
Just-In-Time Analytics on Large File Systems

H. Howie Huang1, Nan Zhang1, Wei Wang1, Gautam Das2, and Alexander S. Szalay3

1George Washington University
2University of Texas at Arlington

3Johns Hopkins University

Abstract

As file systems reach the petabytes scale, users and ad-
ministrators are increasingly interested in acquiring high-
level analytical information for file management and
analysis. Two particularly important tasks are the pro-
cessing of aggregate and top-k queries which, unfortu-
nately, cannot be quickly answered by hierarchical file
systems such as ext3 and NTFS. Existing pre-processing
based solutions, e.g., file system crawling and index
building, consume a significant amount of time and space
(for generating and maintaining the indexes) which in
many cases cannot be justified by the infrequent usage
of such solutions. In this paper, we advocate that user in-
terests can often be sufficiently satisfied by approximate -
i.e., statistically accurate - answers. We develop Glance,
a just-in-time sampling-based system which, after con-
suming a small number of disk accesses, is capable of
producing extremely accurate answers for a broad class
of aggregate and top-k queries over a file system with-
out the requirement of any prior knowledge. We use a
number of real-world file systems to demonstrate the ef-
ficiency, accuracy and scalability of Glance.

1 Introduction

Today a file system with billions of files, millions of di-
rectories and petabytes of storage is no longer an excep-
tion [29]. As file systems grow, users and administra-
tors are increasingly keen to perform complex queries
[37, 47], such as “How many files have been updated
since ten days ago?”, and “Which are the top five largest
files that belong to John?”. The first is an example of
aggregate queries which provide a high-level summary
of all or part of the file system, while the second is top-
k queries which locate the k files and/or directories that
have the highest score according to a scoring function.
Fast processing of aggregate and top-k queries are of-
ten needed by applications that require just-in-time ana-

lytics over large file systems, such as data management,
archiving, enterprise surveillance, etc. The just-in-time
requirement is defined by two properties: (1) file-system
analytics must be completed within a short amount of
time, and (2) the analyzer holds no prior knowledge (e.g.,
pre-processing results) of the file system being analyzed.
For example, in order for a librarian to determine how to
build an image archive from an external storage media
(e.g., a Blue-ray disc), he/she may have to first estimate
the total size of picture files stored on the external media
- the librarian needs to complete data analytics quickly,
over an alien file system that has never been seen before.

Unfortunately, hierarchical file systems (e.g., ext3 and
NTFS) are not well equipped for the task of just-in-time
analytics [43]. The deficiency is in general due to the
lack of a global view (i.e., high-level statistics) of meta-
data information (e.g., size, creation, access and modifi-
cation time). For efficiency concerns, a hierarchical file
system is usually designed to limit the update of meta-
data information to individual files and/or the immedi-
ately preceding directories, leading to localized views.
For example, while the last modification time of an indi-
vidual file is easily retrievable, the last modification time
of files that belong to user John is difficult to obtain be-
cause such metadata information is not available at the
global level.

Currently, there are two approaches for generating
high-level statistics from a hierarchical file system, and
thereby answering aggregate and top-k queries: (1) scan-
ning the file system upon the arrival of each query, e.g.,
the find command in Linux, which is inefficient for large
file systems. While storage capacity increases∼60% per
year, storage throughput and latency have much slower
improvements, thus the amount of time required to scan
an off-the-shelf hard drive or external storage media has
increased significantly over time to become infeasible
for just-in-time analytics. The above-mentioned image-
archiving application is a typical example, as it is usu-
ally impossible to completely scan an alien Blue-ray disc

1

within a short amount of time. (2) utilizing pre-built in-
dexes which are regularly updated [3, 7, 26, 32, 36, 40].
Many desktop search products, e.g., Google Desktop
[23] and Beagle [5], belong to this category. While this
approach is capable of fast query processing once the
(slow) index building process is complete, it may not be
suitable or applicable to many just-in-time applications:

• Index building can be unrealistic for many applica-
tions that require just-in-time analytics over an alien
file system. An example is enterprise surveillance
[35], where portable machines and storage devices
must be quickly examined before being allowed to
join the enterprise network.
• Even if index can be built up-front, its signifi-

cant cost may not be justifiable if the index is not
frequently used afterwards. Unfortunately, this is
common for some large file systems, e.g., storage
archives or scratch data for scientific applications
rarely require the global search function offered by
the index, and may only need analytical queries
to be answered infrequently (e.g., once every few
days). In this case, building and updating an index
is often an overkill given the high amortized cost.
• There are also other limitations of maintaining an

index. For example, prior work [46] has shown that
even after a file has been completely removed (from
both the file system and the index), the (former) ex-
istence of this file can still be inferred from the in-
dex structure. Thus, a file system owner may choose
to avoid building an index for privacy concerns.

To enable just-in-time analytics, one must be able to
perform an on-the-fly processing of analytical queries,
over traditional file systems that normally have insuf-
ficient metadata to support such complex queries. We
achieve this goal by striking a balance between query
answer accuracy and cost - providing approximate (i.e.,
statistically accurate) answers which, with a high confi-
dence level, reside within a close distance from the pre-
cise answer. For example, when a user wants to count
the number of files in a directory (and all of its subdirec-
tories), an approximate answer of 105, 000 or 95, 000,
compared with the real answer of 100, 000, makes lit-
tle difference to the high-level knowledge desired by the
user. In general, the higher cost a user is willing to pay
for answering a query, more accurate the answer can be.

To this end, we design and develop Glance, a just-in-
time query processing system which produces accurate
query answers based on a small number of samples (files
or folders) that can be collected from a very large file
system with a few disk accesses. Glance is file-system
agnostic, i.e., it can be applied instantly over any new file
system and work seamlessly with the tree structure of the
system. Glance removes the need of disk crawling and

index building, providing just-in-time analytics without
a priori knowledge or pre-processing of the file systems.
This is desirable in situations when the metadata indexes
are not available, a query is not supported by the index,
or query processing is only scarcely needed.

Using sampling for processing analytical queries is by
no means new. Studies on sampling flat files, hashed
files, and files generated by a relational database system
(e.g., a B+-tree file) started more than 20 years ago - see
survey [39] - and were followed by a myriad of work on
database sampling for approximate query processing in
decision support systems - see tutorials [4, 15, 22]. A
wide variety of sampling techniques, e.g., simple ran-
dom sampling [38], stratified [10], reservoir [48] and
cluster sampling [11], have been used. Nonetheless, to
the best of our knowledge, there has been no existing
work on using sampling to support efficient aggregate
and top-k query processing over a large hierarchical file
system, i.e., one with numerous files organized in a com-
plex folder structure (tree-like or directed acyclic graph).

Our main contributions are two-fold: (1) Glance con-
sists of two algorithms, FS Agg and FS TopK, for the ap-
proximate processing of aggregate and top-k queries, re-
spectively. For just-in-time analytics over very large file
systems, we develop a random descent technique for un-
biased aggregate estimations and a pruning-based tech-
nique for top-k query processing. (2) We study the spe-
cific characteristics of real-world file systems and derive
the corresponding enhancements to our proposed tech-
niques. In particular, according to the distribution of files
in real-world file systems, we propose a high-level crawl-
ing technique to significantly reduce the error of query
processing. Based on an analysis of accuracy and ef-
ficiency for the descent process, we propose a breadth-
first implementation to reduce both error and overhead.
We evaluate Glance over both real-world (e.g., NTFS,
NFS, Plan 9) and synthetic file systems and find very
promising results - e.g., 90% accuracy at 20% cost. Fur-
thermore, we demonstrate that Glance is scalable to one
billion of files and millions of directories.

We would like to note, however, that Glance also has
its limitations - there are certain ill-formed file systems
that malicious users could potentially construct so that
Glance cannot effectively handle. While we plan to ad-
dress security applications in future work, our argument
of Glance being a practical system for just-in-time ana-
lytics is based upon the fact that these systems rarely ex-
ist in practice. For example, Glance cannot accurately
answer aggregate queries if a large number of folders
are hundreds of levels below root. Nonetheless, real-
world file systems would have far smaller depth, mak-
ing such a scenario unlikely to occur. Similarly, Glance
cannot efficiently handle cases where all files have ex-
tremely close scores. This, however, is contradicted by

2

the heavy-tailed distribution observed on most meta-data
attributes in real-world file systems [2].

The rest of the paper is organized as follows. Section
2 presents the problem definition. In Section 3 and 4, we
describe FS Agg and FS TopK for processing aggregate
and top-k queries, respectively. The evaluation results
are shown in Section 5. Section 6 reviews the related
work, followed by the conclusion in Section 7.

2 Problem Statement

We now define the analytical queries, i.e., aggregate and
top-k ones, which we focus on in this paper. The ex-
amples we list below will be used in the experimental
evaluation for testing the performance of Glance.

Aggregate Queries: In general, aggregate queries are
of the form SELECT AGGR(T) FROM D WHERE Selec-
tion Condition, where D is a file system or storage de-
vice, T is the target piece of information, which may be
a metadata attribute (e.g., size, timestamp) of a file or a
directory, AGGR is the aggregate function (e.g., COUNT,
SUM, AVG), and Selection Condition specifies which
files and/or directories are of interest. First, consider a
system administrator who is interested in the total num-
ber of files in the system. In this case, the aggregate
query that the administrator would like to issue can be
expressed as:

Q1: SELECT COUNT(files) FROM filesystem;

Further, the administrator may be interested in know-
ing the total size of various types of document files, e.g.,

Q2: SELECT SUM(file.size) FROM filesystem WHERE
file.extension IN { ‘txt’, ‘doc’};

If the administrator wants to compute the average size
of all exe files from user John, the query becomes:

Q3: SELECT AVG(file.size) FROM filesystem WHERE
file.extension = ‘exe’ AND file.owner = ‘John’;

Aggregate queries can also be more complex - the fol-
lowing example shows a nested aggregate query for sci-
entific computing applications. Suppose that each direc-
tory is corresponding to a sensor and contains a number
of files corresponding to the sensor readings received at
different time. A physicist may want to count the number
of sensors that has received at least one reading during
the last 12 hours, i.e.,

Q4: SELECT COUNT(directories) FROM filesystem
WHERE EXISTS (SELECT * FROM filesystem WHERE
file.dirname = directory.name AND file.mtime BE-
TWEEN (now − 12 hours) AND now);

Top-k Queries: In this paper, we also consider top-
k queries of the form SELECT TOP k FROM D

WHERE Selection Condition ORDER BY T DESCEND-
ING/ASCENDING, where T is the scoring function
based on which the top-k files or directories are selected.
For example, a system administrator may want to select
the 100 largest files, i.e.,

Q5: SELECT TOP 100 files FROM filesystem ORDER
BY file.size DESCENDING;

Another example is to find the ten most recently cre-
ated directories that were modified yesterday, i.e.,

Q6: SELECT TOP 10 directories FROM filesystem
WHERE directory.mtime BETWEEN (now − 24 hours)
AND now ORDER BY directory.ctime DESCENDING;

We note that, to approximately answer a top-k query,
one shall return a list of k items that share a large per-
centage of common ones with the precise top-k list.

Current operating systems and storage devices do not
provide APIs which directly support the above-defined
aggregate and top-k queries. The objective of just-in-
time analytics can be stated as follows.

Problem Statement (Objective of Just-In-Time Analyt-
ics over File Systems): To enable the efficient approx-
imate processing of aggregate and top-k queries over a
file system by using the file/directory access APIs pro-
vided by the operating system.

To complete the problem statement, we need to de-
termine how to measure the efficiency and accuracy of
query processing. For the purpose of this paper, we
measure the query efficiency in two metrics: 1) query
time, i.e., the runtime of query processing, and 2) query
cost, i.e., the ratio of the number of directories visited by
Glance to that of crawling the file system (i.e., the total
number of directories in the system). We assume that one
disk access is required for reading a new directory. Thus,
the query cost approximates the number of disk accesses
required by Glance. The two metrics, query time and
cost, are positively correlated - the higher the query cost
is, more directories the algorithm has to sample, leading
to a longer runtime.

While the efficiency measures are generic to both ag-
gregate and top-k query processing, the measures for
query accuracy are different. For aggregate queries, we
define the query accuracy as the relative error of the ap-
proximate answer apx compared with the precise one
ans - i.e., |apx − ans|/|ans|. For top-k queries, we
define the accuracy as the percentage of items that are
common in the approximate and precise top-k lists. The
accuracy level required for approximate query process-
ing depends on the intended application. For example,
while scientific computing usually requires a small error,
the above-mentioned surveillance application may sim-
ply need a ball-park figure to determine whether there is
a significant amount of sensitive files in the system.

3

3 Aggregate Query Processing

In this section, we develop FS Agg, our algorithm
for processing aggregate queries. We first describe
FS Agg Basic, a vanilla algorithm which illustrates our
main idea of aggregate estimation without bias through a
random descent process within a file system. Then, we
describe two ideas to make the vanilla algorithm practical
over very large file systems: high-level crawling lever-
ages the special properties of a file system to reduce the
standard error of estimation, and breadth-first implemen-
tation improves both accuracy and efficiency of query
processing. Finally, we combine all three techniques to
produce FS Agg.

3.1 FS Agg Basic
A Random Descent Process: In general, the folder or-
ganization of a file system can be considered as a tree or a
directed acyclic graph (DAG), depending on whether the
file system allows hard links to the same file. The random
descent process we are about to discuss can be applied to
both cases with little change. For the ease of understand-
ing, we first focus on the case of tree-like folder structure,
and then discuss a simple extension to DAG at the end of
this subsection.

Figure 1: Random descents on a tree-like structure

Figure 1 depicts a tree structure with root correspond-
ing to the root directory of a file system, which we shall
use as a running example throughout the paper. One can
see from the figure that there are two types of nodes in
the tree: folders (directories) and files. A file is always
a leaf node. The children of a folder consist of all sub-
folders and files in the folder. We refer to the branches
coming out of a folder node as subfolder-branches and
file-branches, respectively, according to their destination
type. We refer to a folder with no subfolder-branches
as a leaf-folder. Note that this differs from a leaf in the
tree, which can be either a file or a folder containing nei-
ther subfolder nor file. The random descent process starts
from the root and ends at a leaf-folder. At each node,
we choose a subfolder branch of the node uniformly at

random for further exploration. During the descent pro-
cess, we evaluate all file branches encountered at each
node along the path, and generate an aggregate estima-
tion based on these file branches.

To make the idea more concrete, consider an exam-
ple of estimating the COUNT of all files in the system.
At the beginning of random descent, we access the root
to obtain the number of its file- and subfolder-branches
f0 and s0, respectively, and record them as our evalua-
tion for the root. Then, we randomly choose a subfolder-
branch for further descent, and repeat this process until
we arrive at a folder with no subfolder. Suppose that the
numbers we recorded during such a descent process are
f0, s0, f1, s1, . . . , fh, sh, where sh = 0 because each de-
scent ends at a leaf-folder. We estimate the COUNT of
all files as

ñ =
h∑
i=0

fi · i−1∏
j=0

sj

 , (1)

where
∏i−1
j=0 sj is assumed to be 1 when i = 0. Two ex-

amples of such a random descent process are marked in
Figure 1 as red solid and blue dotted lines, respectively.
The solid descent produces 〈f0, f1, f2〉 = 〈2, 2, 2〉 and
〈s0, s1, s2〉 = 〈4, 1, 0〉, leading to an estimation of 2 +
8 + 8 = 18. The dotted one produces 〈f0, f1, f2〉 =
〈2, 0, 1〉 and 〈s0, s1, s2〉 = 〈4, 2, 0〉, leading to an esti-
mation of 2 + 0 + 8 = 10. The random descent process
can be repeated multiple times (by restarting from the
root) to produce a more accurate result (by taking the av-
erage of estimations generated by all descents).
Unbiasedness: Somewhat surprisingly, the estimation
produced by each random descent process is completely
unbiased - i.e., the expected value of the estimation is
exactly equal to the total number of files in the system.
To understand why, consider the total number of files at
the i-th level (with root being Level 0) of the tree (e.g.,
Files 1 and 2 in Figure 1 are at Level 3), denoted by Fi.
According to the definition of a tree, each i-level file be-
longs to one and only one folder at Level i − 1. For
each (i − 1)-level folder vi−1, let |vi−1| and p(vi−1) be
the number of (i-level) files in vi−1 and the probability
for vi−1 to be reached in the random descent process,
respectively. One can see that |vi−1|/p(vi−1) is an unbi-
ased estimation for F (i) because

E

(
|vi−1|
p(vi−1)

)
=
∑
vi−1

(
p(vi−1) ·

|vi−1|
p(vi−1)

)
= Fi. (2)

With our design of the random descent process, the prob-
ability p(vi−1) is

p(vi−1) =

i−2∏
j=0

1

sj(vi−1)
, (3)

4

where sj(vi−1) is the number of subfolder-branches for
each node encountered on the path from the root to vi−1.
Our estimation in (1) is essentially the sum of the unbi-
ased estimations in (2) for all i ∈ [1,m], where m is the
maximum depth of a file. Thus, the estimation generated
by the random descent is unbiased.

Processing of Aggregate Queries: While the above ex-
ample is for estimating the COUNT of all files, the same
random descent process can be used to process queries
with other aggregate functions (e.g., SUM, AVG), with
selection conditions (e.g., COUNT all files with exten-
sion ’.JPG’), and in file systems with a DAG instead of
tree structure. We now discuss these extensions. In par-
ticular, we shall show the only change required for all
these extensions is on the computation of fi.

SUM: For the COUNT query, we set fi to the num-
ber of files in a folder. To process a SUM query over
a file metadata attribute (e.g., file size), we simply set
fi as the SUM of such an attribute over all files in the
folder (e.g., total size of all files). In the running exam-
ple, consider the estimation of SUM of numbers shown
on all files in Figure 1. The solid and dotted random
walks will return 〈f0, f1, f2〉 = 〈15, 7, 3〉 and 〈15, 0, 5〉,
respectively, leading to the same estimation of 55. The
unbiasedness of such an estimation follows in analogy
from the COUNT case.

AVG: A simple way to process an AVG query is to
estimate the corresponding SUM and COUNT respec-
tively, and then compute AVG as SUM/COUNT. Note,
however, that such an estimation is no longer unbiased,
because the division of two unbiased estimations is not
necessarily unbiased. While an unbiased AVG estima-
tion may indeed be desired for certain applications, we
have proved a negative result that it is impossible to an-
swer an AVG query without bias unless one accesses the
file system for almost as many as times as crawling the
file system. We omit the detailed proof here due to the
space limitation. Nonetheless, for practical purposes, es-
timating AVG as SUM/COUNT is in general very accu-
rate, as we shall show in the experimental results.

Selection Conditions: To process a query with selec-
tion conditions, the only change required is, again, on the
computation of fi. Instead of evaluating fi over all file
branches of a folder, to answer a conditional query, we
only evaluate fi over the files that satisfy the selection
conditions. For example, to answer a query SELECT
COUNT(*) FROM Files WHERE file.extension =
’JPG’, we should set fi as the number of files under the
current folder with extension JPG. Similarly, to answer
“SUM(file size) WHERE owner = John”, we should
set fi to the SUM of sizes for all files (under the current
folder) which belong to John. Due to the computation
of fi for conditional queries, the descent process may be
terminated early to further reduce the cost of sampling.

Again consider the query condition of (owner = John).
If the random descent reaches a folder which cannot be
accessed by John, then it can terminate immediately be-
cause any deeper descent can only return fi = 0, leading
to no change in the estimation.
Extension to DAG Structure: Finally, for a file system
featuring a DAG (instead of tree) structure, we again only
need to change the computation of fi. Almost all DAG-
enabled file systems (e.g., ext2, ext3, NTFS) provide a
reference count for each file which indicates the number
of links in the DAG that point to the file1. For a file with
r links, if we use the original algorithm discussed above,
then the file will be counted r times in the estimation.
Thus, we should discount its impact on each estimation
with a factor of 1/r. For example, if the query being pro-
cessed is the COUNT of all files, then we should com-
pute fi =

∑
f∈F (1/r(f)), where F is the set of files

under the current folder, and r(f) is the number of links
to each file f . Similarly, to estimate the SUM of all file
sizes, we should compute fi =

∑
f∈F (size(f)/r(f)),

where size(f) is the file size of file f . One can see that
with this discount factor, we maintain an unbiased esti-
mation over a DAG file system structure.

3.2 Disadvantages of FS Agg Basic
While the estimations generated by FS Agg Basic is un-
biased for SUM and COUNT queries, it is important to
understand that the error of an estimation comes from not
only bias but also variance (i.e., standard error). A prob-
lem of FS Agg Basic is that it may produce a high esti-
mation variance for file systems with an undesired distri-
bution of files, as illustrated by the following theorem:

Theorem 1. The variance of estimation produced by a
random descent on the number of h-level files Fh is

σ(h)2 =

 ∑
v∈Lh−1

(|v|2 ·
h−2∏
j=0

sj(v))

− F 2
h . (4)

where Lh−1 is the set of all folders at Level h− 1, |v| is
the number of files in a folder v, and sj(v) is the number
of subfolders for the Level-j node on the path from the
root to v.

Proof. Consider an (h − 1)-level folder v. If the ran-
dom descent reaches v, then the estimation it produces
for the number of h-level files is |v|/p(v), where p(v) is
the probability for the random descent to reach v. Let
δ(h) be the probability that a random descent terminates

1In ext2 and ext3, for example, the system provides the number of
hard links for each file. Note that for soft links, we can simply ignore
them during the descent process. Thus, they bear no impact on the final
estimation.

5

early before reaching a Level-(h− 1) folder. Since each
random descent reaches at most one Level-(h−1) folder,
the estimation variance for Fh is

σ(h)2 = δ(h) · F 2
h +

∑
v∈Lh−1

p(v) · (|v|
p(v)

− Fh)2 (5)

= δ(h) · F 2
h +

∑
v∈Lh−1

(
|v|2

p(v)
− 2|v|Fh+

p(v) · F 2
h) (6)

=

 ∑
v∈Lh−1

|v|2

p(v)

− F 2
h (7)

Since p(v) = 1/
∏h−2
j=0 sj(v), the theorem is proved.

One can see from the theorem that the existence of
two types of folders may lead to an extremely high esti-
mation variance: One type is high-level leaf-folders (i.e.,
“shallow” folders with no subfolders). Folder c in Fig-
ure 1 is an example. To understand why such folders
lead to a high variance, consider (7) in the proof of The-
orem 1. Note that for a large h, a high-level leaf-folder
(above Level-(h − 1)) reduces

∑
v∈Lh−1

p(v) because
once a random descent reaches such a folder, it will not
continue to retrieve any file in Level-h (e.g., Folder c in
Figure 1 stops further descents for h = 3 or 4). As a re-
sult, the first item in (7) becomes higher, increasing the
estimation variance. For example, after removing Folder
c from Figure 1, the estimation variance for the number
of files on Level 3 can be reduced from 24 to 9.

The other type of “ill-conditioned” folders are those
deep-level folders which reside at much lower levels than
others (i.e., with an extremely large h). An example is
Folder j in Figure 1. The key problem arising from such
a folder is that the probability for it to selected is usually
extremely small, leading to an estimation much larger
than the real value if the folder happens to be selected. As
shown in Theorem 1, a larger h leads to a higher

∏
sj(v),

which in turn leads to a higher variance. For example,
Folder j in Figure 1 has

∏
sj(v) = 4× 2× 3× 3 = 72,

leading to a estimation variance of 72 − 1 = 71 for the
number of files on Level 5 (which has a real value of 1).

3.3 FS Agg

To reduce the estimation variance, we propose high-level
crawling and breadth-first descent to address the two
above-described problems on estimation variance, high-
level leaf-folders and deep-level folders, respectively.
Also, we shall discuss how the variance generated by
FS Agg can be estimated in practice, effectively produc-
ing a confidence interval for the aggregate query answer.

High-Level Crawling is designed to eliminate the nega-
tive impact of high-level leaf-folders on estimation vari-
ance. The main idea of high-level crawling is to access
all folders in the highest i levels of the tree - by following
all subfolder-branches of folders accessed on or above
Level-(i − 1). Then, the final estimation becomes an
aggregate of two components: the precise value over the
highest i levels and the estimated value (produced by ran-
dom descents) over files below Level-i. One can see from
the design of high-level crawling that now leaf-folders in
the first i levels no longer reduce p(v) for folders v be-
low Level-i (and therefore no longer adversely affect the
estimation variance). Formally, we have the following
theorem2 which demonstrates the effectiveness of high-
level crawling on reducing the estimation variance:

Theorem 2. If r0 out of r folders crawled from the first i
levels are leaf-folders, then the estimation variance pro-
duced by a random descent for the number of Level-h
files Fh satisfies

σHLC(h)
2 ≤ (r − r0) · σ2

h − r0 · F 2
h

r
. (8)

According to this theorem, if we apply high-level
crawling over the first level in Figure 1, then the esti-
mation variance for the number of files on Level 3 is at
most (3 ·24−1 ·36)/4 = 9. Recall from Section 4.2 that
the variance of estimation after removing Folder c (the
only leaf-folder at the first level) is exactly 9. Thus, the
bound in Theorem 2 is tight in this case.

Breadth-First Descent is designed to bring two advan-
tages over FS Agg Basic: variance reduction and run-
time improvement, which we shall explain as follows.
Variance Reduction: breadth-first descent starts from the
root of the tree. Then, at any level of the tree, it generates
a set of folders to access at the next level by randomly
selecting from subfolders of all folders it accesses at the
currently level. Note that any random selection process
would work - as long as we know the probability for a
folder to be selected, we can answer aggregate queries
without bias in the same way as the original random de-
scent process. For example, to COUNT the number of
all files in the system, an unbiased estimation of the total
number of files at Level i is the SUM of |vi−1|/p(vi−1)
for all Level-(i−1) folders vi−1 accessed by the breadth-
first implementation, where |vi−1| and p(vi−1) are the
number of file-branches and the probability of selection
for vi−1, respectively.

We use the following random selection process in
Glance: Consider a folder accessed at the current level
which has n0 subfolders. From these n0 subfold-
ers, we sample without replacement min(n0,max(psel ·

2In the rest part of the paper, we do not include the proof of theo-
rems due to the space limitation.

6

n0, smin)) ones for access at the next level. Here psel ∈
(0, 1] (where sel stands for selection) represents the prob-
ability of which a subfolder will be selected for sampling,
and smin ≥ 1 states the minimum number of subfolders
that will be sampled. Both psel and smin are user-defined
parameters, the settings for which we shall further dis-
cuss in the experiments section based on characteristics
of real-world file systems.

Compared with the original random descent design,
this breadth-first random selection process significantly
increases the selection probability for a deep folder. Re-
call that with the original design, while drilling down
one level down the tree, the selection probability can de-
crease rapidly by a factor of the fan-out (i.e., the number
of subfolders) of the current folder. With breadth-first
descent, on the other hand, the decrease is limited to at
most a factor of 1/psel, which can be much smaller than
the fanout when psel is reasonably high (e.g., =0.5 as we
shall suggest in the experiments section). As a result,
the estimation generated by a deep folder becomes much
smaller. Formally, we have the following theorem.

Theorem 3. With breadth-first descent, the variance of
estimation on the number of h-level files Fh satisfies

σBFS(h)
2 ≤

 ∑
v∈Lh−1

|v|2

ph−1sel

− F 2
h . (9)

One can see from a comparison with Theorem 1 that
the factor of

∏
sj(v) in the original variance, which can

grow to an extremely large value, is now replaced by
1/ph−1sel which can be better controlled by the Glance sys-
tem to remain at a low level even when h is large.
Runtime Improvement: In the original design of
FS Agg Basic, random descent has to be performed mul-
tiple times to reduce the estimation variance. Such mul-
tiple descents are very likely to access the same folders,
especially the high-level ones. While one can leverage
the history of hard-drive accesses by caching all his-
toric accesses in memory, such repeated accesses can
still take significant CPU time for in-memory look up.
The breadth-first design, on the other hand, ensures that
each folder is accessed at most once, reducing the run-
time overhead of the Glance system.

Variance Produced by FS Agg: An important issue
for applying FS Agg in practice is how one can esti-
mate the error of approximate query answers it produces.
Since FS Agg generates unbiased answers for SUM and
COUNT queries, the key enabling factor for error estima-
tion here is an accurate computation of the variance. One
can see from Theorem 3 that variance depends on the
specific structure of the file system, in particular the dis-
tribution of selection probability psel for different fold-
ers. Since our sampling-based algorithm does not have

a global view of the hierarchical structure, it cannot pre-
cisely compute the variance.

Fortunately, the variance can still be accurately ap-
proximated in practice. To understand how, consider first
the depth-first descents used in FS Agg Basic. Each de-
scent returns an independent aggregate estimation, while
the average for multiple descents becomes the final ap-
proximate query answer. Let q̃1, . . . , q̃h be the indepen-
dent estimations and q̃ = (

∑
q̃i)/h be the final answer.

A simple method of variance approximation is to com-
pute var(q̃1, . . . , q̃h)/h, where var(·) is the variance of
independent estimations returned by the descents. Note
that if we consider a population consisting of estimations
generated by all possible descents, then q̃1, . . . , q̃h form
a sample of the population. As such, the variance compu-
tation is approximating the population variance by sam-
ple variance, which are asymptotically equal (for an in-
creasing number of descents).

We conducted extensive experiments described in Sec-
tion 5 to verify the accuracy of such an approximation.
Figure 2 shows two examples for counting the total num-
ber of files in an NTFS and a Plan 9 file system, re-
spectively. Observe from the figure that the real vari-
ance oscillates in the beginning of descents. For exam-
ple, we observe at least one spike on each file system
within the first 100 descents. Such a spike occurs when
one descent happens to end with a deep-level file which
returns an extremely large estimation, and is very likely
to happen with our sampling-based technique. Nonethe-
less, note that the real variance converges to a small
value when the number of descents is sufficiently large
(e.g., > 400). Also note that for two file systems after
a small number of descents (about 50), the sample vari-
ance var(q̃1, . . . , q̃h)/h becomes an extremely accurate
approximation for the real (population) variance (over-
lapping shown in Figure 2), even during the spikes. One
can thereby derive an accurate confidence interval for the
query answer produced by FS Agg Basic.

1

2

3

 0 200 400 600

V
ar

ia
n

ce

Number of Descents

x 104

Real Variance
Sample Variance

(a) NTFS

1

2

3

 0 200 400 600

V
ar

ia
n

ce

Number of Descents

x 106

Real Variance
Sample Variance

(b) Plan 9
Figure 2: Variance approximation for (a) an NTFS file
system and (b) a Plan 9 system. Real and sample vari-
ances are overlapped when the number of descents is suf-
ficiently large.

While FS Agg no longer performs individual depth-
first descents, the idea of using sample variance to ap-

7

proximate population variance still applies. In partic-
ular, note that for any given level, say Level-i, of the
tree structure, each folder randomly chosen by FS Agg
at Level-(i − 1) produces an independent, unbiased, es-
timation for SUM or COUNT aggregate over all files
in Level-i. Thus, the variance for an aggregate query
answer over Level-i can be approximated based on the
variance of estimations generated by the individual fold-
ers. The variance of final SUM or COUNT query answer
(over the entire file system) can then be approximated by
the SUM of variances for all levels.

4 Top-k Query Processing

Recall that for a given file system, a top-k query is de-
fined by two elements: the scoring function and the se-
lection conditions. Without loss of generality, we con-
sider a top-k query which selects k files (directories) with
the highest scores. For the sake of simplicity, we focus
on top-k queries without selection conditions, and con-
sider a tree-like structure of the file system. The exten-
sions to top-k queries with selection conditions and file
systems with DAG structures follow in analogy from the
same extensions for FS Agg.

4.1 Main Idea

A simple way to answer a top-k query is to access ev-
ery directory to find the k files with the highest scores.
The objective of FS TopK is to generate an approximate
top-k list with far fewer hard-drive accesses. To do so,
FS TopK consists of the following three steps. We shall
describe the details of these steps in the next subsection.

1. A Lower-Bound Estimation: The first step uses a
random descent similar to FS Agg to generate an
approximate lower bound on the k-th highest score
over the entire file system (i.e., among files that sat-
isfy the selection conditions specified in the query).

2. Highest-Score Estimations and Tree Pruning: In the
second step, we prune the tree structure of the file
system according to the lower bound generated in
Step 1. In particular, for each subtree, we use the
results of descents to generate an upper-bound esti-
mate on the highest score of all files in the subtree.
If the estimation is smaller than the lower bound
from Step 1, we remove the subtree from search
space because it is unlikely to contain a top-k file.
Note that in order for such a pruning process to have
a low false negative rate - i.e., not to falsely remove
a large number of real top-k files, a key assumption
we are making here is the “locality” of scores - i.e.,
files with similar scores are likely to co-locate in the

same directory or close by in the tree structure. In-
tuitively, the files in a directory are likely to have
similar creation and update times. In some cases
(e.g., images in the ”My Pictures” directory, and
outputs from a simulation program), the files will
likely have similar sizes too. Note that the strength
of this locality is heavily dependent on the type of
the query and the semantics of the file system on
which the query is running. We plan to investigate
this issue as part of the future work.

3. Crawling of the Selected Tree: Finally, we crawl the
remaining search space - i.e., the selected tree - by
accessing every folder in it to locate the top-k files
as the query answer. Such an answer is approximate
because some real top-k files might exist in the se-
lected subtrees, albeit with a small probability, as
we shall show in the experimental results.

In the running example, consider a query for the top-3
files with the highest numbers shown in Figure 1. Sup-
pose that Step 1 generates a (conservative) lower bound
of 8, and the highest scores estimated in Step 2 for sub-
trees with roots a, c, d, and m are 5, -1 (i.e., no file),
7, and 15, respectively - the details of these estimations
will be discussed shortly. Then, the pruning step will re-
move the subtrees with roots a, c, and d, because their
estimated highest scores are lower than the lower bound
of 8. Thus, the final crawling step only needs to access
the subtree with root of a. In this example, the algorithm
would return the files identified as 8, 9, and 10, locating
two top-3 files while crawling only a small fraction of the
tree. Note that the file with the highest number 11 could
not be located here because the pruning step removes the
subtree with root of d.

4.2 Detailed Design
The design of FS TopK is built upon a hypothesis that
the highest scores estimated in Step 2, when compared
with the lower bound estimated in Step 1, can prune a
large portion of the tree, significantly reducing the over-
head of crawling in Step 3. In the following, we first de-
scribe the estimations of the lower bound and the highest
scores in Steps 1 and 2, and then discuss the validity of
the hypothesis for various types of scoring functions.

Both estimations in the two steps can be made from
the order statistics [20] of files retrieved by the random
descent process in FS Agg. The reason is that both esti-
mations are essentially on the order statistics of the pop-
ulation (i.e., all files in the system) - The lower bound in
Step 1 is the k-th largest order statistics of all files, while
the highest scores are on the largest order statistics of the
subtrees. We refer readers to [20] for details of how the
order statistics of a sample can be used to estimate that
of the population and how accurate such an estimation is.

8

While sampling for order statistics is a problem of its
own right, for the purpose of this paper, we consider the
following simple approach which, according to our ex-
periments over real-world file systems, suffices for an-
swering top-k queries accurately and efficiently over al-
most all tested systems: For the lower-bound estimation
in Step 1, we use the sample quantile as an estimation
of the population quantile. For example, to estimate the
100-th largest score of a system with 10, 000 files, we use
the largest score of a 100-file sample as an estimation.
Our tests show that for many practical scoring functions
(which usually have a positive skew, as we shall discuss
below), the result serves as a conservative lower bound
desired by FS TopK. For the highest-score estimation
in Step 2, we simply compute γ · max(sample scores),
where γ is a constant correction parameter. The setting
of γ captures a tradeoff between the crawling cost and
the chances of finding top-k files - when a larger γ is se-
lected, less number of the subtrees are likely be removed.

We now discuss when the hypothesis of heavy prun-
ing is valid and when it is not. Ideally, two conditions
should be satisfied for the hypothesis to hold: (1) If a
subtree includes a top-k file, then it should include a (rel-
atively) large number of highly scored files, in order for
the sampling process (in Step 2) to capture one (and to
thereby produce a highest-score estimation that surpasses
the lower bound) with a small query cost. And (2) on the
other hand, most subtrees (which do not include a top-
k file) should have a maximum score significantly lower
than the k-th highest score. This way, a large number
of subtrees can be pruned to improve the efficiency of
top-k query processing. In general, one can easily con-
struct a scoring function that satisfy both or neither of
the above two conditions. We focus on a special class
of scoring functions: those following a heavy-tailed dis-
tributions (i.e., its cumulative distribution function F (·)
satisfies limx→∞ eλx(1 − F (x)) = ∞ for all λ > 0).
Existing studies on real-world file system traces showed
that many file/directory metadata attributes, which are
commonly used as scoring functions, belong to this cat-
egory [2]. For example, the distributions of file size, last
modified time, creation time, etc., in the entire file sys-
tem or in a particular subtree are likely to have a heavy
tail on one or both extremes of the distribution.

A key intuition here is that scoring functions defined
as such attribute values (e.g., finding the top-k files with
the maximum sizes or the latest modified time) usually
satisfy both conditions: First, because of the long tail,
a subtree which includes a top-k scored file is likely to
include many other highly scored files as well. Second,
since the vast majority of subtrees have their maximum
scores significantly smaller than the top-k lower bound,
the pruning process is likely to be effective with such a
scoring function.

We would also like to point out an “opposite” class of
scoring functions for which the pruning process is not ef-
fective: the inverse of the above scoring functions - e.g.,
the top-k files with the smallest sizes. Such a scoring
function, when used in a top-k query, selects k files from
the “crowded” light-tailed side of the distribution. The
pruning is less likely to be effective because many other
folders may have files with similar scores, violating the
second condition stated above. Fortunately, asking for
top-k smallest files is not particularly useful in practice,
also because of the fact that it selects from the crowded
side - e.g., the answer is likely to be a large number of
empty files.

5 Implementation and Evaluation

5.1 Implementation
We implemented Glance, including all three algorithms
(FS Agg Basic, FS Agg and FS TopK) in 1,600 lines of
C code in Linux. We also built and used a simulator in
Matlab to complete a large number of tests within a short
period of time. While the implementation was built upon
the ext3 file system, the algorithms are generic to any
hierarchical file system and the current implementation
can be easily ported to other platforms, e.g., Windows
and Mac OS. FS Agg Basic has only one parameter: the
number of descents. FS Agg has three parameters: the
selection probability psel, the minimum number of selec-
tions smin and the number of (highest) levels for crawling
h. Our default parameter settings are psel = 50%, smin =
3, and h = 4. We also tested with other combinations of
parameter settings. FS TopK has one additional param-
eter, the (estimation) enlargement ratio γ. The setting of
γ depends on the query to be answered, which shall be
explained later.

5.2 Experiment Setup
Test Platform: We ran all experiments on Linux ma-
chines with Intel Core 2 Duo processor, 4GB RAM, and
1TB Samsung 7200RPM hard drive. Unless otherwise
specified, we ran each experiment for five times and re-
ported the averages.
Windows File Systems: The Microsoft traces [2] in-
cludes the snapshots of around 63,000 file systems, 80%
of which are NTFS and the rest are FAT. To test Glance
over file systems with a wide range of sizes, we first
selected from the traces two file systems, m100K and
m1M (the first ‘m’ stands for Microsoft trace), which
are the largest file systems with less than 100K and 1M
files, respectively. Specifically, m100K has 99,985 files
and 16,013 directories, and m1M has 998,472 files and
106,892 directories. We also tested the largest system in

9

the trace, m10M , which has the maximum number of
files (9,496,510) and directories (789,097). We put to-
gether the largest 33 file systems in the trace to obtain
m100M that contains over 100M files and 7M directo-
ries. In order to evaluate next-generation billion-level file
systems for which there are no available traces, we chose
to replicate m100M for 10 times to create m1B with
over 1 billion files and 70M directories. While a similar
scale-up approach has been used in the literature [26,49],
we would like to note that the duplication-filled system
may exhibit different properties from a real system with
100M or 1B files. As part of future work, we shall evalu-
ate our techniques in real-world billion-level file systems.
Plan 9 File Systems: Plan 9 is a distributed file system
developed and used at the Bell Labs [41, 42]. We re-
played the trace data collected on two central file servers
bootes and emelie, to obtain two file systems, pb (for
bootes) and pe (for emelie), each of which has over 2M
files and 70-80K directories.
NFS: Here we used the Harvard trace [21, 45] that con-
sists of workloads on NFS servers. The replay of one-
day trace created about 1,500 directories and 20K files.
Again, we scaled up the one-day system to a larger
file system nfs (2.3M files and 137K folders), using the
above-mentioned approach.
Synthetic File Systems: To conduct a more compre-
hensive set of experiments on file systems with differ-
ent file and directory counts, we used Impressions [1]
to generate a set of synthetic file systems. By adjust-
ing the file count and the (expected) number of files per
directory, we used Impressions to generate three file sys-
tems, i10K, i100K, and i1M (here ‘i’ stands for Im-
pressions), with file counts 10K, 100K, and 1M, and di-
rectory counts 1K, 10K, and 100K, respectively.

5.3 Aggregate Queries
We first considered Q1 discussed in Section 2, i.e., the to-
tal number of files in the system. To provide a more intu-
itive understanding of query accuracy (than the arguably
abstract measure of relative error), we used the Matlab
simulator (for quick simulation) to generate a box plot
(Figure 3(a)) of estimations and overhead produced by
Glance on Q1 over five file systems, m100K to m10M,
pb and pe. Remember as defined in Section 2, the query
cost (in Figure 3(b) and the following figures) is the ratio
between the number of directories visited by Glance and
that by file-system crawling. One can see that Glance
consistently generates accurate query answers, e.g., for
m10M, sampling 30% of directories produces an answer
with 2% average error. While there are outliers, the num-
ber of outliers is small and their errors never exceed 7%.

We also evaluated Glance with other file systems and
varied the input parameter settings. This test was con-

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

m100K m1M m10M pb pe

R
el

at
iv

e
es

ti
m

at
io

n

(a) Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

m100K m1M m10M pb pe

C
o
st

(b) Cost

Figure 3: Box plots of accuracy and cost of 100 trials

ducted on the Linux and ext3 implementation, and so
were the following tests on aggregate queries. In this
test, we varied the minimum number of selections smin

from 3 to 6, the number of crawled levels h from 3 to 5,
and set the selection probability as psel = 50% (i.e., half
of the subfolders will be selected if the amount is more
than smin). Figure 4 shows the query accuracy and cost
on the eleven file systems we tested. For all file systems,
Glance was able to produce very accurate answers (with
<10% relative error) when crawling four or more levels
(i.e., h ≥ 4). Also note from Figure 4 that the perfor-
mance of Glance is less dependent on the type of the file
system than its size - it achieves over 90% accuracy for
NFS, Plan 9, and NTFS (m10M to m1B). Depending on
the individual file systems, the cost ranges from less than
12% of crawling for large systems with 1B files and 80%
for the small 100K system. The algorithm scales very
well to large file systems e.g., m100M and m1B - the
relative error is only 1-3% when Glance accesses only
10-20% of all directories. For m1B, the combination of
psel = 50%, smin = 3 and h = 4 produces 99% accuracy
with very little cost (12%).

0.7

0.8

0.9

1.0

 0 50 100 150 200 250 300 350 400 450

A
cc

u
ra

cy

Time (sec)

m100K m1M m10M pb pe NFS

Figure 5: Query accuracy vs. run time in seconds. Three
points of each line (from left to right) represent h of 3, 4,
and 5, respectively.

Figure 5 illustrates the runtimes (in seconds) for ag-
gregate queries. The absolute runtime depends heavily
on the size of the file system, e.g., seconds for m100K,
several minutes for nfs (2.3M files), and 1.2 hours for
m100M (not shown in the figure). Note that in this paper
we only used a single hard drive; parallel IO to multiple
hard drives (e.g., RAID) will be able to utilize the aggre-
gate bandwidth to further improve the performance. As
the value of h increases, the query runs slightly longer

10

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
u
ra
cy

0.0

0.2

0.4

0.6

0.8

1.0

m100K m1M m10M m100M m1B pb pe nfs i10K i100K i1M

C
o

st

File Systems

h - Smin
3-3 3-6 4-3 4-6 5-3 5-6

Figure 4: Accuracy and cost of aggregate queries under different settings of the input parameters. Label 3-3 stands for
h of 3 and smin of 3, 3-6 for h of 3 and smin of 6, etc., while psel is 50% for all cases.

but the accuracy improves by about 10% for pb and 20%
for pe. The accuracy improvements for m10M and nfs
are smaller. The value of smin is 3 in this test.

0.0
0.2
0.4
0.6
0.8
1.0

m100K m1M m10M
0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

C
o

st

File Systems

COUNT SUM size AVG size Cost

(a) No condition

0.0
0.2
0.4
0.6
0.8
1.0

m100K m1M m10M
0.0
0.2
0.4
0.6
0.8
1.0

A
cc

u
ra

cy

C
o

st

File Systems

COUNT SUM size AVG size Cost

(b) With condition

Figure 6: Accuracy and cost of queries

We also considered other aggregate queries with vari-
ous aggregate functions and with/without selection con-
ditions. Figure 6(a) presents the accuracy and cost of
evaluating the SUM and AVG of file sizes for all files
in the system, while Figure 6(b) depicts the same for
exe files. We included in both figures the accuracy of
COUNT because AVG is calculated as SUM/COUNT.
Both SUM and AVG queries receive very accurate an-
swers, e.g., only 2% relative error for m10M with or
without the selection condition of ‘.exe’. The query
costs are moderate for large systems - 30% for m1M and
m10M (higher for the small system m100K). We also

tested SUM and AVG queries with other selection condi-
tions (e.g., file type = ‘.dll ’) and found similar results.

5.4 Top-k Queries

To evaluate the performance of FS TopK, we considered
both Q5 and Q6 discussed in Section 2. For Q5, i.e., the k
largest files, we tested Glance over five file systems, with
k being 50 or 100. One can see from the results depicted
in Figure 7 that, in all but one case (m1M), Glance is
capable of locating at least 50% of all top-k files (for pb,
more than 95% are located). Meanwhile, the cost is as
little as 4% of crawling (for m10M). Figure 8 presents
the runtimes of the top-k queries, where one can see that
similar to aggregate queries, the runtime is correlated to
the size of the file system - the queries take only a few
seconds for small file systems, and up to ten minutes for
large systems (e.g., m10M).

0.0
0.2
0.4
0.6
0.8
1.0

A
cc
u
ra
cy Top50 Top100

0.0
0.2
0.4
0.6
0.8
1.0

m100K m1M m10M pb pe

C
o

st

File Systems

Figure 7: Accuracy and cost of Top-k queries on file size

Figure 9 presents the query accuracy and cost for Top-
k queries on file size, when γ varies from 1, 5, 10, to
100,000. The trend is clear - the query cost increases as
γ does, because a higher value of γ is to scale the highest-
score estimation up to a larger degree, that is, to crawl a

11

0.4

0.6

0.8

1.0

 0 100 200 300 400 500 600

A
cc

u
ra

cy

Time (sec)

m100K m1M m10M pb pe

Figure 8: Top-k query accuracy vs. run time in seconds.
The first point of each line stands for top-50 and the sec-
ond for top-100.

larger portion of the file system. Fortunately, a moderate
γ of 5 and 10 presents a good tradeoff point - achieving
a reasonable accuracy without incurring too much cost.

We also tested Q6, i.e., the k most recently modified
files over m100K, m1M, and pb. The results are shown
in Figure 10. One can see that Glance is capable of locat-
ing more than 90% of top-k files for pb, and about 60%
for m100K and m1M. The cost, meanwhile, is 28% of
crawling for m100K, 1% for m1M, and 36% for pb.

0.0
0.2
0.4
0.6
0.8
1.0

100 101 102 103 104 105

A
cc
u
ra
cy

ϒ

0.0
0.2
0.4
0.6
0.8
1.0

100 101 102 103 104 105

C
o
st

ϒ

m100K Top50
m100K Top100

m1M Top50
m1M Top100

Figure 9: Query accuracy and cost when varying γ

0.0

0.2

0.4

0.6

0.8

1.0

m100K m1M pb
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

C
o

st

File Systems

Accuracy Cost

Figure 10: Top-k queries on file time

6 Related Work

Metadata query on file systems: Prior research on file-
system metadata query [26, 32] has extensively focused
on databases, which utilizes indexes on file metadata.
However, the results [26,31,32] reviewed the inefficiency
of this paradigm due to metadata locality and distribution
skewness in large file systems. To solve this problem,
Spyglass [30, 32], SmartStore [26], and Magellan [31]
utilize multi-demensional structures (e.g., K-D trees and
R-trees) to build indexes upon subtree partitions or se-
mantic groups. SmartStore attempts to reorganize the
files based on their metadata semantics. Conversely,
Glance avoids any file-specific optimizations, aiming in-
stead to maintain file system agnosticism. It works seam-
lessly with the tree structure of a file system and avoids
the time and space overheads from building and main-
taining the metadata indexes.

Comparison with Database Sampling: Traditionally
database sampling has been used to reduce the cost of
retrieving data from a DBMS. Random sampling mech-
anisms have been extensively studied [4, 6, 9, 12, 14, 15,
22, 34]. Applications of random sampling include esti-
mation methodologies for histograms and approximate
query processing (see tutorial in [15]). However, these
techniques do not apply when there is no direct random
access to all elements of interest - e.g., in a file system,
where there is no complete list of all files/directories.

Another particularly relevant topic is the sampling of
hidden web databases [8,24,25,28], for which a random
descent process has been used to construct queries is-
sued over the web interfaces of these databases [16–19].
While both these techniques and Glance use random de-
scents, a unique challenge for sampling a file system is its
much more complex distribution of files. If we consider
a hidden database in the context of a file system, then
all files (i.e., tuples) appear under folders with no sub-
folders. Thus, the complex distribution of files in a file
system calls for a different sampling technique which we
present in the paper .

Top-k Query Processing: Top-k query processing has
been extensively studied over both databases (e.g., see a
recent survey [27]) and file systems [3,7,26,32]. For file
systems, a popular application is to locate the top-k most
frequent (or space-consuming) files/blocks for redun-
dancy detection and removal. For example, Lillibridge
et al. [33] proposed the construction of an in-memory
sparse index to compare an incoming block against a few
(most similar) previously stored blocks for duplicate de-
tections (which can be understood as a top-k query with
a scoring function of similarity). Top-k query process-
ing has also been discussed in other index-building tech-
niques, e.g., in Spyglass [32] and SmartStore [26].

12

7 Discussion

At present, Glance takes several pre-defined parameters
as the inputs and needs to complete the execution in
whole. That is, Glance is not an any-time algorithm and
cannot be stopped in the middle of the execution, because
our current approach relies on a complete sample to re-
duce query variance and achieve high accuracy. One lim-
itation of this approach is that its runtime over an alien
file system is unknown in advance, making it unsuitable
for the applications with absolute time constraints. For
example, a border patrol agent may need to count the
amount of encrypted files in a traveler’s hard drive, in
order to determine whether the traveler could be trans-
porting sensitive documents across the border [13, 44].
In this case, the agent must make a fast decision as the
amount of time each traveler can be detained for is ex-
tremely limited. We envision that in the future Glance
shall offer a time-out knob that a user can use to decide
the query time over a file system. This calls for new algo-
rithms that allow Glance get smarter - be predictive about
the run-time and self-adjust the work flow based on the
real-time requirements.

Glance currently employs a ”static” strategy over file
systems and queries, i.e., it does not modify its tech-
niques and traversals for a query. A dynamic approach
is attractive because in that case Glance would be able to
adjust the algorithms and parameters depending on the
current query and file system. New sampling techniques,
e.g., stratified and weighted sampling, shall be investi-
gated to further improve query accuracy on large file sys-
tems. The semantic knowledge of a file system can also
help in this approach. For example, most images can
be found in a special directory, e.g. “/User/Pictures/” in
MacOS X, or “\Documents and Settings\User\My Doc-
uments\My Pictures\” in Windows XP.

Glance shall also leverage the results from the pre-
vious queries to significantly expedite the future ones,
which is beneficial in situations when the workload is a
set of queries that are executed very infrequently. The
basic idea is to store the previous estimations over parts
(e.g., subtrees) of the file system, and utilize the history
to limit the search space to the previously unexplored
part of the file system, unless it determines that the his-
tory is obsolete (e.g., according to a pre-defined valid-
ity period). Note that the history shall be continuously
updated to include newly discovered directories and to
update the existing estimations.

8 Conclusion

In this paper we have initiated an investigation of just-
in-time analytics over a large-scale file system through
its tree- or DAG-like structure. We proposed a ran-

dom descent technique to produce unbiased estimations
for SUM and COUNT queries and accurate estimations
for other aggregate queries, and a pruning-based tech-
nique for the approximate processing of top-k queries.
We proposed two improvements, high-level crawling and
breadth-first descent, and described a comprehensive set
of experiments which demonstrate the effectiveness of
our approach over real-world file systems.

9 Acknowledgments

We thank the anonymous reviewers and our shepherd
John Bent for their excellent comments that helped im-
prove the quality of this paper. We also thank Hong Jiang
and Yifeng Zhu for their help on replaying the NFS trace,
and Ron Chiang for his help on the artwork. This work
was supported by the NSF grants OCI-0937875, OCI-
0937947, IIS-0845644, CCF-0852674, CNS-0852673,
and CNS-0915834.

References
[1] AGRAWAL, N., ARPACI-DUSSEAU, A., AND ARPACI-

DUSSEAU, R. Generating realistic impressions for file-system
benchmarking. ACM Transactions on Storage (TOS) 5, 4 (2009),
1–30.

[2] AGRAWAL, N., BOLOSKY, W., DOUCEUR, J., AND LORCH,
J. A five-year study of file-system metadata. In Proceedings of
the 5th USENIX Conference on File and Storage Technologies
(2007), pp. 31–45.

[3] AMES, S., GOKHALE, M., AND MALTZAHN, C. Design and
implementation of a metadata-rich file system. Tech. Rep. UCSC-
SOE-10-07, University of California, Santa Cruz, 2010.

[4] BARBARA, D., DUMOUCHEL, W., FALOUTSOS, C., HAAS, P.,
HELLERSTEIN, J., IOANNIDIS, Y., JAGADISH, H., JOHNSON,
T., NG, R., POOSALA, V., ET AL. The New Jersey data reduc-
tion report. IEEE Data Eng. Bull. 20, 4 (1997), 3–45.

[5] BEAGLE. http://beagle-project.org/ .

[6] BETHEL, J. Sample allocation in multivariate surveys. Survey
methodology 15, 1 (1989), 47–57.

[7] BRANDT, S., MALTZAHN, C., POLYZOTIS, N., AND TAN, W.-
C. Fusing data management services with file systems. In Pro-
ceedings of the 4th Annual Workshop on Petascale Data Storage
(PDSW ’09) (New York, NY, USA, 2009), ACM, pp. 42–46.

[8] CALLAN, J., AND CONNELL, M. Query-based sampling of text
databases. ACM Trans. Inf. Syst. 19 (April 2001), 97–130.

[9] CAUSEY, B. Computational aspects of optimal allocation in mul-
tivariate stratified sampling. SIAM Journal on Scientific and Sta-
tistical Computing 4 (1983), 322.

[10] CHAUDHURI, S., DAS, G., AND NARASAYYA, V. Optimized
stratified sampling for approximate query processing. ACM
Transactions on Database Systems (TODS) 32, 2 (2007), 9.

[11] CHAUDHURI, S., DAS, G., AND SRIVASTAVA, U. Effective use
of block-level sampling in statistics estimation. In Proceedings
of the 2004 ACM SIGMOD international conference on Manage-
ment of data (2004), ACM, p. 298.

[12] CHROMY, J. Design optimization with multiple objectives. In
Proceedings on the Research Methods of the American Statistical
Association (1987), pp. 194–199.

13

[13] CNET. Security guide to customs-proofing your laptop.
http://news.cnet.com/8301-13578 3-9892897-38.html (2009).

[14] COCHRAN, W. Sampling technique. New York: John Willey &
Sons (1977).

[15] DAS, G. Survey of approximate query processing techniques (tu-
torial). In International Conference on Scientific and Statistical
Database Management (SSDBM ’03) (2003).

[16] DASGUPTA, A., DAS, G., AND MANNILA, H. A random walk
approach to sampling hidden databases. In Proceedings of the
2007 ACM SIGMOD international conference on Management
of data (SIGMOD ’07) (2007), pp. 629–640.

[17] DASGUPTA, A., JIN, X., JEWELL, B., ZHANG, N., AND DAS,
G. Unbiased estimation of size and other aggregates over hidden
web databases. In Proceedings of the 2010 international confer-
ence on Management of data (SIGMOD) (2010), pp. 855–866.

[18] DASGUPTA, A., ZHANG, N., AND DAS, G. Leveraging count
information in sampling hidden databases. In Proceedings of
the 2009 IEEE International Conference on Data Engineering
(2009), pp. 329–340.

[19] DASGUPTA, A., ZHANG, N., DAS, G., AND CHAUDHURI, S.
Privacy preservation of aggregates in hidden databases: why and
how? In Proceedings of the 35th SIGMOD international confer-
ence on Management of data (2009), pp. 153–164.

[20] DAVID, H. A., AND NAGARAJA, H. N. Order Statistics (3rd
Edition). Wiley, New Jersey, 2003.

[21] ELLARD, D., LEDLIE, J., MALKANI, P., AND SELTZER, M.
Passive nfs tracing of email and research workloads. In Proceed-
ings of the 2nd USENIX Conference on File and Storage Tech-
nologies (FAST ’03) (Berkeley, CA, USA, 2003), USENIX Asso-
ciation, pp. 203–216.

[22] GAROFALAKIS, M. N., AND GIBBON, P. B. Approximate
query processing: Taming the terabytes. In Proceedings of the
27th International Conference on Very Large Data Bases (VLDB)
(2001).

[23] GOOGLE. Google desktop. http://desktop.google.com/ .

[24] HEDLEY, Y. L., YOUNAS, M., JAMES, A., AND SANDERSON,
M. A two-phase sampling technique for information extraction
from hidden web databases. In Proceedings of the 6th annual
ACM international workshop on Web information and data man-
agement (WIDM ’04) (2004), pp. 1–8.

[25] HEDLEY, Y.-L., YOUNAS, M., JAMES, A. E., AND SANDER-
SON, M. Sampling, information extraction and summarisation of
hidden web databases. Data and Knowledge Engineering 59, 2
(2006), 213–230.

[26] HUA, Y., JIANG, H., ZHU, Y., FENG, D., AND TIAN, L. Smart-
Store: a new metadata organization paradigm with semantic-
awareness for next-generation file systems. In Proceedings of the
Conference on High Performance Computing Networking, Stor-
age and Analysis (SC) (2009), ACM, pp. 1–12.

[27] ILYAS, I. F., BESKALES, G., AND SOLIMAN, M. A. A survey of
top-k query processing techniques in relational database systems.
ACM Computing Surveys 40, 4 (2008), 1–58.

[28] IPEIROTIS, P. G., AND GRAVANO, L. Distributed search over
the hidden web: hierarchical database sampling and selection. In
Proceedings of the 28th international conference on Very Large
Data Bases (VLDB ’02) (2002), pp. 394–405.

[29] KOGGE, P., BERGMAN, K., BORKAR, S., CAMPBELL, D.,
CARLSON, W., DALLY, W., DENNEAU, M., FRANZON, P.,
HARROD, W., HILL, K., ET AL. Exascale computing study:
technology challenges in achieving exascale systems. DARPA In-
formation Processing Techniques Office 28 (2008).

[30] LEUNG, A. Organizing, indexing, and searching large-scale file
systems. Tech. Rep. UCSC-SSRC-09-09, University of Califor-
nia, Santa Cruz, Dec. 2009.

[31] LEUNG, A., ADAMS, I., AND MILLER, E. Magellan: a search-
able metadata architecture for large-scale file systems. Tech. Rep.
UCSC-SSRC-09-07, University of California, Santa Cruz, Nov.
2009.

[32] LEUNG, A. W., SHAO, M., BISSON, T., PASUPATHY, S., AND
MILLER, E. L. Spyglass: fast, scalable metadata search for
large-scale storage systems. In Proccedings of the 7th conference
on File and Storage Technologies (FAST) (Berkeley, CA, USA,
2009), USENIX Association, pp. 153–166.

[33] LILLIBRIDGE, M., ESHGHI, K., BHAGWAT, D., DEOLALIKAR,
V., TREZISE, G., AND CAMBLE, P. Sparse indexing: large scale,
inline deduplication using sampling and locality. In Proccedings
of the 7th conference on File and Storage Technologies (FAST)
(Berkeley, CA, USA, 2009), USENIX Association, pp. 111–123.

[34] LOHR, S. Sampling: design and analysis. Pacific Grove (1999).

[35] LYNN, W. J. Defending a new domain: the pentagon’s cyber-
strategy. Foreign Affairs (September/October 2010).

[36] MURPHY, N., TONKELOWITZ, M., AND VERNAL, M.
The design and implementation of the database file system.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.8068.

[37] NUNEZ, J. High end computing file system and IO R&D gaps
roadmap. HEC FSIO R&D Conference (Aug. 2008).

[38] OLKEN, F., AND ROTEM, D. Simple random sampling from
relational databases. In Proceedings of the 12th International
Conference on Very Large Data Bases (1986), pp. 160–169.

[39] OLKEN, F., AND ROTEM, D. Random sampling from database
files: a survey. In Proceedings of the fifth international confer-
ence on Statistical and scientific database management (1990),
Springer-Verlag New York, Inc., pp. 92–111.

[40] OLSON, M. The design and implementation of the Inversion file
system. In Proceedings of the Winter 1993 USENIX Technical
Conference (1993), pp. 205–217.

[41] PIKE, R., PRESOTTO, D., DORWARD, S., FLANDRENA, B.,
THOMPSON, K., TRICKEY, H., AND WINTERBOTTOM, P. Plan
9 from bell labs. Computing systems 8, 3 (1995), 221–254.

[42] PLAN 9 FILE SYSTEM TRACES.
http://pdos.csail.mit.edu/p9trace/ .

[43] SELTZER, M., AND MURPHY, N. Hierarchical file systems are
dead. In Proceedings of the 12th conference on Hot topics in
Operating Systems (HotOS ’09) (2009), pp. 1–1.

[44] SLASHDOT. Laptops can be searched at the border.
http://yro.slashdot.org/article.pl?sid=08/04/22/1733251 (2008).

[45] SNIA. NFS traces. http://iotta.snia.org/traces/list/NFS (2010).

[46] STAHLBERG, P., MIKLAU, G., AND LEVINE, B. N. Threats
to privacy in the forensic analysis of database systems. In Pro-
ceedings of the 2007 ACM SIGMOD international conference
on Management of data (SIGMOD ’07) (New York, NY, USA,
2007), ACM, pp. 91–102.

[47] SZALAY, A. New challenges in petascale scientific databases.
In Proceedings of the 20th international conference on Scientific
and Statistical Database Management (SSDBM ’08) (Berlin, Hei-
delberg, 2008), Springer-Verlag, pp. 1–1.

[48] VITTER, J. Random sampling with a reservoir. ACM Transac-
tions on Mathematical Software (TOMS) 11, 1 (1985), 57.

[49] ZHU, Y., JIANG, H., WANG, J., AND XIAN, F. HBA: Dis-
tributed Metadata Management for Large Cluster-Based Storage
Systems. IEEE Transactions on Parallel and Distributed Systems
19 (2008), 750–763.

14

