
Rewriting the storage stack for Big Data
A. Byde, G. Milos, T. Moreton, A. Twigg, T. Wilkie, J. Wilkes

Acunu

Abstract
Over the last two decades, commodity hardware has changed
dramatically. In parallel, Big Data, NOSQL and other non-relational
stores are becoming mainstream. Yet these applications access
hardware via a legacy storage stack – FS, buffer cache, LVM, RAID –
built for the hardware and applications of the 80s. Acunu is rewriting
the storage stack for these applications and today's hardware, and at
the same time deploying some new algorithms and techniques. For
example, our file system replacement contains the first O(N)-space
external-memory dictionaries that support fast updates (in o(1) IOs)
while allowing fully-persistent versioning.

Motivation: think back to 1987..

Year Capacity Bandwidth Random access

2008 2TB 100MB/s 8ms

2012 4.5TB 150MB/s 7ms

2017 67TB 540MB/s ~7ms

• Dramatic improvements in commodity hardware (large SATA disks,
SSDs, many-core, complex memory hierarchies).

• Dramatic changes in scale and workloads

• Revisit assumptions in RAID, disk layouts, caching, and FS interface.

• Take advantage of in-kernel visibility for, eg caching, device control

The stack, revisited
• No more circumventing the interface and writing dictionary data

structures inside mmapped files (eg Cassandra)

• Data model: sparse, multidimensional, ordered, versioned dictionaries

• Interface: high-performance asynchronous shared-memory ring buffer
(ala Xen devices)

get([7,*], [7, *]) get([*,7], [*,7]) get([7,7], [14,17])

“row slice” “column slice” “subspace slice”

Fast Updates with Versioning
CoW B-trees are an increasingly bad fit for write-heavy workloads and
large SATA disks. They need random IO to scale, aren’t space optimal,
and are optimized for read-heavy workloads. Using a log file system
doesn’t really help.

Castle uses new cache-oblivious structures - the first data structures to
offer fast updates with fully-persistent versioning.

• Data structures don’t age as versions diverge

• Make excellent use of sequential IO

• Naturally deployed onto SSDs, avoiding write coalescing

RAID, revisited
• Capacity is cheap, but only if you can safely use the cheapest disks

• Randomized disk layouts and scheduling offer guarantees on load
balancing and rebuild time

• No hotspots, no hot spares, no need for complex triple-parity
schemes.

(for background, see eg RDA [Sanders et al.])

 100

 1000

 10000

 100000

 1e+06

 1 10

Re
ad

s p
er

 se
co

nd

Keys (millions)

Range rate, as a function of dictionary size

strat-DA
DA

btree
avg(strat-DA)

avg(DA)
avg(btree)

 100

 1000

 10000

 100000

 1e+06

 1 10

In
se

rts
 p

er
 se

co
nd

Keys (millions)

Insert rate, as a function of dictionary size

SDA
DA

B-tree
avg(SDA)

avg(DA)
avg(B-tree)

