
A Novel Nested Qos Model for Efficient Resource Usage in Storage Servers

Hui Wang∗ Peter Varman
hw5@rice.edu pjv@rice.edu

Rice University, USA

The increasing popularity of storage and server con-
solidation introduces new challenges for resource manage-
ment, capacity provisioning, and guaranteeing application
performance.Typical Service Level Objectives (SLOs) pro-
vide performance guarantees in terms of throughput (IOPS)
or response time limits (ms). The bursty nature of storage
workloads (where instantaneous arrival rates significantly
exceed the average) implies a large gap between peak and
average resource requirements in meeting response time
bounds, leading to low overall server utilization and high
cost. This situation is driving the development of elastic
QoS models that allow clients greater flexibility in adopt-
ing SLOs tailored to their workload characteristics and per-
formance requirements, while allowing the service provider
opportunities to optimize provisioning and scheduling deci-
sions.
In this paper we propose a novel Nested QoS service

model to provide flexible QoS performance guarantees to
clients. The model formalizes the empirical observation
that a disproportionately large amount of resources are used
to handle the small tail of badly behaving requests. The
amount of server resources required can be reduced signif-
icantly by using workload decomposition to identify these
requests dynamically and scheduling them with less strin-
gent response time requirements. The Nested QoS model
provides a formal (but intuitive and auditable) way to spec-
ify the notion of graduated QoS where a single client’s
SLOs is specified in the form of a response time distribu-
tion rather than a single worst-case guarantee.
Figure 1 shows the framework of our Nested QoS service

model. The performance SLOs is determined by multiple
nested classes. Each class is characterized by a traffic en-
velope and a response time limitation. For example, in the
3-class Nested QoS mode, all the requests in the workload
that satisfy the Class 1 envelope have a response time guar-
antee of δ1ms; the requests that satisfy the less restrictive
Class 2 envelope arrival constraint have a latency bound of
δ2ms, while those conforming to the Class 3 envelope ar-
rival bound have a latency limit of δ3ms.
The Nested QoS model consists of two components: re-

quest classification and request scheduling. The former

places requests into different classes, based on the traffic
envelope. The latter schedules requests across all classes
based on class tag and other information. The detail about
how to set the traffic envelope, how to estimate capacity re-
quired and how to schedule the requests will be discussed
in following full paper.
We have implemented the Nested QoS model in a

process-driven system simulator and evaluated it using sev-
eral block-level storage workloads from UMass Storage
Repository. Table 1 compares the capacity required by
the workloads for the nested and single-level QoS models
(which is a single worst-case guarantee of δ1). The capacity
required for Nested QoS is significantly less (several times
smaller) than that for a single-level QoS, while the service
seen by the clients is only minimally degraded. Table 2
shows classification results based on the traffic envelops for
the three classes of each workload. As shown, in each case
a large percentage (92%+) of the workload meets the 5ms
response time bound, and a tiny 0.1% or less requires more
than 50ms. Figure 2 (b) - (d) show the the Exchange work-
load decomposed into the three classes, while Figure 2(e)
(respectively (f)) shows the portions of the workload in class
2 (respectively 3) but not in class 1 (respectively 2). By
varying the envelop parameters, different tradeoffs in ca-
pacity, QoS, and (implicitly) cost can be obtained.
Our model provides several advantages: (i) significantly

reducing resource provisioning over usual SLOs specifi-
cations while still providing comparable QoS for clients,
(ii) making it possible to estimate the server capacity (as
verified in experiments) (iii) providing more flexible SLOs
to clients with diverse performance/cost tradeoffs, and (iv)
providing a conceptual structure of SLOs in workload de-
composition.
Our work continues to explore different implementa-

tions, more accurate capacity estimation, relating workload
characteristics with nested model parameters, semantic re-
strictions on decomposition, scheduling multiple decom-
posed workloads on a shared server, and a Linux block-level
implementation.
* Student Author and Presenter

1

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

Time (second)

Re
qu

es
ts

 R
at

e
(IO

PS
)

Original Workload

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

Time (second)

Re
qu

es
ts

 R
at

e
(IO

PS
)

Class 1 Workload

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

Time (second)

Re
qu

es
ts

 R
at

e
(IO

PS
)

Class 2 Workload

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

Time (second)

Re
qu

es
ts

 R
at

e
(IO

PS
)

Class 3 Workload

(a) Original workload (b)Workload in Class 1 (c) Workload in Class 2 (d) Workload in Class 3

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

Time (second)

Re
qu

es
ts

 R
at

e
(IO

PS
)

(Class 2 Class 1) Workload

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

Time (second)

Re
qu

es
ts

 R
at

e
(IO

PS
)

(Class3 Class2) Workload

(e) Workload in (Class2-Class1) (f) Workload in (Class3-Class2)

Figure 2. Decomposition of workload into different classes.

z(Class 1, 1)

(Class 2, 2)
(Class 3, 3)

Figure 1. Nested Qos Framework for storage
workload

WORKLOADS Nested-QoS Single-Level QoS
WebSearch1 751 2400
WebSearch2 713 2100
FinTrans 660 3000
OLTP 456 1400
Exchange 6710 16400

Table 1. Capacity (IOPS) required for Nested-
QoS and Single-Level QoS for each workload

WORKLOADS δ1 δ2 δ3

WebSearch1 93.9% 99.5% 100%
WebSearch2 94.2% 99.8% 100%
FinTrans 92.6% 97.4% 99.92%
OLTP 93.7% 99.8% 100%
Exchange 93.8% 99.3% 99.99%

Table 2. Percentage of workload in each class
with response time limits 5, 50 and 500 ms

