
New Cache Writeback Algorithms for Servers and Storage
Sorin Faibish

Peter Bixby

John Forecast
EMC

Philippe Armangau Sitaram Pawar

Abstract
In this paper we propose a new paradigm and
algorithms to address cache writeback performance in
file systems, servers and storage arrays. As servers and
storage processors move to multi-core architecture,
with ever increasing memory caches, the cost of
flushing these caches to disk has become a problem.
The paper introduces new algorithms to change the
application data writeback from using watermark or
aging based flush to something that approximates the
rate of the incoming application I/Os. Our proposed
algorithms are applicable to local file systems and
remote servers and prove that rate based cache
writeback algorithms are the most efficient replacement
for watermark and aging based flushing. We are in
process to apply the new algorithms to Linux file
systems.

1. Introduction
During the last few years we have witnessed dramatic
changes in disk hardware as seen by file servers and
local file systems. First, disk capacity has increased at a
high pace, at times doubling each year, while the
physical size of drives remained unchanged. As a result
much of the classical file system metadata grouping [1],
ordering [2] and caching mechanisms aimed at reducing
random disk access latencies are becoming obsolete or
at least have a reduced impact on the performance of
file systems.

The majority of cache writeback algorithms used by
storage arrays and file systems is based on some form
of watermark crossing, which triggers a flush of user
application dirty pages. Watermark based cache
flushing is used by many database application servers to
writeback the local dirty pages to disk. When a high
watermark is crossed the array flushes all the dirty
pages to disk at a high speed until the level goes under a
low watermark when the in-coming I/Os are resumed.
This large amount of I/O can flood the storage
subsystem, in some cases appearing to stop the server.

In this paper we address the problem of cache
writeback of user application data with a secondary
goal of generalizing the new algorithms to MD as well.
We investigate several algorithms that have the goal of

controlling the number of application dirty pages in the
buffer or page cache while preventing the incoming
application I/O stream slowdown and smoother
utilization of disk I/O throughput in order to maximize
application performance.

2. Problem definition
As we discussed in the previous section, cache
writeback or flush to disk of user application data,
presents new challenges to storage systems. This is
mainly due to the special characteristics of file data
versus metadata. Although most file systems cache data
in memory to improve performance, not all cached
pages in the buffer cache of servers and arrays have the
same flushing needs. Metadata cache pages can be
relatively small in size and number, but are often placed
randomly on disk.

Due to the larger number of user data dirty pages the
I/O throughput required to flush the data is
disproportionally higher than the through-put needs for
flushing MD, but the MD must have higher flush
priority as it may govern the flush of the user data
pages. Flushing user data pages to disk is often
dependent on disk updates of the corresponding cached
pages of MD for the files that contain the user data
pages, otherwise the file system may become
inconsistent. Current MD and data flushing is triggered
based on some for of high watermark crossing.

Based on observations on modern file and storage
systems, it is clear that flushing using watermark
techniques is incapable of ensuring even application
performance as compared, to say, I/O rate based cache
writeback techniques. By controlling the disk
throughput the effect of large changes in the incoming
I/O stream will be mitigated, thus preventing I/O bursts
which will be reflected back to the application. Of
course, a storm of I/Os over a very short period of time
may still result in some burstiness in the write stream
and slowdowns for the client.

3. Proposed solutions highlights

The algorithms proposed in this paper try to solve the
flushing problem by using I/O rate proportional
algorithms, with the goal of producing acceptable
performance for the majority of applications. The
proposed algorithms will use the first derivative of the
change in number of user data dirty pages in the buffer
cache with respect to time. This is because it’s difficult

to count the number of dirty cache pages generated by
the application, until they actually become dirty pages
in the buffer cache. This is because the size of the
application I/Os may be different than the cache page
size or may be unaligned with the cache page and
usually full pages are cached, even if only part of their
con-tent has changed. In addition, some pages may be
re-written multiple times in the cache before the page is
written to disk.

4. Cache writeback proposed algorithms
We developed and examined 5 different algorithms,
each designed to more closely match the flush rate to
the rate of incoming I/Os. In general we chose to look
primarily at algorithms that are self tuning. This was
because choosing tuning parameters can be difficult and
may not work well in highly dynamic situations. We
present discuss and simulate 5 algorithms that we
applied to cache writeback of Linux OS.

4.1 Modified trickle flush

4.2 Fixed Interval Algorithm

4.3 Variable Interval Algorithm

4.4 Quantum Flush

4.5 Rate of change proportional algorithm

5. Application to Linux OS cache writeback
As we show in the paper the behavior of the dirty pages
in the BC is highly non-linear and using linear
algorithms can improve the performance but still not
maximize the performance. In order to optimize the
performance we can also use non-linear filtering
algorithms inspired from digital signal processing [3].

Additional work is in progress to apply the new
algorithms to improve Linux cache writeback which is
currently suffering performance issues due to the
problem presented here. Currently we started to look at
other file systems in Linux to evaluate the algorithms
used for cache writeback of application data. We wrote
a small utility that samples the number of dirty pages in
Linux buffer cache in order to see the behavior of the
DP. We sampled the dirty pages changes during Linux
kernel build on a Linux server running 2.6.18 kernel
and we used different cache memory sizes: 2GB, 4GB
and 8GB. Figure 1 shows the 3 cases. Then we used the
data form the 8GB case as input to our simulation and
applied the rate proportional algorithm. The results are
presented in Figure 2.

The results in Figure 2 show that using the rate
proportional algorithm we would be able to finish the
build using a server with 2GB of cache in same time as

on a machine with 8GB and prevent swap that resulted
in build failure. Our final goal will be to prevent
memory swap in the Linux by using new cache
writeback algorithms.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1000

2000

3000

4000

5000

6000

7000

8000

Time [sec]

D
irt

y
da

ta
 [

M
B

]

Dirty pages in Linux page cache during kernel build on ext3

Kernel build on 2GB; swap failed the build
Kernel build on 4GB - 4350 sec
Kernel build on 8GB - 3222 sec

Figure 1: Kernel build on different cache sizes

0 500 1000 1500 2000 2500 3000 3500
0

1000

2000

3000

4000

5000

6000

7000

8000

Time [sec]

D
irt

y
da

ta
 [

M
B

]

Dirty pages in Linux page cache during kernel build on ext3

Measured DP in BC
Simulated DP in BC - rate proportional

Figure 2: DP in Linux BC; measured and simulated

References

[1] Ganger, G., and Yale N. P. Metadata Update
Performance in File Systems. 1994 Operating
Systems Design and Implementation (OSDI),
November 1994.

[2] Ganger, G. and Kaashoek, M., “Embedded Inodes
and Explicit Grouping: Exploiting Disk Bandwidth
for Small Files,” in Proceedings of the USENIX
Winter 1997 Technical Conference, January 1997.

[3] Faibish, S., and Moscovitz, I., "A New Closed-
Loop Non-Linear Filter Design", in Proceedings of
the 1-st European Control Conference, Grenoble
France, July, 1991.

