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Abstract
Previous approaches to RAID scaling either require a
very large amount of data to be migrated, or cannot toler-
ate multiple disk additions without resulting in disk im-
balance. In this paper, we propose a new approach to
RAID-0 scaling called FastScale. First, FastScale mini-
mizes data migration, while maintaining a uniform data
distribution. With a new and elastic addressing function,
it moves only enough data blocks from old disks to fill
an appropriate fraction of new disks without migrating
data among old disks. Second, FastScale optimizes data
migration with two techniques: (1) it accesses multiple
physically successive blocks via a single I/O, and (2) it
records data migration lazily to minimize the number of
metadata writes without compromising data consistency.
Using several real system disk traces, our experiments
show that compared with SLAS, one of the most effi-
cient traditional approaches, FastScale can reduce redis-
tribution time by up to 86.06% with smaller maximum
response time of user I/Os. The experiments also illus-
trate that the performance of the RAID-0 scaled using
FastScale is almost identical with that of the round-robin
RAID-0.

1 Introduction

Redundant Array of Inexpensive Disks (RAID) [1] was
proposed to achieve high performance, large capacity
and data reliability, while allowing a RAID volume to
be managed as a single device. As user data increase
and computing powers enhance, applications often re-
quire larger storage capacity and higher I/O performance.
To supply needed capacity and/or bandwidth, one solu-
tion is to add new disks to a RAID volume. This disk
addition is termed “RAID scaling”.

To regain uniform data distribution in all disks includ-
ing the old and the new, RAID scaling requires certain
blocks to be moved onto added disks. Furthermore, in

today’s server environments, many applications (e.g., e-
business, scientific computation, and web servers) access
data constantly. The cost of downtime is extremely high
[2], giving rise to the necessity of online and real-time
scaling.

Traditional approaches [3, 4, 5] to RAID scaling
are restricted by preserving the round-robin order after
adding disks. The addressing algorithm can be expressed
as follows for the ith scaling operation:

fi(x) :
{

d = x mod Ni
b = x/Ni

(1)

where block b of disk d is the location of logical block x,
and Ni gives the total number of disks. Generally speak-
ing, as far as RAID scaling from m disks to m + n is
concerned, only the data blocks in the first stripe are not
moved. This indicates that almost 100 percent of data
blocks have to be migrated no matter what the numbers
of old disks and new disks are. There are some efforts
[3, 5] concentrating on optimization of data migration.
They improve the performance of RAID scaling by a cer-
tain degree, but do not overcome the limitation of large
data migration completely.

The most intuitive method to reduce data migration is
the semi-RR [6] algorithm. It requires a block movement
only if the resulting disk number is one of new disks. The
algorithm can be expressed as follows for the ith scaling
operation:

gi(x) =
{

gi−1(x) if (x mod Ni) < Ni−1
fi(x) otherwise (2)

Semi-RR reduces data migration significantly. Unfortu-
nately, it does not guarantee uniform distribution of data
blocks after subsequent scaling operations (see section
2.4). This will deteriorate the initial equally distributed
load.

In this paper, we propose a novel approach called
FastScale to redistribute data for RAID-0 scaling. It ac-
celerates RAID-0 scaling by minimizing data migration.
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Figure 1: Data migration using FastScale. Only data blocks are moved
from old disks to new disks for regaining a uniform distribution, while
no data is migrated among old disks.

As shown in Figure 1, FastScale moves only data blocks
from old disks to new disks enough for preserving the
uniformity of data distribution, while not migrating data
among old disks. Consequently, the migration fraction of
FastScale reaches the lower bound of the migration frac-
tion, n/(m + n). In other words, FastScale succeeds in
minimizing data migration for RAID scaling.

We design an elastic addressing function through
which the location of one block can be easily computed
without any lookup operation. By using this function,
FastScale changes only a fraction of the data layout while
preserving the uniformity of data distribution. FastScale
has several unique features as follows:

• FastScale maintains a uniform data distribution af-
ter RAID scaling.

• FastScale minimizes the amount of data to be mi-
grated entirely.

• FastScale preserves a simple management of data
due to deterministic placement.

• FastScale can sustain the above three features after
multiple disk additions.

FastScale also exploits special physical properties to
optimize online data migration. First, it uses aggre-
gate accesses to improve the efficiency of data migration.
Second, it records data migration lazily to minimize the
number of metadata updates while ensuring data consis-
tency.

We implement a detailed simulator that uses DiskSim
as a worker module to simulate disk accesses. Under sev-
eral real-system workloads, we evaluate the traditional
approach and the FastScale approach. The experimental
results demonstrate that:

• Compared with one of the most efficient traditional
approaches, FastScale shortens redistribution time

by up to 86.06% with smaller maximum response
time of user I/Os.

• The performance of the RAID scaled using
FastScale is almost identical with that of the round-
robin RAID.

In this paper, we only describe our solution for RAID-
0, i.e., striping without parity. The solution can also work
for RAID-10 and RAID-01. Although we do not handle
RAID-4 and RAID-5, we believe that our method pro-
vides a good starting point for efficient scaling of RAID-
4 and RAID-5 arrays.

2 Minimizing Data Migration

2.1 Problem Statement
For disk addition into a RAID, it is desirable to ensure an
even load on all the disks and minimal block movement.
Since the location of a block may be changed during a
scaling operation, another objective is to quickly com-
pute the current location of a block.

To achieve the above objectives, the following three
requirements should be satisfied for RAID scaling:

• Requirement 1 (Uniform data distribution): If there
are B blocks stored on m disks, the expected number
of blocks on each disk is approximately B/m so as
to maintain an even load.

• Requirement 2 (Minimal Data Migration): During
the addition of n disks to a RAID with m disks stor-
ing B blocks, the expected number of blocks to be
moved is B×n/(m+n).

• Requirement 3 (Fast data Addressing): In a m-disk
RAID, the location of a block is computed by an
algorithm with low space and time complexity.

2.2 Two Examples of RAID Scaling
Example 1: To understand how the FastScale algorithm
works and how it satisfies all of the three requirements,
we take RAID scaling from 3 disks to 5 as an example.
As shown in Figure 2, one RAID scaling process can be
divided into two stages logically: data migration and data
filling. In the first stage, a fraction of existing data blocks
are migrated to new disks. In the second stage, new data
are filled into the RAID continuously. Actually, the two
stages, data migration and data filling, can be overlapped
in time.

For the RAID scaling, each 5 sequential locations in
one disk are grouped into one segment. For the 5 disks,
5 segments with the same physical address are grouped
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Figure 2: RAID scaling from 3 disks to 5 using FastScale, where m≥ n.

into one region. In Figure 2, different regions are sepa-
rated with a wavy line. For different regions, the ways to
data migration and data filling are exactly identical.

In a region, all of the data blocks within a parallelo-
gram will be moved. The base of the parallelogram is
2, and the height is 3. In other words, 2 data blocks
are selected from each old disk and migrated to new
disks. The 2 blocks are sequential, and the start address
is disk no. Figure 2 depicts the moving trace of each
migrating block. For one moving data block, only its
physical disk number is changed while its physical block
number is unchanged. As a result, the five columns of
two new disks will contain 1, 2, 2, 1, and 0 migrated data
blocks, respectively. Here, the data block in the first col-
umn will be placed upon disk 3, while the data block in
the fourth column will be placed upon disk 4. The first
blocks in columns 2 and 3 are placed on disk 3, and the
second blocks in columns 2 and 3 are placed on disk 4.
Thus, each new disk has 3 data blocks.

After data migration, each disk, either old or new, has
3 data blocks. That is to say, FastScale regains a uni-
form data distribution. The total number of data blocks
to be moved is 2×3 = 6. This reaches the minimal num-
ber of moved blocks, (5×3)× (2/(3+2)) = 6. We can
claim that the RAID scaling using FastScale can satisfy
Requirement 1 and Requirement 2.

Let us examine whether FastScale can satisfy Require-
ment 3, i.e., fast data addressing. To consider how one
logical data block is addressed, we divide all the data
space in the RAID into three categories: original and un-
moved data, original and migrated data, and new data. A
conclusion can be drawn from the following description
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Figure 3: RAID scaling from 2 disks to 5 using FastScale, where m < n.

that the calculation overhead for the data addressing is
very low.

• The original and unmoved data can be addressed
with the original addressing method. In this exam-
ple, the ordinal number of the disk holds one block x
can be calculated: d = x mod 3. Its physical block
number can be calculated: b = x/3.

• The addressing method for original and migrated
data can be obtained easily from the above descrip-
tion about the trace of the data migration. b = x/3.
For those blocks in the first triangle, i.e., blocks 0,
3, and 4, we have d = d0 + 3. For those blocks in
the last triangle, i.e., blocks 7, 8, and 11, we have
d = d0 +2. Here, d0 is their original disk.

• Each region can hold 5× 2 = 10 new blocks. In
one region, how those new data blocks are placed
is shown in Figure 2. If block x is a new block, it
is the yth new block, where y = x− 3× 11. Each
stripe holds 2 new blocks. So, we have b = y/2.
The first two new blocks in each region are placed
on Blocks 0 of Disk 0 and 4. For the other blocks,
d = (y mod 2)+(b mod 5)−1.

Example 2: In the above example, the number of the
old disks m and the number of the new disks n satisfy the
condition: m ≥ n. In the following, we inspect the case
when m < n. Take RAID scaling from 2 disks to 5 as an
example. Here, m = 2 and n = 3.

Likewise, in a region, all of the data blocks within
a parallelogram will be moved. The base of the paral-
lelogram is 3, and the height is 2. 3 consecutive data
blocks are selected from each old disk and migrated to

3



Algorithm: Addressing(t, H, s, x, d, b)
Input:

t: scaling times
H: scaling history, H[0],..., H[t]
s: total number of data blocks in one disk
x: logical block number

Output:
d: the disk holding Block x
b: physical block number

1: if t = 0 then
2: m ← H[0], d ← x mod m, b ← x / m
3: exit
4: m ← H[t-1], n ← H[t] - m, δ ← m - H[0]
5: if x ∈ [0,m× s−1] // an original data block
6: Addressing(t-1, H, s, x, d0, b0)
7: b1 ← (b0 - δ ) mod (m+n)
8: if b1 ∈ [d0, d0 +n -1] // to be moved
9: d← Moving(d0, b1, m, n), b←b0
10: else // not moved
11: d←d0, b←b0
12:else // a new data block
13: Placing(x, m, n, s, δ , d, b)

Table 1: The addressing algorithm using in FastScale.

new disks. Figure 3 depicts the trace of each migrat-
ing block. Similarly, for one moving data block, only its
physical disk number is changed while its physical block
number is unchanged. As a result, five columns of three
new disks will have a different number of existing data
blocks: 1, 2, 2, 1, 0. Here, the data block in the first
column will be placed upon disk 3, while the data block
in the fourth column will be placed upon disk 4. Unlike
the first example, the first block in columns 2 and 3 are
placed on disks 2 and 3, respectively. Thus, each new
disk has 2 data blocks.

Similar to the first example, we can demonstrate that
the RAID scaling using FastScale can satisfy the three
requirements.

2.3 The Addressing Algorithm
Table 1 shows the algorithm to minimize data migration
required by RAID scaling. The array H records the his-
tory of RAID scaling. H[0] is the initial number of disks
in the RAID. After the ith scaling operations, the RAID
consists of H[i] disks.

When a RAID is constructed from scratch (i.e., t = 0),
it is a round-robin RAID actually. The address of block x
can be calculated via one division and one modular (line
2).

Let us inspect the tth scaling, where n disks are added
into a RAID made up of m disks (line 4).

(1) If block x is an original block (line 5), FastScale

Function: Moving(d0, b1, m, n)
Input:

d0: the disk of the original location
b1: the original location in a region
m: the number of old disks
n: the number of new disks

Output:
return value: new disk holding the block

1: if m ≥ n
2: if b1 ≤ n-1
3: return d0+m
4: if b1 ≥ m-1
5: return d0+n
6: return m+n-1- (b1-d0)
7: if m < n
8: if b1 ≤ m-1
9: return d0+m
10: if b1 ≥ n-1
11: return d0+n
12: return d0+ b1+1

Table 2: The Moving function.

calculates its old address (d0, b0) before the tth scaling
(line 6).

• If (d0, b0) needs to be moved, FastScale changes the
disk ordinal number while keeping the block ordinal
number unchanged (line 9).

• If (d0, b0) does not need to be moved, FastScale
keeps the disk ordinal number and the block ordi-
nal number unchanged (line 11).

(2) If block x is a new block, FastScale places it via
the Placing() procedure (line 13).

The code of line 8 is used to decide whether a data
block (d0, b0) will be moved during RAID scaling. As
shown in Figures 2 and 3, there is a parallelogram in each
region. The base of the parallelogram is n, and the height
is m. If and only if the data block is within a parallelo-
gram, it will be moved. One parallelogram mapped to
disk d0 is a line segment. Its beginning and end are d0
and d0 + n−1, respectively. If b1 is within the line seg-
ment, block x is within the parallelogram, and therefore it
will be moved. After a RAID scaling by adding n disks,
the left-above vertex of the parallelogram proceeds by n
blocks (line 7).

Once a data block is determined to be moved,
FastScale changes its disk ordinal number with the Mov-
ing() function. As shown in Figure 4, a migrating par-
allelogram is divided into three parts: a head triangle,
a body parallelogram, and a tail triangle. How a block
moves depends on which part it lies in. No matter which
is bigger between m and n, the head triangle and the tail
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Procedure: Placing(x, m, n, s, δ , d, b)
Input:

x: logical block number
m: the number of old disks
n: the number of new disks
s: total number of data blocks in one disk
δ : offset of the first region

Output:
d: new disk holding the block
b: physical block of new location

1: y←x - m×s
2: b← y / n row← y mod n
3: e← (b-δ ) mod (m+n)
4: if e < n
5: if row < e+1
6: d← row
7: else
8: d← row+m
9: else
10: d← row+e-n+1

Table 3: The procedure to place new data.

triangle keep their shapes unchanged. The head triangle
will be moved by m disks (line 3, 9), while the tail tri-
angle will be moved by n disks (line 5, 11). However,
the body is sensitive to the relationship between m and n.
The body is twisted from a parallelogram to a rectangle
when m≥ n (line 6), while from a rectangle to a parallel-
ogram when m < n (line 12). FastScale keeps the relative
locations of all blocks in the same column.

When block x is in the location newly added after the
last scaling, it is addressed via the Placing() procedure.
If block x is a new block, it is the yth new block (line 1).
Each stripe holds n new blocks. So, we have b = y/n
(line 2). The order of placing new blocks is shown in
Figures 2 and 3 (line 4-10).

This algorithm is very simple. It requires fewer than
50 lines of C code, reducing the likelihood that a bug will
cause a data block to be mapped to the wrong location.

2.4 Property Examination
The purpose of this experiment is to quantitatively char-
acterize whether the FastScale algorithm satisfies the
three requirements, described in Subsection 2.1. For this
purpose, we compare FastScale with the round-robin al-
gorithm and the semi-RR algorithm. From a 4-disk array,
we add one disk repeatedly for 10 times using the three
algorithms respectively. Each disk has a capacity of 128
GB, and the size of a data block is 64 KB. In other words,
each disk holds 2×10242 blocks.

Uniform data distribution. We use the coefficient of
variation as a metric to evaluate the uniformity of data
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Figure 4: The variation of data layout involved in migration.

distribution across all the disks. The coefficient of vari-
ation expresses the standard deviation as a percentage of
the average. The smaller the coefficient of variation is,
the more uniform the data distribution is. Figure 5 plots
the coefficient of variation versus the number of scal-
ing operations. For the round-robin and FastScale algo-
rithms, both the coefficients of variation remain 0 percent
as the times of disk additions increases.

Conversely, the semi-RR algorithm causes excessive
oscillation in the coefficient of variation. The maximum
is even 13.06 percent. The reason for this non-uniformity
is given as follows. An initial group of 4 disks makes the
blocks be placed in a round-robin fashion. When the first
scaling operation adds one disk, then 1/5 of all blocks,
where (x mod 5)≥ 4, are moved onto the new disk, Disk
4. However, with another operation of adding one more
disk using the same approach, 1/6 of all the blocks are
not evenly picked from the 5 old disks and moved onto
the new disk, Disk 5. Only certain blocks from disks 1, 3
and 4 are moved onto disk 5 while disk 0 and disk 2 are
ignored. This is because disk 5 will contain blocks with
logical numbers that satisfy (x mod 6) = 5, which are
all odd numbers. The logical numbers of those blocks
on Disks 0 and 2, resulting from (x mod 4) = 0 and
(x mod 4) = 2 respectively, are all even numbers. There-
fore, blocks from disks 0 and 2 do not qualify and are not
moved.

Minimal data migration. Figure 6 plots the migra-
tion fraction (i.e., the fraction of data blocks to be mi-
grated) versus the number of scaling operations. Using
the round-robin algorithm, the migration fraction is con-
stantly 100%. This will bring a very large migration cost.

The migration fractions using the semi-RR algorithm
and using FastScale are identical. They are significantly
smaller than the migration fraction of using the round-
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Figure 6: Comparison in data migration ratio

robin algorithm. Another obvious phenomenon is that
they decrease with the increase of the number of scaling
operations. The reason behind this phenomenon is de-
scribed as follows. To make each new disk hold 1/(m+
n) of total data, the semi-RR algorithm and FastScale
moves n/(m + n) of total data. m increases with the
number of scaling operations. As a result, the percent-
age of new disks (i.e., n/(m + n)) decreases. Therefore,
the migration fractions using the semi-RR algorithm and
FastScale decrease.

Storage and calculation overheads. When a disk ar-
ray boots, it needs to obtain the RAID topology from
disks. Table 4 shows the storage overheads of the three
algorithms. The round-robin algorithm depends only on
the total number of member disks. So its storage over-
head is one integer. The semi-RR and FastScale algo-
rithms depend on how many disks are added during each
scaling operation. If we scale RAID t times, their stor-
age overheads are t integers. Actually, the RAID scaling
operation is not too frequent. It may be performed ev-
ery half year, or even longer. Consequently, the storage
overheads are very small.

To quantitatively characterize the calculation over-
heads, we run different algorithms to calculate the phys-
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Figure 7: Comparison in addressing time

Algorithm Storage Overhead
round-robin 1

semi-RR t
FastScale t

Table 4: The storage overheads of different algorithms.

ical addresses for all data blocks on a scaled RAID. The
whole addressing process is timed and then the average
addressing time for each block is calculated. The testbed
used in the experiment is an Intel Dual Core T9400 2.53
GHz machine with 4 GB of memory. A Windows 7 En-
terprise Edition is installed. Figure 7 plots the addressing
time versus the number of scaling operations.

The round-robin algorithm has a low calculation over-
head of 0.014 µs or so. The calculation overheads us-
ing the semi-RR and FastScale algorithms are close, and
both take on an upward trend. Among the three algo-
rithms, FastScale has the largest overhead. Fortunately,
the largest addressing time using FastScale is 0.24 µs
which is negligible compared to milliseconds of disk I/O
time.

3 Optimizing Data Migration

The FastScale algorithm succeeds in minimizing data
migration for RAID scaling. In this section, we describe
FastScale’s optimizations to the process of data migra-
tion.

3.1 Access Aggregation
FastScale moves only data blocks from old disks to new
disks, while not migrating data among old disks. The
data migration will not overwrite any valid data. As a
result, data blocks may be moved in an arbitrary order.
Since disk I/O performs much better with large sequen-
tial access, FastScale accesses multiple successive blocks
via a single I/O.
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Figure 9: Aggregate writes for RAID scaling from 3 disks to 5. Multi-
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Take a RAID scaling from 3 disks to 5 as an exam-
ple, shown in Figure 8. Let us focus on the first region.
FastScale issues the first I/O request to read Blocks 0 and
3, the second request to read Blocks 4 and 7, and the
third request for Blocks 8 and 11, simultaneously. By
this means, to read all of these blocks, FastScale requires
only three I/Os, instead of six. Furthermore, all these 3
large-size data reads are on three disks. They can be done
in parallel, further increasing I/O rate.

When all the six blocks have been read into a mem-
ory buffer, FastScale issues the first I/O request to write
Blocks 0, 3, and 7, the second I/O to write Blocks 4, 8
and 11, simultaneously (see Figure 9). In this way, only
two large sequential write requests are issued as opposed
to six small writes.

For RAID scaling from m disks to m+n, m reads and
n writes are required to migrate all the data in a region,
i.e., m × n data blocks.

Access aggregation converts sequences of small re-
quests into fewer, larger requests. As a result, seek cost
is mitigated over multiple blocks. Moreover, a typical
choice of the optimal block size for RAID is 32KB or
64KB [4, 7, 8, 9]. Thus, accessing multiple successive
blocks via a single I/O enables FastScale to have a larger
throughput. Since data densities in disks increase at a
much faster rate than improvements in seek times and ro-
tational speeds, access aggregation benefits more as tech-
nology advances.

3.2 Lazy Checkpoint
While data migration is in progress, the RAID storage
serves user requests. Furthermore, the coming user I/Os
may be write requests to migrated data. As a result,
if mapping metadata does not get updated until all of
the blocks have been moved, data consistency may be
destroyed. Ordered operations [9] of copying a data
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Figure 10: If data blocks are copied to their new locations and meta-
data is not yet updated when the system fails, data consistency is still
maintained because the data in their original locations are valid and
available.
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Figure 11: Lazy updates of mapping metadata. “C”: migrated and
checkpointed; “M”: migrated but not checkpointed; “U”:not migrated.
Data redistribution is checkpointed only when a user write request ar-
rives in the area “M”.

block and updating the mapping metadata (a.k.a., check-
point) can ensure data consistency. But ordered opera-
tions cause each block movement to require one meta-
data write, which results in a large cost of data migra-
tion. Because metadata is usually stored at the beginning
of all member disks, each metadata update causes one
long seek per disk. FastScale uses lazy checkpoint to
minimize the number of metadata writes without com-
promising data consistency.

The foundation of lazy checkpoint is described as fol-
lows. Since block copying does not overwrite any valid
data, both its new replica and original are valid after a
data block is copied. In the above example, we suppose
that Blocks 0, 3, 4, 7, 8, and 11 have been copied to their
new locations and the mapping metadata has not been up-
dated (see Figure 10), when the system fails. The origi-
nal replicas of the six blocks will be used after the system
reboots. As long as Blocks 0, 3, 4, 7, 8, and 11 have not
been written since being copied, the data remain consis-
tent. Generally speaking, when the mapping information
is not updated immediately after a data block is copied,
an unexpected system failure only wastes some data ac-
cesses, but does not sacrifice data reliability. The only
threat is the incoming of write operations to migrated
data.

The key idea behind lazy checkpoint is that data blocks
are copied to new locations continuously, while the map-
ping metadata is not updated onto the disks (a.k.a., check-
point) until a threat to data consistency appears. We use
hi(x) to describe the geometry after the ith scaling opera-
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tion, where Ni disks serve user requests. Figure 11 illus-
trates an overview of the migration process. Data in the
moving region is copied to new locations. When a user
request arrives, if its physical block address is above the
moving region, it is mapped with hi−1(x); If its physical
block address is below the moving region, it is mapped
with hi(x). When all of the data in the current moving
region are moved, the next region becomes the moving
region. In this way, the newly added disks are gradually
available to serve user requests. Only when a user write
request arrives in the area where data have been moved
and the movement has not been checkpointed, are map-
ping metadata updated.

Since one write of metadata can store multiple map
changes of data blocks, lazy updates can significantly
decrease the number of metadata updates, reducing the
cost of data migration. Furthermore, lazy checkpoint
can guarantee data consistency. Even if the system fails
unexpectedly, only some data accesses are wasted. It
should also be noted that the probability of a system fail-
ure is very low.

4 Experimental Evaluation

The experimental results in Section 2.4 show that the
semi-RR algorithm causes extremely non-uniform data
distribution. This will bring into low I/O performance.
In this section, we compare FastScale with the SLAS
approach [5] through detailed experiments. SLAS, pro-
posed in 2007, preserves the round-robin order after
adding disks.

4.1 Simulation System
We use detailed simulations with several disk traces col-
lected in real systems. The simulator is made up of a
workload generator and a disk array (Figure 12). Ac-
cording to trace files, the workload generator initiates an
I/O request at the appropriate time so that a particular
workload is induced on the disk array.

The disk array consists of an array controller and stor-
age components. The array controller is logically divided
into two parts: an I/O processor and a data mover. The
I/O processor, according to the address mapping, for-
wards incoming I/O requests to the corresponding disks.
The data mover reorganizes the data on the array. The
mover uses an on/off logic to adjust the redistribution
rate. Data redistribution is throttled on detection of high
application workload. Otherwise, it performs continu-
ously.

The simulator is implemented in SimPy [10] and
DiskSim [11]. SimPy is an object-oriented, process-
based discrete-event simulation language based on stan-
dard Python. DiskSim is an efficient, accurate disk sys-
tem simulator from Carnegie Mellon University and has
been extensively used in various research projects study-
ing storage subsystem architectures. The workload gen-
erator and the array controller are implemented in SimPy.
Storage components are implemented in DiskSim. In
other words, DiskSim is used as a worker module to sim-
ulate disk accesses. The simulated disk specification is
that of the 15,000-RPM IBM Ultrastar 36Z15 [12].

4.2 Workloads
Our experiments use the following three real-system disk
I/O traces with different characteristics.

• TPC-C traced disk accesses of the TPC-C database
benchmark with 20 warehouses [13]. It was col-
lected with one client running 20 iterations.

• Fin is obtained from the Storage Performance
Council (SPC) [14, 15], a vendor-neutral standards
body. The Fin trace was collected from OLTP appli-
cations running at a large financial institution. The
write ratio is high.

• Web is also from SPC. It was collected from a
system running a web search engine. The read-
dominated Web trace exhibits the strong locality in
its access pattern.

4.3 Experiment Results
4.3.1 The Scaling Efficiency

Each experiment lasts from the beginning to the end of
data redistribution for RAID scaling. We focus on com-
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Figure 13: Performance comparison between FastScale and SLAS un-
der the Fin workload.

paring redistribution times and user I/O latencies when
different scaling programs are running in background.

In all experiments, the sliding window size for SLAS
is set to 1024. Access aggregation in SLAS can improve
the redistribution efficiency. However, a too large size of
redistribution I/Os will compromise the I/O performance
of applications. In our experiments, SLAS reads 8 data
blocks via an I/O request.

The purpose of our first experiment is to quantitatively
characterize the advantages of FastScale through a com-
parison with SLAS. We conduct a scaling operation of
adding 2 disks to a 4-disk RAID, where each disk has
a capacity of 4 GB. Each approach performs with the
32KB stripe unit size under a Fin workload. The thresh-
old of rate control is set 100 IOPS. This parameter setup
acts as the baseline for the latter experiments, from which
any change will be stated explicitly.

We collect the latencies of all user I/Os. We divide
the I/O latency sequence into multiple sections accord-
ing to I/O issuing time. The time period of each section
is 100 seconds. Furthermore, we get a local maximum
latency from each section. A local maximum latency is
the maximum of I/O latencies in a section. Figure 13
plots local maximum latencies using the two approaches
as the time increases along the x-axis. It illustrates that
FastScale demonstrates a noticeable improvement over
SLAS in two metrics. First, the redistribution time using
FastScale is significantly shorter than that using SLAS.
They are 952 seconds and 6,830 seconds, respectively.
In other words, FastScale has a 86.06% shorter redistri-
bution time than SLAS.

The main factor in FastScale’s reducing the redistribu-
tion time is the significant decline of the amount of the
data to be moved. When SLAS is used, almost 100%
of data blocks have to be migrated. However, when
FastScale is used, only 33.3% of data blocks require to
be migrated. Another factor is the effective exploitation
of two optimization technologies: access aggregation re-
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Figure 14: Cumulative distribution of I/O latencies during the data re-
distributions by the two approaches under the Fin workload.

duces the number of redistribution I/Os; lazy checkpoint
minimizes metadata writes.

Second, local maximum latencies of SLAS are obvi-
ously longer than those of FastScale. The global max-
imum latency using SLAS reaches 83.12 ms while that
using FastScale is 55.60 ms. This is because the redis-
tribution I/O size using SLAS is larger than that using
FastScale. For SLAS, the read size is 256 KB (8 blocks),
and the write size is 192 KB (6 blocks). For FastScale,
the read size is 64 KB (2 blocks), and the write size is 128
KB (4 blocks). Of course, local maximum latencies of
SLAS will be lower with a decrease in the redistribution
I/O size. But the decrease in the I/O size will necessarily
enlarge the redistribution time.

Figure 14 shows the cumulative distribution of user re-
sponse times during data redistribution. To provide a fair
comparison, I/Os involved in statistics for SLAS are only
those issued before 952 seconds. When I/O latencies are
larger than 18.65 ms, the CDF value of FastScale is larger
than that of SLAS. This indicates again that FastScale
has smaller maximum response time of user I/Os than
SLAS. The average latency of FastScale is close to that
of SLAS. They are 8.01 ms and 7.53 ms respectively. It
is noteworthy that due to significantly shorter data redis-
tribution time, FastScale has a markedly smaller impact
on the user I/O latencies than SLAS does.

A factor that might affect the benefits of FastScale is
the workload under which data redistribution performs.
Under the TPC-C workload, we also measure the per-
formances of FastScale and SLAS to perform the “4+2”
scaling operation.

For the TPC-C workload, Figure 15 shows local max-
imum latencies versus the redistribution times for SLAS
and FastScale. It shows once again the efficiency of
FastScale in improving the redistribution time. The re-
distribution times using SLAS and FastScale are 6,820
seconds and 964 seconds, respectively. That is to say,
FastScale brings an improvement of 85.87% in the re-
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Figure 15: Performance comparison between FastScale and SLAS un-
der the TPC-C workload.

distribution time. Likewise, local maximum latencies of
FastScale are also obviously shorter than those of SLAS.
The global maximum latency using FastScale is 114.76
ms while that using SLAS reaches 147.82 ms.

To compare the performance of FastScale under dif-
ferent workloads, Figure 16 shows a comparison in the
redistribution time between FastScale and SLAS. For
completeness, we also conducte a comparison experi-
ment on the redistribution time with no loaded work-
load. To scale a RAID volume off-line, SLAS uses 6802
seconds whereas FastScale consumes only 901 seconds.
FastScale provides an improvement of 86.75% in the re-
distribution time.

We can draw one conclusion from Figure 16. Under
various workloads, FastScale consistently outperformes
SLAS by 85.87-86.75% in the redistribution time, with
smaller maximum response time of user I/Os.

4.3.2 The Performance after Scaling

The above experiments show that FastScale improves the
scaling efficiency of RAID significantly. One of our con-
cerns is whether there is a penalty in the performance of
the data layout after scaling using FastScale, compared
with the round-robin layout preserved by SLAS.

We use the Web workload to measure the perfor-
mances of the two RAIDs, scaled from the same RAID
using SLAS and FastScale. Each experiment lasts 500
seconds, and records the latency of each I/O. Based on
the issue time, the I/O latency sequence is divided into
20 sections evenly. Furthermore, we get a local average
latency from each section.

First, we compare the performances of two RAIDs,
after one scaling operation “4+1” using the two scaling
approaches. Figure 17 plots local average latencies for
the two RAIDs as the time increases along the x-axis.
We can find that the performances of the two RAIDs are
very close. With regards to the round-robin RAID, the
average latency is 11.36 ms. For the FastScale RAID,
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Figure 16: Comparison of redistribution times of FastScale and SLAS
under different workloads. The label “unloaded” means scaling a
RAID volume offline.

the average latency is 11.37 ms.
Second, we compare the performances of two RAIDs,

after two scaling operations “4+1+1” using the two ap-
proaches. Figure 18 plots local average latencies of the
two RAIDs as the time increases along the x-axis. It
again revealed the approximate equality in the perfor-
mances of the two RAIDs. With regards to the round-
robin RAID, the average latency is 11.21 ms. For the
FastScale RAID, the average latency is 11.03 ms.

One conclusion can be reached that the performance
of the RAID scaled using FastScale is almost identical
with that of the round-robin RAID.

5 Related Work

5.1 Scaling Deterministic RAID
The HP AutoRAID [8] allows an online capacity expan-
sion. Newly created RAID-5 volumes use all of the disks
in the system, but previously created RAID-5 volumes
continue to use only the original disks. This expansion
does not require data migration. But the system cannot
add new disks into an existing RAID-5 volume. The con-
ventional approaches to RAID scaling redistributes data
and preserves the round-robin order after adding disks.

Gonzalez and Cortes [3] proposed a gradual assimila-
tion algorithm (GA) to control the overhead of scaling a
RAID-5 volume. However, GA accesses only one block
via an I/O. Moreover, it writes mapping metadata onto
disks immediately after redistributing each stripe. As a
result, GA has a large redistribution cost.

The reshape toolkit in the Linux MD driver (MD-
Reshape) [4] writes mapping metadata for each fixed-
sized data window. However, user requests to the data
window have to queue up until all data blocks within the
window are moved. On the other hand, MD-Reshape is-
sues very small (4KB) I/O operations for data redistri-
bution. This limits the redistribution performance due to
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Figure 17: Performance comparison between FastScale’s layout and
round-robin layout under the Web workload after one scaling operation
“4+1”.

more disk seeks.
Zhang et al. [5] discovered that there is always a re-

ordering window during data redistribution for round-
robin RAID scaling. The data inside the reordering win-
dow can migrate in any order without overwriting any
valid data. By leveraging this insight, they proposed the
SLAS approach, improving the efficiency of data redis-
tribution. However, SLAS still requires migrating all
data. Therefore, RAID scaling remains costly.

D-GRAID [16] restores only live file system data to a
hot spare so as to recover from failures quickly. Like-
wise, it can accelerate the redistribution process if only
the live data blocks from the perspective of file systems
are redistributed. However, this needs for semantically-
smart storage systems. Differently, FastScale is indepen-
dent on file systems, and it can work with any ordinary
disk storage.

A patent [17] presents a method to eliminate the need
to rewrite the original data blocks and parity blocks on
original disks. However, the method makes all the parity
blocks be either only on original disks or only on new
disks. The obvious distribution non-uniformity of parity
blocks will bring a penalty to write performance.

Franklin et al. [18] presented an RAID scaling method
using spare space with immediate access to new space.
First, old data are distributed among the set of data disk
drives and at least one new disk drive while, at the same
time, new data are mapped to the spare space. Upon
completion of the distribution, new data are copied from
the spare space to the set of data disk drives. This is simi-
lar to the key idea of WorkOut [19]. This kind of method
requires spare disks available in the RAID.

In another patent, Hetzler [20] presented a method to
RAID-5 scaling, noted MDM. MDM exchanges some
data blocks between original disks and new disks. MDM
can perform RAID scaling with reduced data movement.
However, it does not increase (just maintains) the data
storage efficiency after scaling. The RAID scaling pro-
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Figure 18: Performance comparison between FastScale’s layout and
round-robin layout under the Web workload after two scaling opera-
tions “4+1+1”.

cess exploited by FastScale is favored in the art because
the data storage efficiency is maximized, which many
practitioners consider desirable.

5.2 Scaling Randomized RAID
Randomized RAID [6, 21, 22, 23] appears to have bet-
ter scalability. It is now gaining the spotlight in the data
placement area. Brinkmann et al. [23] proposed the cut-
and-paste placement strategy that uses randomized allo-
cation strategy to place data across disks. For a disk ad-
dition, it cuts off the range [1/(n + 1),1/n] from given
n disks, and pastes them to the newly added (n + 1)th

disk. For a disk removal, it uses reversing operation to
move all the blocks in disks that will be removed to the
other disks. Also based on random data placement, Seo
and Zimmermann [24] proposed an approach to finding a
sequence of disk additions and removals for the disk re-
placement problem. The goal is to minimize the data mi-
gration cost. Both these two approaches assume the exis-
tence of a high-quality hash function that assigns all the
data blocks in the system into the uniformly distributed
real numbers with high probability. However, they did
not present such a hash function.

The SCADDAR algorithm [6] uses a pseudo-random
function to distribute data blocks randomly across all
disks. It keeps track of the locations of data blocks after
multiple disk reorganizations and minimizes the amount
of data to be moved. Unfortunately, the pseudo-hash
function does not preserve the randomness of the data
layout after several disk additions or deletions [24]. So
far, true randomized hash function which preserves its
randomness after several disk additions or deletions has
not been found.

The simulation report in [21] shows that a single copy
of data in random striping may result in some hiccups of
the continuous display. To address this issue, one can use
data replication [22], where a fraction of the data blocks
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randomly selected are replicated on randomly selected
disks. However, this will bring into a large capacity over-
head.

RUSH [25, 26] and CRUSH [27] are two algorithms
for online placement and reorganization of replicated
data. They are probabilistically optimal in distributing
data evenly and minimizing data movement when new
storage is added to the system. There are three differ-
ences between them and FastScale. First, they depend on
the existence of a high-quality random function, which
is difficult to generate. Second, they are designed for
object-based storage systems. They focus on how a data
object is mapped to a disk, without considering the data
layout of each individual disk. Third, our mapping func-
tion needs to be 1-1 and onto, but hash functions have
collisions and count on some amount of sparseness.

6 Conclusion and Future Work

This paper presents FastScale, a new approach that ac-
celerates RAID-0 scaling by minimizing data migra-
tion. First, with a new and elastic addressing function,
FastScale minimizes the number of data blocks to be mi-
grated without compromising the uniformity of data dis-
tribution. Second, FastScale uses access aggregation and
lazy checkpoint to optimize data migration.

Our results from detailed experiments using real-
system workloads show that, compared with SLAS, a
scaling approach proposed in 2007, FastScale can reduce
redistribution time by up to 86.06% with smaller maxi-
mum response time of user I/Os. The experiments also
illustrate that the performance of the RAID scaled using
FastScale is almost identical with that of the round-robin
RAID.

In this paper, the factor of data parity is not taken into
account. we believe that FastScale provides a good start-
ing point for efficient scaling of RAID-4 and RAID-5 ar-
rays. In the future, we will focus on extending FastScale
to RAID-4 and RAID-5.
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