs. This configura-
tion determines the set of devices purchased by the user.

Once the new tiered system is up and running, EDT-
DTM manages extent placement. It collects extent level
statistics, estimates extents’ resource consumption in dif-

3

276 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

ferent tiers, and then plans and executes migrations.
EDT-DTM implements a throttling correction mecha-
nism to ensure that performance requirements are sat-
isfied as they vary over time; it constantly monitors ar-
ray performance and if performance throttling is detected
relocates extents to restore performance. EDT-DTM’s
placement algorithm seeks to place each extent into the
lowest-energy tier that satisfies its performance require-
ment and then to further minimize energy by consolidat-
ing extents in the same tier into fewer devices allowing
unused devices to be powered down. Both these algo-
rithms use a Migrator module to move extents.

EDT-CA and EDT-DTM work together to minimize
cost. EDT-CA minimizes acquisition cost, and EDT-
DTM minimizes operating cost. As our results will show,
configurations based on static extent placement are more
expensive both to acquire and operate.

3.1 Common Components
EDT-CA and EDT-DTM share components that collect
statistics and calculate resource consumption.

3.1.1 Data Collector

The Data Collector receives information about I/O com-
pletion events including the transfer size, response time,
logical block address (LBA) , the volume ID to which
the I/O was issued, and the array which executed the
I/O. The collector then maps the (LBA, volume id) pair
of each I/O to a unique extent in the system, and com-
piles for each extent, the number of random I/Os and the
number of transferred bytes. It then periodically (every
minute in our implementation) computes instantaneous
bandwidth and random IOPS per extent as well as an
exponentially-weighted moving average. In addition to
the extent statistics, the collector aggregates statistics per
array. It maps each I/O to its array and compiles its
IOPS and average response time. These measurements
are used by EDT-DTM to determine if I/Os on an array
are being throttled. For a very large system the amount
of data collected by the data collector may be significant.
If this is an issue, the the extent size can be made larger
to reduce the volume of statistical data.

3.1.2 Resource Consumption Model

The Resource Consumption Model uses the extent statis-
tics to estimate the resources it consumes when placed on
a device of a given type. Resources are allocated based
on the observed capacity and performance requirements
at the device level. Therefore, any workload optimiza-
tions like deduplication, compression, and caching do
not need to be considered in these models as their effects
will be captured by the usage statistics.

An extent consumes the resources of a device along
capacity and performance dimensions. Consider an ex-
tent of size Ec and a performance requirement Ep deter-

 0
 20
 40
 60
 80

 100

 0.1 1 10 100

%
 S

e
q
u
e
n
ti
a
lit

y

IOPS/GB

SATA

SAS

SSD

Figure 2: Lowest cost tier for extents with different
characteristics.

mined by its random IOPS rate (RIOR) and bandwidth
measured in previous epochs. The fraction of capacity
required to host an extent E in device D (RC(Ec,D)) is
straightforward:

RC(Ec,D) =
Capacity required by extent

Total space in device

For performance utilization, we use a simplified model
based on Uysal et al.’s work [30]. The performance re-
source consumption of extent E, when placed on device
D (RC(Ep,D)) is:

RC(Ep,D) = RIOR ·Rtime+Bandwidth ·Xtime

Here RIOR is the number of random I/Os sent to an
extent in a second (IO/s) and Rtime is the expected re-
sponse time of the device (s/IO). Bandwidth is the band-
width requested from the device (MB/s), and Xtime is the
average transfer time (s/MB). The result of this equation
is the fraction of the device performance utilized by an
extent. Note that the Rtime and Xtime values are av-
erages and may need to be adjusted depending on the
expected workload. For example an SSD with a mostly
random write workload would have significantly higher
Rtime than the same SSD with a mostly random read
workload. The overall resource required by an extent is
then the maximum of the capacity utilization fraction and
the performance utilization fraction:

RC(E,D) = max(RC(Ep,D),RC(Ec,D))

The resource consumption model determines the most
efficient tier for an extent. For instance, when minimiz-
ing cost, the most suitable tier is the one where the extent
incurs the lowest cost (the product of the device cost and
the extent’s resource consumption on that device). Fig-
ure 2 confirms the advantage of multi-tier systems since
the most cost-effective tier changes with extent charac-
teristics, namely the total IOPS and the percentage of
sequential accesses among three classes of storage de-
vices specified in Section 6. As expected, we observe
that mostly idle extents favor SATA, medium IOPS favor
SAS, and high IOPS favor SSD. Further, as expected,
more sequential extents favor HDDs.

4

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 277

4 Configuration Adviser
EDT-CA builds on the Data Collector and the Resource
Consumption Model described above. Since configura-
tion is an NP-Hard packing problem, we propose a light-
weight heuristic to achieve low cost extent placement:

1. Binning. For each extent E, and device type D, we
compute the cost of allocating the extent to that de-
vice as extent cost(E, D) = cost(D) ·RC(E,D). The
extent is then placed in the tier that meets its per-
formance with the lowest cost. Iterating over all the
extents, the above computation separates the extents
into bins, one per each tier.

2. Sizing a bin. For each bin, we obtain its perfor-
mance and capacity resource consumption as RCp =

∑RC(Ep,D) ∀E, and RCc = ∑RC(Ec,D) ∀E.
The maximum of these two values gives the total
bin resources required, and the number of required
devices of this bin type are computed by rounding
up this sum to the nearest integer value.

3. This process is independently repeated for each
epoch to identify the number of devices per tier that
yields minimum cost for that epoch.

4. The last step consists of combining these differ-
ent configurations to obtain a final system config-
uration valid across time. For the scope of this
work, we achieve the final configuration by allocat-
ing the maximum number of devices of each type
used across all epochs. That is, if at epoch t0 2 de-
vices of type D and 1 of type D′ are the most cost
effective, but at epoch t1 1 of type D and 2 of D′ is
better, then our method will indicate that we need 2
of type D and 2 of D′.

Our current method of combining configurations
across epochs is fairly conservative and could potentially
result in an over-provisioned system. However, as our
current algorithm already results in lower cost configura-
tions (Section 6), we relegate exploring more efficient
ways of combining configurations over time to future
work. Also note that when we compute tiered configu-
ration for each epoch independently, we assume that the
extents can be suitably migrated between epochs if re-
quired. As part of our future work, we intend to model
the required number of migrations, and suitably adjust
the provisioning if the required migrations exceed the
maximum number of migrations a system can support in
a chosen interval of time. Finally, our Configuration Al-
gorithm can also be used to upgrade a multi-tier system
to meet upcoming performance demands.

5 Dynamic Tier Manager
EDT-DTM combines three new modules with the Data
Collector and the Resource Consumption Model to
continuously optimize extent placement: (1) a Tier-

ing and Consolidation module, (2) a Throttling Detec-
tor/Corrector module, and (3) a Migrator module.

5.1 Tiering and Consolidation Algorithms
At the end of every epoch, the Tiering and Consolidation
(TAC) algorithms generate an extent placement to satisfy
extent performance requirements and minimize dynamic
system power. Such an energy efficient placement can
be achieved both by leveraging the strengths (i.e. per-
formance or capacity per watt) of the heterogeneous un-
derlying hardware (SSD, SAS, and SATA drives), and by
consolidating data into fewer devices when possible and
turning off the unused devices.

Similar to the configuration problem, placement for
power minimization is also NP-Hard, and we propose a
heuristic solution. TAC requires two inputs: (1) current
random I/O rate and bandwidth for each extent from the
actively running system, and (2) size (in bytes) and the
random I/O rate and bandwidth capability for each array
in the storage system. It then uses a two-step process to
output a new extent placement that aims to adapt to the
changes in the workload as follows:
(1) Tiering. For each extent E, and device type D,
we compute the “fractional power burden” of allocat-
ing the extent to that device as extent power(E, D) =
power(D) ·RC(E,D). The extent is then placed on the tier
that meets its performance with the lowest power con-
sumption. Doing so allows EDT to reduce active power
via consolidation (described next). Iterating over all the
extents results in one bin per tier. The assignment of ex-
tents to a tier is performed locally on an extent by ex-
tent basis, irrespective of the total performance needs or
available space in that tier.
(2) Consolidation. Extents assigned to each tier are then
sorted using their RC values and placed in arrays using
the First Fit Decreasing heuristic, a good approximation
algorithm to the optimal solution for extent packing [35].
When extents already assigned to the tier under consid-
eration exceed its available performance (i.e., resource
consumption metric for the assigned extents exceeds 1)
or the tier runs out of space in the available arrays, the re-
maining extents in the extent list are demoted to the tier
with the next lower power burden for that extent. This
packing process is now repeated for all the tiers, con-
solidating extents into a minimum number of arrays in a
tier. Extents already in the right tier and on an array that
will remain powered on in this epoch retain their posi-
tion from the previous epoch, thereby saving migrations.
Any unused arrays from the extent placement are set to a
lower power state to conserve energy.

5.2 Throttling Detector and Corrector
While the TAC mechanisms enable dynamic perfor-
mance and power optimization, unexpected load and

5

278 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

working set changes can suddenly alter the performance
requirements of extents. However, tracking this perfor-
mance change, especially when an extent’s I/O rate in-
creases, is challenging. Extents placed in a low perfor-
mance tier cannot exhibit high I/O rates even when the
application above may desire it. This causes throttling of
the true IOPS requirement of the extent, artificially limit-
ing it to a low value. The Throttling Detector overcomes
this limitation by monitoring the average response time
of each active array every minute.

If the average response time of I/Os from an array in-
dicates that undesirably high request queuing is occur-
ring in the array, EDT decides that the array is throttling
the true IOPS requirement of applications and causing
delays. When throttling is detected, pending migrations
driven by TAC are immediately halted and EDT-DTM
switches to a throttling correction mode to perform re-
covery. To respond rapidly and minimize the possibil-
ity of future throttling in the same array, the load on the
throttled array is shed by migrating a minimum set of
extents responsible for at least half of its current total
performance resource consumption.

To select the target array(s), we first start by consider-
ing the best possible tier for each extent being migrated,
and within that tier we first examine arrays which are
already active to see if they can absorb the new extent.
If none can host the new extent, we consider arrays that
are not in use in that tier if any are available. If the best
tier can not accommodate the extent we try the same ap-
proach on tiers with the next higher power burden for
that extent. If the array continues to remain throttled
after half the load on the array has been migrated, the
extent migration process is repeated, until the system is
no longer throttled. The entire system stays in recov-
ery mode while an array remains throttled, suspending
energy optimizing migrations. When no arrays are throt-
tled, the system switches back to the TAC placement af-
ter an epoch elapses.

5.3 Migrator
The Migrator handles the data movement requests from
TAC and the throttling algorithms. It compares the new
placement of the extents from the above algorithms to
their old placement, and identifies extents that need to
be migrated. It then schedules and optimizes these mi-
grations. On one hand, migrations that relieve throt-
tling must be completed quickly. On the other hand, mi-
grations cause additional I/O traffic, and care must be
taken so that they do not affect the foreground I/O per-
formance.

Our migration scheme achieves this tradeoff as fol-
lows. We allow every device to be involved in only one
migration operation at a time. Thus, before issuing a mi-
gration request, the Migrator performs admission con-

player
Trace

I/O Dispatcher

I/O events

requests
Migration

To EDT−CA

I/O requests

To/from EDT−DTM

user

kernel

SATASASSSDdevice driver
Pseudo

App
(libaio)

Queues I/O requests

from applications, and
conveys results back.

Figure 3: Storage subsystem platform for evaluating
EDT-CA and EDT-DTM.

trol by allowing requests only if the source and target
device are both available. If they are not, the request is
re-queued and it moves onto the next request. Further,
the Migrator controls its migration-related resource con-
sumption by decomposing an extent into smaller transfer
units and pacing the transfer requests to match the min-
imum of the available or the desired I/O rate. Further
if the migration is being performed to relieve throttling,
once a transfer unit is migrated, any foreground I/O re-
quests to it are handed by the destination array. Note that
because of this pacing not all planned migrations may
be completed before the next epoch. In such cases, the
migration queue is flushed, and requests resulting from
the new epoch’s computation are queued. We further
optimize by retaining the old location of the extent if it
is already in the right tier during the consolidation step.
Finally, we could potentially incorporate other optimiza-
tions [4, 9, 31, 36] such as multiple locations for the same
extent [31], and proactive migrations [36].

6 Evaluation
Our evaluation uses both a SPC-1-like [1] benchmark
workload and multiple production enterprise workloads
from MSR [21] to demonstrate that:

• In comparative evaluation, EDT-CA works to mini-
mize cost, and EDT-DTM satisfies performance re-
quirements while lowering power consumption.

• EDT’s dynamic behavior and detailed resource con-
sumption model help achieve its goal.

• Extent based dynamic optimization and consolida-
tion are feasible in practice with little overhead.

6.1 Methodology
Comparison candidates. We compare EDT to three al-
ternate solutions:

1. SAS is chosen to represent current enterprise storage
system deployments that predominantly use only high
performance SAS drives. The configuration is derived

6

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 279

Device Cost Power Random BW Rtime Xtime
($) (Idle, Active) IOPS (MB/s) (ms/IO) (ms/KB)

SSD 430 0.5, 1 5000 90 0.2 0.01
SAS 325 12.4, 17.3 290 200 3.75 0.004

SATA 170 8.0, 11.6 135 105 9 0.009

Table 1: Characteristics of devices used in the testbed.

using the capacity and peak performance (IOPS and
bandwidth) requirements of the workload. Volumes
are statically assigned to SAS arrays in a load-balanced
manner.
2. EST (Extent-based Static Tiering) places extents on
tiers statically to quantify the benefit from tiering. Con-
figuration is performed as follows: at every epoch, the
cost to place each extent on each tier is computed as
done by EDT-CA using capacity, IOPS, and bandwidth
requirements. An extent is then permanently placed
on the tier that minimizes the sum of its instantaneous
costs over all epochs. Once extents are binned into
tiers, the number of devices for each tier is determined
using that tier’s peak resource consumption.
3. While SAS and EST illustrate the benefit from
EDT’s design choices incrementally (going from a ho-
mogeneous system to static tiering and then to dynamic
tiering), we propose a third candidate to illustrate a dif-
ferent design decision in dynamic multi-tier systems—
IDT (IOPS Dynamic Tiering) implements extent-based
dynamic configuration and placement using a greedy
IOPS-only criteria where higher IOPS extents move to
higher IOPS tiers. This is in contrast to EDT that uses
a combination of capacity, IOPS, and bandwidth in its
placement algorithm.

Implementation. Our test system is shown in Fig-
ure 3. In addition to EDT, we implemented an I/O dis-
patcher that receives block I/O requests from applica-
tions, maps the logical block address to the physical de-
vice address, performs the corresponding I/Os, and com-
municates with the EDT components. Our trace player
application issues block I/Os from a trace via a socket
to the I/O dispatcher. To support real-world applica-
tions without modification, we implemented a pseudo
block device interface. For the scope of this work, we
use Linux’s default deadline scheduler, and our measure-
ment of context switch overhead when running through
the pseudo device driver was negligible (< 10µs).
Experimental Testbed. Our experimental platform
consists of an IBM x3650 with 4 Intel Xeon cores and 4
GB memory acting as the I/O dispatcher. It is connected
via internal and external SAS ports to 12 1 TB 7200 rpm
3.5” SATA drives, 12 450 GB 15K rpm 3.5” SAS drives,
and 4 180 GB Intel X25-M SSD drives. Table 1 shows
the characteristics of these devices. The enclosures con-

taining the drives are connected to a Watts up? Pro power
meter. We report the disk power obtained by subtracting
the baseline power used by the non-disk components of
the enclosure (154 W).
Metrics. To compare solutions, we evaluate static con-
figuration results using capital cost and peak power con-
sumption, and we evaluate dynamic behavior using the
average and distribution of I/O latency along with dy-
namic power consumption. Peak power consumption is
obtained using disk drive data sheets. Dynamic power
consumption is measured using the power meter.

6.2 Parameter Selection
Extent size. Smaller extents use tier and migration-
related resources more efficiently and enable faster re-
sponse to workload changes, but also incur greater meta-
data overhead. Our approach was to pick the smallest
extent size that incurs acceptable metadata overhead. As-
suming metadata can have a reasonably small overhead
of at most 0.0001% of the total storage capacity, and
given 200 bytes/extent for metadata overhead (mostly
from recording extent-level statistics) in our implemen-
tation, the smallest extent size our storage system can
support is 20 MB. To introduce some slack we used 64
MB extents for our experiments.
Epoch duration. Shorter epochs allow quicker response
to workload changes, but can also result in increased ex-
tent migration. As the epoch duration increases, the sta-
bility of extent characteristics increases due to averag-
ing over longer periods and consequently the migration
bandwidth overhead decreases. We picked epoch dura-
tions that resulted in migration bandwidth limited to a
10% fraction of the available array-pair bandwidth in the
system1. This prevents migration from significantly de-
grading performance and ensures that migrations com-
plete early within each epoch. For the MSR workloads
this calculation resulted in a 30 minute epoch.

6.3 Synthetic Workload
This SPC1-like workload was chosen because it simu-
lates an industry standard benchmark and provides a con-
trast to the MSR trace workloads. We ran the SPC1-like
workload generator on a 1 TB volume at 100 BSUs for 30
min using an over-provisioned configuration (a 12 SAS
RAID-0 array). We chose 30 min because the workload
is quite static after a short startup period. The resulting
trace was used to obtain the number of devices required
per tier for different methods (Table 2).

We observe that all the extent-based tiering configura-
tions outperform SAS configurations in both capital cost
and peak power consumption. EDT reduces cost by 14%,
and peak power by 55% compared to SAS. Cost incurred

1Medium to large scale tiered storage systems would typically per-
form simultaneous extent migrations across multiple array-pairs.

7

280 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

System # of Disks Energy Cost Avg RT
SAS (0, 6, 0) 103.8 W $1950 28 ms
EST (2, 2, 1) 46.6 W $1680 15 ms
IDT (2, 1, 1) 29.3 W $1355 21 ms
EDT (2, 2, 1) 46.6 W $1680 15 ms

Table 2: Configuration for synthetic workload. The
number of disks per tier is specified as (SSD, SAS,
SATA). The average response time is obtained from
running the configuration with 100 BSUs .

to configure EST and EDT for this relatively static work-
load are similar. Although the IDT configuration seems
to provide the least cost configuration, this is an artifact
of rounding up required devices to the next higher inte-
ger. Using fractional devices, costs for EDT and IDT are
much closer ($890 vs. $920). Note that in larger systems
rounding effects will be less significant.

To confirm that EDT’s lower cost is not at the expense
of performance, we ran the SPC1-like workload for 30
minutes at 100 BSUs. Given the stability of the work-
load, migration overhead was minimal. We therefore
chose an epoch of 5 minutes to complete the experiments
quickly. The SAS scheme used 6 SAS RAID-0 array.
Other schemes operated on individual disks. We started
EDT and IDT with the entire volume in the SATA tier
and allowed dynamic extent migration to reach optimal
configurations over time. EST, which does not support
extent migration, was started with extents in their most
suitable locations as per the EST configuration.

The last column of Table 2 shows the average response
times for 100 BSUs measured starting at the end of the
first epoch, once the extent placements of the dynamic
tiering configurations become effective. Given the work-
load’s stability, results for EDT and EST are identical.
They both achieve a 40% lower response time compared
to SAS, and improve on IDT’s IOPS only placement by
20%. Note that the dynamic power consumption in these
experiments is similar to the peak power due to the lack
of workload variation.

6.4 Production Workload
Our next workload (MSR-combined) represents the more
interesting class of real-world workloads, obtained by
combining the I/Os to the 31 (out of 36) most active vol-
umes of a production storage system [21] for a total of
4580 GB. Including the remaining 5 volumes was not
feasible given the hardware restrictions of our testbed.
Configuration outcomes. Configuration outcomes
based on six days of the MSR-combined workload,
shown as the “Equal Performance” group in Table 3,
indicate that the tiering configurations have lower cost
compared to SAS. EDT incurs the lowest cost (50% re-
duction compared to SAS and 25% relative to EST).

Config System # of Disks Energy Cost
SAS (0, 16, 0) 276.8 W $5200

Equal EST (5, 2, 4) 82 W $3480
Performance IDT (4, 1, 4) 64.5 W $2725

EDT (3, 2, 4) 81.6 W $2620

Equal Cost

SAS (0, 12, 0) 204 W $3900
EST (4, 4, 4) 116 W $3700
IDT (4, 4, 4) 116 W $3700
EDT (4, 4, 4) 116 W $3700

Table 3: Configuration for MSR-combined. Configu-
rations achieving equal performance depict improve-
ment in cost and peak power. Configurations at equal
cost are created for experimental ease. Number of
disks in each tier specified as (SSD, SAS, SATA).

EDT’s ability to effectively time share high-cost, high-
performance tiers across extents and satisfy sequentially
accessed ones with the SAS tier (instead of the SSD
tier) results in more cost-effective configurations. Ex-
tents placed in the SATA tier (4336 GB) are mostly idle
with random IOPS below 0.32, those in SAS (69 GB) are
dominated by bandwidth higher than 1.45 MB/s and ran-
dom IOPS less than 1.43, and the SSD extents (175 GB)
have random IOPS between 1.45 and 858. Tiered config-
urations substantially reduce peak power when compared
with SAS; IDTs greater use of the SSD tier (relative to
SAS) makes it the most power-efficient.
Performance and Power outcomes. Not all of the equal
performance configurations listed in Table 3 were fea-
sible on our experimental testbed due to hardware lim-
itations. Consequently, we decided to switch to equal
cost configurations (shown in Table 3) to contrast per-
formance at equal cost instead of cost at equal perfor-
mance only for the MSR-combined workload. Later, we
shall explore equal performance configurations for feasi-
ble subsets of volumes (Figure 6). EDT’s configuration
was chosen as the base for all the tiering systems, and
its configuration requirements were rounded up to inte-
ger number of arrays, each array consisting of 4 devices.
SAS used only SAS drives for the same cost, split into
4 disk RAID 0 arrays. We then replayed day one from
the seven day trace, the most active 24 hour period of
the MSR-combined workload. Both EDT and IDT were
bootstrapped using a load balanced volume placement.

Figure 4 summarizes the results of this experiment for
the candidate solutions. First, we notice that the I/O re-
sponse time distribution of EDT is clearly superior to the
other three solutions, highlighting the importance of con-
sidering random IOPS, bandwidth, and capacity when
making tiering choices. The average response time with
EDT was 2.94 ms while those for the SAS, EST, and
IDT were 5.12, 9.33, and 5.93 ms respectively. Further,
the 95th percentile response time for EDT was under 7.86

8

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 281

 0

 300

 600

 900

 1200

 1500

 1800

IO
P

S

Total
Random

 80

 100

 120

 140

 160

 180

 200

 0 4 8 12 16 20 24

P
o

w
e

r
(W

a
tt

s
)

Time (hours)

EDT
IDT

EST
SAS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 16 64 256

P
[R

e
s
p

o
n

s
e

 t
im

e
 <

 x
]

Response Time (msecs)

EDT (Avg. 2.94 ms)

IDT (Avg. 5.12 ms)

EST (Avg. 9.33 ms)

SAS (Avg. 5.93 ms)

Figure 4: I/O rate and power consumption (left) and response time distribution (right) for MSR-combined.

ms while the same for SAS, EST, and IDT were 19.31,
37.06, and 17.891 ms respectively. On average, EDT de-
creased the dynamic power consumption by 13% rela-
tive to its peak power, 55% relative to SAS and at least
10% relative to IDT and EST. This dynamic power sav-
ings result is likely to underestimate power savings ob-
served in real deployments given that the workload was
generated by consolidating multiple uncorrelated work-
load traces, which tended to reduce the workload vari-
ability that would enable dynamic power savings. Ad-
ditionally, the experiment was done over the most active
period, which required most devices to be active for per-
formance. Further, all the configurations here are sized
to meet the observed workload. Typically, however, stor-
age purchases are made to accommodate future growth
and hence over-provisioned to begin with, resulting in
more dynamic power savings.

Analysis. We illustrate how EDT achieves its supe-
rior performance using two example extents chosen from
the experiment and contrasting them with IDT. Figure 5
shows the sequential and random IOPS over time for two
extents along with the tier they are placed in. For extent
A (top graph), both IDT and EDT move the extent from
the SATA tier (the default initial location) to higher per-
forming tiers when the total IOPS requirements increase.
However, IDT allocates the SSD tier starting from hour
3 on account of the exponentially weighted moving av-
erage (EWMA) of total IOPS whereas EDT allocates the
SSD tier only when the EWMA of random IOPS of the
extent is high. Thus, EDT can better capitalize on the
superior sequential performance of the SAS tier to min-
imize capital costs during configuration and sustain per-
formance during operation. Extent B (bottom graph) il-
lustrates similar behavior during predominantly sequen-
tial accesses. Further, both EDT and IDT rightly move
extent B into the SATA tier when it becomes idle, aid-
ing in power savings. Thus, EDT is successfully able to
pick the best tier for an extent’s workload and relocate it

EDT
IDT

 0
 2
 4
 6
 8

 10
 12
 14

 0 4 8 12 16 20 24

IO
P

S

Time (hours)

Total
Random

EDT
IDT

 0

 10

 20

 30

 40

 50

 0 4 8 12 16 20 24

IO
P

S

Time (hours)

Total
Random

Figure 5: Contrasting extent migrations for EDT and
IDT. The two upper lines denote extent placement for the
different algorithms. Black is SSD tier, dark grey SAS and
light grey SATA.

when the requirements change. Regarding the overheads
for this migrations, both EDT and IDT migrated around
120 extents per epoch, using an average bandwidth of 42
MB/s which only represents 3% of the total available.

Workload Volumes Cap (GB) Accessed
server hm, mds, prn, prxy,

stg, ts, wdev, web
1650 30%

data proj, rsch, usr 3719 34%
srccntl src1, src2 904 29%

Table 4: Sub-workloads derived from MSR.

Varying the workload. To analyze the sensitivity of
the various algorithms to workload characteristics, we
grouped volumes from the MSR workload as specified
in Table 4 to create the server, data and srccntl (source

9

282 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

 0

 20

 40

 60

 80

 100
%

 o
f

E
x
te

n
ts

SSD SAS SATA

 0

 150

 300

 450

 600

IO
P

S

Total
Random

 40

 42

 44

 46

 48

 0 1 2 3 4 5 6

P
o

w
e

r
(W

a
tt

s
)

Time (hours)

 0

 20

 40

 60

 80

 100

%
 o

f
E

x
te

n
ts

SSD SAS SATA

 0

 200

 400

 600

 800

 1000

IO
P

S

Total
Random

 64
 68
 72
 76
 80
 84

 0 1 2 3 4 5 6

P
o
w

e
r

(W
a
tt
s
)

Time (hours)

 0

 20

 40

 60

 80

 100

%
 o

f
E

x
te

n
ts

SSD SAS SATA

 0

 200

 400

 600

 800

 1000

IO
P

S

Total
Random

 40
 44
 48
 52
 56
 60

 0 1 2 3 4 5 6

P
o
w

e
r

(W
a
tt
s
)

Time (hours)

(a) EDT’s extent distribution, I/O rate, and EDT’s power consumption over time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

P
[R

e
s
p
o
n
s
e
 t
im

e
 <

 x
]

Response Time (msecs)

EDT (Avg 4.52 ms)
IDT (Avg 9.25 ms)

SAS (Avg 6.92 ms)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

P
[R

e
s
p
o
n
s
e
 t
im

e
 <

 x
]

Response Time (msecs)

EDT(Avg 3.82 ms)
IDT (Avg 3.58 ms)

SAS (Avg 3.57 ms)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

P
[R

e
s
p
o
n
s
e
 t
im

e
 <

 x
]

Response Time (msecs)

EDT (Avg 3.91 ms)
IDT (Avg 3.71 ms)

SAS (Avg 3.40 ms)

(b) CDF of response times

Figure 6: Replaying 6 hours of the MSR sub-workloads. First column is server, second data, and third srccntl.

Workload System # of Disks Energy Cost

server

SAS (0, 6, 0) 103.8 W $1950
EST (2, 1, 2) 42.5 W $1525
IDT (2, 1, 1) 30.9 W $1355
EDT (1, 2, 1) 47.2 W $1250

data

SAS (0, 10, 0) 173 W $3250
EST (2, 2, 3) 71.4 W $2020
IDT (1, 2, 4) 82 W $1760
EDT (1, 2, 4) 82 W $1760

srccntl

SAS (0, 6, 0) 103.8 W $1950
EST (2, 3, 1) 65.5 W $2005
IDT (2, 2, 2) 59.8 W $1850
EDT (2, 2, 2) 59.8 W $1850

Table 5: Configuration for MSR sub-workloads.
Number of disks in each tier specified as (SSD, SAS,
SATA).

code control) workloads. Configuration outcomes for
each sub-workload using SAS, IDT, and EDT are pre-
sented in Table 5. As with MSR-combined, the dynamic
tiering solutions are able to configure both lower-cost
and lower-energy systems when compared with SAS and
EST. Further, in the case of the server workload, EDT
optimizes the configured system cost with a single SSD
relative to the two SSDs recommended using IDT. Given
that EST had significantly inferior performance for MSR-

combined, we did not consider it for further analysis.

Figure 6 shows EDT’s dynamic power consumption
and extent distribution across tiers over time, as well as
its response time distribution relative to IDT and SAS.
First, unlike MSR-combined, these workloads do have
substantial periods of lower utilization. Consequently,
in addition to improving the capital cost and peak power
consumption, EDT’s dynamic consolidation allows dy-
namic power savings of as much as 15-31% relative to
its peak power across the three workloads. The extent
distribution is quite different across the workloads. EDT
uses the SSD tier substantially for the srccntl workload.
IOPS-wise one would think that the workload should
be completely consolidated to the SATA; however, EDT
leverages the fact that the SSD tier offers improved en-
ergy efficiency for up to 40% of the extents. The SAS
tier was most used for server, in particular between hours
2-4 when sequential activity dominates. The data work-
load predominantly utilizes the SATA tier (as evidenced
in the configuration outcome) since the IOPS per extent
for most extents is very low, easily accommodated using
SATA devices. Finally, in this equal performance config-
uration experiment, the response time performance with
EDT is either similar or better than the SAS and IDT
schemes across the workloads.

10

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 283

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

P
[R

e
s
p

o
n

s
e

 t
im

e
 <

 x
]

Response Time (msecs)

EDT (Avg 52.96 ms)

IDT (Avg 52.96 ms)

SAS (Avg 40.40 ms)

(a) Uniformly Random Load

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

P
[R

e
s
p
o
n
s
e
 t
im

e
 <

 x
]

Response Time (msecs)

EDT (Avg 192.6 ms)

IDT (Avg 173.0 ms)

SAS (Avg 158.9 ms)

(b) Varying Hot Extent Set

Figure 7: Extent distribution and CDF for the adver-
sarial workload.

6.5 Adversarial Workloads
Finally, we measure the impact of using EDT with work-
loads completely different than the one it is provisioned
for. We used the configuration obtained for the srccntl
workload (in Table 5), and instead of the trace from that
workload, we ran two separate synthetic workloads for
two hours each: (1) a uniformly random workload at
400 IOPS, where each I/O is issued to a random page
in the system. (2) a workload at 500 IOPS, where I/Os
are issued to a chosen set of 10 hot extents initially in the
SATA tier and this set changes every minute.

Figure 7 depicts the distribution of response times for
both workloads. The uniformly random workload yields
a 31% higher average response time for EDT and IDT
compared to SAS. This can be attributed to the constant
migration I/O moving extents away from the throttled
SATA tier to both SAS and SSD tiers. Interestingly, we
see only a 21% penalty for EDT in the second workload.
Analysis shows that throttling of the newly active extents
was promptly detected and the extents were migrated
quickly to the SSD before they became cold. As illus-
trated by these examples, EDT can handle unexpected
workloads using its throttling detection/correction tech-
niques without major performance penalties.

7 Related Work
We build on a rich body of related work in multiple areas.
SSD-based storage architectures. Several products
(IBM’s EasyTier [29], EMC’s FAST [17], 3PAR [25],
and Compellent [23] systems) incorporate SSDs in stor-
age tiering solutions. Since technical details of these

approaches are not published, EDT is the first to pro-
vide insight into design choices and components, de-
tailed evaluation across workloads, and analysis of bene-
fits and challenges in building SSD-based multi-tier sys-
tems. Moreover, the publicly available documents of
these products indicate that although they achieve cost
savings and performance improvements, there is little fo-
cus on tools aiding admins/customers to configure the
right device mix for their workload or on incorporating
algorithms that target dynamic energy savings. EDT ad-
dresses these limitations.

Another approach to leverage solid state technology
in storage systems is to deploy flash devices as a cache
between DRAM and HDD. NetApp’s FlashCache [24]
which follows this approach cites cost reduction and per-
formance improvement when coupled with SAS/SATA
drives. Interestingly, Narayanan et al. [22] have argued
that a SSD cache layer above SAS disks was generally
not cost effective compared to an all SAS configuration
at the same performance. We did find cost savings using
SSD, but our system included much lower cost SATA
disks to improve overall cost. Unfortunately, a detailed
comparison between SSD caching and tiering would take
a significant effort and more space than is available in
this paper. However, our summary thoughts on the two
architectures are: 1) SSD caching will utilize the SSD
space more efficiently and can be more responsive to
very dynamically changing workloads, but 2) SSD tier-
ing enables both cost and energy savings even in enter-
prise environments.
Storage configuration (also referred to as provision-
ing). Systems such as Minerva [3], Hippodrome [5], and
DAD [6] address the problem of optimizing storage con-
figuration by iteratively applying several steps such as
configuring a low cost storage system, choosing RAID
levels and other array parameters, and assigning entire
volumes to arrays. EDT-CA’s focus on obtaining the
right mix of storage devices to minimize cost is similar to
the configuration step in these systems. The key differ-
ence is that EDT-CA is inherently aware of, and utilizes
the flexibility afforded by EDT’s dynamic extent place-
ment. EDT’s data layout also operates at a much finer
extent granularity. In EDT, we use a model to predict the
utilization of an extent (given its bandwidth and random
IOPS) that is similar in spirit to the previously proposed
store level performance predictor [30] in its accounting
for the differential load induced by sequential and ran-
dom accesses to an extent. Finally, EDT-CA can be en-
hanced to perform utility based provisioning as in [28].
Tiering. Migration-based storage tiering has been preva-
lent in the industry for a long time in the form of Hierar-
chical Storage Management systems, Information Life-
cycle Management solutions, and other forms of coarse-
grain tiering [2, 13, 15]. Most of these systems differ

11

284 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

from EDT in that they generally migrate data from upper
to lower tiers, based on its age rather than on load. Fur-
ther, these systems operate on volume, file system, or file
objects rather than extents, and as such are suited more
for file layer systems than block layer systems. Wilkes et
al. propose AutoRAID [33], a storage system where ex-
tents within volumes are migrated between faster RAID-
1 arrays and slower RAID-5 arrays according to work-
load and age. Significantly different algorithms for mi-
gration decisions tuned to the specific two tiers are pro-
posed. Additionally, AutoRAID does not consider the
issue of correctly determining a device mixture to satisfy
given workloads.
Storage energy efficiency. EDT uses a consolida-
tion algorithm to save energy in primary storage sys-
tems. Other energy saving approaches that instead spin
down a fraction of the available disk drives with active
data [8, 10, 18, 20, 21, 26, 27, 31, 32, 34] either are
not applicable in many primary storage systems due to
the significant spin up latency, or require undesirable ca-
pacity over-provisioning for redundant data. Work lever-
aging Dynamic RPM capability (e.g., [12, 26, 37, 38]).
is complementary to EDT. In fact, Hibernator [38] also
leverages tiering but varies RPM setting of the drives to
minimize energy.

8 Discussion
Extending the resource consumption model In this
work we assumed RAID-0 arrays when estimating how
much resource on a tier is consumed by a given work-
load. In commercial applications of EDT, more sophisti-
cated models will be needed to estimate resource con-
sumption in arrays with different RAID levels. Such
models do already exist in the industry, so we believe in-
corporating this capability will be straightforward. Also,
for the scope of this work, we assume that all arrays are
at the same reliability level, and hence migrating data
across arrays is not restricted. However, it is feasible to
remove this constraint by observing policies to limit the
migration targets of extents. Finally, the resource model
may need be enhanced to better model the behavior of
disks servicing multiple sequential IO streams in paral-
lel. The current model does not account for degradation
in sequential performance that may occur when a disk
needs to service multiple sequential streams at once.
Disk power fraction in the overall energy of a stor-
age system. The chief dynamic energy-saving tech-
nique proposed in this work is powering down empty
disk drives. However, we find that in today’s commercial
storage systems, disk drives typically consume ∼50% of
the total storage system energy [14] while the rest is con-
sumed by other components which do not currently have
the capability of varying their energy consumption ac-
cording to workload. As these components overcome

this limitation, our energy-saving techniques can be ex-
tended to include them, leading to a more energy propor-
tional system and lower overall operating costs.
Applicability. The target domain for EDT is primary
storage systems where response time is critical. Archival
applications where response time is not as critical may be
better served with existing solutions using policy-based
migration and power-saving storage such as spun-down
disk or tape. Also, EDT will be most effective when the
working set and I/O intensity are somewhat stable with
some variation. When the workload is static, dynamic
migration will not take place but consolidation will still
be beneficial if the system is not capacity bound.

9 Conclusion
The increasing availability of solid-state drives has ush-
ered in a new era of multi-tiered primary storage sys-
tems. With EDT, we have formalized the configuration
and dynamic tier management problems and have sys-
tematically explored the design choices available when
building such systems. We presented the design, im-
plementation, and evaluation of EDT’s Configuration
Adviser (EDT-CA) and Dynamic Tier Manager (EDT-
DTM). EDT lowers capital cost by configuring less ex-
pensive tiered storage and operating costs by dynami-
cally optimizing power consumption via consolidation
whenever feasible. We also demonstrated that EDT is
successfully able to address the data migration overheads
of dynamic tiering and respond rapidly and effectively to
unexpected changes in the workload.

Experimental results show EDT has significant bene-
fit. Evaluation performed using both a production work-
load and industry-standard synthetic workload revealed
that multi-tier systems using EDT have a device mix that
saves between 5% to 45% in cost, consume up to 54%
less peak power, and an additional 15-30% lower dy-
namic power (instantaneous power averaged over time),
at a better or comparable performance compared to a ho-
mogeneous SAS storage system. Experimental results
also demonstrated that EDT is superior to simpler al-
ternatives for extent-based tiering, providing lower cost
and better performance, and consuming similar or lesser
power. We hope that this study serves as a starting point
for future work along the promising direction of multi-
tiered enterprise storage systems.

Acknowledgments
We would like to thank our shepherd Hakim Weath-
erspoon, our anonymous reviewers, and Renu Tewari,
Aameek Singh and Amar Phanishayee for their valu-
able feedback. This work was supported in part by NSF
grants CNS-0747038 and CNS-1018262. Jorge Guerra
was supported in part by an IBM PhD Fellowship.

12

USENIX Association FAST ’11: 9th USENIX Conference on File and Storage Technologies 285

References
[1] SPC specifications. http://www.

storageperformance.org/specs.

[2] M. K. Aguilera, K. Keeton, A. Merchant, K.-K.
Muniswamy-Reddy, and M. Uysal. Improving re-
coverability in multi-tier storage systems. In Proc.
of the IEEE/IFIP DSN, 2007.

[3] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer,
R. Becker-Szendy, R. Golding, A. Merchant,
M. Spasojevic, A. Veitch, and J. Wilkes. Min-
erva: An Automated Resource Provisioning Tool
for Large-scale Storage Systems. ACM Transac-
tions on Computer Systems, 19(4):483–518, 2001.

[4] E. Anderson, J. Hall, J. Hartline, M. Hobbs, A. R.
Karlin, J. Saia, R. Swaminathan, and J. Wilkes. An
experimental study of data migration algorithms.
Lecture Notes in Computer Science, 2141/2001:
145–158, 2001.

[5] E. Anderson, M. Hobbs, K. Keeton, S. Spence,
M. Uysal, and A. Veitch. Hippodrome: Running
Circles Around Storage Administration. In Proc. of
USENIX FAST, 2002.

[6] E. Anderson, S. Spence, R. Swaminathan,
M. Kallahalla, and Q. Wang. Quickly finding
near-optimal storage designs. ACM Transactions
on Computer Systems, 23(4):337–374, 2005.

[7] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett,
J. Liptak, R. Rangaswami, and V. Hristidis. BORG:
Block-reORGanization for Self-Optimizing Stor-
age Systems. Proc. of USENIX FAST, 2009.

[8] D. Colarelli and D. Grunwald. Massive Arrays
of Idle Disks for Storage Archives. In Proc. of
IEEE/ACM SC, 2002.

[9] K. Dasgupta, S. Ghosal, R. Jain, U. Sharma, and
A. Verma. Qosmig: Adaptive rate-controlled mi-
gration of bulk data in storage systems. In Proc. of
ICDE, 2005.

[10] K. M. Greenan, D. D. Long, E. L. Miller, T. J.
Schwarz, and J. J. Wylie. A Spin-Up Saved is En-
ergy Earned: Achieving Power-Efficient, Erasure-
Coded Storage. In Proc. of USENIX HotDep, 2008.

[11] J. Guerra, H. Pucha, K. Gupta, W. Belluomini, and
J. Glider. Energy Proportionality for Storage: Im-
pact and Feasibility. In Proc. of ACM/USENIX Hot-
Storage, 2009.

[12] S. Gurumurthi, A. Sivasubramaniam, M. Kan-
demir, and H. Frankez. DRPM: Dynamic speed
control for power management in server class disks.
In Proc. of ACM/IEEE ISCA, 2003.

[13] IBM Corporation. High Performance Storage Sys-
tem (HPSS). Online: http://hpss-collaboration.org/,
2010.

[14] IBM Corporation. IBM System Storage DS8000
series. Data Sheet, 2010.

[15] G. Karche, M. Mamidi, and P. Mas-
siglia. Using dynamic storage tiering.
Available as Symantec Yellow Books at
http://www.symantec.com/enterprise/yellowbooks/index.jsp.,
2006.

[16] R. Koller and R. Rangaswami. I/O Deduplication:
Utilizing Content Similarity to Improve I/O Perfor-
mance. In Proc. of USENIX FAST, 2010.

[17] B. Laliberte. Automate and Optimize a Tiered Stor-
age Environment FAST! ESG White Paper, 2009.

[18] H. J. Lee, K. H. Lee, and S. H. Noh. Augmenting
RAID with an SSD for Energy Relief. In Proc. of
USENIX HotPower, 2008.

[19] A. Leung, S. Pasupathy, G. Goodson, and E. Miller.
Measurement and Analysis of Large-Scale Net-
work File System Workloads. In Proc. of USENIX
ATC, 2008.

[20] D. Li and J. Wang. EERAID: Energy efficient re-
dundant and inexpensive disk array. In Proc. of
workshop on ACM SIGOPS European workshop,
2004.

[21] D. Narayanan, A. Donnelly, and A. Rowstron.
Write Off-Loading: Practical Power Management
for Enterprise Storage. In Proc. of USENIX FAST,
2008.

[22] D. Narayanan, E. Thereska, A. Donnelly, S. El-
nikety, and A. Rowstron. Migrating Server Storage
to SSDs: Analysis of Tradeoffs. In Proc. of ACM
Eurosys, 2009.

[23] M. Peters. Compellent harnessing ssds potential.
ESG Storage Systems Brief, 2009.

[24] M. Peters. Netapp’s solid state hierarchy. ESG
White Paper, 2009.

[25] M. Peters. 3par: Optimizing io service levels. ESG
White Paper, 2010.

13

286 FAST ’11: 9th USENIX Conference on File and Storage Technologies USENIX Association

[26] E. Pinheiro and R. Bianchini. Energy conservation
techniques for disk array-based servers. In Proc. of
ACM ICS, 2004.

[27] E. Pinheiro, R. Bianchini, and C. Dubnicki. Ex-
ploiting redundancy to conserve energy in storage
systems. SIGMETRICS, 34(1), 2006.

[28] J. D. Strunk, E. Thereska, C. Faloutsos, and G. R.
Ganger. Using utility to provision storage systems.
In Proc. of USENIX FAST, 2008.

[29] Taneja Group Technology Analysts. The State of
the Core Engineering the Enterprise Storage In-
frastructure with the IBM DS8000. White Paper,
2010.

[30] M. Uysal, G. A. Alvarez, and A. Merchant. A mod-
ular, analytical throughput model for modern disk
arrays. In Proc. of IEEE MASCOTS, 2001.

[31] A. Verma, R. Koller, L. Useche, and R. Ran-
gaswami. SRCMap: Energy Proportional Storage
Using Dynamic Consolidation. In Proc. of USENIX
FAST, 2010.

[32] C. Weddle, M. Oldham, J. Qian, A.-I. A. Wang,
P. Reiher, and G. Kuenning. PARAID: A Gear-
Shifting Power-Aware RAID. In Proc. of USENIX
FAST, 2007.

[33] J. Wilkes, R. Golding, C. Staeliin, and T. Sullivan.
The HP AutoRAID Hierarchical Storage System.
In Proc. of ACM SOSP, 1995.

[34] X. Yao and J. Wang. RIMAC: a novel redundancy-
based hierarchical cache architecture for energy ef-
ficient, high performance storage systems. SIGOPS
Operating Systems Review, 40(4), 2006.

[35] M. Yue. A simple proof of the inequality ffd(l)
(11/9)opt(l) + 1, for all l, for the ffd bin-packing
algorithm. Acta Mathematicae Applicatae Sinica,
7:321331, 1991.

[36] G. Zhang, L. Chiu, C. Dickey, L. Liu, P. Muench,
and S. Seshadri. Automated Lookahead Data Mi-
gration in SSD-enabled Multi-tiered Storage Sys-
tems. In IEEE MSST, 2010.

[37] Q. Zhu, F. M. David, C. F. Devaraj, Z. Li, Y. Zhou,
and P. Cao. Reducing Energy Consumption of Disk
Storage Using Power-Aware Cache Management.
In Proc. of IEEE HPCA, 2004.

[38] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and
J. Wilkes. Hibernator: helping disk arrays sleep
through the winter. In Proc. of ACM SOSP, 2005.

14

	fast11_cover
	fast11_fm
	fast11_toc
	fast11_message
	fast11_1a
	fast11_1b
	fast11_1c
	fast11_1d
	fast11_2a
	fast11_2b
	fast11_2d

