
Exploiting Memory Device Wear-Out Dynamics to Improve NAND Flash
Memory System Performance

Yangyang Pan, Guiqiang Dong, and Tong Zhang
Electrical, Computer and Systems Engineering Department

Rensselaer Polytechnic Institute, USA.

Abstract
This paper advocates a device-aware design strategy to
improve various NAND flash memory system perfor-
mance metrics. It is well known that NAND flash
memory program/erase (PE) cycling gradually degrades
memory device raw storage reliability, and sufficiently
strong error correction codes (ECC) must be used to en-
sure the PE cycling endurance. Hence, memory man-
ufacturers must fabricate enough number of redundant
memory cells geared to the worst-case device reliability
at the end of memory lifetime. Given the memory de-
vice wear-out dynamics, the existing worst-case oriented
ECC redundancy is largely under-utilized over the en-
tire memory lifetime, which can be adaptively traded for
improving certain NAND flash memory system perfor-
mance metrics. This paper explores such device-aware
adaptive system design space from two perspectives, in-
cluding (1) how to improve memory program speed, and
(2) how to improve memory defect tolerance and hence
enable aggressive fabrication technology scaling. To en-
able quantitative evaluation, we for the first time develop
a NAND flash memory device model to capture the ef-
fects of PE cycling from the system level. We carry
out simulations using the DiskSim-based SSD simula-
tor and a variety of traces, and the results demonstrate
up to 32% SSD average response time reduction. We
further demonstrate that the potential on achieving very
good defect tolerance, and finally show that these two
design approaches can be readily combined together to
noticeably improve SSD average response time even in
the presence of high memory defect rates.

1 Introduction

The steady bit cost reduction over the past decade has en-
abled NAND flash memory to enter increasingly diverse

∗This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 0937794

applications, from consumer electronics to personal and
enterprise computing. In particular, it is now economi-
cally viable to implement solid-state drives (SSDs) using
NAND flash memory, which is expected to fundamen-
tally change the memory and storage hierarchy in future
computing systems. As the semiconductor industry is
aggressively pushing NAND flash memory technology
scaling and the use of multi-bit-per-cell storage scheme,
NAND flash memory increasingly relies on error correc-
tion codes (ECC) to ensure the data storage integrity. It
is well known that NAND flash memory cells gradually
wear out with the program/erase (PE) cycling [6], which
is reflected as gradually diminishing memory cell storage
noise margin (or increasing raw storage bit error rate). To
meet a specified PE cycling endurance limit, NAND flash
memory manufacturers must fabricate enough number
of redundant memory cells that can tolerate the worst-
case raw storage reliability at the end of memory life-
time. Clearly, the memory cell wear-out dynamics tend
to make the existing worst-case oriented ECC redun-
dancy largely under-utilized over the entire lifetime of
memory, especially at its early lifetime when PE cycling
number is relatively small.

Very intuitively, we may adaptively trade such under-
utilized ECC redundancy for improving certain NAND
flash memory system performance metrics throughout
the memory lifetime. This naturally leads to a PE-
cycling-aware adaptive NAND flash memory system de-
sign paradigm. Based upon extensive open literature on
flash memory devices, we first develop an approximate
NAND flash memory device model that quantitatively
captures the dynamic PE cycling effects, including ran-
dom telegraph noise [15, 17] and interface trap recovery
and electron detrapping [26, 31, 45], and another major
noise source: cell-to-cell interference [25]. Such a device
model makes it possible to explores and quantitatively
evaluate possible adaptive system design strategies. In
particular, this paper explores the adaptive system de-
sign space from two perspectives: (1) Since NAND flash

1

memory program speed also strongly affects the mem-
ory cell storage noise margin, we could trade the under-
utilized ECC redundancy to adaptively improve NAND
flash memory program speed; (2) We could also exploit
the under-utilized ECC redundancy to realize stronger
memory cell defect tolerance and hence enable more ag-
gressive technology scaling. We elaborate on the under-
lying rationale and realizations of these two design ap-
proaches. In addition, for the latter one, we propose a
simple differential wear-leveling strategy in order to min-
imize its impact on effective PE cycling endurance.

For the purpose of evaluation, using the developed
NAND flash memory device model, we first obtain de-
tailed quantitative memory cell characteristics under dif-
ferent PE cycling times and different program speed for
a hypothetical 2bit/cell NAND flash memory. Accord-
ingly, with the sector size of 512B user data, we construct
a binary BCH code (4798, 4096, 54) with 1.1% coding
redundancy that can ensure the data storage integrity at
the PE cycling limit of 10K. Using representative work-
load traces and the SSD model [3] in DiskSim [8], we
carry out extensive simulations to evaluate the potential
of trading under-utilized ECC redundancy to improve
memory program speed while assuming the memory is
defect-free. The simulation results show that we could
reduce the SSD average response time by up to 32%. As-
suming memory defects follow Poisson distributions, we
further show that the proposed differential wear-leveling
technique can very effectively improve the effectiveness
of allocating ECC redundancy for improving memory
defect tolerance. Finally, we study the combined effects
when we trade the under-utilized ECC redundancy to im-
prove memory program speed and realize defect toler-
ance at the same time. DiskSim-based simulations show
that, even in the presence of high defect rates, we can still
achieve noticeable SSD average response time reduction.

2 Background

2.1 Memory Erase and Program Basics
Each NAND flash memory cell is a floating gate tran-
sistor whose threshold voltage can be configured (or pro-
grammed) by injecting certain amount of charges into the
floating gate. Hence, data storage in NAND flash mem-
ory is realized by programming the threshold voltage
of each memory cell into two or more non-overlapping
voltage windows. Before one memory cell can be pro-
grammed, it must be erased (i.e., remove the charges
in the floating gate, which sets its threshold voltage to
the lowest voltage window). NAND flash memory uses
Fowler-Nordheim (FN) tunneling to realize both erase
and program [7], because FN tunneling requires very
low current and hence enables high erase/program par-

allelism. It is well known that the threshold voltage of
erased memory cells tends to have a wide Gaussian-like
distribution [41]. Hence, we can approximately model
the threshold voltage distribution of erased state as

pe(x) =
1

σe
√

2π
e
− (x−µe)2

2σ2e , (1)

where µe and σe are the mean and standard deviation
of the erased state threshold voltage. Regarding mem-
ory program, a tight threshold voltage control is typi-
cally realized by using incremental step pulse program
(ISPP) [6, 39], i.e., all the memory cells on the same
word-line are recursively programmed using a program-
and-verify approach with a stair case program word-line
voltage Vpp. Let ∆Vpp denote the incremental program
step voltage. For the k-th programmed state with the ver-
ify voltage V (k)

p , ideally ISPP program results in a uni-
form threshold voltage distribution:

p(k)
p (x) =

{
1

∆Vpp
, if V (k)

p ≤ x≤V (k)
p +∆Vpp

0, else
. (2)

Unfortunately, the above ideal memory cell thresh-
old voltage distribution can be (significantly) distorted
in practice, mainly due to PE cycling and cell-to-cell in-
terference, which will be discussed in the remainder of
this section.

2.2 Effects of PE Cycling
Flash memory PE cycling causes damage to the tunnel
oxide of floating gate transistors in the form of charge
trapping in the oxide and interface states [9, 30, 34],
which directly results in threshold voltage shift and fluc-
tuation and hence gradually degrades memory device
noise margin. Major distortion sources include

1. Electrons capture and emission events at charge
trap sites near the interface developed over PE cy-
cling directly result in memory cell threshold volt-
age fluctuation, which is referred to as random tele-
graph noise (RTN) [15, 17];

2. Interface trap recovery and electron detrapping [26,
31,45] gradually reduce memory cell threshold volt-
age, leading to the data retention limitation.

Moreover, electrons trapped in the oxide over PE cy-
cling make it difficult to erase the memory cells, leading
to a longer erase time, or equivalently, under the same
erase time, those trapped electrons make the threshold
voltage of the erased state increase [4, 21, 27, 42]. Most
commercial flash chips employ erase-and-verify opera-
tion to prevent the increase of erase state threshold volt-
age at the penalty of gradually longer erase time with PE
cycling.

2

Ideal
Programming

Memory
Erase

),(ee !µ

Distorted by
RTN

r"

Distorted by Cell-to-Cell
Interference

#

Distorted by interface trap
recovery and electron detrapping

Final Threshold
Voltage Distribution

),(dd !µ t

PE cycling number N

ppV$

Figure 1: Illustration of the approximate NAND flash memory device model to incorporate major threshold voltage
distortion sources.

RTN causes random fluctuation of memory cell
threshold voltage, where the fluctuation magnitude is
subject to exponential decay. Hence, we can model
the probability density function pr(x) of RTN-induced
threshold voltage fluctuation as a symmetric exponential
function [15]:

pr(x) =
1

2λr
e−
|x|
λr . (3)

Let N denote the PE cycling number, λr scales with N
in an approximate power-law fashion, i.e., λr is approxi-
mately proportional to Nα , where α tends to be less than
1.

Interface trap recovery and electron detrapping pro-
cesses approximately follow Poisson statistics [30],
hence threshold voltage reduction due to interface trap
recovery and electron detrapping can be approximately
modeled as a Gaussian distribution N (µd ,σ

2
d). Both µd

and σ2
d scale with N in an approximate power-law fash-

ion, and scale with the retention time t in a logarithmic
fashion. Moreover, the significance of threshold voltage
reduction induced by interface trap recovery and electron
detrapping is also proportional to the initial threshold
voltage magnitude [27], i.e., the higher the initial thresh-
old voltage is, the faster the interface trap recovery and
electron detrapping occur and hence the larger threshold
voltage reduction will be.

2.3 Cell-to-Cell Interference
In NAND flash memory, the threshold voltage shift of
one floating gate transistor can influence the thresh-
old voltage of its neighboring floating gate transistors
through parasitic capacitance-coupling effect [25]. This
is referred to as cell-to-cell interference, which has been
well recognized as the one of major noise sources in
NAND flash memory [24,29,36]. Threshold voltage shift
of a victim cell caused by cell-to-cell interference can be
estimated as [25]

F = ∑
k

(∆V (k)
t · γ(k)), (4)

where ∆V (k)
t represents the threshold voltage shift of one

interfering cell which is programmed after the victim

cell, and the coupling ratio γ(k) is defined as

γ
(k) =

C(k)

Ctotal
, (5)

where C(k) is the parasitic capacitance between the in-
terfering cell and the victim cell, and Ctotal is the total
capacitance of the victim cell. Cell-to-cell interference
significance is affected by NAND flash memory bit-line
structure. In current design practice, there are two differ-
ent bit-line structures, including conventional even/odd
bit-line structure [35,40] and emerging all-bit-line struc-
ture [10,28]. For write, all-bit-line structure writes all the
cells on the same wordline. In even/odd bit-line struc-
ture, memory cells on one word-line are alternatively
connected to even and odd bit-lines and they are pro-
grammed at different time. Therefore, an even cell is
mainly interfered by five neighboring cells and an odd
cell is interfered by only three neighboring cells. There-
fore even cells and odd cells experience largely differ-
ent amount of cell-to-cell interference. Cells in all-bit-
line structure suffers less cell-to-cell inference than even
cells in odd/even structure, and the all-bit-line structure
can most effectively support high-speed current sensing
to improve the memory read and verify speed. Therefore,
throughout the remainder of this paper, we mainly con-
sider NAND flash memory with the all-bit-line structure.

2.4 An Approximate NAND Flash Memory
Device Model

Based on the above discussions, we can approximately
model NAND flash memory device characteristics as
shown in Fig. 1. Accordingly, we can simulate memory
cell threshold voltage distribution and the corresponding
memory cell raw storage reliability. Based upon Eq.(1)
and Eq.(2), we can obtain the distortion-less threshold
voltage distribution function pp(x). Recall that ppr(x)
denotes the RTN distribution function (see Eq.(3)), and
let par(x) denote the threshold voltage distribution af-
ter incorporating RTN, which is obtained by convoluting
pp(x) and pr(x):

par(x) = pp(x)
⊗

pr(x). (6)

3

Cell-to-cell interference is further incorporated based on
Eq.(4). To capture the inevitable process variability, we
set both the vertical coupling ratio γy and diagonal cou-
pling ratio γxy are random variables with bounded Gaus-
sian distributions:

pc(x) =

 cc
σc
√

2π
· e
− (x−µc)2

2σ2c , if |x−µc| ≤ wc

0, else
, (7)

where µc and σc are the mean and standard deviation,
and cc is chosen to ensure the integration of this bounded
Gaussian distribution equals to 1. We set wc = 0.1µc and
σc = 0.4µc in this work.

Let pac denote the threshold voltage distribution after
incorporating cell-to-cell interference, pt(x) denote the
distribution of threshold voltage fluctuation induced by
interface trap recovery and electron detrapping, the final
threshold voltage distribution p f is obtained as

p f (x) = pac(x)
⊗

pt(x). (8)

Example 2.1 Let us consider 2bits/cell NAND flash
memory. We set normalized σe and µe of the erased state
as 0.35 and 1.4, respectively. For the three programmed
states, we set the normalized program step voltage ∆Vpp
as 0.3, and the normalized verify voltages Vp as 2.85,
3.55 and 4.25, respectively. For the RTN distribution
function pr(x), we set the parameter λr = Kλ ·N0.5 where
Kλ equals to 4× 10−4. Regarding cell-to-cell interfer-
ence, according to [36, 38], we set the means of γy and
γxy as 0.08 and 0.0048, respectively. For the function
N (µd ,σ

2
d) to capture interface trap recovery and elec-

tron detrapping, according to [30, 31], we set that µd
scale with N0.5 and σ2

d scales with N0.6, and both scale
with ln(1 + t/t0), where t denotes the memory retention
time and t0 is an initial time and can be set as 1 hour.
In addition, as pointed out earlier, both µd and σ2

d also
depend on the initial threshold voltage. Hence, we set
that both approximately scale with Ks(x−x0), where x is
the initial threshold voltage, and x0 and Ks are constants.
Therefore, we have{

µd = Ks(x− x0)KdN0.5 ln(1+ t/t0)
σ2

d = Ks(x− x0)KmN0.6 ln(1+ t/t0)
, (9)

where we set Ks = 0.333, x0 = 1.4, Kd = 4× 10−4, and
Km = 2×10−6 by fitting the measurement data presented
in [30,31]. Accordingly, we carry out Monte Carlo com-
puter simulations to obtain the cell threshold voltage dis-
tribution as shown in Fig. 2, which illustrates how RTN,
cell-to-cell interference, and retention noise affect the
threshold voltage distribution.

Figure 2: Simulated results to show the effects of RTN,
cell-to-cell interference, and retention noise on memory
cell threshold voltage distribution.

3 System Design Adaptive to PE Cycling

From the above discussions, it is clear that NAND flash
memory cell raw storage reliability gradually degrades
with the PE cycling: During the early lifetime of mem-
ory cells (i.e., the PE cycling number N is relatively
small), the aggregated PE cycling effects are relatively
small, which leads to a relatively large memory cell stor-
age noise margin and hence good raw storage reliabil-
ity (i.e., low raw storage bit error rate); since the ag-
gregated PE cycling effects scale with N in approximate
power-law fashions, the memory cell storage noise mar-
gin and hence raw storage reliability gradually degrade
as the PE cycling number N increases. Given the target
PE cycling endurance limit (e.g., 10K PE cycling), each
memory word-line must have enough redundant mem-
ory cells so that the corresponding ECC can ensure the
storage integrity as the PE cycling reaches the endurance
limit. Due to the memory cell raw storage reliability dy-
namics, the redundancy geared to the worst-case scenario
will over-protect the user data for most time throughout
the entire memory lifetime, especially at its early life-
time when memory cell operational noise margin is much
larger. This can be illustrated in Fig. 3, which clearly
suggests that the redundant memory cells are essentially
under-utilized at the memory early lifetime.

Very intuitively, we may trade such under-utilized re-
dundancy to improve certain memory system perfor-
mance metrics, which should be carried out adaptive to

4

00 01 11 10 00 01 11 10

Existing redundancy geared to the worst case

Under-utilized
Low raw bit error rate High raw bit error rate

Fully utilized

1K PE cycling 10K PE cycling

Figure 3: Illustration of the under-utilized ECC redundancy before reaching PE cycling endurance limit.

the memory PE cycling. In this work, we explore this
adaptive memory system design space from two perspec-
tives as discussed in the remainder of this section.

3.1 Approach I: Improve Memory Pro-
gram Speed

In this subsection, we elaborate on the potential of trad-
ing the under-utilized ECC redundancy to improve aver-
age memory program speed. As discussed in Section 2.1,
NAND flash memory program is carried out recursively
by sweeping over the entire memory cell threshold volt-
age range with a program step voltage ∆Vpp. As a re-
sult, the memory program latency is inversely propor-
tional to ∆Vpp, which suggests that we can improve the
memory program speed by increasing ∆Vpp. However, a
larger ∆Vpp directly results in a wider threshold voltage
distribution of each programmed state, leading to less
noise margin between adjacent programmed states and
hence worse raw storage bit error rate. Therefore, there
is an inherent trade-off between memory program speed
vs. memory raw bit error rate, which can be configured
by adjusting the program step voltage ∆Vpp. Since the
memory cell noise margin is further degraded by the PE
cycling effects as discussed above, a given ∆Vpp will re-
sult in different noise margin (hence different raw storage
bit error rate) as memory cells undergo different amount
of PE cycling.

In current design practice, ∆Vpp is fixed and its value is
sufficiently small so that the ECC can tolerate the worst-
case memory raw storage bit error rate as the PE cycling
reaches its endurance limit. As a result, the memory
program speed remains largely unchanged while the raw
storage bit error rate gradually degrades. Before the PE
cycling number reaches its endurance limit, the existing
redundancy is under-utilized as pointed out in the above.
Clearly, to eliminate such redundancy under-utilization,
we could intentionally increase the the program step volt-
age ∆Vpp according to the run-time PE cycling number in
such a way that the memory raw storage bit error rate is
always close to what can be maximally tolerated by the

existing redundancy. Therefore, the existing redundancy
is always almost fully utilized, and meanwhile the dy-
namically increased ∆Vpp leads to higher average mem-
ory program speed. The above discussion can be further
illustrated in Fig. 4.

Although it would be ideal if the program step voltage
∆Vpp can be smoothly adjusted with a very fine gran-
ularity, the limited reference voltage accuracy in real
NAND flash memory chips may only enable the use of
a few discrete program step voltages. Assume there are
m different program step voltages, i.e., ∆V (1)

pp > ∆V (2)
pp >

· · · > ∆V (m)
pp . Given the existing ECC redundancy, we

can obtain a sequence of PE cycling thresholds N0 = 0 <
N1 < · · ·< Nm so that, if the run-time PE cycling number
falls into the range of [Ni−1,Ni), we can use the program
step voltage V (i)

pp and still ensure the overall system data
storage integrity. If we follow the conventional design
practice where the program step voltage is fixed accord-
ing to the worst-case scenario, the smallest step voltage
∆V (m)

pp will be used throughout the entire memory life-
time. Therefore, we can estimate the average program
speed improvement over the entire memory lifetime as

s = 1−
∑

m
i=1(Ni−Ni−1) · 1

∆V (i)
pp

Nm · 1
∆V (m)

pp

. (10)

3.2 Approach II: Improve Memory Tech-
nology Scalability

In this subsection, we elaborate on the potential of trad-
ing the under-utilized ECC redundancy to improve mem-
ory defect tolerance. With the help of very sophisticated
techniques such as double patterning [20], the decade-
long 193nm photolithography has successfully pushed
NAND flash memory into the sub-30nm region. How-
ever, as the industry is striving to push the NAND flash
memory technology scaling into the sub-20nm region
by using immersion photolithography or new lithogra-
phy technologies such as nanoimprint, defects in such
extremely dense memory arrays may inevitably increase.

5

00 01 11 10 00 01 11 10

fast
Programming speed

Raw bit error rate

1K PE cycling

Small ppV!
high

Large ppV!
slow

low

Figure 4: Illustration of the impact of program step voltage ∆Vpp on the program speed vs. raw storage bit error rate
trade-off.

As a result, conventional spare row/column repair tech-
niques may become inadequate to ensure a sufficiently
high yield.

Very intuitively, the existing ECC redundancy can be
leveraged to tolerate memory defects, especially random
memory cell defects. However, if certain portion of ECC
redundancy is used for defect tolerance, it will not be
able to ensure the specified PE cycling limit, leading to
PE cycling endurance degradation. Since all the pages
in each memory block undergo the same number of PE
cycling, the worst-case page (i.e., the page contains the
most defects) in each block sets the achievable PE cy-
cling endurance for this block. For example, assume the
existing ECC redundancy can tolerate up to 50 errors for
each page and survive up to 10K PE cycling in the ab-
sence of any memory cell defects. If the worst-case page
in one block contains 5 defective cells, then it can only
use the residual 45-error-correcting capability to toler-
ate memory operational noises such as PE cycling ef-
fects and cell-to-cell interference. Suppose this makes
the worst-case page can only survive up to 8K PE cy-
cling, this block can only be erased by 8K times instead
of 10K times before risking data loss.

Clearly, if we attempt to reserve certain ECC re-
dundancy for tolerating memory cell defects, we must
minimize the impact on overall memory PE cycling
endurance. In current design practice, NAND flash
memory uses wear-leveling to uniformly spread pro-
gram/erase operations among all the memory blocks to
maximize the overall memory lifetime. Since different
memory blocks with different amount of defective mem-
ory cells can survive different number of PE cycling, uni-
form wear-leveling is clearly not an optimal option. In-
stead, we should make wear-leveling fully aware of the
different achievable PE cycling limits among different
memory blocks, which is referred to as differential wear-
leveling. This can be illustrated in Fig. 5: instead of uni-
formly distributing program/erase operations among all
the memory blocks, the differential wear-leveling sched-
ule the program/erase operations among all the memory
blocks in proportional to their achievable PE cycling lim-
its. As a result, we may largely improve the overall mem-
ory lifetime compared with uniform wear-leveling.

Early lifetime
Block 0 Block 1 Block 2

Middle lifetime End lifetime

Endurance

Block 0 Block 1 Block 2 Block 0 Block 1 Block 2

Remained Life

(a)

Block 0 Block 1 Block 2

Early lifetime Middle lifetime End lifetime
Block 0 Block 1 Block 2Block 0 Block 1 Block 2

Endurance

Remained Life

(b)

Figure 5: Illustration of (a) conventional uniform wear-
leveling, and (b) proposed differential wear-leveling,
where the ECC is used to tolerate defective memory cells
and hence different blocks may have different achievable
PE cycling endurance.

Assume the worst-case page can at most contains M
defective memory cells, and let Pd denote the probability
that the worst-case page in one block contains d ∈ [0, M]
defective memory cells. Given the number of defective
memory cells in the worst-case page d, we can obtain
the corresponding achievable PE cycling endurance limit
N(d), i.e., the ECC can ensure a PE cycling number up to
N(d) while tolerating d defective memory cells. Clearly,
we have N(0) > N(1) > · · · > N(M), where N(0) is the
achievable PE cycling limit in the defect-free scenario.
Define the effective PE cycling endurance as the average
PE cycling limits of all the memory blocks. Under the
uniform wear-leveling, the memory chip can only sus-
tain PE cycling of N(M). Therefore, compared with the
defect-free scenario, the effective PE cycling endurance
degrades by N(0)/N(M), which can result in a significant
memory lifetime degradation. On the other hand, under
the ideal differential wear-leveling, each block can reach
its own PE cycling limit as illustrated in Fig. 5, hence
the effective PE cycling endurance will be ∑

M
d=0 Pd ·N(d),

6

representing the improvement of

∑
M
d=0 Pd ·N(d)

N(M) (11)

over the uniform wear-leveling. We note that this de-
sign approach can be combined with the one presented in
Section 3.1 to improve average memory program speed
in the presence of memory cell defects. Given the num-
ber of defective memory cells d and the set of m pro-
gram step voltage ∆V (i)

pp for 1 ≤ i ≤ m, we can obtain a
set of PE cycling thresholds Nd

0 = 0 < Nd
1 < · · · < Nd

m,
i.e., if present PE cycling number falls into the range of
[N(d)

i−1,N
(d)
i), we can use the program step voltage ∆V (i)

pp
and meanwhile ensure the tolerance to d defective mem-
ory cells. Therefore, for the blocks whose worst-case
page contains d defective memory cells, the average pro-
gram speed improvement is

sd = 1−
∑

m
i=1(N

d
i −Nd

i−1) ·
1

∆V (i)
pp

Nd
m · 1

∆V (m)
pp

. (12)

The overall average program speed improvement can be
further estimated as ∑

M
i=1 Pi · si.

4 Evaluation Results

We carried out simulations and analysis to future demon-
strate the effectiveness of the above two simple de-
sign approaches and their combination. To carry out
trace-based simulations, we use the SSD module [3] in
DiskSim [8], and use 6 workload traces including Iozone
and Postmark [3], Finance1 and Finance2 from [1], and
Trace1 and Trace2 from [16]. The simulator can sup-
port the use of several parallel packages that can work
in parallel to improve the SSD throughput. Each pack-
age contains 2 dies that share an 8-bit I/O bus and a
number of common control signals, and each die con-
tains 4 planes and each plane contains 2048 blocks. Each
block contains 64 4KB pages, each of which consists of
8 512B sectors. Following the version 2.1 of the Open
NAND Flash Interface (ONFI) [2], we set the NAND
flash chip interface bus frequency as 200MB/s. Re-
garding the ECC, we assume that binary (n, k, t) BCH
codes are being used, where n is the codeword length,
k is the user data length (i.e., 512B in this study), and
t is the error-correcting capability. We consider the use
of 2bit/cell NAND flash memory, and set the baseline
2bit/cell NAND flash memory using the equivalent mem-
ory channel model parameters presented in Example 2.1
in Section 2.4, for which a (4798, 4096, 54) BCH code
can ensure a PE cycling endurance limit of 10K under the
retention time of 1 year. We note that the target NAND

flash memory retention time is fixed as 1 year throughout
all the studies in this work.

In this section, we first present trace-based simulation
results to demonstrate how the first design approach can
reduce the overall request response time and hence im-
prove SSD speed performance. Then, we present anal-
ysis results to demonstrate the second design approach
by assuming memory cell defects follow Poisson distri-
bution. Finally, we demonstrate the effectiveness when
these two approaches are combined together to improve
SSD speed performance in the presence of memory cell
defects.

4.1 Improve SSD Speed Performance
In the baseline scenario with the parameters listed in Ex-
ample 2.1, the normalized program step voltage ∆Vpp is
0.3. As discussed in Section 3.1, we can use larger-than-
worst-case ∆Vpp over the memory lifetime to improve
memory program speed by exploiting the memory de-
vice wear-out dynamics. In this work, we assume that
memory chip voltage generators can increase ∆Vpp with a
step of 0.05, hence we consider four different normalized
values: ∆V (1)

pp = 0.45, ∆V (2)
pp = 0.4, ∆V (1)

pp = 0.35, and
∆V (4)

pp = 0.3. By carrying out Monte Carlo simulations
without changing the other memory model parameters,
we have that these four different program step voltages
can survive up to N1 = 2710, N2 = 4820, N3 = 7500, and
N4 = 10000 PE cycling, respectively, under the retention
time of 1 year. Therefore, according to Eq.(10), the av-
erage NAND flash memory program speed can be im-
proved by 18% compared with the baseline scenario. We
further carried out DiskSim-based simulations to investi-
gate how such improved memory program speed can re-
duce the SSD average response time (incorporating both
write and read request response time) for different traces
under different system configurations. We set that the
2bit/cell NAND flash memory program latency as 600µs
when the normalized program step voltage ∆Vpp is 0.3,
on-chip memory sensing latency as 30µs, and erase time
as 3ms.

In this study, we consider the use of 4 and 8 parallel
packages. Fig. 6 compares the normalized SSD average
response time when using 4 and 8 parallel packages, re-
spectively, where we set ∆Vpp as 0.3. It shows that using
more parallel packages can directly improve SSD speed
performance, which can be intuitively justified. Fig. 7(a)
and Fig. 7(b) show the normalized SSD average response
time under the 4 different normalized program step volt-
age ∆Vpp for all the 6 traces when the SSD contains 4 and
8 parallel packages, respectively. We use the first-come
first-serve (FCFS) scheduling scheme in the simulations.
Compared with the baseline scenario with ∆Vpp = 0.3,
the average response time can be reduced by up to∼50%

7

0

0.2

0.4

0.6

0.8

1

1.2

Finance1 Finance2 Postmark Iozone Trace1 Trace2

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

ΔVpp=0.3 ΔVpp=0.35 ΔVpp=0.4 ΔVpp=0.45

(a)

1.2

ΔVpp=0.3 ΔVpp=0.35 ΔVpp=0.4 ΔVpp=0.45

1

ns
e

Ti
m

e

0.8

e
 R

es
po

n

0.6

d
Av

er
ag

e

0.4

or
m

al
iz

ed

0.2N
o

0
Finance1 Finance2 Postmark Iozone Trace1 Trace2

(b)

Figure 7: Simulated normalized average response time when the SSD contains (a) 4 parallel packages, and (b) 8
parallel packages.

1.2

Parallel Packages=4 Parallel Packages=8

1

1.2

se
 T

im
e

Parallel Packages=4 Parallel Packages=8

0.8

1

1.2

R
es

po
ns

e
T

im
e

Parallel Packages=4 Parallel Packages=8

0.6

0.8

1

1.2

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Parallel Packages=4 Parallel Packages=8

0.4

0.6

0.8

1

1.2

rm
al

iz
ed

 A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Parallel Packages=4 Parallel Packages=8

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Parallel Packages=4 Parallel Packages=8

0

0.2

0.4

0.6

0.8

1

1.2

Finance1 Finance2 Postmark Iozone Trace1 Trace2

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Parallel Packages=4 Parallel Packages=8

0

0.2

0.4

0.6

0.8

1

1.2

Finance1 Finance2 Postmark Iozone Trace1 Trace2

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Parallel Packages=4 Parallel Packages=8

Figure 6: Comparison of normalized SSD average re-
sponse time with 4 and 8 parallel packages (∆Vpp = 0.3).

with 4 parallel packages and up to ∼40% with 8 parallel
packages. The results show that the use of larger program
step voltage can consistently improve SSD speed perfor-
mance under different number of parallel packages.

Given the PE cycling thresholds Ni for i = 1,2,3,4 as
presented in the above, the NAND flash memory should
employ the program step voltage ∆V (i)

pp when the present
PE cycling number falls into [Ni−1, Ni), where N0 is
set to 0. Therefore, based on the the simulation results
shown in Fig. 7, we can obtain the overall SSD average
response time reduction compared with the baseline sce-
nario, as shown in Fig. 8. It shows that this proposed
design approach can noticeably improve the overall SSD
speed performance. Intuitively, those traces with higher
write request ratios (e.g., Iozone, Trace1, and Trace2)
tend to benefit more from this design approach, as shown
in Fig. 8. In addition, as we increase the package par-

allelism from 4 to 8, the overall response time reduc-
tion consistently reduces over all the traces. This can be
explained as follows: As the SSD contains more paral-
lel packages, the increased architecture-level parallelism
will directly improve SSD speed performance, as illus-
trated in Fig. 6. As a result, this will make the improve-
ment on the device-level program speed become rela-
tively less significant with respect to the improvement
of overall system speed performance.

35%

n

Parallel Packages=4 Parallel Packages=8

30%

R
ed

uc
tio

n

20%

25%

se
 T

im
e

R

15%

20%

R
es

po
ns

10%

l A
ve

ra
ge

5%

O
ve

ra
ll

0%
Finance1 Finance2 Postmark Iozone Trace1 Trace2

Figure 8: Overall SSD average response time reduction
compared with the baseline scenario when using 4 and 8
parallel packages.

In the above simulations, the FCFS scheduling scheme
has been used. To study the sensitivity of this design ap-
proach to different scheduling schemes, we repeat the
above simulations using two other popular scheduling
schemes including ELEVATOR and SSTF (shortest seek
time first) [43]. Fig. 9 shows the overall SSD average

8

response time reduction compared with the baseline sce-
nario, where the SSD contains 4 parallel packages. The
results show the proposed design approach can consis-
tently improve overall SSD speed performance under dif-
ferent scheduling schemes.

35%

40%

io
n

FCFS ELEVATOR SSTF

30%

e
R

ed
uc

ti

25%

on
se

 T
im

e

15%

20%

ge
 R

es
po

10%

15%

al
l A

ve
ra

g

5%O
ve

ra

0%
Finance1 Finance2 Postmark Iozone Trace1 Trace2

Figure 9: Overall SSD average response time reduc-
tion compared with the baseline scenario under different
scheduling schemes.

4.2 Improve Defect Tolerance
To demonstrate the proposed design approach for im-
proving memory defect tolerance, we assume that the
number of defective memory cells in each worst-case
page follows a Poisson distribution that is widely used
to model defects in integrated circuits. Therefore, un-
der the Poisson-based distribution model, the probability
that the worst-case page in each block contains d defec-
tive memory cells is f (k;λ) = λ ke−λ

k! , where the param-
eter λ is the mean of the number of defective memory
cells in each worst-case page. Given the parameter λ ,
we find the value M so that ∑

M
i=0 f (i;λ) ≥ 0.999, and

assume that any blocks whose worst-case page contains
more than M defective memory cells can be replaced by
a redundant block. In this work, we consider the mean λ

ranging from 1 to 4, and accordingly have that the maxi-
mum value of M is 12.

Using the baseline NAND flash memory model pa-
rameters as listed in Example 2.1, we can obtain the
achievable PE cycling limit N(d) for each d, i.e., we use
the (4798, 4096, 54) BCH code to tolerate d defective
memory cells and meanwhile use its residual (54− d)-
error-correcting capability to ensure a PE cycling en-
durance limit of N(d) under the retention time of 1 year.
Fig. 10 shows the achievable PE cycling limit N(d) with
d ranging from 0 to 12. Under different value of mean
λ , we have different value of M, denoted as M(λ). When
the uniform wear-leveling is being used, the effective PE

10000

12000

8000

10000

an
ce

6000

8000

g
E

nd
ur

a

4000

6000

C
yc

lin
g

2000

PE

0
0 1 2 3 4 5 6 7 8 9 10 11 12

Number of defects

Figure 10: Achievable PE cycling endurance under dif-
ferent value of defective memory cells in the worst-case
page.

cycling endurance is simply N(d) when d = M(λ). When
the proposed differential wear-leveling is being used, the
effective PE cycling endurance is

M(λ)

∑
d=0

λ ke−λ

k!
·N(d), (13)

for a given mean λ . Fig. 11 shows the effective PE cy-
cling endurance when these two different wear-leveling
schemes are being used under different value of λ . The
results show that the proposed differential wear-leveling
can noticeably improve the effective PE cycling en-

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

No
Defects

λ=1 λ=2 λ=3 λ=4

N
or

m
al

iz
ed

 E
ff

ec
tiv

e
E

nd
ur

an
ce

Differential wear-leveling with defects
Uniform wear-leveling with defects

Figure 11: Effective PE cycling endurance when using
uniform wear-leveling and differential wear-leveling un-
der different value of λ .

durance and hence SSD lifetime compared with uniform
wear-leveling. As the defects density increases (i.e., λ

9

increases), the gain of differential wear-leveling over uni-
form wear-leveling will accordingly improve (i.e., from
about 10% improvement at λ = 1 to about 30% improve-
ment at λ = 4).

4.3 Combination of the Two Design Ap-
proaches

As discussed earlier, we can combine the proposed two
design approaches in order to improve SSD speed perfor-
mance when ECC is also used to tolerate defective mem-
ory cells. Following the discussions in Section 4.2, we
assume that the number of defective memory cells in the
worst-case page has a Poisson distribution and consider
the cases when the mean λ ranges from 1 to 4. Follow-
ing the discussions in Section 4.1, beyond the normal-
ized program step voltage ∆Vpp of 0.3 in the baseline sce-
nario, we consider three larger values of ∆Vpp, including
0.35, 0.4, and 0.45. Denote ∆V (1)

pp = 0.45, ∆V (2)
pp = 0.4,

∆V (3)
pp = 0.35, and ∆V (4)

pp = 0.3. Given the memory cell
defects number d and the (4798, 4096, 54) BCH code
being used, we can obtain a set of PE cycling thresh-
olds Nd

0 = 0 < Nd
1 < · · · < Nd

4 so that, if present PE cy-
cling number falls into the range of [N(d)

i−1,N
(d)
i), we can

use the program step voltage ∆V (i)
pp and meanwhile en-

sure the tolerance of d defective memory cells. Fig. 12
shows the PE cycling thresholds when the defect number
increases from 0 to 12. The results can be intuitively jus-
tified: as the defect number increases, the residual ECC
error-correcting capability degrades, and consequently
the larger program step voltage can only be used over
a less number of PE cycling.

6000

8000

10000

12000

E
nd

ur
an

ce

ΔVpp=0.3 ΔVpp=0.35 ΔVpp=0.4 ΔVpp=0.45

0

2000

4000

6000

0 1 2 3 4 5 6 7 8 9 10 11 12

PE
 C

yc
lin

g

Number of defects

Figure 12: PE cycling thresholds corresponding to dif-
ferent number of defective cells in the worst-case page
of one block.

Given each program step voltage ∆V (i)
pp , we can obtain

the normalized SSD response time τi for each specific

trace, as shown in Fig. 7. Recall that, when the PE cy-
cling number falls into the range [N(d)

i−1,N
(d)
i), we can use

the program step voltage ∆V (i)
pp , and the baseline scenario

fixes the program step voltage as ∆V (4)
pp = 0.3 throughout

the entire memory lifetime. Therefore, we can calculate
the overall SSD average response time reduction over the
baseline scenario for each trace as

12

∑
d=0

f (d;λ)
∑

4
i=1(N

(d)
i −N(d)

i−1) · τi

N(d)
4 · τ4

, (14)

and the results are shown in Fig. 13. The results suggest
that we still can maintain a noticeable SSD speed perfor-
mance improvement when ECC is also used to tolerate
defective memory cells.

5 Related Work

NAND flash memory system design has attracted many
recent attentions, where most work focused on improv-
ing system speed performance and endurance. Dirik and
Jacob [16] studied the effect on SSD system speed per-
formance by changing various SSD system parallelism
and concurrency at different levels such as the numbers
of planes on each channel and the number of channels,
and compared various existing disk access scheduling al-
gorithms. Agrawal et al. [3] analyzed the effect of page
size, striping and interleaving policy on the memory sys-
tem performance, and proposed a conception of gang as a
higher-level “superblock” to facilitate SSD system-level
parallelism configurations. Min and Nam [32] developed
several NAND flash memory performance enhancement
techniques such as write request interleaving. Seong
et al. [37] applied bus-level and chip-level interleaving
to exploit the inherent parallelism in multiple flash mem-
ory chips to improve the SSD speed performance. The
authors of [11,13] applied adaptive bank scheduling poli-
cies to achieve an even distribution of write request and
load balance to improve system speed performance.

Wear-leveling is used to improve NAND flash mem-
ory endurance. Gal and Toledo [18] surveyed many
patented and published wear-leveling algorithms and
data structures for NAND flash memory. Ben-Aroya
and Toledo [5] more quantitatively evaluated different
wear-leveling algorithms, including both on-line and
off-line algorithms. The combination of wear-leveling
and garbage collection and the involved design trade-
offs have been investigated by many researchers, e.g.,
see [12, 14, 22, 23, 44]. In current design practice, defect
tolerance has been mainly realized by bad block man-
agement that run-time monitors and disables the future
use of blocks with defects. Traditional redundant repair
can also be used to compensate certain memory defects,

10

30%

35%
ct

io
n

25%

30%

m
e

R
ed

uc

20%

on
se

 T
im

No Defects
λ=1

15%

ge
 R

es
po λ=1

λ=2
λ=3

10%

ll
Av

er
ag λ=4

5%

O
ve

ra
l

0%
Finance1 Finance2 Postmark Iozone Trace1 Trace2

(a)

0%

5%

10%

15%

20%

25%

Finance1 Finance2 Postmark Iozone Trace1 Trace2

O
ve

ra
ll

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

R
ed

uc
tio

n

No Defects
λ=1
λ=2
λ=3
λ=4

(b)

Figure 13: Overall average response time reduction over the baseline scenario under different λ when SSD contains
(a) 4 parallel packages and (b) 8 parallel packages.

e.g., see [19]. In addition, a NAND flash memory device
model was presented in [33], which nevertheless does
not take into account of RTN noise and cell-to-cell in-
terference, and the model was used to show that time-
dependent trap recovery can be leveraged to improve
memory endurance.

We note that most prior work on improving SSD sys-
tem speed performance and/or memory endurance are
carried out mainly from architecture/system perspective
to combat flash memory device issues. To the best of
our knowledge, this paper represents the first attempt to
adaptively exploit flash memory device characteristics,
in particular PE-cycling-dependent device wear-out dy-
namics, at the system level to improve SSD system speed
performance and NAND flash memory scalability. The
proposed design approaches are completely orthogonal
to prior architecture/system level techniques and can be
readily combined together.

6 Conclusion

This paper investigates the potential of adaptively lever-
aging NAND flash memory cell wear-out dynamics to
improve memory system performance. As memory PE
cycling increases, NAND flash memory cell storage
noise margin and hence raw storage reliability accord-
ingly degrade. Therefore, the specified PE cycling en-
durance limit determines the worst-case raw memory
storage reliability, which further sets the amount of re-
dundant memory cells that must be fabricated. Motivated
by the fact that such worst-case oriented redundancy is
essentially under-utilized over the entire memory life-
time, especially when the PE cycling number is relatively
small, this paper proposes to trade such under-utilized re-

dundancy to improve system speed performance and/or
tolerate defective memory cells. We further propose a
simple differential wear-leveling scheme to minimize the
impact on PE cycling endurance if the redundancy is
used to tolerate defective memory cells. To quantita-
tively evaluate such adaptive NAND flash memory sys-
tem design strategies, we first develop an approximate
NAND flash memory device model that can capture the
effects of PE cycling on memory cell storage reliabil-
ity. To evaluate the effectiveness on improving memory
system speed, we carry out extensive simulations over a
variety of traces using the DiskSim-based SSD simula-
tor under different system configurations, and the results
show up to 32% SSD average response time reduction
can be achieved. To evaluate the effectiveness on de-
fect tolerance, with a Poisson-based defect statics model,
we show that this design strategy can tolerate relatively
high defect rates at small degradation of effective PE cy-
cling endurance. Finally, we show that these two aspects
can be combined together so that we could noticeably
reduce SSD average response time even in the presence
of high memory defect densities. generate the the refer-
ences with alphatical order.

Acknowledgments
We thank Albert Fazio at Intel for his valuable com-
ments on NAND flash memory device modeling. We
also thank the anonymous reviewers and our shepherd
Eno Thereska for their feedback.

References

[1] “SPC Trace File Format Specification.
http://traces.cs.umass.edu/index.php/Storage/Storage,

11

Last accessed on June 6, 2010,” Storage Perfor-
mance Council, Tech. Rep. Revision 1.0.1, 2002.

[2] “Open NAND Flash Interface Specification,”
Hynix Semiconductor and Intel Corporation and
Micron Technology, Inc. and Numonyx and Phison
Electronics Corp. and Sony Corporation and Span-
sion, Tech. Rep. Revision 2.1, Jan. 2009.

[3] N. Agrawal, V. Prabhakaran, T. Wobber, J. D.
Davis, M. Manasse, and R. Panigrahy, “Design
Tradeoffs for SSD Performance,” in Proc. of
USENIX Annual Technical Conference, 2008, pp.
57–70.

[4] S. Aritome, R. Shirota, G. Hemink, T. Endoh, and
F. Masuoka, “Reliability Issues of Flash Memory
Cells,” Proceedings of the IEEE, vol. 81, no. 5, pp.
776–788, 1993.

[5] A. Ben-Aroya and S. Toledo, “Competitive Analy-
sis of Flash-Memory Algorithms,” in Proc. of the
Annual European Symposium, 2006, pp. 100–111.

[6] R. Bez, E. Camerlenghi, A. Modelli, and A. Vis-
conti, “Introduction to Flash memory,” Proceedings
of the IEEE, vol. 91, pp. 489–502, April 2003.

[7] R. Bez and P. Cappelletti, “Flash Memory and Be-
yond,” in Proc. of IEEE VLSI-TSA International
Symposium on VLSI Technology, 2005, pp. 84–87.

[8] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R.
Ganger, “The DiskSim Simulation Environment
Version 4.0 Reference Manual,” Carnegie Mellon
University Parallel Data Lab, Tech. Rep. CMU-
PDL-08-101, May 2008.

[9] P. Cappelletti, R. Bez, D. Cantarelli, and L. Fratin,
“Failure Mechanisms of Flash Cell in Pro-
gram/erase Cycling,” in Proc. of International
Electron Devices Meeting (IEDM), 1994, pp. 291–
294.

[10] R.-A. Cernea and et al., “A 34 MB/s MLC Write
Throughput 16 Gb NAND With All Bit Line Archi-
tecture on 56 nm Technology,” IEEE J. Solid-State
Circuits, vol. 44, pp. 186–194, Jan. 2009.

[11] L.-P. Chang and T.-W. Kuo, “An Adaptive Strip-
ing Architecture for Flash Memory Storage Sys-
tems of Embedded Systems,” Proc. of IEEE Real-
Time and Embedded Technology and Applications
Symposium, pp. 187 – 196, 2002.

[12] L.-P. Chang, T.-W. Kuo, and S.-W. Lo, “Real-
time Garbage Collection for Flash-Memory Stor-
age Systems of Real-time Embedded Systems,”

ACM Transactions on Embedded Computing Sys-
tems, vol. 3, no. 4, pp. 837–863, 2004.

[13] Y.-B. Chang and L.-P. Chang, “A Self-Balancing
Striping Scheme for NAND-Flash Storage Sys-
tems,” in Proc. of the ACM Symposium on Applied
Computing, 2008, pp. 1715–1719.

[14] M.-L. Chiang and R.-C. Chang, “Cleaning Policies
in Mobile Computers Using Flash Memory,” Jour-
nal of Systems and Software, vol. 48, no. 3, pp.
213–231, 1999.

[15] C. Compagnoni, M. Ghidotti, A. Lacaita,
A. Spinelli, and A. Visconti, “Random Telegraph
Noise Effect on the Programmed Threshold-
Voltage Distribution of Flash Memories,” IEEE
Electron Device Letters, vol. 30, no. 9, 2009.

[16] C. Dirik and B. Jacob, “The Performance of
PC Solid-state disks (SSDs) as a Function of
Bandwidth, Concurrency, Device Architecture, and
System Organization,” SIGARCH Comput. Archit.
News, vol. 37, no. 3, pp. 279–289, 2009.

[17] K. Fukuda, Y. Shimizu, K. Amemiya,
M. Kamoshida, and C. Hu, “Random Telegraph
Noise in Flash Memories - Model and Technology
Scaling,” in Proc. of IEEE International Electron
Devices Meeting (IEDM), 2007, pp. 169–172.

[18] E. Gal and S. Toledo, “Algorithms and Data Struc-
tures for Flash Memories,” ACM Computing Sur-
veys, vol. 37, no. 2, pp. 138–163, 2005.

[19] Y.-Y. Hsiao, C.-H. Chen, and C.-W. Wu, “Built-In
Self-Repair Schemes for Flash Memories,” IEEE
Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 29, no. 8, pp.
1243 –1256, Aug. 2010.

[20] B. Hwang and et al, “Comparison of Double
Patterning Technologies in NAND Flash Mem-
ory With Sub-30nm Node,” in Proc. of the Eu-
ropean Solid State Device Research Conference
(ESSDERC), 2009, pp. 269 –271.

[21] T. Jung and et al., “A 117-mm 3.3-V only 128-Mb
Multilevel NAND Flash Memory for Mass Storage
Applications,” IEEE J. Solid-State Circuits, vol. 31,
no. 11, pp. 1575–1583, Nov. 1996.

[22] A. Kawaguchi, S. Nishioka, and H. Motoda, “A
Flash-Memory Based File System,” in Proc. of the
USENIX Technical Conference, 1995, pp. 13–13.

12

[23] H. Kim and S. Lee, “An Effective Flash Memory
Manager for Reliable Flash Memory Space Man-
agement,” IEICE Transactions on Information and
Systems, vol. 85, no. 6, pp. 950–964, 2002.

[24] K. Kim and et.al, “Future Memory Technology:
Challenges and Opportunities,” in Proc. of Inter-
national Symposium on VLSI Technology, Systems
and Applications, Apr. 2008, pp. 5–9.

[25] J.-D. Lee, S.-H. Hur, and J.-D. Choi, “Effects of
Floating-Gate Interference on NAND Flash Mem-
ory Cell Operation,” IEEE Electron Device Letters,
vol. 23, no. 5, pp. 264–266, May. 2002.

[26] J. Lee, J. Choi, D. Park, and K. Kim, “Data
Retention Characteristics of sub-100 nm NAND
Flash Memory Cells,” IEEE Electron Device Let-
ters, vol. 24, no. 12, pp. 748–750, 2003.

[27] J. Lee, J. Choi, D. Park, K. Kim, R. Center, S. Co,
and S. Gyunggi-Do, “Effects of Interface Trap
Generation and Annihilation on the Data Reten-
tion Characteristics of Flash Memory Cells,” IEEE
Transactions on Device and Materials Reliability,
vol. 4, no. 1, pp. 110–117, 2004.

[28] Y. Li and et. al, “A 16Gb 3b/Cell NAND Flash
Memory in 56nm with 8MB/s Write Rate,” in Proc.
of IEEE International Solid-State Circuits Confer-
ence (ISSCC), Feb. 2008, pp. 506–632.

[29] H. Liu, S. Groothuis, C. Mouli, J. Li, K. Parat, and
T. Krishnamohan, “ 3D Simulation Study of Cell-
Cell Interference in Advanced NAND Flash Mem-
ory,” in Proc. of IEEE Workshop on Microelectron-
ics and Electron Devices, April 2009.

[30] N. Mielke, H. Belgal, I. Kalastirsky, P. Kalavade,
A. Kurtz, Q. Meng, N. Righos, and J. Wu, “Flash
EEPROM Threshold Instabilities Due to Charge
Trapping During Program/erase Cycling,” IEEE
Transactions on Device and Materials Reliability,
vol. 4, no. 3, pp. 335–344, 2004.

[31] N. Mielke, H. Belgal, A. Fazio, Q. Meng, and
N. Righos, “Recovery Effects in the Distributed
Cycling of Flash Memories,” in Proc. of IEEE In-
ternational Reliability Physics Symposium, 2006,
pp. 29–35.

[32] S. L. Min and E. H. Nam, “Current Trends in Flash
Memory Technology,” Proc. of Asia and South Pa-
cific Conference on Design Automation., p. 2., Jan.
2006.

[33] V. Mohan, T. Siddiqua, S. Gurumurthi, and M. R.
Stan, “How I Learned to Stop Worrying and Love
Flash Endurance,” in Proc. of the 2nd USENIX con-
ference on Hot topics in storage and file systems,
2010, pp. 3–3.

[34] P. Olivo, B. Ricco, and E. Sangiorgi, “High Field
Induced Voltage Dependent Oxide Charge,” Ap-
plied Physics Letter, vol. 48, pp. 1135–1137, 1986.

[35] K.-T. Park and et al., “A Zeroing Cell-to-Cell In-
terference Page Architecture With Temporary LSB
Storing and Parallel MSB Program Scheme for
MLC NAND Flash Memories,” IEEE J. Solid-State
Circuits, vol. 40, pp. 919–928, Apr. 2008.

[36] K. Prall, “Scaling Non-Volatile Memory Below
30nm,” in Proc. of IEEE Non-Volatile Semiconduc-
tor Memory Workshop, Aug. 2007, pp. 5–10.

[37] Y. J. Seong, E. H. Nam, J. H. Yoon, H. Kim, J. Choi,
S. Lee, Y. H. Bae, J. Lee, Y. Cho, and S. L. Min,
“Hydra: A Block-Mapped Parallel Flash Memory
Solid-State Disk Architecture,” IEEE Transactions
on Computers, vol. 59, no. 7, pp. 905 –921, Jul.
2010.

[38] N. Shibata and et al., “A 70 nm 16 Gb 16-level-cell
NAND flash memory,” in Proc. of IEEE Symposium
on VLSI Circuits, 2007, pp. 190–191.

[39] K.-D. Suh and et al., “A 3.3 V 32 Mb NAND
Flash Memory with Incremental Step Pulse Pro-
gramming Scheme,” IEEE J. Solid-State Circuits,
vol. 30, no. 11, pp. 1149–1156, Nov. 1995.

[40] K. Takeuchi and et al., “A 56-nm CMOS 99-mm2

8-Gb Multi-Level NAND Flash Memory With 10-
MB/s Program Throughput,” IEEE J. Solid-State
Circuits, vol. 42, pp. 219–232, Jan. 2007.

[41] K. Takeuchi, T. Tanaka, and H. Nakamura, “A
Double-level-Vth Select Gate Array Architecture
for Multilevel NAND Flash Memories,” IEEE J.
Solid-State Circuits, vol. 31, no. 4, pp. 602–609,
Apr. 1996.

[42] D. Wellekens, J. Van Houdt, L. Faraone, G. Groe-
seneken, and H. Maes, “Write/erase Degradation in
Source Side Injection Flash EEPROM’s: Charac-
terization Techniques and Wearout Mechanisms,”
IEEE Transactions on Electron Devices, vol. 42,
no. 11, pp. 1992–1998, 1995.

[43] B. L. Worthington, G. R. Ganger, and Y. N.
Patt, “Scheduling Algorithms for Modern Disk
Drives,” in Proc. of the ACM SIGMETRICS Inter-
national Conference on Measurement and Model-
ing of Computer Systems, 1994, pp. 241–251.

13

[44] M. Wu and W. Zwaenepoel, “eNVy: a NonVolatile
Main Memory Storage System,” Proc. of Fourth
Workshop on Workstation Operating Systems, pp.
116 –118, Oct. 1993.

[45] H. Yang and et al., “Reliability Issues and Models
of sub-90nm NAND Flash Memory Cells,” in Proc.
of International Conference on Solid-State and In-
tegrated Circuit Technology, 2006, pp. 760–762.

14

