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Abstract  
As a new generation of parallel supercomputers enables 
researchers to conduct scientific simulations of unprec-
edented scale and resolution, terabyte-scale simulation 
output has become increasingly commonplace.  Analy-
sis of such massive data sets is typically I/O-bound: 
many parallel analysis programs spend most of their 
execution time reading data from disk rather than per-
forming useful computation.  To overcome this I/O bot-
tleneck, we have developed a new data access method.  
Our main idea is to cache a copy of simulation output 
files on the local disks of an analysis cluster’s compute 
nodes, and to use a novel task-assignment protocol to 
co-locate data access with computation.  We have im-
plemented our methodology in a parallel disk cache 
system called Zazen.  By avoiding the overhead asso-
ciated with querying metadata servers and by reading 
data in parallel from local disks, Zazen is able to deliver 
a sustained read bandwidth of over 20 gigabytes per 
second on a commodity Linux cluster with 100 nodes, 
approaching the optimal aggregated I/O bandwidth at-
tainable on these nodes.  Compared with conventional 
NFS, PVFS2, and Hadoop/HDFS, respectively, Zazen is 
75, 18, and 6 times faster for accessing large (1-GB) 
files, and 25, 13, and 85 times faster for accessing small 
(2-MB) files.  We have deployed Zazen in conjunction 
with Anton—a special-purpose supercomputer that dra-
matically accelerates molecular dynamics (MD) simula-
tions—and have been able to accelerate the parallel 
analysis of terabyte-scale MD trajectories by about an 
order of magnitude. 

1 Introduction 
Today, thousands of massively parallel computers are 
deployed around the world.  The bountiful supply of 
computational power and the high-performance scientif-
ic simulations it has made possible, however, are not 
enough in themselves.  To make scientific discoveries, 
the output from simulations must still be analyzed. 

While simulation data are traditionally stored and 
accessed via parallel or network file systems, these sys-

tems have hardly kept up with the data deluge unleashed 
by faster supercomputers in the past decade [3, 28].  
With terabyte-scale data quickly becoming the norm in 
many disciplines of computational science, I/O has be-
come more critical a problem than ever. 

A considerable amount of effort has gone into the 
design and implementation of special-purpose storage 
and middleware systems aimed at improving the I/O 
performance during a simulation [4, 5, 20, 22, 23, 25, 
33].  By contrast, the I/O performance required in the 
course of analyzing the resulting data has received much 
less attention.  From the viewpoint of overall time to 
solution, however, it is necessary to measure not only 
the time required to execute a simulation, but also the 
time required to analyze and interpret the output data.  
The I/O bottleneck after a simulation is thus as much an 
impediment to scientific discovery through advanced 
computing as the one that occurs during the simulation. 

Our research aims to remove the analysis-time I/O 
impediment in a class of applications where the data 
output rate from a simulation is relatively low, yet the 
number of output files is relatively large.  In particular, 
we focus on overcoming the data access bottleneck en-
countered by parallel analysis programs that execute on 
hundreds to thousands of processor cores and process 
millions to billions of simulation output files.  Since the 
scale and complexity of this class of data-intensive 
analysis applications preclude the use of conventional 
storage systems, which have already struggled to handle 
less demanding I/O workloads, we introduce a new data 
access method designed to achieve a much higher level 
of performance. 

Our solution works as follows.  During a simulation, 
results are saved incrementally in a series of files.  We 
instruct the I/O node of a parallel supercomputer not 
only to write each output file to a parallel/network file 
server, but also to send the content of the file to some 
node of a separate cluster that is dedicated to post-
simulation data analysis.  We refer to such a cluster as 
an analysis cluster and its nodes as analysis nodes.  Our 
goal is to distribute the output files evenly among the 
analysis nodes.  Upon receiving the data from the I/O 
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node, an analysis node caches (i.e., stores) the content 
as a local copy of the file.  Each analysis node manages 
only the files it has cached locally.  No metadata, either 
centralized or distributed, are maintained to keep track 
of which node has cached which files.  When a simula-
tion is completed, its (many) output files are stored on 
the file server as well as distributed (more or less) even-
ly among all analysis nodes. 

At analysis time, each process of a parallel analysis 
program (assuming one process per analysis node) de-
termines which files have been cached locally, and uses 
this knowledge to participate in the execution of a dis-
tributed task-assignment protocol (in collaboration with 
processes of  the analysis program running on other 
analysis nodes).  The outcome of the protocol is an as-
signment (i.e., a partitioning) of the file I/O tasks, in 
such a way that each file of a simulation dataset will be 
read by one and only one process (for correctness), and 
that each process will be mostly responsible for reading 
the files that have been cached locally (for efficiency).  
After completing the protocol execution, all processes 
proceed in parallel without further communication to 
coordinate I/O.  (They may still communicate with one 
another for other purposes.)  To retrieve each assigned 
file, a process first attempts to read it from the local 
disks, and then in case of a local cache miss, fetches the 
file from the parallel/network file system on which the 
entire simulation output dataset is persistently stored. 

We have implemented our methodology in a parallel 
disk cache system called Zazen that has three compo-
nents: (1) a disk cache server that runs on every com-
pute node of an analysis cluster and manages locally 
cached data, (2) a client library that provides API func-
tions for operating the cache, and (3) a communication 
library that queries the cache and executes the task-
assignment protocol, referred to as the Zazen protocol. 

Experiments show that Zazen is scalable, efficient, 
and robust.  On a Linux cluster with 100 nodes, execut-
ing the Zazen protocol to assign I/O tasks for one billion 
files takes less than 15 seconds.  By avoiding the over-
head associated with querying metadata servers and by 
reading data in parallel from local disks, Zazen delivers 
a sustained read bandwidth of more than 20 gigabytes 
per second on 100 nodes when reading large (1-GB) 
files.  It is 75 times faster than NFS running on a high-
end enterprise storage server, and 18 and 6 times faster, 
respectively, than PVFS2 [8, 31] and Hadoop/HDFS 
[15] running on the same 100 nodes.  When reading 
small (2-MB) files, Zazen achieves a sustained read 
performance of about 8 gigabytes per second on 100 
nodes, outperforming NFS, PVFS2, and Hadoop/HDFS 
by a factor of 25, 13, and 85, respectively.  We emphas-
ize that despite its large performance advantage over 
network/parallel file systems, Zazen serves only as a 
cache system to improve parallel file read speed.  With-

out a slower but more reliable file system as backup, 
Zazen would not be able to handle cache misses.  Final-
ly, our experiments demonstrate that Zazen works even 
when up to 50% of the nodes have gone offline.  The 
only noticeable effect is a slowdown in execution time, 
which degrades gracefully, as predicted by our failure 
model. 

We have deployed Zazen in conjunction with Anton 
[38]—a special-purpose supercomputer developed at 
D. E. Shaw Research for molecular dynamics (MD) 
simulations—to support the parallel analysis of tera-
byte-scale MD trajectories.  Compared with the perfor-
mance of implementations that access data from a high-
end NFS server, the end-to-end execution time of a 
large number of parallel trajectory analysis programs 
that access data via Zazen has improved by about an 
order of magnitude. 

2 Background 
Scientific simulations seek numerical approximations of 
solutions to the partial differential, ordinary differential, 
algebraic, integral, or particle equations that govern the 
physical systems of interest.  The solutions, typically 
computed as displacements, pressures, temperatures, or 
other physical quantities associated with grid points, 
mesh nodes, or particles, represent the states of the sys-
tem being simulated and are stored to disk. 

Time-dependent simulations such as mantle convec-
tion, supernova explosion, seismic wave propagation, 
and bio-molecular motions output a series of solutions, 
each representing the state of the system at a particular 
simulated time.  We refer to these solutions as output 
frames or simply frames.  While the organization of 
frames on disk is application-dependent, we assume in 
this paper that all frames are of the same size and each 
is stored in a separate file. 

An important class of time-dependent simulations 
has the following characteristics.  First, they output a 
large number of small frames.  A millisecond-scale MD 
simulation, for example, may generate millions to bil-
lions of frames, each having a size less than a few me-
gabytes.  Second, the frames are write once read many.  
Once a frame is generated and stored to disk, it is usual-
ly read multiple times by data analysis programs.  A 
frame, for all practical purposes, is never modified un-
less deleted.  Third, unique integer sequence numbers 
can be used to distinguish the frames, which are gener-
ated in a temporal order as a simulation marches for-
ward in time.  Fourth, frames are amenable to parallel 
processing at analysis time.  For example, our recent 
work [46]  has demonstrated how to use the MapReduce 
programming model to access frames in an arbitrary 
order in the map phase and restore their temporal order 
in the reduce phase. 
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Figure 1: Simulation I/O infrastructure.  Parallel analysis 
programs traditionally read simulation output from a parallel 
or network file system. 

Traditionally, frames are stored and accessed via a 
parallel or network file system, as shown in Figure 1.  
At the bottom of the figure lies a parallel supercomputer 
that executes scientific simulations and outputs data 
through I/O nodes, which are specialized service nodes 
for tightly coupled parallel machines such as IBM’s 
BlueGene, Cray’s XT series, or Anton.  These nodes 
aggregate the data generated by the compute nodes 
within a supercomputer and store the results to the file 
system servers.  Two I/O nodes are shown in Figure 1 
for illustration purposes; the actual number of I/O nodes 
varies by system.  The top of Figure 1 shows an analysis 
cluster may or may not be co-located with a parallel 
supercomputer.  In the latter case, simulation data can 
be stored to file servers close to the analysis cluster—
either online, using techniques such as ADIO [12, 43] 
and PDIO [30, 40] or offline, using high-performance 
data transfer tools such as GridFTP [14].  An analysis 
cluster is typically much smaller in scale than a parallel 
supercomputer and has on the order of tens to hundreds 
of analysis compute nodes.  While an analysis cluster 
provides tremendous computational and memory re-
sources to parallel analysis programs, it also imposes 
intensive I/O workload to the underlying file servers, 
which, in most cases, cannot keep up.  

3 Solution Overview 
The local disks on the analysis nodes, shown in Figure 
1, are typically unused except for storing operating sys-
tems files and temporary user data.  While an individual 
analysis node may have much smaller disk space than 
file servers, the aggregated capacity of all local disks in 
an analysis cluster may be on par with or even exceed 
that of the file servers.  With such abundant and poten-
tially useful storage resources at our disposal, it is natu-
ral to ask how we can exploit these resources to solve 
the problem of reading a large number of frames in pa-
rallel. 

 

3.1 The Main Idea 

Our main idea is to cache a copy of each output frame in 
the local disks of arbitrary analysis nodes, and use a 
data location–aware task-assignment protocol to coordi-
nate the parallel read of the cached data at analysis time. 

Because simulation frames are write once read 
many, cache consistency is guaranteed.  Thus, at simula-
tion time, we arrange for the I/O nodes of a parallel su-
percomputer to push a copy of output frames to the local 
disks of the analysis nodes as the frames are generated 
and stored to a file server.  We cache each frame on one 
and only one node and place consecutive frames on dif-
ferent nodes for load balancing.  The assignment of 
frames to nodes can be arbitrary as long as the frames 
are spread across the analysis nodes more or less evenly.  
We choose a first machine randomly from a list of 
known analysis nodes and push frames to that machine 
and then its peers in a round-robin order.  When caching 
frames from a long-running simulation that lasts for 
days or weeks, some of the analysis nodes will inevita-
bly crash and become unavailable.  We detect and skip 
the crashed nodes and place the output frames on the 
surviving nodes.  Note that we do not use a metadata 
server to keep track of where frames are cached. 

When executing a parallel analysis program, we use 
a cluster resource manager such as SLURM [39, 49] to 
obtain as many analysis nodes as available.  We instruct 
each process to read frames directly from its local disk 
cache.  To coordinate the parallel read of the cached 
frames and to ensure that each frame is read by one and 
only one node, we execute a data location–aware task-
assignment protocol before performing any I/O.  The 
purpose of this protocol is to co-locate data access with 
computation.  Upon completion of the protocol execu-
tion, each process receives a list of integer sequence 
numbers that correspond to the frames it is responsible 
for reading.  Most, if not all, of the assigned frames are 
those that have been cached locally.  Those that are 
missing from the cache—for example, those that are 
cached on a crashed node or those that have been 
evicted—are fetched from the file servers and then 
cached in local disks. 

3.2 Applicability 

The proposed solution works only if the aggregated disk 
space of the dedicated analysis cluster is large enough to 
accommodate tens to hundreds of terabyte-scale simula-
tion output datasets, so that recently cached datasets are 
not evicted too quickly.  Considering the density and the 
price of today’s hard drives, we expect that it is both 
technologically and economically feasible to provision a 
medium-size cluster with hundreds of terabytes to a few 
petabytes of disk storage.  As an example, the cluster at 
Intel Research Pittsburgh, which is part of the  
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Figure 2: Simulation data organization.  Frames are 
stored to file servers as well as the analysis nodes. 

OpenCirrus consortium, is reported to have 150 nodes 
with over 400 TB of disk storage [18].  

Another prerequisite of our solution is that the data 
output rate from a simulation is relatively low.  In prac-
tice, this means that the data output rate must be lower 
than both the network bandwidth to and the disk band-
width on any analysis node.  If this is true, we can use 
multithreading techniques to overlap data caching with 
computation and avoid slowing down the execution of a 
simulation.  

Certain classes of simulations cannot take advantage 
of the proposed caching mechanism because of the re-
strictions imposed by these two prerequisites.  Never-
theless, many time-dependent simulations do satisfy 
both prerequisites and are amenable to simulation-time 
data caching.  

3.3 An Example 

We assume that an analysis cluster has only two 
nodes as shown in Figure 2.  We use the local disk parti-
tion mounted at /bodhi as the cache space.  We also 
assume that an MD simulation generates four frames 
named f0, f1, f2, and f3 in a directory /sim1/.  As 
the frames are generated by the simulation at certain 
intervals and pushed to an NFS server, they are also 
stored to nodes 1 and 2 in an alternating fashion, with 
f0 and f2 going to node 1, and f1 and f3 to node 
2.  When a node receives an output file, it prepends the 
local disk cache root, that is, /bodhi, to the full path 
name of the file, creates a cache file locally using the 
derived file name (e.g., /bodhi/sim1/f0), and 
writes the contents.  After the data is cached locally, a 
node records the sequence number of the frame—which 
is sent by an I/O node—in a sequence log file that is 
stored in the local directory along with the frames. 

Figure 2 shows the data organization on the NFS 
server and on the two analysis nodes.  The isosceles 
triangles represent datasets that have already been 
stored on the NFS server at directory /sim0/; the right 
triangles represent the portions of files that have been 
cached on nodes 0 and 1, respectively.  The seq file 
represents the sequence log file that is created and up-
dated independently on each node. 

When analyzing the dataset stored at /sim1, we 
open its associated sequence log file (i.e., 
/bodhi/sim1/seq) on each node in parallel, and 
retrieve the sequence numbers of the frames that have 
been cached locally.  We then construct a bitmap with 
four entries (equal to the number of frames to be ana-
lyzed) and set the bits for those that it has cached local-
ly.  On node 0, the first and third bits are set; on node 1, 
the second and fourth bits. 

We then exchange the bitmaps between the nodes.  
By examining the combined results, both nodes realize 
that that all requested frames have been cached some-

where in the analysis cluster.  Since node 0 has local 
access to f0 and f2, it signs up for reading these two 
frames—with the knowledge that the other node must 
have local access to the remaining two files.  Node 1 
makes a similar decision and signs up for f1 and f3.  
Both nodes then proceed in parallel and read the cached 
frames without further communication.  Because all 
requested frames have been cached on either node 0 or 
node 1, no read requests are sent to the NFS server. 

With only two nodes in this example, converting lo-
cal disks to a distributed cache might not appear to be 
worthwhile.  Nevertheless, when hundreds or more 
nodes are present, the effort pays off as it allows us to 
harness the vast storage capacities and I/O bandwidths 
distributed across many nodes. 

3.4 Implementation 

We have implemented our methodology in a parallel 
disk cache system called Zazen.  The literal meaning of 
Zazen is “enlightenment through seated meditation.”  
By a stretch of imagination, we use the term to describe 
the behavior of the analysis nodes in an anthropomor-
phic way:  Instead of consulting a master node for ad-
vice on what data to read, every node seeks its inner 
knowledge of what has been cached locally to help de-
cide its own action, thereby becoming “enlightened.” 

As shown in Figure 3, the Zazen system consists of 
three components:  

• The Bodhi library: a client library that provides 
API functions (open, write, read, query, and close) 
for I/O nodes of parallel supercomputers to push 
output frames to analysis nodes, and for parallel 
analysis programs to query and read data from lo-
cal disks. 

• The Bodhi server: a disk cache server that manag-
es the frames that have been cached on local disks 
and provides read service to local clients and write 



 

5 
 
 

 

Figure 3: Overview of the Zazen system.  The Bodhi 
library provides API functions for operating the local disk 
caches.  The Bodhi server manages the frames cached 
locally and services client requests.  The Zazen protocol 
coordinates parallel read of the cached data. 

service to remote clients. 

• The Zazen protocol: a data location–aware task-
assignment protocol for assigning frame read tasks 
to analysis nodes. 

We refer to the distributed local disks collectively as 
the Zazen cache and the hosting analysis cluster as the 
Zazen cluster.  The Zazen cluster supports two types of 
applications: writers and readers.  Writers are I/O 
processes running on the I/O nodes of a supercomputer.  
They only write output frames to the Zazen cache and 
never read them back.  Readers are parallel processes of 
an analysis program.  They run on the analysis nodes, 
execute the Zazen protocol, read data from local disk 
caches, and, in case of cache misses, have data fetched 
(by Bodhi servers) into the Zazen cache.  As shown in 
Figure 3, inter-processor communication takes place 
only at the application level and the Zazen protocol lev-
el.  The Bodhi library and server on different nodes do 
not communicate with one another directly as they do 
not share information with respect to which frames have 
been cached locally. 

When frames are stored in the Zazen cache, they are 
treated as either natives or aliens.  A native frame is one 
that is written to the Zazen cache by an I/O node that 
calls the Bodhi library write function.  An alien frame is 
one that is brought into the Zazen cache by a Bodhi 
server because of a local cache read miss; it is the by-
product of a call to the Bodhi library read function.  
Note that a frame can be a native on at most one node, 

but can be an alien on multiple nodes.  To distinguish 
the two types of cached frames, we maintain two se-
quence log files for each simulation dataset to keep 
track of the integer sequence numbers of the native and 
alien frames, respectively.  (The example of Section 3.2 
showed only the native sequence log files.) 

While the Bodhi library and server provide the ne-
cessary machinery for operating the Zazen cache, the 
intelligence of coordinating the parallel read of the 
cached data—the core of our innovation—lies in the 
Zazen protocol. 

4 The Zazen Protocol 
At first glance, it might appear that the coordination of 
the parallel read from the Zazen cache is unnecessary.  
Indeed, if no node would ever fail and cached data were 
never evicted, every node could simply consult its na-
tive sequence log file (associated with a particular data-
set) and read the frames it has cached locally.  Because 
an I/O node stores each output frame to one and only 
one node, neither duplicate reads nor cache read misses 
would occur. 

Unfortunately, the premise of this argument is rarely 
true in practice.  Analysis nodes do fail in various un-
predictable ways due to hardware, software, and human 
errors.  If a node crashes for some reason other than disk 
failures, the frames cached on that node become tempo-
rarily unavailable.  Assume that during the node’s down 
time, a parallel analysis code requests access to a dataset 
that has been partially cached on the failed node.  Fur-
thermore, assume that under the auspices of some 
oracle, the surviving analysis nodes are able to decide 
who should read which missing frames.  Then the miss-
ing frames are fetched from the file servers and—as an 
intended side effect—cached locally on the surviving 
nodes as aliens.  Assume that after the execution of the 
analysis, the failed node recovers and is back online.  
All of its locally cached frames once again become 
available.  If the previously accessed dataset is 
processed again, some of its frames are now cached 
twice: once on the recovered node (as natives) and once 
on some other nodes (as aliens).  More complex failure 
and recovery sequences may take place, which can lead 
to a single frame being cached multiple times or not 
cached at all. 

We devised the Zazen protocol to guarantee that re-
gardless how many (i.e., zero or more) copies of a frame 
have been cached, it is read by one and only one node.  
To achieve this goal, we enforce the following rules in 
order:  

• Rule (1): If a frame is cached as a native on some 
node, we use that node to read the frame. 

• Rule (2): If a frame is not cached as a native on any 
node and is cached as an alien once on some node, 
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we use that node to read the frame. 

• Rule (3): If a frame is missing from the cache, we 
choose an arbitrary node to read the frame and 
cache the file. 

We define a frame as missing if either the frame is not 
cached at all on any node or the frame is not cached as a 
native but is cached as an alien multiple times on differ-
ent nodes. 

The rationale behind the rules is as follows.  Each 
frame is cached as a native once and only once on one 
of the analysis nodes when the frame file is pushed into 
the Zazen cache by an I/O node.  If a native copy exists, 
it becomes an undisputed sole winner and knocks off 
other competitors who offer to provide an alien copy.  
Otherwise, a winner emerges only if it is the sole holder 
of an alien copy.  If multiple alien copies exist, all con-
tenders back off to avoid expensive distributed arbitra-
tion.  An arbitrary node is then chosen to service the 
frame. 

To coordinate the parallel read of cached data, all 
processes of a parallel analysis program must execute 
the Zazen protocol by calling an API function named 
zazen.  The input to the zazen function includes 
bodhi (a handle to the local cache), simdir (the 
base directory of a simulation dataset), begin (the 
sequence number of the first frame to be accessed), end 
(the sequence number of the last frame to be accessed), 
and stride (the stride between the frames to be ac-
cessed).  The output of the zazen function is an ab-
stract data type zazen_bitmap that contains the 
necessary information for each process to find out 
which frames of the dataset it should read.  Because the 
order of parallel accessing of frames is irrelevant, as 
explained in Section 2, each process consults the za-
zen_bitmap and calls the Bodhi library read func-
tion to read the frames it is responsible for processing, 
in parallel with other processes. 

The main techniques we used to implement the Za-
zen protocol are bitmaps and all-to-all reduction algo-
rithms [6, 11, 44].  The former provides a compact data 
structure for recording the presence or non-presence of 
frames, which may number in the billions.  The latter 
furnishes an efficient mechanism for performing inter-
processor collective communications.  While we could 
have implemented all-to-all reduction algorithms from 
scratch (with a fair amount of effort), we chose instead 
to use an MPI library [26] as it already provides an op-
timized implementation that scales on to tens of thou-
sands of nodes.  In what follows, we simplify the de-
scription of the Zazen protocol algorithm by assuming 
that only one process (of a parallel analysis program) 
runs on each node. 

1. Creation of local native bitmaps.  Each process calls 
the Bodhi library query function to obtain the se-
quence numbers of the frames that have been cached 

as native on the local node.  It creates an empty bit-
map, whose number of bits is equal to the total num-
ber of frames to be accessed.  Next, it sets the bits 
corresponding to the sequence numbers of the local-
ly cached natives and produces a partially filled bit-
map called a local native bitmap. 

2. Generating of global native bitmaps.  All the 
processes perform an all-to-all reduction that applies 
a bitwise-or operation on the local native bitmaps.  
On return, each node obtains an identical new bit-
map called a global native bitmap that represents all 
the frames that have been cached as natives some-
where. 

3. Identification of local native reads.  Each process 
checks if the global native bitmap is fully set.  If so, 
we have a perfect native cache hit ratio of 100%.  
The Zazen protocol is completed and every process 
proceeds to read the frames specified in its local na-
tive bitmap, knowing that the remaining frames are 
being read by other processes.  Otherwise, some 
frames are not cached as natives, though they may 
well exist on some nodes as aliens. 

4. Creation of local alien bitmaps.  Each process que-
ries its local Bodhi server for a second time to find 
the sequence numbers of the frames that are cached 
as aliens.  It creates a new empty bitmap that uses 
two bits—instead of just one bit for the case of local 
native bitmaps—for each frame.  The low-order 
(rightmost) bit is used in this step and the high-order 
(leftmost) bit will be used in the next step.  Initially, 
both bits are set to 0.  A process checks whether the 
sequence number of each of its locally cached aliens 
is already set in the global native bitmap.  If so, the 
process ignores the local alien copy to enforce Rule 
(1).  Otherwise, the process uses the alien copy’s se-
quence number as an index to locate the correspond-
ing frame entry in the new bitmap and sets the low-
order bit to one. 

5. Generation of global alien bitmaps.  All the 
processes perform a second round of all-to-all reduc-
tion to combine the contributions from local alien 
bitmaps.  Given a pair of input two-bit entries, we  
generate an output two-bit entry by applying a com-

mutative operator denoted as “∘” that works as  
follows: 

00 ∘ xx → xx, 10 ∘ xx → 10, and 01 ∘ 01 → 10 , 

 where x stands for either 0 or 1.  Note that an input 
two-bit entry can never be 11 and the high-order bit 
of the output is set to one only if both input bitmaps 
have their lower-order bits set (i.e., claiming to have 
cached the frame as an alien).  On return, each 
process receives an identical new bitmap called a 
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Figure 4: Fixed-problem-size scalability.  The execution 
time of the Zazen protocol for processing one billion frames 
grows only marginally as the number of analysis nodes 
increases from 1 to 100. 

 
Figure 5: Fixed-cluster-size scalability.  The execution 
time of the Zazen protocol on 100 nodes grows sub-linearly 
with the number of frames. 

global alien bitmap that records the frames that have 
been cached as aliens. 

6. Identification of local alien reads.  Each process 
performs a bitwise-and operation on its local alien 
bitmap and the global alien bitmap.  It identifies the 
offsets of the non-zero entries (which must be 01) of 
the result to enforce Rule (2).  Those entries 
represent the frames for which the process is the sole 
alien-copy holder.  Together, the identified local na-
tive and alien reads represent the frames a process 
voluntarily signs up to read. 

7. Adoption of residue frames.  Each process conducts 
a bitwise-or operation on the global native bitmap 
and the low-order bits of the global alien bitmap.  
The unset bits in the output bitmap are residue 
frames for which no process has signed up.  A frame 
may be a residue for one of the following reasons: 
(1) it has been cached on a crashed node, (2) it has 
been cached multiple times as an alien but not once 
as a native, or (3) it has been evicted from the cache.  
Regardless of the cause, the residues are treated by 
all processes as the elements of a single array.  Each 
process then executes a partitioning algorithm, in pa-
rallel without communication, to divide the array in-
to contiguous blocks and adopt the block that cor-
responds to its rank among all the processes. 
 

The Zazen protocol has two distinctive features.  
First, the data location information is obtained directly 
on each node—an embarrassingly parallel and scalable 
operation—rather than returned by a metadata server or 
servers.  Second, if a node crashes, the protocol still 
works.  The frames cached on the failed node are simply 
treated as cache misses.  

 

5 Performance Evaluation  
We have evaluated the scalability, efficiency, and ro-
bustness of Zazen on a commodity Linux cluster with 
100 nodes that are hosted in three racks.  The nodes are 
interconnected via a 1-gigabit Ethernet with full bisec-
tional bandwidth.  Each node runs CentOS 4.6 with a 

kernel version of 2.6.26 and has two Intel Xeon 2.33-
GHz quad-core processors, 16 GB physical memory, 
and four 500-GB 7200-RPM SATA disks.  We orga-
nized the local disks as a software RAID 0 (striped) 
partition and managed the RAID volume with an ext3 
file system.  The usable local disk cache space on each 
node is about 1.8 TB; so the total capacity of the Zazen 
cache is 180 TB.  All nodes have access to common 
NFS directories exported by a number of enterprise sto-
rage servers.  Evaluation programs were written in C 
unless otherwise specified. 

5.1 Scalability  

Because the Bodhi client and server are standalone 
components that can be deployed on as many nodes as 
available, they are inherently scalable.  Hence, the sca-
lability of the Zazen system, as a whole, is essentially 
determined by that of the Zazen protocol. 

In the following experiments, we measured how the 
execution time of the Zazen protocol scales as we in-
creased the cluster size and the problem size, respective-
ly.  No files were physically generated, stored to, or 
accessed from the Zazen cache.  To create local bitmaps 
without querying local Bodhi servers (since no files 
actually existed in this particular test) and to force the 
execution of the optional second round of all-to-all re-
duction (for generating global alien bitmaps), we mod-
ified the procedure outlined in Section 4 so that each 
process set a non-overlapping, contiguous sequence of 
n/p frames as natives, where n is the total number of 
frames and p is the number of analysis nodes.  The rest 
of the frames were treated as aliens.  The MPI library 
used in these experiments was Open MPI 1.3.2 [26]. 

Figure 4 shows the execution time of the Zazen pro-
tocol for assigning one billion frames as the number of 
analysis nodes increases from 1 to 100.  Each data point 
presents the average of three runs whose coefficient of 
variation (standard deviation over mean) is negligible.  
The execution time on one node is the time for manipu-
lating the bitmaps locally and does not include any 
communication overhead.  The dip of the curve in the 
four-node case may have been caused by the MPI run-
time choosing a different optimized MPI_Allreduce 
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Figure 4: Fixed-problem-size scalability.  The execution 
time of the Zazen protocol for processing one billion frames 
grows only marginally as the number of analysis nodes 
increases from 1 to 100. 

 
Figure 5: Fixed-cluster-size scalability.  The execution 
time of the Zazen protocol on 100 nodes grows sub-linearly 
with the number of frames. 

                   
           (a) One Bodhi read daemon per application read process                     (b) One Bodhi read daemon per node 

Figure 6: Zazen cache read bandwidth on 100 nodes.  (a) Forking one read daemon for each application read process hurts 
the performance significantly, especially when the size of files in the dataset is large.  (b) We can eliminate the I/O contention by 
using a single Bodhi server read daemon per node to serialize the read requests. 

algorithm.1  As the number of nodes increases, the ex-
ecution time grows only marginally, up to 14.9 seconds 
on 100 nodes. 

The result is exactly as expected.  When performing 
all-to-all reduction involving large messages, MPI libra-
ries typically select a bandwidth-optimized ring algo-
rithm [44], which we would have implemented had we 
not used MPI.  The time required to execute the ring 
algorithm is 2(p − 1)α + 2n(1 − 1/p)β + n(1 − 1/p)γ, 
where p is the number of processes, n is the size of the 
vector (i.e., the bitmap), α is the latency per message, β 
is the transfer time per byte, and γ is the computation 
cost per byte for performing the reduction operation.  
The coefficient associated with the bandwidth term, 
2n(1 − 1/p), which is the dominant component for large 
messages, does not grow with the number of nodes (p). 

Figure 5 shows that on 100 nodes, the execution 
time of the Zazen protocol grows sub-linearly as we 
increase the number of frames from 1,000 to 
1,000,000,000.  The result is again in line with the theo-
retical cost model of the ring algorithm, where the 
bandwidth term is linear in n, the size of the bitmaps. 

To put the execution time of the Zazen protocol in 
perspective, let us assume that each frame of a simula-
tion is 1 MB and we have one billion frames.  The total 
size of such a dataset is one petabyte.  Spending less 
than 15 seconds on 100 nodes to coordinate the parallel 
read of a petabyte-scale dataset appears (at least today) 
to be a reasonable startup overhead. 

5.2 Efficiency  

To measure the efficiency of actually reading data from 
the Zazen cache, we started the Bodhi servers on the 
100 analysis nodes and populated the Zazen cache with 
four 1.6-TB test datasets, consisting of 1,600 1-GB files,  
6,400 256-MB files, 25,600 64-MB files, and 819,200 
2-MB files, respectively.  Each node stored 16 GB of 

                                                 
1 Based on the vector size and the number of processes, Open MPI 
makes a runtime decision with respect to which all-reduce algorithm 
to use.  The specifics are implementation dependent and are beyond 
the scope of this paper. 

data on its local disks.  The experiments were driven by 
an MPI program that executes the Zazen protocol and 
fetches the (whole) files in parallel from the local disks.  
No analysis was performed on the data and no cache 
misses occurred in these experiments. 

In what follows, we report the end-to-end execution 
time measured between two MPI_Barrier() func-
tion calls placed before and after all Zazen cache opera-
tions.  When reporting bandwidths, we compute them as 
the number of bytes read divided by the end-to-end ex-
ecution time of reading the data.  The numbers thus ob-
tained are lower than the sum of locally computed I/O 
bandwidths since the slowest node would always drag 
down the overall bandwidth.  Nevertheless, we choose 
to report the results in such an unfavorable way because 
it is a more realistic measurement of the actual I/O per-
formance experienced by many analysis programs. 

To ensure that the performance measurement was 
not aided in any way by the local file system buffer 
caches, we ran the experiments for reading the four da-
tasets in a round-robin order and dropped the page, in-
ode, and dentry caches from the Linux kernel before 
each individual experiment.  We executed each experi-
ment 5 times and computed the mean values.  Because 
the coefficients of variation are negligible, we do not 
show error bars in the figures. 

5.2.1 Effect of the Number of Bodhi Read 
Daemons  

In this test, we compared the performance of two 
implementations of the Bodhi server to understand the 
effect of the number of read daemons.  In the first im-
plementation, we forked a new Bodhi server read 
process for each application read process and measured 
the performance of reading the four datasets on 100 
nodes as shown in Figure 6(a).  The dramatic drop be-
tween 1 and 2 readers per node for the 1-GB, 256-MB, 
and 64-MB datasets indicated that when two or more 
processes simultaneously read large data files, the inter-
leaved I/O requests forced the disk sub-system to oper-
ate in a seek-bound mode, which significantly hurt the 
I/O performance.  The further performance drop asso-
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ciated with reading the 1-GB dataset using eight readers 
(and thus eight Bodhi read processes) per node was 
caused by double buffering: once within the application 
and once within the Bodhi read daemon.  In total, 16 
GB of memory—the total amount of physical memory 
on each node—was used for buffering the 1 GB files.  
As a result, the program suffered from memory thrash-
ing and the performance plummeted.  The degradation 
in performance associated with the 2-MB dataset was 
not as obvious since reading small files was already 
seek-bound even when only there is a single read 
process. 

Based on this observation, we developed a second 
implementation of the Bodhi server and used a single 
Bodhi read daemon on each node to serialize all local 
client read requests.  As a result, only one read request 
would be outstanding at any time while the rest would 
be waiting in a FIFO queue maintained internally by the 
Bodhi read daemon.  Although serializing the parallel 
I/O requests may appear counterintuitive, Figure 6(b) 
shows that significantly better and more consistent per-
formance across the spectrum was achieved.  

5.2.2 Read-Only Performance  
To compare the performance of Zazen with that of 

other representative systems, we measured the read-only 
I/O performance on NFS, a common, general-purpose 
network file system; PVFS, a widely deployed high- 
performance parallel file system [8, 31]; and Ha-
doop/HDFS [15], a popular, location-aware parallel file 
system.  These experiments were set up as follows. 

NFS.  We used an enterprise NFS (v3.0) storage 
server with dual quad-core 2.8-GHz Opteron processors, 
16 GB of memory, 48 SATA disks that are organized in 
RAID 6 and managed by ZFS, and four 1-GigE connec-
tions to the core switch of the 100-node analysis cluster.  
The total capacity of the NFS server is 40 TB.  Antic-
ipating lower read bandwidth (based on our prior expe-
rience), we generated four smaller test datasets consist-
ing of 400 1-GB files, 400 256-MB files, 1,600 64-MB 
files, and 51,200 2-MB files, respectively, for the NFS 
experiments. 

We modified the test program so that each process 
reads an equal number of data files from the mounted 
NFS directories.  We ran the test program on 100 nodes 
and read the four datasets using 1, 2, and 4 cores per 
node, respectively.  Seeing that the performance 
dropped consistently and significantly as we increased 
the number of cores per node, we did not run experi-

ments using 8 cores per node.  Each experiment (i.e., 
reading a dataset using a particular number of cores per 
node) was executed three times, all of which generated 
similar results (with negligible coefficients of variation).  
The highest performance was always obtained when one 
core per node was used to read the datasets, that is, 
when running 100 processes on 100 nodes.  We report 
the best results from the one-core runs. 

PVFS2.  PVFS 2.8.1 was installed.  All 100 analysis 
nodes ran both the I/O (data) server and the metadata 
server.  The RAID 0 partitions on the analysis nodes 
were reformatted to provide the PVFS2 storage space.  
The PVFS2 Linux kernel interface was deployed and 
the PVFS2 volume was mounted locally on each node.  
The four datasets used to drive the evaluation of PVFS2 
were the same as those used in the Zazen experiments.  
Data files were striped across all nodes. 

The program used for driving the PVFS2 experi-
ments was the same as the one used for the NFS expe-
riments except that we pointed the data paths to the 
mounted PVFS2 directories.  The PVFS2 experiments 
were conducted in the same way as the NFS experi-
ments.  The best results for reading the 1-GB and 256-
MB datasets were attained with 2 cores per node, while 
the best results for reading the 64-MB and 2-MB data-
sets were obtained with 4 cores per node.  

Hadoop/HDFS.  Hadoop/HDFS release 0.19.1 was 
installed.  We used the 100 analysis nodes as slaves 
(i.e., DataNodes and TaskTrackers) to store HDFS files 
and to execute MapReduce tasks.  We also added three 
additional nodes to run the HDFS name node, the sec-
ondary name node, and the Hadoop MapReduce job 
tracker, respectively.  We wrote and configured a rack 
awareness script for Hadoop/HDFS to identify the loca-
tions of the nodes. 

The datasets we used to evaluate Hadoop/HDFS 
have the same characteristics as those for the Zazen and 
PVFS2 experiments.  To store the datasets in HDFS 
efficiently, we wrote an MPI program that was linked 
with HDFS’s C API library libhdfs.  Considering 
that simulation analysis programs would process each 
frame as a whole (as a binary blob), we set the HDFS 
block size to be the same as the file size and did not 
split frame files across the slave nodes.  Each file was 
replicated three times (the default setting) within HDFS.  
The data population program ran in parallel on 100 
nodes and stored the data files uniformly on the 100 
nodes. 
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                       (a) End-to-end read bandwidth comparison                                          (b) Time to read one terabyte data 

Figure 7: Comparison of read-only performance.  (a) Bars are grouped by the file size of the datasets, with the leftmost bar 
representing the performance of that of PVFS2, Hadoop/HDFS, and Zazen, respectively.  (b) The y axis is shown in log-scale.  

To read data efficiently from HDFS, we wrote a 
read-only Hadoop MapReduce program in Java.  We 
used the following techniques to eliminate or minimize 
the overhead: (1) defining a map() function that re-
turned immediately, so that no time would be spent in 
computation; (2) skipping the reduce phase, which was 
irrelevant for our experiments; (3) providing an unsplit-
table data input format to ensure that each frame file 
would be read as a whole on some node, and creating a 
binary record reader to read data in 64 MB chunks 
(when reading data files greater than or equal to 64 MB) 
so as to transfer data in bulk and avoid parsing 
overhead; (4) setting the output format to NULL type to 
avoid job output; (5) reusing the Java virtual machines 
for map task execution; and (6) setting the log file out-
put to a local disk path on each node.  In addition, we 
set the heap sizes for the name node and the job tracker 
to 8 GB and 15 GB, respectively, to allow maximum 
memory usage by Hadoop/HDFS. 

Hadoop provides a configuration parameter to con-
trol the maximum number of map tasks that can be ex-
ecuted simultaneously on each slave node.  We set this 
parameter to 1, 2, 4, 8, and 16, respectively, and ex-
ecuted the read-only MapReduce program to access the 
four test datasets.  All experiments, except for those that 
read the 2-MB datasets, were performed three times, 
yielding similar results each time.  We found that Ha-
doop had great difficulty in handling a large number of 
small files—a problem that had also been recognized by 
the Hadoop community [16].  The reading of the 2-MB 
dataset, which consisted of 819,200 files, failed multiple 
times when using a maximum of 1 or 2 map tasks per 
node, and took much longer than expected when 4, 8, 
and 16 map tasks per node were used.  Hence, each ex-
periment for reading the 2-MB dataset was performed 
only once.  Regardless of the frame file size, setting the 
parameter to 8 led to the best results, which we use in 
the following performance comparison. 

Figure 7(a) shows the read bandwidth delivered by 

the four systems.  The bars are grouped by the file size 
of the datasets.  Within each group, the leftmost bar 
represents the performance of NFS, followed by that of 
PVFS2, Hadoop/HDFS, and Zazen, respectively.  Fig-
ure 7(b) shows the equivalent time (in log-scale) of 
reading 1 terabyte data of different file sizes.  Zazen 
consistently outperforms other storage systems by a 
large margin across the range.  When reading large files 
(i.e., 1-GB), Zazen delivers more than 20 GB/s sus-
tained read bandwidth on the 100 nodes, outperforming 
NFS (on a single enterprise storage server) by a factor 
of 75, and PVFS2 and Hadoop/HDFS (running on the 
same 100 nodes) by factors of 18 and 6, respectively.  
When more seeks are required to read a large number of 
small (2-MB) files, Zazen achieves a sustained I/O 
bandwidth of about 8 GB/s, which is 25, 13, and 85 
times faster than NFS, PVFS2, and Hadoop/HDFS, re-
spectively.  As a reference, the optimal aggregated disk 
read bandwidth we measured on the 100 nodes is 
around 22.5 GB/s.  Zazen’s I/O efficiency (up to 90%) 
is the direct result of “embarrassingly parallel” I/O op-
erations that are enabled by the Zazen protocol. 

We emphasize that despite Zazen’s large perfor-
mance advantage over file systems, it is intended to be 
used only as a disk cache to accelerate disk reads—just 
as processor caches are used to accelerate main memory 
accesses.  Our results do not suggest that Zazen has the 
capability to replace the underlying file systems. 

5.2.3 Read Performance under Write Work-
load  

In this set of tests, we repeated the experiments of read-
ing the four 1.6-TB datasets from the Zazen cache, 
while also concurrently executing Zazen cache writers.  
In particular, we used 8 additional nodes to act as super-
computer I/O nodes that continuously write to the 100-
node Zazen cache at an aggregated rate of 1 GB/s. 

Figure 8 shows the Zazen read performance under 
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Figure 8: Zazen read performance under write work-
load. Writing data to the Zazen cache at a high rate 
(1 GB/s) does not affect the read performance in any signif-
icant way. 

 

Figure 9: End-to-end execution time (100 nodes).   Zazen 
enables the program to speed up as more cores per node are 
used. 

write workload.  The bars are grouped by the file size of 
the datasets being read.  Within each group, the leftmost 
bar represents the read bandwidth attained with no writ-
ers, followed by the bars representing the read band-
width attained while 1-GB, 256-MB, 64-MB, and 2-MB 
files are being written to the Zazen cache, respectively.  
The bars are normalized (divided) by the no-writer read 
bandwidth and shown as percentages. 

We can see from the figure that Zazen achieves a 
high level of read performance (more than 90% of that 
obtained in the absence of writers) when medium to 
large files (64 MB–1 GB) were being written to the 
cache.  Even in the most demanding case of writing 2-
MB files, Zazen still delivers a performance above 80% 
of that measured in the no-writer case.  These results 
demonstrate that actively pushing data into the Zazen 
cache does not significantly affect the read performance. 

5.3 End-to-End Performance 

We have deployed the 100-node Zazen cluster in con-
junction with Anton and have used the cluster to ex-
ecute hundreds of thousands of parallel analysis jobs.  In 
general, we are able to reduce the end-to-end execution 
time of a large number of analysis programs—not just 
the data access time—from several hours to 5–15 mi-
nutes. 

The sample application presented next is one of the 
most demanding in that it processes a large number 
(2.5 million) of small files (430-KB frames).  The pur-
pose of this analysis is to compute how long particular 
water molecules reside within a certain distance of a 
protein structure.  The analysis program, called water 
residence, is a parallel Python program consisting of a 
data-extraction phase and a time-series analysis phase.  
I/O read takes place in the first phase when the frames 
are fetched and analyzed one file at a time (without a 
particular ordering requirement). 

Figure 9 shows the performance of the sample pro-
gram executing on the 100-node Zazen cluster.  The 
three curves, from bottom up, represent the end-to-end 
execution time (in log-scale) when the program read 
data from (distributed) main memory, Zazen, and NFS, 
respectively.  To obtain the reference time of reading 
frames directly from the main memory, we ran the pro-
gram back-to-back three times without dropping the 
Linux cache in between so that the buffer cache of each 
of the 100 nodes is fully warmed.  We used the mea-
surement of the third run to represent the runtime for 
accessing data directly from main memory.  Recall that 
the total memory of the Zazen cluster is 1.6 TB, which 
is sufficient to accommodate the entire dataset (1 TB).  
When reading data from the Zazen cache, we dropped 
the Linux cache before each experiment to eliminate 
any memory caching effect.   

The memory curve represents the best possible scal-
ing of the sample program, because no disk I/O is in-
volved.  As we increase the number of processes on 
each node, the execution time improves proportionally, 
because the same amount of computational workload is 
now split among more processor cores.  The Zazen 
curve has a similar trend and closely follows the memo-
ry curve.  The NFS curve, however, stays more or less 
flat regardless of how many cores are used on each 
node, from which we can see that I/O read is the domi-
nant component of the total runtime, and that increasing 
the number of readers does not increase the effective 
I/O bandwidth.  When we run eight user processes on 
each node, Zazen is able to improve the execution time 
of the sample program by 10 times over that attained by 
accessing data directly from NFS.  

An attentive reader may recall from Figure 6(b) that 
increasing the number of application reader processes 
does not increase Zazen’s read bandwidth either.  Then 
why does the execution time when using the Zazen 
cache improve as we use more cores per node?  The 
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Figure 10: Performance under node failures.  Individual 
node failures do not cause the Zazen system to crash. 

reason is that the Zazen cache has reduced the I/O time 
to such an insignificant percentage of the application’s 
total runtime that the computation time has now become 
the dominant component.  Hence, doubling the number 
of cores per node not only halves the computation time, 
but also improves the overall execution time in a signif-
icant way.  Another way to interpret the result is that by 
using the Zazen cache, we have turned an I/O-bound 
analysis into a computation-bound problem that is more 
amenable to parallel acceleration using multiple cores. 

5.4 Robustness  

Zazen is robust in that individual node crashes do not 
cause systemic failures.  As explained in Section 4, the 
frame files cached on crashed nodes are simply treated 
as cache misses.  To identify and exclude crashed or 
faulty nodes, we use a cluster resource manager called 
SLURM [39, 49] to schedule jobs and allocate nodes. 

We assessed the effect of node failures on end-to-
end performance by re-running the water residence pro-
gram as follows.  Before each experiment, we first 
purged the Zazen cache and then populated the 100 
nodes with 1.25 million frame files uniformly.  Next, we 
randomly selected a specified percentage of nodes and 
shut down the Bodhi servers on those nodes.  Finally, 
we submitted the analysis job to SLURM, which de-
tected the faulty nodes and excluded them from job ex-
ecution. 

Figure 10 shows the execution time of the water res-
idence program along with the computed worst-case 
execution time as the percentage of failed nodes in-
creases from 10% to 50%.  The worst-case execution 
time can be shown to be T(1 + δ(B/b)), where T is the 
execution time without node failures, δ is the percentage 
of the Zazen nodes that  have failed, B is the aggregated 
I/O bandwidth of the Zazen cache without node failures, 
and b is the best read bandwidth of the underlying paral-
lel/network file system.  We measured, for this particu-
lar dataset, that B and b had values of 3.4 GB/s and 312 
MB/s, respectively.  Our results show that the actual 
execution time is indeed consistently below the com-

puted worst-case time and degrades gracefully in the 
face of node failures. 

6 Related Work  
The idea of using local disks to accelerate I/O for scien-
tific applications has been explored for over a decade.  
DPSS [45] is a parallel disk cache prototype designed to 
reduce I/O latency over the Grid.  FreeLoader [47] ag-
gregates the unused desktop disk space into a shared 
cache/scratch space to improve performance of single-
client applications.  Panache [1] uses GPFS [37] as a 
client-site disk cache and leverages the emerging paral-
lel NFS standard [29] to improve cross-WAN data 
access performance.  Zazen shares the philosophy of 
these systems but has a different goal: it aims to obtain 
the best possible aggregated read bandwidth from local 
cache nodes rather than reducing remote I/O latency.  

Zazen does not attempt to provide a location-
transparent view of the cached data to applications.  
Instead of confederating a set of distributed disks into a 
single, unified data store—as do the distributed/parallel 
disk cache systems and cluster file systems such as 
PVFS [8], Lustre [21], and GFS [13]—Zazen converts 
distributed disks into a collection of independently ma-
naged caches that are accessed in parallel by a large 
number of cooperative application processes. 

While existing works such as Active Data Reposito-
ry [19] uses spatial index structures (e.g., R-trees) to 
select a subset of a multidimensional dataset and thus 
effectively reduces  I/O workload and enables interac-
tive visualization, Zazen targets a simple data access 
pattern of one-frame-at-a-time and strives to improve 
the I/O performance of batch analysis. 

Peer-to-peer (P2P) storage systems, such as PAST 
[34], CFS [9], Ivy [24], Pond [32], and Kosha [7], also 
do not use centralized or dedicated servers to keep track 
of distributed data.  They employ a scalable technique 
called a distributed hash table [2] to route lookup re-
quests through an overlay network to a peer where the 
data are stored.  These systems differ from Zazen in 
three essential ways.  First, P2P systems target com-
pletely decentralized and largely unrelated machines, 
whereas Zazen attempts to harness the power of tightly 
coupled cluster nodes.  Second, while P2P systems use 
distributed coordination to provide high availability, 
Zazen relies on global coordination to achieve consen-
sus and thus high performance.  Third, P2P systems, as 
the name suggests, send and receive data over the net-
work among peers.  In contrast, Zazen accesses data in 
situ whenever possible; data traverse the network only 
when a cache miss occurs. 

Although similar in spirit to GFS/MapReduce [10, 
13], Hadoop/HDFS [15], Gfarm [41, 42], and Ta-
shi [18], all of which seek data location information 
from metadata servers to accelerate parallel processing 
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of massive data, Zazen employs an unorthodox ap-
proach to identify the whereabouts of the stored data, 
and thus avoids the potential performance and scalabili-
ty bottleneck and the single point of failure associated 
with metadata servers. 

At the implementation level, Zazen caches whole 
files like AFS [17, 35] and Coda [36], though book-
keeping in Zazen is much simpler as simulation output 
files are immutable and do not require leases and call-
backs to maintain consistency.  The use of bitmaps in 
the Zazen protocol bears resemblance to the version 
vector technique [27] used in the LOCUS system [48].  
While the latter associated a version vector with each 
copy of a file to detect and resolve conflicts among dis-
tributed replicas, Zazen uses a more compact represen-
tation to arbitrate who should read which frame files.  

7 Summary  
As parallel scientific supercomputing enters a new era 
of scale and performance, the pressure on post-
simulation data analysis has mounted to such a point 
that a new class of hardware/software systems has been 
called for to tackle the unprecedented data problems [3].  
The Zazen system presented in this paper is the storage 
subsystem underlying a large analysis framework that 
we have been developing. 

With the intention to deploy Zazen to cache millions 
to billions of frame files and execute on hundreds to 
thousands of processor cores, we conceived a new ap-
proach by exploiting the characteristics of a particular 
class of time-dependent simulation datasets.  The out-
come was an implementation that delivered an order-of-
magnitude end-to-end speedup for a large number of 
parallel trajectory analysis programs. 

While our work was motivated by the need to acce-
lerate parallel analysis programs that operate on very 
long trajectories consisting of relatively small frames, 
we envision that the method, techniques, and algorithms 
described here can be adapted to support other kinds of 
data-intensive parallel applications.  In particular, if the 
data objects of an application can be interpreted as hav-
ing a total ordering of some sort (e.g. in the temporal or 
spatial domain), then unique sequence numbers can be 
assigned to identify the data objects.  These datasets 
would appear no different from time-dependent scientif-
ic simulation datasets and thus would be amenable to 
I/O acceleration via Zazen.   
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