

1

Accelerating Parallel Analysis of Scientific Simulation Data via Zazen

Tiankai Tu,1 Charles A. Rendleman,1 Patrick J. Miller,1 Federico Sacerdoti,1
Ron O. Dror,1 and David. E. Shaw1,2,3

1. D. E. Shaw Research, New York, NY 10036 USA
2. Center for Computational Biology and Bioinformatics, Columbia University,

New York, NY 10032, USA
3. Corresponding author: David.Shaw@DEShawResearch.com

Abstract
As a new generation of parallel supercomputers enables
researchers to conduct scientific simulations of unprec-
edented scale and resolution, terabyte-scale simulation
output has become increasingly commonplace. Analy-
sis of such massive data sets is typically I/O-bound:
many parallel analysis programs spend most of their
execution time reading data from disk rather than per-
forming useful computation. To overcome this I/O bot-
tleneck, we have developed a new data access method.
Our main idea is to cache a copy of simulation output
files on the local disks of an analysis cluster’s compute
nodes, and to use a novel task-assignment protocol to
co-locate data access with computation. We have im-
plemented our methodology in a parallel disk cache
system called Zazen. By avoiding the overhead asso-
ciated with querying metadata servers and by reading
data in parallel from local disks, Zazen is able to deliver
a sustained read bandwidth of over 20 gigabytes per
second on a commodity Linux cluster with 100 nodes,
approaching the optimal aggregated I/O bandwidth at-
tainable on these nodes. Compared with conventional
NFS, PVFS2, and Hadoop/HDFS, respectively, Zazen is
75, 18, and 6 times faster for accessing large (1-GB)
files, and 25, 13, and 85 times faster for accessing small
(2-MB) files. We have deployed Zazen in conjunction
with Anton—a special-purpose supercomputer that dra-
matically accelerates molecular dynamics (MD) simula-
tions—and have been able to accelerate the parallel
analysis of terabyte-scale MD trajectories by about an
order of magnitude.

1 Introduction
Today, thousands of massively parallel computers are
deployed around the world. The bountiful supply of
computational power and the high-performance scientif-
ic simulations it has made possible, however, are not
enough in themselves. To make scientific discoveries,
the output from simulations must still be analyzed.

While simulation data are traditionally stored and
accessed via parallel or network file systems, these sys-

tems have hardly kept up with the data deluge unleashed
by faster supercomputers in the past decade [3, 28].
With terabyte-scale data quickly becoming the norm in
many disciplines of computational science, I/O has be-
come more critical a problem than ever.

A considerable amount of effort has gone into the
design and implementation of special-purpose storage
and middleware systems aimed at improving the I/O
performance during a simulation [4, 5, 20, 22, 23, 25,
33]. By contrast, the I/O performance required in the
course of analyzing the resulting data has received much
less attention. From the viewpoint of overall time to
solution, however, it is necessary to measure not only
the time required to execute a simulation, but also the
time required to analyze and interpret the output data.
The I/O bottleneck after a simulation is thus as much an
impediment to scientific discovery through advanced
computing as the one that occurs during the simulation.

Our research aims to remove the analysis-time I/O
impediment in a class of applications where the data
output rate from a simulation is relatively low, yet the
number of output files is relatively large. In particular,
we focus on overcoming the data access bottleneck en-
countered by parallel analysis programs that execute on
hundreds to thousands of processor cores and process
millions to billions of simulation output files. Since the
scale and complexity of this class of data-intensive
analysis applications preclude the use of conventional
storage systems, which have already struggled to handle
less demanding I/O workloads, we introduce a new data
access method designed to achieve a much higher level
of performance.

Our solution works as follows. During a simulation,
results are saved incrementally in a series of files. We
instruct the I/O node of a parallel supercomputer not
only to write each output file to a parallel/network file
server, but also to send the content of the file to some
node of a separate cluster that is dedicated to post-
simulation data analysis. We refer to such a cluster as
an analysis cluster and its nodes as analysis nodes. Our
goal is to distribute the output files evenly among the
analysis nodes. Upon receiving the data from the I/O

2

node, an analysis node caches (i.e., stores) the content
as a local copy of the file. Each analysis node manages
only the files it has cached locally. No metadata, either
centralized or distributed, are maintained to keep track
of which node has cached which files. When a simula-
tion is completed, its (many) output files are stored on
the file server as well as distributed (more or less) even-
ly among all analysis nodes.

At analysis time, each process of a parallel analysis
program (assuming one process per analysis node) de-
termines which files have been cached locally, and uses
this knowledge to participate in the execution of a dis-
tributed task-assignment protocol (in collaboration with
processes of the analysis program running on other
analysis nodes). The outcome of the protocol is an as-
signment (i.e., a partitioning) of the file I/O tasks, in
such a way that each file of a simulation dataset will be
read by one and only one process (for correctness), and
that each process will be mostly responsible for reading
the files that have been cached locally (for efficiency).
After completing the protocol execution, all processes
proceed in parallel without further communication to
coordinate I/O. (They may still communicate with one
another for other purposes.) To retrieve each assigned
file, a process first attempts to read it from the local
disks, and then in case of a local cache miss, fetches the
file from the parallel/network file system on which the
entire simulation output dataset is persistently stored.

We have implemented our methodology in a parallel
disk cache system called Zazen that has three compo-
nents: (1) a disk cache server that runs on every com-
pute node of an analysis cluster and manages locally
cached data, (2) a client library that provides API func-
tions for operating the cache, and (3) a communication
library that queries the cache and executes the task-
assignment protocol, referred to as the Zazen protocol.

Experiments show that Zazen is scalable, efficient,
and robust. On a Linux cluster with 100 nodes, execut-
ing the Zazen protocol to assign I/O tasks for one billion
files takes less than 15 seconds. By avoiding the over-
head associated with querying metadata servers and by
reading data in parallel from local disks, Zazen delivers
a sustained read bandwidth of more than 20 gigabytes
per second on 100 nodes when reading large (1-GB)
files. It is 75 times faster than NFS running on a high-
end enterprise storage server, and 18 and 6 times faster,
respectively, than PVFS2 [8, 31] and Hadoop/HDFS
[15] running on the same 100 nodes. When reading
small (2-MB) files, Zazen achieves a sustained read
performance of about 8 gigabytes per second on 100
nodes, outperforming NFS, PVFS2, and Hadoop/HDFS
by a factor of 25, 13, and 85, respectively. We emphas-
ize that despite its large performance advantage over
network/parallel file systems, Zazen serves only as a
cache system to improve parallel file read speed. With-

out a slower but more reliable file system as backup,
Zazen would not be able to handle cache misses. Final-
ly, our experiments demonstrate that Zazen works even
when up to 50% of the nodes have gone offline. The
only noticeable effect is a slowdown in execution time,
which degrades gracefully, as predicted by our failure
model.

We have deployed Zazen in conjunction with Anton
[38]—a special-purpose supercomputer developed at
D. E. Shaw Research for molecular dynamics (MD)
simulations—to support the parallel analysis of tera-
byte-scale MD trajectories. Compared with the perfor-
mance of implementations that access data from a high-
end NFS server, the end-to-end execution time of a
large number of parallel trajectory analysis programs
that access data via Zazen has improved by about an
order of magnitude.

2 Background
Scientific simulations seek numerical approximations of
solutions to the partial differential, ordinary differential,
algebraic, integral, or particle equations that govern the
physical systems of interest. The solutions, typically
computed as displacements, pressures, temperatures, or
other physical quantities associated with grid points,
mesh nodes, or particles, represent the states of the sys-
tem being simulated and are stored to disk.

Time-dependent simulations such as mantle convec-
tion, supernova explosion, seismic wave propagation,
and bio-molecular motions output a series of solutions,
each representing the state of the system at a particular
simulated time. We refer to these solutions as output
frames or simply frames. While the organization of
frames on disk is application-dependent, we assume in
this paper that all frames are of the same size and each
is stored in a separate file.

An important class of time-dependent simulations
has the following characteristics. First, they output a
large number of small frames. A millisecond-scale MD
simulation, for example, may generate millions to bil-
lions of frames, each having a size less than a few me-
gabytes. Second, the frames are write once read many.
Once a frame is generated and stored to disk, it is usual-
ly read multiple times by data analysis programs. A
frame, for all practical purposes, is never modified un-
less deleted. Third, unique integer sequence numbers
can be used to distinguish the frames, which are gener-
ated in a temporal order as a simulation marches for-
ward in time. Fourth, frames are amenable to parallel
processing at analysis time. For example, our recent
work [46] has demonstrated how to use the MapReduce
programming model to access frames in an arbitrary
order in the map phase and restore their temporal order
in the reduce phase.

3

Figure 1: Simulation I/O infrastructure. Parallel analysis
programs traditionally read simulation output from a parallel
or network file system.

Traditionally, frames are stored and accessed via a
parallel or network file system, as shown in Figure 1.
At the bottom of the figure lies a parallel supercomputer
that executes scientific simulations and outputs data
through I/O nodes, which are specialized service nodes
for tightly coupled parallel machines such as IBM’s
BlueGene, Cray’s XT series, or Anton. These nodes
aggregate the data generated by the compute nodes
within a supercomputer and store the results to the file
system servers. Two I/O nodes are shown in Figure 1
for illustration purposes; the actual number of I/O nodes
varies by system. The top of Figure 1 shows an analysis
cluster may or may not be co-located with a parallel
supercomputer. In the latter case, simulation data can
be stored to file servers close to the analysis cluster—
either online, using techniques such as ADIO [12, 43]
and PDIO [30, 40] or offline, using high-performance
data transfer tools such as GridFTP [14]. An analysis
cluster is typically much smaller in scale than a parallel
supercomputer and has on the order of tens to hundreds
of analysis compute nodes. While an analysis cluster
provides tremendous computational and memory re-
sources to parallel analysis programs, it also imposes
intensive I/O workload to the underlying file servers,
which, in most cases, cannot keep up.

3 Solution Overview
The local disks on the analysis nodes, shown in Figure
1, are typically unused except for storing operating sys-
tems files and temporary user data. While an individual
analysis node may have much smaller disk space than
file servers, the aggregated capacity of all local disks in
an analysis cluster may be on par with or even exceed
that of the file servers. With such abundant and poten-
tially useful storage resources at our disposal, it is natu-
ral to ask how we can exploit these resources to solve
the problem of reading a large number of frames in pa-
rallel.

3.1 The Main Idea

Our main idea is to cache a copy of each output frame in
the local disks of arbitrary analysis nodes, and use a
data location–aware task-assignment protocol to coordi-
nate the parallel read of the cached data at analysis time.

Because simulation frames are write once read
many, cache consistency is guaranteed. Thus, at simula-
tion time, we arrange for the I/O nodes of a parallel su-
percomputer to push a copy of output frames to the local
disks of the analysis nodes as the frames are generated
and stored to a file server. We cache each frame on one
and only one node and place consecutive frames on dif-
ferent nodes for load balancing. The assignment of
frames to nodes can be arbitrary as long as the frames
are spread across the analysis nodes more or less evenly.
We choose a first machine randomly from a list of
known analysis nodes and push frames to that machine
and then its peers in a round-robin order. When caching
frames from a long-running simulation that lasts for
days or weeks, some of the analysis nodes will inevita-
bly crash and become unavailable. We detect and skip
the crashed nodes and place the output frames on the
surviving nodes. Note that we do not use a metadata
server to keep track of where frames are cached.

When executing a parallel analysis program, we use
a cluster resource manager such as SLURM [39, 49] to
obtain as many analysis nodes as available. We instruct
each process to read frames directly from its local disk
cache. To coordinate the parallel read of the cached
frames and to ensure that each frame is read by one and
only one node, we execute a data location–aware task-
assignment protocol before performing any I/O. The
purpose of this protocol is to co-locate data access with
computation. Upon completion of the protocol execu-
tion, each process receives a list of integer sequence
numbers that correspond to the frames it is responsible
for reading. Most, if not all, of the assigned frames are
those that have been cached locally. Those that are
missing from the cache—for example, those that are
cached on a crashed node or those that have been
evicted—are fetched from the file servers and then
cached in local disks.

3.2 Applicability

The proposed solution works only if the aggregated disk
space of the dedicated analysis cluster is large enough to
accommodate tens to hundreds of terabyte-scale simula-
tion output datasets, so that recently cached datasets are
not evicted too quickly. Considering the density and the
price of today’s hard drives, we expect that it is both
technologically and economically feasible to provision a
medium-size cluster with hundreds of terabytes to a few
petabytes of disk storage. As an example, the cluster at
Intel Research Pittsburgh, which is part of the

4

Figure 2: Simulation data organization. Frames are
stored to file servers as well as the analysis nodes.

OpenCirrus consortium, is reported to have 150 nodes
with over 400 TB of disk storage [18].

Another prerequisite of our solution is that the data
output rate from a simulation is relatively low. In prac-
tice, this means that the data output rate must be lower
than both the network bandwidth to and the disk band-
width on any analysis node. If this is true, we can use
multithreading techniques to overlap data caching with
computation and avoid slowing down the execution of a
simulation.

Certain classes of simulations cannot take advantage
of the proposed caching mechanism because of the re-
strictions imposed by these two prerequisites. Never-
theless, many time-dependent simulations do satisfy
both prerequisites and are amenable to simulation-time
data caching.

3.3 An Example

We assume that an analysis cluster has only two
nodes as shown in Figure 2. We use the local disk parti-
tion mounted at /bodhi as the cache space. We also
assume that an MD simulation generates four frames
named f0, f1, f2, and f3 in a directory /sim1/. As
the frames are generated by the simulation at certain
intervals and pushed to an NFS server, they are also
stored to nodes 1 and 2 in an alternating fashion, with
f0 and f2 going to node 1, and f1 and f3 to node
2. When a node receives an output file, it prepends the
local disk cache root, that is, /bodhi, to the full path
name of the file, creates a cache file locally using the
derived file name (e.g., /bodhi/sim1/f0), and
writes the contents. After the data is cached locally, a
node records the sequence number of the frame—which
is sent by an I/O node—in a sequence log file that is
stored in the local directory along with the frames.

Figure 2 shows the data organization on the NFS
server and on the two analysis nodes. The isosceles
triangles represent datasets that have already been
stored on the NFS server at directory /sim0/; the right
triangles represent the portions of files that have been
cached on nodes 0 and 1, respectively. The seq file
represents the sequence log file that is created and up-
dated independently on each node.

When analyzing the dataset stored at /sim1, we
open its associated sequence log file (i.e.,
/bodhi/sim1/seq) on each node in parallel, and
retrieve the sequence numbers of the frames that have
been cached locally. We then construct a bitmap with
four entries (equal to the number of frames to be ana-
lyzed) and set the bits for those that it has cached local-
ly. On node 0, the first and third bits are set; on node 1,
the second and fourth bits.

We then exchange the bitmaps between the nodes.
By examining the combined results, both nodes realize
that that all requested frames have been cached some-

where in the analysis cluster. Since node 0 has local
access to f0 and f2, it signs up for reading these two
frames—with the knowledge that the other node must
have local access to the remaining two files. Node 1
makes a similar decision and signs up for f1 and f3.
Both nodes then proceed in parallel and read the cached
frames without further communication. Because all
requested frames have been cached on either node 0 or
node 1, no read requests are sent to the NFS server.

With only two nodes in this example, converting lo-
cal disks to a distributed cache might not appear to be
worthwhile. Nevertheless, when hundreds or more
nodes are present, the effort pays off as it allows us to
harness the vast storage capacities and I/O bandwidths
distributed across many nodes.

3.4 Implementation

We have implemented our methodology in a parallel
disk cache system called Zazen. The literal meaning of
Zazen is “enlightenment through seated meditation.”
By a stretch of imagination, we use the term to describe
the behavior of the analysis nodes in an anthropomor-
phic way: Instead of consulting a master node for ad-
vice on what data to read, every node seeks its inner
knowledge of what has been cached locally to help de-
cide its own action, thereby becoming “enlightened.”

As shown in Figure 3, the Zazen system consists of
three components:

• The Bodhi library: a client library that provides
API functions (open, write, read, query, and close)
for I/O nodes of parallel supercomputers to push
output frames to analysis nodes, and for parallel
analysis programs to query and read data from lo-
cal disks.

• The Bodhi server: a disk cache server that manag-
es the frames that have been cached on local disks
and provides read service to local clients and write

5

Figure 3: Overview of the Zazen system. The Bodhi
library provides API functions for operating the local disk
caches. The Bodhi server manages the frames cached
locally and services client requests. The Zazen protocol
coordinates parallel read of the cached data.

service to remote clients.

• The Zazen protocol: a data location–aware task-
assignment protocol for assigning frame read tasks
to analysis nodes.

We refer to the distributed local disks collectively as
the Zazen cache and the hosting analysis cluster as the
Zazen cluster. The Zazen cluster supports two types of
applications: writers and readers. Writers are I/O
processes running on the I/O nodes of a supercomputer.
They only write output frames to the Zazen cache and
never read them back. Readers are parallel processes of
an analysis program. They run on the analysis nodes,
execute the Zazen protocol, read data from local disk
caches, and, in case of cache misses, have data fetched
(by Bodhi servers) into the Zazen cache. As shown in
Figure 3, inter-processor communication takes place
only at the application level and the Zazen protocol lev-
el. The Bodhi library and server on different nodes do
not communicate with one another directly as they do
not share information with respect to which frames have
been cached locally.

When frames are stored in the Zazen cache, they are
treated as either natives or aliens. A native frame is one
that is written to the Zazen cache by an I/O node that
calls the Bodhi library write function. An alien frame is
one that is brought into the Zazen cache by a Bodhi
server because of a local cache read miss; it is the by-
product of a call to the Bodhi library read function.
Note that a frame can be a native on at most one node,

but can be an alien on multiple nodes. To distinguish
the two types of cached frames, we maintain two se-
quence log files for each simulation dataset to keep
track of the integer sequence numbers of the native and
alien frames, respectively. (The example of Section 3.2
showed only the native sequence log files.)

While the Bodhi library and server provide the ne-
cessary machinery for operating the Zazen cache, the
intelligence of coordinating the parallel read of the
cached data—the core of our innovation—lies in the
Zazen protocol.

4 The Zazen Protocol
At first glance, it might appear that the coordination of
the parallel read from the Zazen cache is unnecessary.
Indeed, if no node would ever fail and cached data were
never evicted, every node could simply consult its na-
tive sequence log file (associated with a particular data-
set) and read the frames it has cached locally. Because
an I/O node stores each output frame to one and only
one node, neither duplicate reads nor cache read misses
would occur.

Unfortunately, the premise of this argument is rarely
true in practice. Analysis nodes do fail in various un-
predictable ways due to hardware, software, and human
errors. If a node crashes for some reason other than disk
failures, the frames cached on that node become tempo-
rarily unavailable. Assume that during the node’s down
time, a parallel analysis code requests access to a dataset
that has been partially cached on the failed node. Fur-
thermore, assume that under the auspices of some
oracle, the surviving analysis nodes are able to decide
who should read which missing frames. Then the miss-
ing frames are fetched from the file servers and—as an
intended side effect—cached locally on the surviving
nodes as aliens. Assume that after the execution of the
analysis, the failed node recovers and is back online.
All of its locally cached frames once again become
available. If the previously accessed dataset is
processed again, some of its frames are now cached
twice: once on the recovered node (as natives) and once
on some other nodes (as aliens). More complex failure
and recovery sequences may take place, which can lead
to a single frame being cached multiple times or not
cached at all.

We devised the Zazen protocol to guarantee that re-
gardless how many (i.e., zero or more) copies of a frame
have been cached, it is read by one and only one node.
To achieve this goal, we enforce the following rules in
order:

• Rule (1): If a frame is cached as a native on some
node, we use that node to read the frame.

• Rule (2): If a frame is not cached as a native on any
node and is cached as an alien once on some node,

6

we use that node to read the frame.

• Rule (3): If a frame is missing from the cache, we
choose an arbitrary node to read the frame and
cache the file.

We define a frame as missing if either the frame is not
cached at all on any node or the frame is not cached as a
native but is cached as an alien multiple times on differ-
ent nodes.

The rationale behind the rules is as follows. Each
frame is cached as a native once and only once on one
of the analysis nodes when the frame file is pushed into
the Zazen cache by an I/O node. If a native copy exists,
it becomes an undisputed sole winner and knocks off
other competitors who offer to provide an alien copy.
Otherwise, a winner emerges only if it is the sole holder
of an alien copy. If multiple alien copies exist, all con-
tenders back off to avoid expensive distributed arbitra-
tion. An arbitrary node is then chosen to service the
frame.

To coordinate the parallel read of cached data, all
processes of a parallel analysis program must execute
the Zazen protocol by calling an API function named
zazen. The input to the zazen function includes
bodhi (a handle to the local cache), simdir (the
base directory of a simulation dataset), begin (the
sequence number of the first frame to be accessed), end
(the sequence number of the last frame to be accessed),
and stride (the stride between the frames to be ac-
cessed). The output of the zazen function is an ab-
stract data type zazen_bitmap that contains the
necessary information for each process to find out
which frames of the dataset it should read. Because the
order of parallel accessing of frames is irrelevant, as
explained in Section 2, each process consults the za-
zen_bitmap and calls the Bodhi library read func-
tion to read the frames it is responsible for processing,
in parallel with other processes.

The main techniques we used to implement the Za-
zen protocol are bitmaps and all-to-all reduction algo-
rithms [6, 11, 44]. The former provides a compact data
structure for recording the presence or non-presence of
frames, which may number in the billions. The latter
furnishes an efficient mechanism for performing inter-
processor collective communications. While we could
have implemented all-to-all reduction algorithms from
scratch (with a fair amount of effort), we chose instead
to use an MPI library [26] as it already provides an op-
timized implementation that scales on to tens of thou-
sands of nodes. In what follows, we simplify the de-
scription of the Zazen protocol algorithm by assuming
that only one process (of a parallel analysis program)
runs on each node.

1. Creation of local native bitmaps. Each process calls
the Bodhi library query function to obtain the se-
quence numbers of the frames that have been cached

as native on the local node. It creates an empty bit-
map, whose number of bits is equal to the total num-
ber of frames to be accessed. Next, it sets the bits
corresponding to the sequence numbers of the local-
ly cached natives and produces a partially filled bit-
map called a local native bitmap.

2. Generating of global native bitmaps. All the
processes perform an all-to-all reduction that applies
a bitwise-or operation on the local native bitmaps.
On return, each node obtains an identical new bit-
map called a global native bitmap that represents all
the frames that have been cached as natives some-
where.

3. Identification of local native reads. Each process
checks if the global native bitmap is fully set. If so,
we have a perfect native cache hit ratio of 100%.
The Zazen protocol is completed and every process
proceeds to read the frames specified in its local na-
tive bitmap, knowing that the remaining frames are
being read by other processes. Otherwise, some
frames are not cached as natives, though they may
well exist on some nodes as aliens.

4. Creation of local alien bitmaps. Each process que-
ries its local Bodhi server for a second time to find
the sequence numbers of the frames that are cached
as aliens. It creates a new empty bitmap that uses
two bits—instead of just one bit for the case of local
native bitmaps—for each frame. The low-order
(rightmost) bit is used in this step and the high-order
(leftmost) bit will be used in the next step. Initially,
both bits are set to 0. A process checks whether the
sequence number of each of its locally cached aliens
is already set in the global native bitmap. If so, the
process ignores the local alien copy to enforce Rule
(1). Otherwise, the process uses the alien copy’s se-
quence number as an index to locate the correspond-
ing frame entry in the new bitmap and sets the low-
order bit to one.

5. Generation of global alien bitmaps. All the
processes perform a second round of all-to-all reduc-
tion to combine the contributions from local alien
bitmaps. Given a pair of input two-bit entries, we
generate an output two-bit entry by applying a com-

mutative operator denoted as “∘” that works as
follows:

00 ∘ xx → xx, 10 ∘ xx → 10, and 01 ∘ 01 → 10 ,

 where x stands for either 0 or 1. Note that an input
two-bit entry can never be 11 and the high-order bit
of the output is set to one only if both input bitmaps
have their lower-order bits set (i.e., claiming to have
cached the frame as an alien). On return, each
process receives an identical new bitmap called a

7

Figure 4: Fixed-problem-size scalability. The execution
time of the Zazen protocol for processing one billion frames
grows only marginally as the number of analysis nodes
increases from 1 to 100.

Figure 5: Fixed-cluster-size scalability. The execution
time of the Zazen protocol on 100 nodes grows sub-linearly
with the number of frames.

global alien bitmap that records the frames that have
been cached as aliens.

6. Identification of local alien reads. Each process
performs a bitwise-and operation on its local alien
bitmap and the global alien bitmap. It identifies the
offsets of the non-zero entries (which must be 01) of
the result to enforce Rule (2). Those entries
represent the frames for which the process is the sole
alien-copy holder. Together, the identified local na-
tive and alien reads represent the frames a process
voluntarily signs up to read.

7. Adoption of residue frames. Each process conducts
a bitwise-or operation on the global native bitmap
and the low-order bits of the global alien bitmap.
The unset bits in the output bitmap are residue
frames for which no process has signed up. A frame
may be a residue for one of the following reasons:
(1) it has been cached on a crashed node, (2) it has
been cached multiple times as an alien but not once
as a native, or (3) it has been evicted from the cache.
Regardless of the cause, the residues are treated by
all processes as the elements of a single array. Each
process then executes a partitioning algorithm, in pa-
rallel without communication, to divide the array in-
to contiguous blocks and adopt the block that cor-
responds to its rank among all the processes.

The Zazen protocol has two distinctive features.
First, the data location information is obtained directly
on each node—an embarrassingly parallel and scalable
operation—rather than returned by a metadata server or
servers. Second, if a node crashes, the protocol still
works. The frames cached on the failed node are simply
treated as cache misses.

5 Performance Evaluation
We have evaluated the scalability, efficiency, and ro-
bustness of Zazen on a commodity Linux cluster with
100 nodes that are hosted in three racks. The nodes are
interconnected via a 1-gigabit Ethernet with full bisec-
tional bandwidth. Each node runs CentOS 4.6 with a

kernel version of 2.6.26 and has two Intel Xeon 2.33-
GHz quad-core processors, 16 GB physical memory,
and four 500-GB 7200-RPM SATA disks. We orga-
nized the local disks as a software RAID 0 (striped)
partition and managed the RAID volume with an ext3
file system. The usable local disk cache space on each
node is about 1.8 TB; so the total capacity of the Zazen
cache is 180 TB. All nodes have access to common
NFS directories exported by a number of enterprise sto-
rage servers. Evaluation programs were written in C
unless otherwise specified.

5.1 Scalability

Because the Bodhi client and server are standalone
components that can be deployed on as many nodes as
available, they are inherently scalable. Hence, the sca-
lability of the Zazen system, as a whole, is essentially
determined by that of the Zazen protocol.

In the following experiments, we measured how the
execution time of the Zazen protocol scales as we in-
creased the cluster size and the problem size, respective-
ly. No files were physically generated, stored to, or
accessed from the Zazen cache. To create local bitmaps
without querying local Bodhi servers (since no files
actually existed in this particular test) and to force the
execution of the optional second round of all-to-all re-
duction (for generating global alien bitmaps), we mod-
ified the procedure outlined in Section 4 so that each
process set a non-overlapping, contiguous sequence of
n/p frames as natives, where n is the total number of
frames and p is the number of analysis nodes. The rest
of the frames were treated as aliens. The MPI library
used in these experiments was Open MPI 1.3.2 [26].

Figure 4 shows the execution time of the Zazen pro-
tocol for assigning one billion frames as the number of
analysis nodes increases from 1 to 100. Each data point
presents the average of three runs whose coefficient of
variation (standard deviation over mean) is negligible.
The execution time on one node is the time for manipu-
lating the bitmaps locally and does not include any
communication overhead. The dip of the curve in the
four-node case may have been caused by the MPI run-
time choosing a different optimized MPI_Allreduce

8

Figure 4: Fixed-problem-size scalability. The execution
time of the Zazen protocol for processing one billion frames
grows only marginally as the number of analysis nodes
increases from 1 to 100.

Figure 5: Fixed-cluster-size scalability. The execution
time of the Zazen protocol on 100 nodes grows sub-linearly
with the number of frames.

 (a) One Bodhi read daemon per application read process (b) One Bodhi read daemon per node

Figure 6: Zazen cache read bandwidth on 100 nodes. (a) Forking one read daemon for each application read process hurts
the performance significantly, especially when the size of files in the dataset is large. (b) We can eliminate the I/O contention by
using a single Bodhi server read daemon per node to serialize the read requests.

algorithm.1 As the number of nodes increases, the ex-
ecution time grows only marginally, up to 14.9 seconds
on 100 nodes.

The result is exactly as expected. When performing
all-to-all reduction involving large messages, MPI libra-
ries typically select a bandwidth-optimized ring algo-
rithm [44], which we would have implemented had we
not used MPI. The time required to execute the ring
algorithm is 2(p − 1)α + 2n(1 − 1/p)β + n(1 − 1/p)γ,
where p is the number of processes, n is the size of the
vector (i.e., the bitmap), α is the latency per message, β
is the transfer time per byte, and γ is the computation
cost per byte for performing the reduction operation.
The coefficient associated with the bandwidth term,
2n(1 − 1/p), which is the dominant component for large
messages, does not grow with the number of nodes (p).

Figure 5 shows that on 100 nodes, the execution
time of the Zazen protocol grows sub-linearly as we
increase the number of frames from 1,000 to
1,000,000,000. The result is again in line with the theo-
retical cost model of the ring algorithm, where the
bandwidth term is linear in n, the size of the bitmaps.

To put the execution time of the Zazen protocol in
perspective, let us assume that each frame of a simula-
tion is 1 MB and we have one billion frames. The total
size of such a dataset is one petabyte. Spending less
than 15 seconds on 100 nodes to coordinate the parallel
read of a petabyte-scale dataset appears (at least today)
to be a reasonable startup overhead.

5.2 Efficiency

To measure the efficiency of actually reading data from
the Zazen cache, we started the Bodhi servers on the
100 analysis nodes and populated the Zazen cache with
four 1.6-TB test datasets, consisting of 1,600 1-GB files,
6,400 256-MB files, 25,600 64-MB files, and 819,200
2-MB files, respectively. Each node stored 16 GB of

1 Based on the vector size and the number of processes, Open MPI
makes a runtime decision with respect to which all-reduce algorithm
to use. The specifics are implementation dependent and are beyond
the scope of this paper.

data on its local disks. The experiments were driven by
an MPI program that executes the Zazen protocol and
fetches the (whole) files in parallel from the local disks.
No analysis was performed on the data and no cache
misses occurred in these experiments.

In what follows, we report the end-to-end execution
time measured between two MPI_Barrier() func-
tion calls placed before and after all Zazen cache opera-
tions. When reporting bandwidths, we compute them as
the number of bytes read divided by the end-to-end ex-
ecution time of reading the data. The numbers thus ob-
tained are lower than the sum of locally computed I/O
bandwidths since the slowest node would always drag
down the overall bandwidth. Nevertheless, we choose
to report the results in such an unfavorable way because
it is a more realistic measurement of the actual I/O per-
formance experienced by many analysis programs.

To ensure that the performance measurement was
not aided in any way by the local file system buffer
caches, we ran the experiments for reading the four da-
tasets in a round-robin order and dropped the page, in-
ode, and dentry caches from the Linux kernel before
each individual experiment. We executed each experi-
ment 5 times and computed the mean values. Because
the coefficients of variation are negligible, we do not
show error bars in the figures.

5.2.1 Effect of the Number of Bodhi Read
Daemons

In this test, we compared the performance of two
implementations of the Bodhi server to understand the
effect of the number of read daemons. In the first im-
plementation, we forked a new Bodhi server read
process for each application read process and measured
the performance of reading the four datasets on 100
nodes as shown in Figure 6(a). The dramatic drop be-
tween 1 and 2 readers per node for the 1-GB, 256-MB,
and 64-MB datasets indicated that when two or more
processes simultaneously read large data files, the inter-
leaved I/O requests forced the disk sub-system to oper-
ate in a seek-bound mode, which significantly hurt the
I/O performance. The further performance drop asso-

9

ciated with reading the 1-GB dataset using eight readers
(and thus eight Bodhi read processes) per node was
caused by double buffering: once within the application
and once within the Bodhi read daemon. In total, 16
GB of memory—the total amount of physical memory
on each node—was used for buffering the 1 GB files.
As a result, the program suffered from memory thrash-
ing and the performance plummeted. The degradation
in performance associated with the 2-MB dataset was
not as obvious since reading small files was already
seek-bound even when only there is a single read
process.

Based on this observation, we developed a second
implementation of the Bodhi server and used a single
Bodhi read daemon on each node to serialize all local
client read requests. As a result, only one read request
would be outstanding at any time while the rest would
be waiting in a FIFO queue maintained internally by the
Bodhi read daemon. Although serializing the parallel
I/O requests may appear counterintuitive, Figure 6(b)
shows that significantly better and more consistent per-
formance across the spectrum was achieved.

5.2.2 Read-Only Performance
To compare the performance of Zazen with that of

other representative systems, we measured the read-only
I/O performance on NFS, a common, general-purpose
network file system; PVFS, a widely deployed high-
performance parallel file system [8, 31]; and Ha-
doop/HDFS [15], a popular, location-aware parallel file
system. These experiments were set up as follows.

NFS. We used an enterprise NFS (v3.0) storage
server with dual quad-core 2.8-GHz Opteron processors,
16 GB of memory, 48 SATA disks that are organized in
RAID 6 and managed by ZFS, and four 1-GigE connec-
tions to the core switch of the 100-node analysis cluster.
The total capacity of the NFS server is 40 TB. Antic-
ipating lower read bandwidth (based on our prior expe-
rience), we generated four smaller test datasets consist-
ing of 400 1-GB files, 400 256-MB files, 1,600 64-MB
files, and 51,200 2-MB files, respectively, for the NFS
experiments.

We modified the test program so that each process
reads an equal number of data files from the mounted
NFS directories. We ran the test program on 100 nodes
and read the four datasets using 1, 2, and 4 cores per
node, respectively. Seeing that the performance
dropped consistently and significantly as we increased
the number of cores per node, we did not run experi-

ments using 8 cores per node. Each experiment (i.e.,
reading a dataset using a particular number of cores per
node) was executed three times, all of which generated
similar results (with negligible coefficients of variation).
The highest performance was always obtained when one
core per node was used to read the datasets, that is,
when running 100 processes on 100 nodes. We report
the best results from the one-core runs.

PVFS2. PVFS 2.8.1 was installed. All 100 analysis
nodes ran both the I/O (data) server and the metadata
server. The RAID 0 partitions on the analysis nodes
were reformatted to provide the PVFS2 storage space.
The PVFS2 Linux kernel interface was deployed and
the PVFS2 volume was mounted locally on each node.
The four datasets used to drive the evaluation of PVFS2
were the same as those used in the Zazen experiments.
Data files were striped across all nodes.

The program used for driving the PVFS2 experi-
ments was the same as the one used for the NFS expe-
riments except that we pointed the data paths to the
mounted PVFS2 directories. The PVFS2 experiments
were conducted in the same way as the NFS experi-
ments. The best results for reading the 1-GB and 256-
MB datasets were attained with 2 cores per node, while
the best results for reading the 64-MB and 2-MB data-
sets were obtained with 4 cores per node.

Hadoop/HDFS. Hadoop/HDFS release 0.19.1 was
installed. We used the 100 analysis nodes as slaves
(i.e., DataNodes and TaskTrackers) to store HDFS files
and to execute MapReduce tasks. We also added three
additional nodes to run the HDFS name node, the sec-
ondary name node, and the Hadoop MapReduce job
tracker, respectively. We wrote and configured a rack
awareness script for Hadoop/HDFS to identify the loca-
tions of the nodes.

The datasets we used to evaluate Hadoop/HDFS
have the same characteristics as those for the Zazen and
PVFS2 experiments. To store the datasets in HDFS
efficiently, we wrote an MPI program that was linked
with HDFS’s C API library libhdfs. Considering
that simulation analysis programs would process each
frame as a whole (as a binary blob), we set the HDFS
block size to be the same as the file size and did not
split frame files across the slave nodes. Each file was
replicated three times (the default setting) within HDFS.
The data population program ran in parallel on 100
nodes and stored the data files uniformly on the 100
nodes.

10

 (a) End-to-end read bandwidth comparison (b) Time to read one terabyte data

Figure 7: Comparison of read-only performance. (a) Bars are grouped by the file size of the datasets, with the leftmost bar
representing the performance of that of PVFS2, Hadoop/HDFS, and Zazen, respectively. (b) The y axis is shown in log-scale.

To read data efficiently from HDFS, we wrote a
read-only Hadoop MapReduce program in Java. We
used the following techniques to eliminate or minimize
the overhead: (1) defining a map() function that re-
turned immediately, so that no time would be spent in
computation; (2) skipping the reduce phase, which was
irrelevant for our experiments; (3) providing an unsplit-
table data input format to ensure that each frame file
would be read as a whole on some node, and creating a
binary record reader to read data in 64 MB chunks
(when reading data files greater than or equal to 64 MB)
so as to transfer data in bulk and avoid parsing
overhead; (4) setting the output format to NULL type to
avoid job output; (5) reusing the Java virtual machines
for map task execution; and (6) setting the log file out-
put to a local disk path on each node. In addition, we
set the heap sizes for the name node and the job tracker
to 8 GB and 15 GB, respectively, to allow maximum
memory usage by Hadoop/HDFS.

Hadoop provides a configuration parameter to con-
trol the maximum number of map tasks that can be ex-
ecuted simultaneously on each slave node. We set this
parameter to 1, 2, 4, 8, and 16, respectively, and ex-
ecuted the read-only MapReduce program to access the
four test datasets. All experiments, except for those that
read the 2-MB datasets, were performed three times,
yielding similar results each time. We found that Ha-
doop had great difficulty in handling a large number of
small files—a problem that had also been recognized by
the Hadoop community [16]. The reading of the 2-MB
dataset, which consisted of 819,200 files, failed multiple
times when using a maximum of 1 or 2 map tasks per
node, and took much longer than expected when 4, 8,
and 16 map tasks per node were used. Hence, each ex-
periment for reading the 2-MB dataset was performed
only once. Regardless of the frame file size, setting the
parameter to 8 led to the best results, which we use in
the following performance comparison.

Figure 7(a) shows the read bandwidth delivered by

the four systems. The bars are grouped by the file size
of the datasets. Within each group, the leftmost bar
represents the performance of NFS, followed by that of
PVFS2, Hadoop/HDFS, and Zazen, respectively. Fig-
ure 7(b) shows the equivalent time (in log-scale) of
reading 1 terabyte data of different file sizes. Zazen
consistently outperforms other storage systems by a
large margin across the range. When reading large files
(i.e., 1-GB), Zazen delivers more than 20 GB/s sus-
tained read bandwidth on the 100 nodes, outperforming
NFS (on a single enterprise storage server) by a factor
of 75, and PVFS2 and Hadoop/HDFS (running on the
same 100 nodes) by factors of 18 and 6, respectively.
When more seeks are required to read a large number of
small (2-MB) files, Zazen achieves a sustained I/O
bandwidth of about 8 GB/s, which is 25, 13, and 85
times faster than NFS, PVFS2, and Hadoop/HDFS, re-
spectively. As a reference, the optimal aggregated disk
read bandwidth we measured on the 100 nodes is
around 22.5 GB/s. Zazen’s I/O efficiency (up to 90%)
is the direct result of “embarrassingly parallel” I/O op-
erations that are enabled by the Zazen protocol.

We emphasize that despite Zazen’s large perfor-
mance advantage over file systems, it is intended to be
used only as a disk cache to accelerate disk reads—just
as processor caches are used to accelerate main memory
accesses. Our results do not suggest that Zazen has the
capability to replace the underlying file systems.

5.2.3 Read Performance under Write Work-
load

In this set of tests, we repeated the experiments of read-
ing the four 1.6-TB datasets from the Zazen cache,
while also concurrently executing Zazen cache writers.
In particular, we used 8 additional nodes to act as super-
computer I/O nodes that continuously write to the 100-
node Zazen cache at an aggregated rate of 1 GB/s.

Figure 8 shows the Zazen read performance under

11

Figure 8: Zazen read performance under write work-
load. Writing data to the Zazen cache at a high rate
(1 GB/s) does not affect the read performance in any signif-
icant way.

Figure 9: End-to-end execution time (100 nodes). Zazen
enables the program to speed up as more cores per node are
used.

write workload. The bars are grouped by the file size of
the datasets being read. Within each group, the leftmost
bar represents the read bandwidth attained with no writ-
ers, followed by the bars representing the read band-
width attained while 1-GB, 256-MB, 64-MB, and 2-MB
files are being written to the Zazen cache, respectively.
The bars are normalized (divided) by the no-writer read
bandwidth and shown as percentages.

We can see from the figure that Zazen achieves a
high level of read performance (more than 90% of that
obtained in the absence of writers) when medium to
large files (64 MB–1 GB) were being written to the
cache. Even in the most demanding case of writing 2-
MB files, Zazen still delivers a performance above 80%
of that measured in the no-writer case. These results
demonstrate that actively pushing data into the Zazen
cache does not significantly affect the read performance.

5.3 End-to-End Performance

We have deployed the 100-node Zazen cluster in con-
junction with Anton and have used the cluster to ex-
ecute hundreds of thousands of parallel analysis jobs. In
general, we are able to reduce the end-to-end execution
time of a large number of analysis programs—not just
the data access time—from several hours to 5–15 mi-
nutes.

The sample application presented next is one of the
most demanding in that it processes a large number
(2.5 million) of small files (430-KB frames). The pur-
pose of this analysis is to compute how long particular
water molecules reside within a certain distance of a
protein structure. The analysis program, called water
residence, is a parallel Python program consisting of a
data-extraction phase and a time-series analysis phase.
I/O read takes place in the first phase when the frames
are fetched and analyzed one file at a time (without a
particular ordering requirement).

Figure 9 shows the performance of the sample pro-
gram executing on the 100-node Zazen cluster. The
three curves, from bottom up, represent the end-to-end
execution time (in log-scale) when the program read
data from (distributed) main memory, Zazen, and NFS,
respectively. To obtain the reference time of reading
frames directly from the main memory, we ran the pro-
gram back-to-back three times without dropping the
Linux cache in between so that the buffer cache of each
of the 100 nodes is fully warmed. We used the mea-
surement of the third run to represent the runtime for
accessing data directly from main memory. Recall that
the total memory of the Zazen cluster is 1.6 TB, which
is sufficient to accommodate the entire dataset (1 TB).
When reading data from the Zazen cache, we dropped
the Linux cache before each experiment to eliminate
any memory caching effect.

The memory curve represents the best possible scal-
ing of the sample program, because no disk I/O is in-
volved. As we increase the number of processes on
each node, the execution time improves proportionally,
because the same amount of computational workload is
now split among more processor cores. The Zazen
curve has a similar trend and closely follows the memo-
ry curve. The NFS curve, however, stays more or less
flat regardless of how many cores are used on each
node, from which we can see that I/O read is the domi-
nant component of the total runtime, and that increasing
the number of readers does not increase the effective
I/O bandwidth. When we run eight user processes on
each node, Zazen is able to improve the execution time
of the sample program by 10 times over that attained by
accessing data directly from NFS.

An attentive reader may recall from Figure 6(b) that
increasing the number of application reader processes
does not increase Zazen’s read bandwidth either. Then
why does the execution time when using the Zazen
cache improve as we use more cores per node? The

12

Figure 10: Performance under node failures. Individual
node failures do not cause the Zazen system to crash.

reason is that the Zazen cache has reduced the I/O time
to such an insignificant percentage of the application’s
total runtime that the computation time has now become
the dominant component. Hence, doubling the number
of cores per node not only halves the computation time,
but also improves the overall execution time in a signif-
icant way. Another way to interpret the result is that by
using the Zazen cache, we have turned an I/O-bound
analysis into a computation-bound problem that is more
amenable to parallel acceleration using multiple cores.

5.4 Robustness

Zazen is robust in that individual node crashes do not
cause systemic failures. As explained in Section 4, the
frame files cached on crashed nodes are simply treated
as cache misses. To identify and exclude crashed or
faulty nodes, we use a cluster resource manager called
SLURM [39, 49] to schedule jobs and allocate nodes.

We assessed the effect of node failures on end-to-
end performance by re-running the water residence pro-
gram as follows. Before each experiment, we first
purged the Zazen cache and then populated the 100
nodes with 1.25 million frame files uniformly. Next, we
randomly selected a specified percentage of nodes and
shut down the Bodhi servers on those nodes. Finally,
we submitted the analysis job to SLURM, which de-
tected the faulty nodes and excluded them from job ex-
ecution.

Figure 10 shows the execution time of the water res-
idence program along with the computed worst-case
execution time as the percentage of failed nodes in-
creases from 10% to 50%. The worst-case execution
time can be shown to be T(1 + δ(B/b)), where T is the
execution time without node failures, δ is the percentage
of the Zazen nodes that have failed, B is the aggregated
I/O bandwidth of the Zazen cache without node failures,
and b is the best read bandwidth of the underlying paral-
lel/network file system. We measured, for this particu-
lar dataset, that B and b had values of 3.4 GB/s and 312
MB/s, respectively. Our results show that the actual
execution time is indeed consistently below the com-

puted worst-case time and degrades gracefully in the
face of node failures.

6 Related Work
The idea of using local disks to accelerate I/O for scien-
tific applications has been explored for over a decade.
DPSS [45] is a parallel disk cache prototype designed to
reduce I/O latency over the Grid. FreeLoader [47] ag-
gregates the unused desktop disk space into a shared
cache/scratch space to improve performance of single-
client applications. Panache [1] uses GPFS [37] as a
client-site disk cache and leverages the emerging paral-
lel NFS standard [29] to improve cross-WAN data
access performance. Zazen shares the philosophy of
these systems but has a different goal: it aims to obtain
the best possible aggregated read bandwidth from local
cache nodes rather than reducing remote I/O latency.

Zazen does not attempt to provide a location-
transparent view of the cached data to applications.
Instead of confederating a set of distributed disks into a
single, unified data store—as do the distributed/parallel
disk cache systems and cluster file systems such as
PVFS [8], Lustre [21], and GFS [13]—Zazen converts
distributed disks into a collection of independently ma-
naged caches that are accessed in parallel by a large
number of cooperative application processes.

While existing works such as Active Data Reposito-
ry [19] uses spatial index structures (e.g., R-trees) to
select a subset of a multidimensional dataset and thus
effectively reduces I/O workload and enables interac-
tive visualization, Zazen targets a simple data access
pattern of one-frame-at-a-time and strives to improve
the I/O performance of batch analysis.

Peer-to-peer (P2P) storage systems, such as PAST
[34], CFS [9], Ivy [24], Pond [32], and Kosha [7], also
do not use centralized or dedicated servers to keep track
of distributed data. They employ a scalable technique
called a distributed hash table [2] to route lookup re-
quests through an overlay network to a peer where the
data are stored. These systems differ from Zazen in
three essential ways. First, P2P systems target com-
pletely decentralized and largely unrelated machines,
whereas Zazen attempts to harness the power of tightly
coupled cluster nodes. Second, while P2P systems use
distributed coordination to provide high availability,
Zazen relies on global coordination to achieve consen-
sus and thus high performance. Third, P2P systems, as
the name suggests, send and receive data over the net-
work among peers. In contrast, Zazen accesses data in
situ whenever possible; data traverse the network only
when a cache miss occurs.

Although similar in spirit to GFS/MapReduce [10,
13], Hadoop/HDFS [15], Gfarm [41, 42], and Ta-
shi [18], all of which seek data location information
from metadata servers to accelerate parallel processing

13

of massive data, Zazen employs an unorthodox ap-
proach to identify the whereabouts of the stored data,
and thus avoids the potential performance and scalabili-
ty bottleneck and the single point of failure associated
with metadata servers.

At the implementation level, Zazen caches whole
files like AFS [17, 35] and Coda [36], though book-
keeping in Zazen is much simpler as simulation output
files are immutable and do not require leases and call-
backs to maintain consistency. The use of bitmaps in
the Zazen protocol bears resemblance to the version
vector technique [27] used in the LOCUS system [48].
While the latter associated a version vector with each
copy of a file to detect and resolve conflicts among dis-
tributed replicas, Zazen uses a more compact represen-
tation to arbitrate who should read which frame files.

7 Summary
As parallel scientific supercomputing enters a new era
of scale and performance, the pressure on post-
simulation data analysis has mounted to such a point
that a new class of hardware/software systems has been
called for to tackle the unprecedented data problems [3].
The Zazen system presented in this paper is the storage
subsystem underlying a large analysis framework that
we have been developing.

With the intention to deploy Zazen to cache millions
to billions of frame files and execute on hundreds to
thousands of processor cores, we conceived a new ap-
proach by exploiting the characteristics of a particular
class of time-dependent simulation datasets. The out-
come was an implementation that delivered an order-of-
magnitude end-to-end speedup for a large number of
parallel trajectory analysis programs.

While our work was motivated by the need to acce-
lerate parallel analysis programs that operate on very
long trajectories consisting of relatively small frames,
we envision that the method, techniques, and algorithms
described here can be adapted to support other kinds of
data-intensive parallel applications. In particular, if the
data objects of an application can be interpreted as hav-
ing a total ordering of some sort (e.g. in the temporal or
spatial domain), then unique sequence numbers can be
assigned to identify the data objects. These datasets
would appear no different from time-dependent scientif-
ic simulation datasets and thus would be amenable to
I/O acceleration via Zazen.

References
[1] R. Ananthanarayanan, M. Eshel, R. Haskin, M. Naik, F.

Schmuck, and R. Tewari. Panache: a parallel WAN cache for
clustered filesystems. ACM SIGOPS Operating Systems Review,
42(1):48–53, January 2008.

[2] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I.
Stoica. Looking up data in P2P systems. Communications of
the ACM, 46(2):43–48, February 2003.

[3] G. Bell, T. Hey, and A. Szaley. Beyond the data deluge.
Science, 323(5919):1297–1298, March 2009.

[4] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski,
et al. PLFS: a checkpoint filesystem for parallel applications. In
Proceedings of the 2009 ACM/IEEE Conference on Supercom-
puting (SC09), Portland, OR, November 2009.

[5] J. Bent, D. Thain, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
and M. Livny. Explicit control in a batch-aware distributed file
system. In Proceedings of the 1st USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI’04), San
Francisco, CA, March 2004.

[6] J. Bruck, C-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby.
Efficient algorithms for all-to-all communications in multiport
message-passing systems. IEEE Transactions on Parallel and
Distributed Systems, 8(11):1143–1156, November 1997.

[7] A. R. Butt, T. A. Johnson, Y. Zheng, and Y. C. Yu. Kosha: a
peer-to-peer enhancement for the network file system. In Pro-
ceedings of the 2004 ACM/IEEE Conference on Supercomputing
(SC04), Pittsburgh, PA, November 2004.

[8] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur. PVFS:
a parallel file system for Linux clusters. In Proceedings of the
4th Annual Linux Showcase and Conference, pages 317–327,
Atlanta, GA, October 2000.

[9] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-area cooperative storage with CFS. In Proceedings of the
18th ACM Symposium on Operating Systems Principles
(SOSP’01), pages 202–215, Banff, Alberta, Canada, October
2001.

[10] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. Communications of the ACM,
51(1):107–113, January 2008.

[11] G. E. Fagg, J. Pjesivac-Grbovic, G. Bosilca, T. Angskun, J. J.
Dongarra, and E. Jeannot. Flexible collective communication
tuning architecture applied to Open MPI. In Proceedings of the
13th European PVM/MPI Users’ Group Meeting (Euro
PVM/MPI 2006), Bonn, Germany, September 2006.

[12] I. Foster, D. Kohr, R. Krishnaiyer, and J. Mogill. Remote I/O:
fast access to distant storage. In Proceedings of the 5th Work-
shop on Input/Output in Parallel and Distributed Systems, pages
14–25, San Jose, CA, November 1997.

[13] S. Ghemawat, H. Gobioff, and S-T. Leung. The Google file
system. In Proceedings of the 19th ACM Symposium on Operat-
ing Systems Principles (SOSP’03), Bolton Landing, NY, Octo-
ber 2003.

[14] GridFTP. http://www.globus.org/grid_software/
data/gridftp.php/.

[15] Hadoop. http://hadoop.apache.org/.

[16] Hadoop/HDFS small files problem.
http://www.cloudera.com/blog/2009/02/02/the
-small-files-problem/.

[17] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M.
Satyanarayanan, et al. Scale and performance in a distributed
file system. ACM Transactions on Computer Systems, 6(1):51–
81, February 1988.

[18] M. A. Kozuch, M. P. Ryan, R. Gass, S. W. Schlosser, D. R.
O’Hallaron, et al. Tashi: location-aware cluster management. In
Proceedings of the 1st Workshop on Automated Control for Da-
tacenters and Clouds (ACDC09), Barcelona, Spain, June 2009.

[19] T. Kurc, Ü Çatalyürek, C. Chang, A. Sussman, and J. Saltz.
Visualization of Large Data Sets with the Active Data Reposito-
ry. IEEE Computer Graphics and Applications, 21(4):24–33, Ju-
ly/August 2001.

[20] J. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin.
Flexible IO and Integration for Scientific Codes Through The

14

Adaptable IO System (ADIOS). In Proceedings of the 6th
ACM/IEEE International Workshop on Challenges of Large Ap-
plications in Distributed Environments (CLADE.2008), Boston,
MA, June 2008.

[21] Lustre. http://www.sun.com/software/products/
lustre/.

[22] H. M. Monti, A. R. Butt, and S. S. Vazhkudai. Just-in-time
staging of large input data for supercomputing jobs. In Proceed-
ings of the 3rd Petascale Data Storage Workshop, Austin, TX,
November 2008.

[23] H. M. Monti, A. R. Butt, and S. S. Vazhkudai. /scratch as a
cache: rethinking HPC center scratch storage. In Proceedings of
the 23rd International Conference on Supercomputing, York-
town Height, NY, June 2009.

[24] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy: a
read/write peer-to-peer file system. In Proceedings of the 5th
Symposium on Operating Systems Design and Implementation
(OSDI’02), Boston, MA, November 2002.

[25] P. Nowoczynski, N. Stone, J. Yanovich, and J. Sommerfield.
Zest: checkpoint storage system for large supercomputers. In
Proceedings of the 3rd Petascale Data Storage Workshop, Aus-
tin, TX, November 2008.

[26] Open MPI. http://www.open-mpi.org/.

[27] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walk-
er, et al. Detection of mutual inconsistency in distributed sys-
tems. IEEE Trascations on Software Engineering, 9(3):240–
247, May 1983.

[28] Petascale Data Storage Institute. http://www.pdsi-
scidac.org/.

[29] Parallel NFS. http://www.pnfs.com/.

[30] D. H. Porter, P. R. Woodward, and A. Iyer. Initial experiences
with grid-based volume visualization of fluid flow simulations
on PC clusters. In Proceedings of Visualization and Data Anal-
ysis 2005 (VDA2005), San Jose, CA, January 2005.

[31] PVFS. http://www.pvfs.org/.

[32] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J.
Kubiatowicz. Pond: the OceanStore prototype. In Proceedings
of the 2nd USENIX Conference on File and Storage Technolo-
gies (FAST’03), San Francisco, CA, March 2003.

[33] ROMIO. http://www.mcs.anl.gov/research/
projects/romio/

[34] A. Rowstron and P. Druschel. Storage management and caching
in PAST, a large-scale, persistent peer-to-peer storage utility. In
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP’01), Banff, Alberta, Canada, November 2001.

[35] M. Satyanarayanan, J. H. Howard, D. A. Nichols, R. N. Sidebo-
tham, A. Z. Spector, and M. J.West. The ITC distributed file
system: principles and design. In Proceedings of the 10th ACM
symposium on Operating Systems Principles, Orcas Island, WA,
1985.

[36] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H.
Siegel, and D. C. Steere. Coda: a highly available file system
for a distributed workstation environment. IEEE Transactions
on Computers, 39(4):447–459, April 1990.

[37] F. Schmuck and R. Haskin. GPFS: A shared-disk file system for
large computing clusters. In Proceedings of the 1st USENIX
Conference on File and Storage Technologies (FAST’02), Mon-
terey, CA, January 2002.

[38] D. E. Shaw, R. O. Dror, J. K. Salmon, J. P. Grossman, K. M.
Mackenzie, et al. Millisecond-scale molecular dynamics simula-
tion on Anton. In Proceedings of the 2009 ACM/IEEE Confe-
rence on Supercomputing (SC09), Portland, OR, November
2009.

[39] SLURM. https://computing.llnl.gov/linux/
slurm/slurm.html/.

[40] N. T. B. Stone, D. Balog, B. Gill, B. Johanson, J. Marsteller,
et al. PDIO: high-performance remote file I/O for Portals
enabled compute nodes. In Proceedings of the 2006 Conference
on Parallel and Distributed Processing Techniques and Applica-
tions, Las Vegas, NV, June 2006.

[41] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and S. Sekiguchi.
Grid datafarm architecture for petascale data intensive compu-
ting. In Proceedings of the 2nd IEEE/ACM Internaiontal Sym-
posium on Cluster Computing and the Grid (CCGrid2002), Ber-
lin, Germany, May 2002.

[42] O. Tatebe, N. Soda, Y. Morita, S. Matsuoka, and S. Sekiguchi.
Gfarm v2: A grid file system that supports high-performance
distributed and parallel data computing. In Proceedings of the
2004 Computing in High Energy and Nuclear Physics, Interla-
ken, Switzerland, September 2004.

[43] R. Thakur, W. Gropp, and E. Lusk. An abstract-device interface
for implementing portable parallel-I/O interfaces. In Proceed-
ings of the 6th Symposium on the Frontiers of Massively Parallel
Computation, Annapolis, MD, October 1996.

[44] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of
collective communication operations in MPICH. International
Journal of High Performance Computing Applications,
19(1):49–66, 2005.

[45] B. L. Tierney, J. Lee, B. Crowley, M. Holding, J. Hylton, and F.
L. Drake Jr. A network-aware distributed storage cache for data
intensive environments. In Proceedings of the 8th IEEE Inter-
national Symposium on High Performance Distributed Compu-
ting (HPDC-8), Redondo Beach, CA, August 1999.

[46] T. Tu, C. A. Rendleman, D. W. Borhani, R. O. Dror, J. Gul-
lingsrud, et al. A Scalable Parallel Framework for Analyzing
Terascale Molecular Dynamics Simulation Trajectories. In Pro-
ceedings of the ACM/IEEE Conference on Supercomputing
(SC08), Austin, Texas, November 15–21, 2008.

[47] S. S. Vazhkudai, X. Ma, V.W. Freeh, J.W. Strickland, N. Tam-
mineedi, and S. L. Scott. FreeLoader: scavenging desktop sto-
rage resources for scientific data. In Proceedings of the 2005
ACM/IEEE Conference on Supercomputing (SC05), Settle, WA,
November 2005.

[48] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The
LOCUS distributed operating system. In Proceedings of the 9th
ACM Symposium on Operating Systems Principles, Bretton
Woods, MA, October 1983.

[49] A. Yoo, M. Jette, and M. Grondona. SLURM: simple Linux
utility for resource management. In Lecture Notes in Computer
Science, volume 2862 of Job Scheduling Strategies for Parallel
Processing, pages 44–60. Springer Berlin/Heidelberg, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

