
USENIX Association

Proceedings of the
FAST 2002 Conference on

File and Storage Technologies

Monterey, California, USA
January 28-30, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Conference on File and Storage Technologies (FAST’02), pp. 203–217,

28–30 January 2002, Monterey, CA. (USENIX, Berkeley, CA.)

Appia: automatic storage area network fabric design

Julie Ward, Michael O’Sullivany, Troy Shahoumian, and John Wilkes
Hewlett-Packard Laboratories, Palo Alto, CAandyStanford University, Stanford, CA

jward@hp.com, mosu@stanford.edu, troyshahoumian@hp.com, johnwilkes@hp.com

Abstract

Designing a storage area network (SAN) fabric requires
devising a set of hubs, switches and links to connect hosts
to their storage devices. The network must be capable
of simultaneously meeting specified data flow require-
ments between multiple host-device pairs, and it must
do so cost-effectively, since large-scale SAN fabrics can
cost millions of dollars. Given that the number of data
flows can easily number in the hundreds, simple over-
provisioned manual designs are often not attractive: they
can cost significantly more than they need to, may not
meet the performance needs, may expend valuable re-
sources in the wrong places, and are subject to the usual
sources of human error.

Producing SAN fabric designs automatically can ad-
dress these difficulties, but it is a non-trivial problem: it
extends the NP-hard minimum-cost fixed-charge multi-
commodity network flow problem to include degree con-
straints, node capacities, node costs, unsplittable flows,
and other requirements. Nonetheless, we present here
two efficient algorithms for automatic SAN design. We
show that these produce cost-effective SAN designs in
very reasonable running times, and explore how the two
algorithms behave over a range of design problems.

1 Introduction

A SAN (storage area network) connects a group of
servers (or hosts) to their shared storage devices (such as
disks, disk arrays and tape drives) through an intercon-
nection fabric consisting of hubs, switches and links. We
present results for designs using today’s dominant SAN
fabric for the SCSI block-level protocol, FibreChannel
[13]. The storage industry is in the process of adding
switched Ethernet as an alternative block-level network
transport. We believe that our work applies equally to
both, and could also usefully be applied to file-based
storage systems, and even general-purpose local-area
networks (LANs).

An example FibreChannel SAN is shown in Figure 1.

SANs offer many advantages over direct-connected lo-
cal storage, including superior connectivity of servers to

Figure 1: A simple, single-layer SAN fabric. Hosts appear in
the top row, devices in the bottom row, and switches and hubs
in between.

storage devices, better utilization of storage resources,
centralized administration and management, increased
scalability, and improved performance. In spite of these
advantages, the adoption of SANs has been relatively
slow. Some of this is due to interoperability difficul-
ties between vendors, but as these are being resolved,
the next barrier appears to be the complexities associ-
ated with designing the SANs, because this involves all
of the problems of network design – in an environment
with essentially no automatic flow control, and zero tol-
erance for packet loss, due to the low-level nature of the
SCSI protocol.

As a result, designing even small SANs requires con-
siderable time and effort from IT experts. Their man-
ual methods often result in expensive, overprovisioned
designs – and this becomes more of a problem as the de-
signs get larger and more complex. This matters: it is not
difficult to spend 10–20% of the total storage system cost
on the SAN fabric elements, and SAN designs of a scale
that require an investment of millions of dollars in the
SAN fabric alone are becoming more common. We have
witnessed a factor of three difference in the cost of a SAN
between a manual design ($4m) that took several days
and an automatically-generated one ($1.4m) that took a
few minutes.

Design mistakes can be subtle and therefore easy to over-
look, yet potentially very costly; poor performance is
commonplace, and downtime in failure situations can re-
sult if the fault-tolerance aspects are mis-designed. As
SANs grow to include hundreds or even thousands of

storage devices, it becomes increasingly difficult, even
for SAN experts, to manually design cost-effective and
reliable SANs.

We believe that the most effective approach to these
problems is to automate the design of SANs. Such de-
signs must take into account the performance demands
(to avoid queuing or packet loss), and they should try
to minimize system cost, because SAN components are
quite expensive. The result would enable the wider de-
ployment of SANs, as well as increase the likelihood that
the systems deployed would meet real needs.

This paper presents just such a solution: a tool to de-
sign SANs automatically. We call it Appia, after the Ap-
pian Way, one of the network of roads leading to ancient
Rome.

1.1 Automated design of storage systems

Appia was developed to operate in concert with a set of
tools that select and design the storage-device portions of
a complete storage system [2, 4]. These tools use work-
load and device performance information to select and
configure storage devices, and then determine appropri-
ate data placements on those devices. Their goal is to
design a system that meets performance goals with high
reliability at low cost. A side effect is that the tools’ out-
put includes information about the workload data-flows
from each host to each storage device: precisely the in-
formation that is needed to design the SAN fabric to con-
nect the hosts to their storage.

Such tools significantly reduce the human intervention
required to design storage systems: people can express
their needs at a relatively high level, and the tools can
design a storage system to meet their needs, taking into
account all the low-level details, such as predicting the
complex performance effects that result from mixing
workloads on shared storage devices. Better yet, such
tools can be used in an automatic control loop, allowing
the storage system design to evolve completely automat-
ically when dealing with load and system changes, with-
out the need for human intervention.

We wanted to achieve the same benefits for SAN de-
sign. The results presented here are the first outcome
of that goal. In particular, we present two algorithms for
cost-effective SAN fabric design. These two approaches,
which we call FlowMerge and QuickBuilder, demon-
strate complementary strengths.FlowMerge, which is
more computationally intensive, tends to find lower-cost
designs for SANs with sparse connectivity requirements,
whereasQuickBuilderexcels when connectivity require-
ments are dense. We found that the better of two designs
is, on average, within 33% of the optimal design cost for
empirical test problems that are small enough to solve

optimally. Moreover, these designs are found in a few
minutes or less for SANs with 50 hosts and 100 devices,
a size typical of the largest current installations. Because
of their complementary strengths, both algorithms are in-
cluded in Appia.

1.2 Structure of the paper

The remainder of this paper is organized as follows. Sec-
tion 2 presents a statement of the SAN fabric design
problem, including notation and related work. Section
3 presents an overview of theFlowMergealgorithm for
finding cost-effective SAN fabric designs. TheQuick-
Builder algorithm is presented inx4. In x5 we present
computational results comparing the effectiveness of the
two algorithms. Furthermore, for small problems we
compare the cost of designs produced byFlowMergeand
QuickBuilderwith the cost of optimal designs. Future
work and conclusions are presented inx6 andx7.

2 The SAN design problem

The SAN design problem can be stated quite simply: we
are given a set of hosts, a set of storage devices, and a set
of requirements in the form of data flows between host-
device pairs. Each flow has a desired bandwidth. The
goal is to build a minimum-cost SAN to support all of
these requirements simultaneously. To do so, one must
select a set of fabric nodes (switches and hubs), a set of
links connecting pairs of nodes (hosts, devices and fabric
nodes), a topology with which to join these together, and
a single path through the network for each flow. (The
single-path restriction arises from SCSI request-ordering
constraints.)

The resulting fabric design must befeasible- that is, it
must satisfy constraints that ensure it is buildable, and
it must support the connection and performance require-
ments. These constraints are: (1) the number of links
connected to a host, device or fabric node must not ex-
ceed the number of ports available there (these restric-
tions are calleddegree constraints) and (2) the flow rout-
ing must honor the bandwidth limitations of links and
fabric nodes. Because packets travel differently through
hubs and switches, their bandwidth constraints differ.
Packets routed into a switch are forwarded directly to
the next destination in their path. In contrast, packets
routed into a hub are transmitted through all connected
hubs and all links attached to these hubs; they are seized
by their next destination. Thus, the total flow into an in-
terconnected set of hubs is limited by the minimum of the
bandwidth of each individual hub, the bandwidth of each
connected link, and the bandwidth of each port used by
these links. The bandwidth of switches is therefore more
efficiently utilized than hub bandwidth.

Data about the flows is readily available from solutions
to the storage-system and data-placement design prob-
lems [2, 4], but it may also be obtained from the tried
and true techniques of measurement of an existing sys-
tem or estimation. Obviously, no design tool is better
than the inputs it is given – but the comparison point
here is manual design, not complete knowledge of the
system’s future behavior. It is easy enough to build in a
certain amount of “slack”, to allow for errors, or antici-
pated future growth. Indeed, we believe that it is better
to have the slack specified up front as part of the goal,
so that the design system can take it into account, rather
than trying to build in slack “after the fact” by adding ex-
cess SAN elements in places where they may not do the
most good.

The design algorithms we describe run fast enough that
they can be used in interactive “what if” scenario explo-
ration, in conjunction with manual input from a SAN
design expert. The low-cost designs the tools produce
may not always “look pretty”; some people prefer greater
symmetry in their solutions, even at the expense of
greater cost. As such, we believe it is important to use
this kind of tool – at least at first – in a context where
there is a chance for experts to modify the output it pro-
duces. Nonetheless, it is our aim to develop tools that can
be placed into a completely automatic design-deploy-
monitor-redesign loop.

2.1 Related work

SAN design is currently done manually by IT experts,
who use error-prone ad-hoc methods or canned topolo-
gies that often result in grossly overprovisioned designs.
While overprovisioningcan be advantageous, it is impor-
tant that it is done strategically to provide high perfor-
mance, scalability, reliability, and robustness to changes
in requirements. Some canned designs currently in use,
such as the Brocade Core-Edge architecture [9], possess
these characteristics. They are used when the SAN de-
signers have no systematic way to predict the connec-
tivity and data flow requirements in their SANs, and so
opt for full connectivity between hosts and devices. But
this flexibility comes at a very high price: many fabric
elements are needed to provide this connectivity, espe-
cially at high bandwidths. In general, when any infor-
mation is available about SAN requirements, far more
cost-effective designs can be found.

As part of our search for algorithms to apply to this prob-
lem, we turned to the literature on network design. Un-
fortunately, most traditional network design approaches
only address link costs, because switches are cheaper
than trenching in wide area telephone networks, which
are the target of most of this work. In the SAN case, the
reverse is usually the case: in mid-2001, a fully loaded

64-port FibreChannel “storage director” (a high-end fab-
ric switch) costs close to half a million dollars, while in-
dividual fibre links for use within a data center are priced
around $100–$500. As a result, much of the existing re-
search in network design proved less applicable than we
had hoped.

In particular, the SAN fabric design problem generalizes
and extends several NP-hard problems in network de-
sign. For example, it generalizes the nonbifurcated net-
work loading problem [21, 6, 3, 16, 17]. In this problem,
there are several commodities, each with an origin and
destination node in the network, and a required amount
of the commodity that must travel through the network
between these nodes. One must choose a minimum cost
set of capacitated links connecting a known set of nodes
to satisfy these flow requirements simultaneously. The
term “nonbifurcated” refers to the requirement that a sin-
gle route for each commodity must be selected; i.e., flows
cannot be split across multiple paths. Each link has an
associated fixed cost, and multiple links between a given
pair of nodes may be selected. This problem contains
the Steiner tree problem, known to be NP-complete, in
which one must find the minimum cost set of links to
connect a given subset of the nodes in a network. (See
[23] for a survey of work on the Steiner tree problem.)
The nonbifurcated network loading problem is NP-hard
even when all commodities share a single source [21].

If we relax the constraint that flows cannot be split, the
SAN design problem generalizes the multicommodity
network design problem [20, 8, 7, 19, 22, 10, 5]. This
problem is known to be NP-hard even in the single com-
modity case [15]. Like the nonbifurcated network load-
ing problem, it involves choosing a set of capacitated,
fixed-cost links to connect a set of nodes to satisfy multi-
commodity flow requirements. Any number of links be-
tween a pair of nodes can be selected. In this case, how-
ever, flows can be split. Even so, multicommodity net-
work design problems are notoriously difficult to solve in
practice. This is true because their integer programming
formulations’ LP relaxations do not provide tight lower
bounds. Even finding feasible solutions is often difficult.
Surveys of work in this area are given in [18, 1, 24].

In the NP-hard problems mentioned above, one must find
a minimum cost set of links to route the flows, when the
nodes in the network are known. The SAN fabric design
problem generalizes these problems, in that the nodes in
the network are not knowna priori. One must choose a
set of hubs and switches with which to build the intercon-
nection fabric between hosts and devices. Several differ-
ent types of hubs and switches may be available, differ-
ing in attributes such as cost, bandwidth, and number of
available ports; an arbitrary number of instances of each
type may be used in the SAN. It is possible, however, to

construct a candidate fabric node set containing the op-
timal set. Few authors have considered network design
problems in which the topology is unknown. The Steiner
tree problem is a special case of the capacitated network
design problem in which some nodes may optionally be
excluded from the network. The integer programming
formulation of network design problems grows in dimen-
sion exponentially with the size of the set of nodes con-
sidered, and thus it is essential to find a small candidate
node set. Unfortunately in the SAN design context it may
be difficult to determine such a candidate set of reason-
able size due to the number of different node types con-
sidered.

SAN design also generalizes other network design prob-
lems by associating capacity and cost with nodes. [17]
includes node costs, and [27, 14] consider node capaci-
ties. A node’s cost and capacity can be handled within
the context of standard network design problems at the
expense of an additional node and arc: each capacitated
or cost-inducing node can be replaced by two uncapaci-
tated and costless nodes with an arc between them pos-
sessing the original node’s cost and capacity attributes.
(This assumes unidirectional links, which will not always
be the case in future SAN design problems.)

Another confounding feature of the SAN design problem
is the presence of degree constraints on nodes. Degree
constraints appear only in special cases of the network
design problem such as the degree-constrained minimum
spanning tree problem [12, 11, 25], known to be NP-hard
[15].

The many features of the SAN design problem have been
addressed individually or in small subsets in the work
mentioned above. The first to address all of its features
in a common framework was [26], in which an algorithm
calledMergewas presented.Mergefound cost-effective
designs for small problems but failed to find feasible de-
signs for larger problems. The algorithms presented here
are proven to find feasible designs under a reasonable set
of conditions, and their designs are generally more cost-
effective.

2.2 Notation

Some notation will be useful in describing our ap-
proaches. LetH andD represent the sets of hosts and
devices, respectively. Denote the set of flows byF . Let
N be the set of all types of switches and hubs available.
Each componenti 2H[D[N has a maximum number
of portspi, each with cost�i. Although a SAN could
be built from several different types of links differing in
bandwidth and cost, we restrict attention in this paper
to the case when there is one available link type whose
bandwidth is� and cost is. To simplify exposition, we
also assume that all ports have bandwidth�, though ports

may differ in cost. Finally, fabric node typen 2 N has
costcn and maximum aggregate bandwidthbn. The SAN
fabric design problem defined by given sets of hosts, de-
vices, flows and nodes is denoted byP .

3 The FlowMergealgorithm

The first of our algorithms is calledFlowMerge, which
earns its name from the way it pulls together separate
flows into sets of flows that share fabric nodes. It was
inspired by this simple fact: when two flows with a com-
mon host or device are routed together through a link,
they conserve a port on that host or device.FlowMerge
attempts to use fabric nodes in a way that alleviates a
shortage of host and device ports, by selecting subsets
of flows with common hosts or devices to route together
through links.

FlowMergeis a recursive algorithm that creates a SAN
design by introducing, at each recursive application, a
set of fabric nodes and links, with no links between fab-
ric nodes in the set. When the algorithm terminates, the
fabric design consists of one or more “layers” of nodes,
where there are links between but not within layers. An
example of a layered fabric produced byFlowMergeis
shown in Figure 2. The top and bottom rows of com-
ponents contain hosts and devices, respectively, and the
remaining components are fabric nodes.

Figure 2: A sample SAN fabric produced byFlowMerge

The basic building block of aFlowMerge fabric is a
single-layer fabric. This is a fabric that has no links
between fabric nodes, so that each flow requirement is
routed either along a direct link between its host and de-
vice, or along a two-link path that passes through a single
fabric node. Figure 1 depicts an example of a single-
layer fabric. Inx3.1 we describe the procedure that in-
troduces a single layer of nodes, which we callSingle-
Layer FlowMerge. In x3.2 we outline the recursive pro-
cedure that creates a multi-layered fabric through succes-
sive calls toSingle-Layer FlowMerge.

3.1 Single-Layer FlowMerge

The input toSingle-Layer FlowMergeis a setH of hosts,
a setD of devices, and flow requirementsF between
them. Single-Layer FlowMergeproduces a series of
single-layer fabric designs to support the flow require-
ments. Each design in the series is feasible with respect
to all except, possibly, the degree constraints on hosts
and devices. The initial design consists of a direct host-
device link for each flow. This design is typically infeasi-
ble because one or more hosts or devices has fewer ports
than incident links. The difference between the numbers
of incident links and available ports on a given host or de-
vice is called itsport violation. Each subsequent design
in the series has a smaller total port violation than the
previous design, or a lower cost than the previous design
if both designs are feasible.

To see how this series of designs is obtained, consider an
arbitrary single-layer fabric. Associated with each fabric
node in the design is a subset of flow requirements routed
via that node. Similarly, associated with each direct host-
device link in the fabric is a subset of flows routed along
that link. In general, the flow requirements are partioned
into disjoint subsets, such that each flow requirement is
in exactly one subset. Each subset in the partition has an
associated fabric node or direct host-device link through
which all flows in the subset are routed. We call these
subsetsflowsets.

Single-Layer FlowMergebegins with the finest partition
of the flow requirements: each flow is in its own flowset.
At each iteration, a new, coarser, partition is obtained
by merging two flowsets together. When merging two
flowsets, we must select a fabric node type among avail-
able types with which to route the flows in the merged
flowset, and the links connecting hosts and devices to the
node along which we route the flows. The node type is
selected based on the number of ports available on the
node and the cost of using the node (including the cost
of required ports and links). We select the flowsets to
merge to alleviate port violations, favoring reductions on
the hosts and devices with the most severe violations.
Cost is a tie-breaker criterion. Once two flowsets are
merged, they are never split.Single-Layer FlowMerge
continues merging flowsets until either no two flowsets
can be merged, or all port violations have been elimi-
nated and no merger produces a cost savings.Single-
Layer FlowMergeterminates, because after a finite num-
ber of mergers (one less than the number of flows) only
a single flowset remains, so no further mergers are possi-
ble. Figure 3 demonstrates howSingle-Layer FlowMerge
works on a small example.

Pseudocode for theSingle-Layer FlowMergealgorithm
is shown in Figure 4. We use the following notation:

Figure 3: Example application ofSingle-Layer FlowMerge.
The problem has 3 hosts and 3 devices, each with 2 ports, and
a single type of switch available with 8 ports. The eight flows
in the problem each have bandwidth 33 MB/s. Links and ports
have bandwidth 100 MB/s. Six successive designs are shown,
beginning with the one that assigns each flow to its own link. In
each design, hosts and devices with the highest port violation
are circled. For example, in the first design, the highest port
violation is one: there are two hosts and two devices each with
three incident links and only two ports. Each design in the
series reduces the port violation on one host or device from
the previous design by merging two flowsets together. After
four mergers, all port violations are eliminated. The last merge
eliminates one fabric node and thereby reduces the cost of the
fabric.

� F is the partition of the set of flowsF into flowsets
(more explicitly,F is a collectionfJ : J �Fg with
the property that[J2FJ =F andK \J = ; for all
J;K 2 F, J 6=K);

� N is the set of available fabric node types;

� l is the single available link type;

� M � f(J;K;n) : J;K 2 F;J 6= K;n 2 N [flgg
is a set of triples consisting of two flowsets and one
node type or link;

� scorem is a function defined on elements ofM.

We refer to elements ofM asmergersbecause they rep-
resent the combinations of flowset pairs and node types
that are candidates for merging.

In theSingle-Layer FlowMergepsuedocode, each appli-
cation of the outer loop results in a merger. We start an
application of this loop by initializing the set of candi-
date mergersM to be all possible flowset pair-node com-
binations, and then eliminating infeasible combinations.
Next, we compute the port violations on hosts and de-
vices. If there are candidate mergers left to consider, we
refine this set in the inner “Else while” loop. This loop
considers port violation degree ranging from the current
worst, v, down to 1. For each such degree, it “scores”

each merger inM by counting the number of hosts and
devices with that degree port violation on which it con-
serves ports. After scores are computed, mergers that do
not achieve the highest score for this degree are removed
from consideration. If multiple candidate mergers still
remain, it eliminates all but those with the lowest cost.
After the inner loop is finished, a single merger from the
candidate set is then implemented. Since we are indiffer-
ent between all candidate mergers at this stage, we could
introduce randomization into the algorithm in the selec-
tion of the merger from the final set of candidates.

Scores computed in the inner loop can be largely reused
in successive applications of the outer loop. In our imple-
mentation, they are updated for flowset pairs containing
hosts or devices whose port violation was reduced in the
prior merger.

3.2 Multi-Layer FlowMerge

WhenSingle-Layer FlowMergeis applied to a SAN fab-
ric design problem, it will reduce at least one host’s or
device’s port violation by at least one. (We omit the de-
tails of this proof in the interest of brevity.) However,
Single-Layer FlowMergemay not successfully eliminate
all port violations on hosts and devices. In this case, it
is reapplied recursively to generate cascading layers of
fabric nodes. Pseudocode for this recursive application,
which we callMulti-Layer FlowMerge, is shown in Fig-
ure 5.

The central idea behind the recursion is as follows. We
first applySingle-Layer FlowMergeto a SAN fabric de-
sign problemP . If all host and device port violations are
eliminated fromP , we have found a feasible SAN fab-
ric design. At this point, we can stop, sinceSingle-Layer
FlowMergefound no cost-saving mergers and introduc-
ing new fabric nodes would only increase costs.

If instead there are remaining host and/or device port vi-
olations, the current set of fabric nodes is insufficient.
We address the host port violations first, independently
of the device port violations, by recasting the problem as
a new SAN fabric design problemPH that has only host
port violations and no device port violations. The hosts
of P become hosts ofPH . Subsets of flows in problemP
are aggregated together to become flows for problemPH
according to their assignment to links in the one-layer so-
lution toP . More specifically, for each flowset and each
link into the flowset’s fabric node, a new flow is created
in PH whose bandwidth is the aggregate bandwidth of
flows assigned to that link. The new flow’s device inPH
is the fabric node itself. If instead its flowset has no fab-
ric node (and thus has a single direct link between a host
and device), all flows routed along that link are aggre-
gated into a single flow inPH . For this flow we create a
“dummy” device inPH with a single port that costs the

Single-Layer FlowMerge
Input: a SAN fabric design problem P .
Output: a set of flowsets F and a fabric
node for each flowset.

Let F = fffg : f 2 Fg.

While (true) f

Let M= f(J;K;n) : J;K 2F;J 6=K;n2N [flgg.

Remove from M all elements that
represent infeasible mergers.

Compute the port violation on each
source and terminal with respect to
the current set of flowsets and their
associated nodes and link. Let v be
the highest port violation among them.

If M= ;, break.

Else while (v > 0) and (jMj> 1) f

For each m 2M f
Let scorem = 0.
For each source and terminal c

with port violation v

If merger m reduces the port
violation on c

Let scorem = scorem+1.
Remove elements of M which did
not achieve the highest score.
Let v = v�1.

g
For each m 2M

Compute the cost of merger m.
Remove mergers in M which did not
achieve the lowest cost.

g

Return a random m̂= (Ĵ ; K̂; n̂) 2M.

If the merger m̂ reduces the port
violation on at least one source
or terminal with a positive port
violation, or if the merger has a
negative cost, perform the merger:
delete Ĵ and K̂ from F, discarding
their respective nodes, and replace
with a new flowset Ĵ [K̂ with a node of
type n.

Otherwise, break.

g

Return flowsets in F and their associated
fabric nodes.

Figure 4: Single-Layer FlowMerge

Multi-Layer FlowMerge(P;L)
Input: a SAN fabric design problem P and a
layer number L.
Output: a feasible SAN fabric design
consisting of one or more layers of fabric
nodes, with no links between nodes in a given
layer.

Apply Single-Layer FlowMerge to P .

If there are remaining host port
violations in current solution to P f

Recast problem as new Multi-Layer
FlowMerge problem PH .

Apply Multi-Layer FlowMerge (PH;L�1).

Add fabric for PH to fabric for P .

g

If there are remaining device port
violations in current solution to P f

Recast problem as new Multi-Layer
FlowMerge problem PD.

Apply Multi-Layer FlowMerge (PD;L+1).

Add fabric PD to fabric for P .

g

If there are no remaining port violations
in P

Return fabric for P .

Figure 5: Multi-Layer FlowMerge

same as its original device’s ports. Thus, the set of de-
vices inPH consists of fabric nodes fromP and dummy
devices corresponding to devices fromP ; none of these
have port violations.

We then applyMulti-Layer FlowMergeto thePH and
create a multi-layered fabric for that problem. The next
step is to incorporate the fabric forPH into the solution
we are building up forP . PH ’s fabric layers are inserted
into the fabric ofP .

Similarly, if device port violations remain inP after
the application ofSingle-Layer FlowMerge, then a new
problemPD is created in a way that mirrors the creation
of PH . It has all devices fromP as its devices, aggre-
gated flows fromP as its flows, and hosts consisting of
fabric nodes and dummy hosts corresponding to hosts in
P: PD is solved and its fabric is incorporated intoP ’s
solution.

In this brief overview ofMulti-Layer FlowMerge, we
have omitted many details. For example, there are spe-
cial precautions taken which ensure that there are no
links between hubs in the fabric. While this is not strictly
necessary, it is the most efficient way to ensure that hub
capacity constraints are honored.

3.3 Correctness and Effectiveness

Although the proof will be omitted here,FlowMerge
finds a feasible SAN fabric design when the following

two conditions hold:

For each host and device, there exists an as-
signment of its flows to its ports such that the
total bandwidth of flows assigned to a port is
at most the port’s bandwidth (�).

(1)

There is a switch type available having at
least three ports and bandwidth at least�.

(2)

Assumption (1) is clearly a necessary condition for the
existence of a feasible fabric design. Assumption (2) is
not necessary, in general, since a small SAN may require
no fabric nodes at all. However, it is not at all restric-
tive; all real switches possess at least 8 ports and typi-
cally many more, and have bandwidth many times that
of a link. The two assumptions together are sufficient to
ensure thatFlowMergefinds a feasible fabric design.

While we have no analytical optimality bounds on
FlowMergedesigns, we do have empirical results com-
paring its designs to those produced byQuickBuilder
and, for small problems, optimal designs.

Our results indicate thatFlowMergeis very effective at
building one-layer fabrics, which are typically sufficient
for problems that either have few hosts and devices and
have sparse connectivity requirements between hosts and
devices. But for SANs that are so large or whose connec-
tivity requirements are so dense that they require multi-
ple fabric layers, it is less effective thanQuickBuilder.
There are several explanations for these results.

First, the class of fabricsFlowMerge generates is
more restrictive than those built byQuickBuilder.
FlowMerge’s layered fabric structure, where each layer
is built myopically, may exclude more cost-effective fab-
ric designs. In each layer it tries to resolve as many port
violations as possible before introducing the next layer. It
never considers changing a fabric layer that was created
in an earlier application ofSingle-Layer FlowMerge.

Second, becauseFlowMerge only considers pairwise
mergers, it can get stuck in locally optimal solutions. To
see why, suppose it has found a feasible partition for a
layer and is seeking only cost-improving mergers. It will
quit if no merger is profitable. In many examples, we
have seen that a better solution could have been obtained
if mergers of more than two flowsets were considered;
this occurs frequently in the multilayered solutions.

Allowing backtracking, or permitting non-cost-
improving mergers with some small probability (in
the spirit of simulated annealing) are techniques that are
likely to improveFlowMerge’s performance, particularly
on problems requiring multiple layers of fabric. Results
from our current implementation ofFlowMergewill be
presented in more detail inx5.

4 The QuickBuilder Algorithm

In this section we outline a second, two-phased approach
to SAN fabric design, calledQuickBuilder. It is based on
the observation that since flows cannot be split across
multiple paths in the network, each flow must be as-
signed to a single port on its host and device.This mat-
ters because the way in which flows are assigned to ports
has a large impact on the remainder of the SAN design.
A clever assignment creates a partition of the host and
device ports into disjoint subsets of ports calledport
groups. The port group of portp is a set of ports that
includesp; if q is a port in the port group and a flow
assigned toq is also assigned to portr, thenr is in the
port group. In short, the port group of portp includesp,
all portsp must communicate with, all ports they com-
municate with, etc. In the language of graph theory, port
groups are the connected components of a graph in which
the nodes are ports, and links connect port pairs with
common flows assigned to them. The critical insight was
that each port group can be treated as an independent,
smaller design problem. In general, the fewer ports in a
port group, the less fabric is required to support its flows.
Thus, the finer the decomposition, the less costly the fab-
ric. QuickBuilderseeks an assignment that results in a
fine decomposition.

QuickBuilderfirst assigns each flow requirement to a sin-
gle port on its host and a single port on its device (theport
assignmentphase); the flow will later be routed through
these ports in the second phase. The assignment obtained
in the first phase implies a partition into port groups. Fab-
ric can be built for each port group separately.

The second phase of the algorithm considers each port
group created in the port assignment phase separately,
and finds a fabric to support the flows assigned to its
ports. The fabric associated with a port group is an inter-
connected set of fabric nodes and links called amodule,
from which we obtain the namemodule-buildingphase
for this part of the algorithm. The two phases are de-
scribed in more detail inx4.1 andx4.2.

Two examples ofQuickBuilderdesigns are shown below.
The fabric in Figure 7 was developed byQuickBuilder
with the same inputs thatFlowMergeused to find the
fabric in Figure 2. For this problem,QuickBuilder’s as-
signment of flows to ports led to two port groups, one
of which is very large, containing all but two ports. The
fabric contains one direct host-device link, and one very
large module with three interconnected switches. Fig-
ure 6 is a solution to the SAN design problem for which
FlowMergedesigned the fabric in Figure 1. In this fabric,
QuickBuilder’s port assignment created five port groups.
Two port groups are supported by direct links, two larger
port groups are supported by hubs, and the largest is sup-

ported by two switches connected to each other. Inx5
we compare theQuickBuilderandFlowMergesolutions
in more detail.

Figure 6: A sample SAN fabric produced byQuickBuilder(cf.
Figure 1)

Figure 7: A secondQuickBuilderSAN fabric (cf. Figure 2)

4.1 Finding port assignments

To find an assignment of flows to host and device ports,
QuickBuilder considers flows one at a time, looking
at each possible combination of host and device ports
for each flow’s assignment. It chooses the assignment
among these that, when added to previous assignments,
has the lowest estimated cost.QuickBuildercontinues
making the lowest estimated cost assignment for each
flow until all flows have been assigned ports. Although
the flows can be assigned in any order, we have found
that considering them in order of decreasing bandwidth
leads to cost-effective designs.

When estimating the cost of a flow being assigned to par-
ticular host and device ports, we account for the previous
assignments of flows to these ports. If making this new
assignment would cause the total bandwidth of flow to
exceed the bandwidth available on either port, then the
assignment is infeasible. Furthermore, this port assign-
ment must not preclude the possibility of assigning all of
the host’s (or device’s) unassigned flows to its ports. To
determine whether the unassigned flows can be assigned,

we apply an exhaustive bin packing algorithm, where the
ports are bins, a port’s capacity is the bandwidth unused
by previously assigned flows, and the unassigned flows
are the items to be packed. If there is no solution, this as-
signment is infeasible. Infeasible assignments have cost
1.

If a port assignment is feasible,QuickBuilderestimates
the cost of supporting the port groups before and after the
port assignment is made. The cost of the assignment is
the difference between the “after” and “before” cost esti-
mates. The module cost estimation is similar to module
construction; we describe both together inx4.2.

4.2 Building modules

The port assignment determined in the first phase of
QuickBuilderuniquely determines the port groups. In
this section, we describe howQuickBuilder creates a
module to route the flows assigned to ports in a given
port group. We also explain how, in the port assign-
ment phase,QuickBuilderestimates the module cost for
a given port group. For most port groups, the two pro-
cesses involve the same computations.

When building a module or estimating the cost of a mod-
ule for a port group, we assume for simplicity a single
type of hubh and a single type of switchs to use in
the module. Recall that bandwidth, number of ports, and
cost of a typen fabric node arebn, pn andcn, respec-
tively. The module-building phase of the algorithm re-
lies upon the assumption that there is a hierarchy among
fabric elements, namely,bs > bh andcs > ch. The build-
ing and estimation processes depend on properties of the
port group. In particular, three cases are considered:

� Case 1: Using a direct link. If the port group has
only two ports, then a module consisting of a single
direct link between the two ports is sufficient. The
cost of such a module is simply the cost of a link
plus the costs of the host and device ports. The es-
timate of the module building cost is exact in this
case.

� Case 2: Using a (multi-)hub.If the total flow band-
width through the ports in the port group is less than
bh, then we use a hub or amulti-hub, which is a se-
ries of hubs, each connected to the next by a single
link. The number of ports available on a hub isph; a
multi-hub consisting ofi� 1 hubs hasi(ph�2)+2
available ports. If the number of ports in a port
group isk thenH = d(k�2)=(ph�2)e hubs are
required. The module cost is the sum of the cost of
the hubsHch, the cost(H � 1)(2�h+ cL) of con-
necting the hubs via links and hub ports, the cost
k(�h+ cL) of connecting the host and device ports

to the hubs including link and port costs, and the
cost of the host and device ports in the port group.
In this case, theQuickBuildermodule cost estimate
is also identical to the true cost of a module that
would be built for this port group.

� Case 3: Using a switch module. If neither of
the above conditions holds, then the module must
contain at least one switch. We refer to a module
that contains one or more switches as aswitch
module. To estimate the cost of a switch module,
QuickBuilder estimates the number of switches
that are needed to support the flows in the port
group. In the interest of efficiency, we estimate this
number of required switches without determining
their exact connectivity in the module and how
flows would be routed through them. To do so,
we first make the simplifying assumption that all
flows in the port group are routed through a single
switch of infinite bandwidth. This helps us ignore
the effects of flows traveling between multiple
switches. QuickBuilder calculates the minimum
number of ports that would be required to route the
port group’s flows through this infinite bandwidth
switch, and then finds the minimum number of real
switches that are required to provide that number
of ports. Because there may, in fact, be multiple
fabric nodes in the module and flows may travel
between them, some of each node’s bandwidth will
be effectively “wasted” by this inter-node travel.

To reduce the adverse effect of the infinite-
switch assumption upon the estimate,QuickBuilder
scales up the flows when making this calculation.
For each port in the port group, it (temporarily)
increases the bandwidth of each flow on that port
uniformly by a fixed percentage (typically 10%) or
until the capacity of the port is reached. Then, in
order of decreasing total assigned flow bandwidth,
ports in the port group are “connected” to the first
switch port with enough remaining bandwidth to
carry that port’s flow. If multiple ports in the port
group are connected to the same switch port, these
ports are instead connected to the smallest required
multi-hub which then is connected to the switch
port. If k is the number of switch ports used, then
S = dk=pse is the minimum number of switches
of types needed to providek ports. The estimated
module cost is then the sum of the cost of the
switchesScs, and the cost of links, hubs and ports
used to connect the host and device ports to switch
ports.

4.3 Building a switch module

When we are actually building a switch module for a port
group, a more elaborate procedure than that ofx4.2 is re-
quired to determine the exact connectivity of fabric nodes
within the switch module. This procedure is outlined
here. Switch module construction is a recursive proce-
dure that introduces a series of switches in succession un-
til all flows in the port group can be supported. Its input
is a set ofexternal ports, each with a set of flows entering
the port (calledin-flows) and exiting the port (calledout-
flows). In the initial call, the external ports are host ports
with only out-flows and device ports with only in-flows.
On subsequent calls to the procedure, some of the exter-
nal ports are ports on switchesQuickBuilderhas already
added to the switch module. Such ports may have both
in- and out-flows.

When building a switch module,QuickBuilderfirst adds
a new switch and connects external ports to this switch,
selecting the best port to connect according to a merit
function. When it connects an external port to the switch,
it routes all out-flows (respectively, in-flows) from the
port into (out of) the switch. Doing so createshanging
flows. These are flows that enter (respectively, exit) the
switch via the connection of an external port to a switch
port, but have not been assigned to a port by which to exit
(enter) the switch. After an external port is connected to a
switch port, any resultant hanging flows must be assigned
to open switch ports.QuickBuildercontinues connecting
external ports to the switch until the switch issaturated,
i.e., its bandwidth or port supply has been exhausted.
When this occurs,QuickBuilderresets the set of exter-
nal ports to be the current open external ports and switch
ports that now contain in-flows and/or out-flows. It then
invokes the switch-module-building procedure again on
the new external ports.

4.4 Correctness and effectiveness

Like FlowMerge, QuickBuilderfinds a feasible SAN fab-
ric design when conditions (1) and (2) hold. The details
of the proof are omitted here.

As with FlowMerge, we have no analytical bounds on
the cost-effectiveness ofQuickBuilderdesigns. How-
ever, empirical results indicate thatQuickBuilderexcels
at solving large SAN design problems and those with
dense flow requirements. In such problems, the flow as-
signment often results in one port group containing most
or all of the ports. Thus, such problems require a large
fabric through which almost all host and device ports are
interconnected.QuickBuilderinvokes its switch-module
building routine to find this fabric. This routine generally
makes very cost-effective use of switches for large port
groups by minimizing the bandwidth “wasted” by flows

routed through multiple switches in the module.

5 Evaluation of the algorithms

This section summarizes the results we obtained in ap-
plying integer programming,FlowMerge and Quick-
Builder to several SAN fabric design problems.

The true test of our algorithms will happen only when
their designs are implemented in a real business context
and compared to those created manually by experts in
the field. This comparison should include several met-
rics, including cost, performance, availability, scalability
and even aesthetics. So far, we have only had a few op-
portunities to compare our designs to manual ones. Ap-
pia found much cheaper designs in these cases. In one
notable example, a consultant worked for several days
to produce a $4 million design on a problem that Appia
solved for $1.4 million in a few minutes. (The consul-
tant used several expensive, 64-port switches, and a com-
pletely symmetrical solution; Appia’sFlowMergefound
ways to achieve the same goals using much cheaper 16-
port switches.) Nonetheless, we are loath to make strong
claims about the benefits of our approach until we have
had more opportunities to evaluate it on a wider range of
real-world problems.

Nonetheless, our need to design and test Appia required
us to generate a wide range of “realistic” test cases where
we attempted to introduce elements of the real-world
problems we had seen. We sought input from SAN de-
signers in choosing our suite of test problems.

To that end, we generated 240 test problems in 24 cat-
egories, each with 10 test problems. The problem cate-
gories differed in size (defined by number of hosts and
devices), a property we calledport saturation, and char-
acteristics of a problem feature called theflow incidence
matrix. Since SANs are currently being designed on
many scales, ranging from a handful to a few hundred
servers and storage devices, we selected four size cat-
egories in this range. A host’s or device’s port satura-
tion is defined to be its total bandwidth of associated
flow requirements divided by the total bandwidth of its
ports. The flow incidence matrix is a matrix whose rows
correspond to hosts and whose columns correspond to
devices. An entry in the matrix equalsk if its corre-
sponding host and device havek flows between them.
We say a problem issparseif its flow incidence matrix
has relatively few positive entries scattered more or less
uniformly throughout the rows and columns. Similarly,
dense problems correspond to relatively dense and uni-
form matrices. Aclusteryflow incidence matrix is less
uniform, corresponding to the situation when the hosts
and devices can be partitioned into “clusters” that con-
tain most of the flow requirements.

5.1 Effectiveness

Table 1 summarizes the computational results for test
problems in each category for each of four methods. The
first of these methods is the integer program (IP). This
approach can solve only the smallest problems, but it
does so optimally. A SAN fabric design problem with
10 hosts and 10 devices has over forty thousand binary
variables and seventy five thousand constraints, a size far
beyond the capabilities of today’s commercial IP solvers.
The LP (linear programming) relaxation of the IP can
be solved for somewhat larger problems; its results are
also presented in the chart. The LP relaxation is created
by relaxing integrality constraints in the IP. It does not
produce usable designs, but it provides a lower bound
on the optimal design cost because it solves a less con-
strained problem. It can therefore be a useful benchmark
for heuristics when the optimal cost is not known. We
found, however, that the LP bound is quite weak – less
than 35% of the optimal cost – for problems with high
port saturation.

Statistics for running times of the respective approaches
are also given for each category. Notice that in some of
the categories, the IP and LP runs were terminated after
24 hours, before solutions had been found.

Results in Table 1 indicate that, on average,FlowMerge
produces lower cost designs thanQuickBuilder for
smaller problems, whereas for large problems,Quick-
Builder finds dramatically cheaper designs. The other
problem characteristics do not conclusively predict
which algorithm is preferable. Figure 8 makes this com-
parison ofFlowMerge and QuickBuilder design costs
more explicit for all but the smallest problems.

The relative advantages ofQuickBuildercan be seen by
a direct comparison of the fabrics in Figure 2 and Figure
7, found byFlowMergeandQuickBuilder respectively,
for the same problem. TheFlowMergefabric uses five
switches (the darker fabric nodes) and fifteen hubs, and
costs $265,080.QuickBuilderproduced a $133,440 fab-
ric using only three switches. This problem has a very
dense requirements matrix and high port saturation. In
very dense problems, often every possible assignment of
flows to ports results in one port group containing all or
most of the host and device ports (to borrow terminology
from QuickBuilder.) Thus, such problems require a large
fabric through which almost all host and device ports are
interconnected.

FlowMergeusually needs multiple fabric layers to con-
nect all ports in a large port group. Its myopia in build-
ing independent layers and in performing only pairwise
mergers impairs its effectiveness in such problems, as
discussed inx3.3. For example, in Figure 2, the mid-
dle layer of fabric was introduced first without regard for

Figure 8: The percentage by whichFlowMergedesign costs
exceedQuickBuilderdesign costs, averaged over twenty tests
in each of nine categories. The categories are the combinations
of the three largest problem sizes (number of hosts and devices
each greater than five) and the three flow incidence matrix prop-
erties. The horizontal axis indicates the number of hosts and
number of devices in the problem category. The bar shade and
z-axis position indicate whether the flow requirements matrix
is sparse, clustery or dense for that category.

how it would affect future layers, and subsequent lay-
ers were built independently of the others. Moreover, it
overlooked cost-saving multi-flowset mergers in the out-
ermost layers.

Contrastingly,FlowMerge’s relative strengths for less
dense problems are apparent when comparing the fab-
rics in Figure 1 and Figure 6 for the same problem.
FlowMerge’s $63,720 fabric uses only one switch and
three hubs, whereasQuickBuilderproduced a more ex-
pensive $97,120 fabric. This might be explained by
QuickBuilder’s quite myopic port assignment method,
which ignores the flows that have yet to be assigned
while making its current assignment. The port assign-
ment determines the decomposition of ports into port
groups, and thereby a decomposition of flows into dis-
joint subsets that can be routed through independent fab-
ric elements. In this particular example,FlowMerge’s
fabric has four distinct port groups, the largest containing
sixteen ports.QuickBuildercreated five port groups with
twenty-four ports in the largest group. Large port groups
typically lead to more fabric.FlowMergeexcels at find-
ing finer decompositions in less dense problems. Thus,
FlowMerge’s strength is assigning flows to ports in such
a way to yield smaller port groups, whereasQuickBuilder
is better at building modules for large port groups when
they are unavoidable. This supports an obvious strategy:
run both algorithms, and pick the better solution.

Figure 9 and Figure 10 focus more closely on the small-
est problems, with five hosts and five devices, because
these problems can be solved optimally by the IP. The

Problem characteristics Average (in $1000) and standard deviation of fabric costAverage (in seconds) and standard deviation of solution time

hosts x
devices

avg
#
flows

flow
matrix

property

port
satu-
ration

optimal
cost

(� std dev)

LP cost
(� std dev)

FlowMerge
cost

(� std dev)

QuickBuilder
cost

(� std dev)

optimal
time

(� std dev)

LP time
(� std dev)

FlowMerge
time

(� std dev)

QuickBuilder
time

(� std dev)

5 x 5 14.3 sparse high 27� 13 9� 1 31� 13 33� 12 9,080� 13,200 1.4� 1.26 0.1� 0.00 0.1� 0.00
5 x 5 14.0 sparse low 11� 2 8� 0 13� 3 15� 3 1� 1 0.0� 0.02 0.1� 0.04 0.1� 0.00
5 x 5 21.8 clustery high 40� 2 10� 1 41� 2 42� 3 19,800� 42,500 5.2� 1.39 0.3� 0.04 0.1� 0.00
5 x 5 21.5 clustery low 12� 2 8� 0 17� 7 18� 9 3� 3 0.1� 0.02 0.3� 0.05 0.1� 0.00
5 x 5 24.2 dense high 43� 1 11� 1 45� 1 46� 2 3,760� 2,370 9.9� 2.20 0.4� 0.05 0.1� 0.00
5 x 5 24.2 dense low 16� 2 9� 0 38� 0 46� 2 1,690� 1,690 6.2� 0.97 0.4� 0.05 0.1� 0.00

10 x 10 28.1 sparse high unavail 19� 1 66� 13 77� 13 > 24 h 68.6� 61.1 0.1� 0.00 0.2� 0.00
10 x 10 28.5 sparse low unavail 17� 0 29� 3 32� 3 > 24 h 1.3� 0.83 0.1� 0.00 0.2� 0.00
10 x 10 40.9 clustery high unavail 21� 1 88� 20 94� 17 > 24 h 569� 576 0.1� 0.05 0.3� 0.03
10 x 10 39.7 clustery low unavail 17� 1 45� 11 55� 19 > 24 h 36.1� 33.5 0.1� 0.04 0.3� 0.03
10 x 10 94.1 dense high unavail unavail 264� 16 138� 12 > 24 h > 24 h 1.7� 0.15 0.6� 0.05
10 x 10 90.5 dense low unavail unavail 89� 9 99� 10 > 24 h > 24 h 1.3� 0.14 0.5� 0.00

20 x 100 180 sparse high unavail unavail 467� 34 478� 39 > 24 h > 24 h 7.5� 0.95 2.3� 0.17
20 x 100 161 sparse low unavail unavail 342� 44 261� 29 > 24 h > 24 h 6.2� 0.95 2.1� 0.36
20 x 100 226 clustery high unavail unavail 503� 36 512� 61 > 24 h > 24 h 15.1� 1.67 2.9� 0.15
20 x 100 217 clustery low unavail unavail 375� 34 322� 57 > 24 h > 24 h 12.7� 1.67 2.9� 0.32
20 x 100 214 dense high unavail unavail 455� 58 441� 33 > 24 h > 24 h 12.2� 1.22 2.7� 0.15
20 x 100 204 dense low unavail unavail 246� 35 278� 42 > 24 h > 24 h 9.5� 1.22 2.5� 0.16

50 x 100 448 sparse high unavail unavail 1640� 231 1030� 20 > 24 h > 24 h 258� 7.44 14.4� 0.16
50 x 100 402 sparse low unavail unavail 1150� 59 718� 40 > 24 h > 24 h 248� 6.51 21.9� 1.46
50 x 100 607 clustery high unavail unavail 1560� 54 1010� 22 > 24 h > 24 h 497� 29.4 19.6� 0.85
50 x 100 599 clustery low unavail unavail 1010� 34 703� 32 > 24 h > 24 h 487� 29.4 29.7� 2.90
50 x 100 539 dense high unavail unavail 1900� 47 1080� 29 > 24 h > 24 h 469� 20.7 18.3� 0.79
50 x 100 514 dense low unavail unavail 1530� 45 805� 65 > 24 h > 24 h 457� 20.7 33.2� 2.70

Table 1: Summary of computational results for four Appia design methods.
The results in each row are averaged across ten randomly-generated problems of the type shown under “problem characteristics.”
The first column indicates one of the four problem sizes used: 5 hosts, 5 devices; 10 hosts, 10 devices; 20 hosts, 100 devices; and 50
hosts, 100 devices. The second column reports the average number of flow requirements among problems in the category. The third
column indicates qualititative properties of the flow incidence matrix. The fourth column describes the degree of port saturation on
hosts and devices. For the “high” port saturation tests, 90% of port bandwidth of the hosts and devices is used, whereas for “low”
saturation, only 40% of the port bandwidth is used.
The next four columns provide the average and standard deviation over the category tests of the cost of fabrics found by the four
methods. The labels “optimal,” and “LP,” correspond respectively to the integer program and its LP relaxation. The term “unavail”
means that we were unable to compute a result in less that 24 hours for tests in that category.
The last four columns contain the average and standard deviation of the solution times in each category, measured on an HP 9000
model with a PA8600 processor and 4GB of memory, running HP-UX 11.0. Numbers have been rounded to three significant digits.

former shows the relationship between the optimal de-
sign cost and the cost of the designs produced by the
two heuristics. It indicates that for small problems,
FlowMergeandQuickBuilderfind solutions that are, on
average 38% and 55% over the optimal fabric cost, re-
spectively. The fourth bar contains the cost produced
by the linear programming (LP) relaxation of the inte-
ger program, a lower bound on the optimal cost. In these
small problems, the lower cost bound is, on average, half
of the optimal cost.

Figure 10 contrasts the fabric costs for individual small
tests for each of the four methods. In all of these small
tests except for those that have both dense flow incidence
matrices and low-saturated ports,FlowMergeandQuick-
Builder find designs that average within 13% and 25%
of the optimal design cost, respectively. The heuristics
perform less well in the dense and low-saturation cases.

The optimal fabrics use only inexpensive hubs, whereas
both heuristics use a $24,000 switch, and many expen-
sive switch ports, for each of these problems.

5.2 Efficiency

The graphs in Figure 11 show the algorithms’ running
times for all 240 test problems as a function of the num-
ber of flows in the problem. We chose number of flows
as the independent variable because it is the most signif-
icant factor in the running times of the two algorithms.
For the largest tests, with 50 hosts, 100 devices and 600
flows,FlowMergefinds a design in less than 10 minutes,
andQuickBuilderfinds one in less than 40 seconds. This
means that adding aQuickBuilderrun to aFlowMerge
run is very cheap. Given the target use, it may make
sense to useQuickBuilderinteractively, and then invoke
FlowMergein batch mode for final review.

Figure 9: Cost comparisons of the resulting SAN designs for
four different design algorithms, averaged across all 5 host, 5
device tests. “Integer program” (IP) produces optimal solu-
tions;FlowMergeandQuickBuilderare heuristics that produce
feasible solutions; LP relaxation produces a guaranteed lower
bound, but (in general) infeasible solutions.

6 Future Work

We are actively pursuing several directions of future
work:

� Extending the design tools to accommodate high
availability requirements. A trivial solution often
used for simple SANs is to replicate a single SAN
fabric design, but this can become prohibitively ex-
pensive when port-count restrictions occur.

� Developing refinements that allow Appia to mod-
ify an existing design, rather than design one from
scratch. This has obvious practical applications
where an existing SAN is being extended; it also in-
troduces some interesting tensions between the de-
sire to produce a high-quality solution, and the de-
sire to minimize the amount of rewiring required on
the existing system while trying to use as many of
its components as possible.

� Exploring the design of solutions that provide
“slack,” to allow graceful growth.

� Exploring topology-constrained solutions, such as
Brocade’s Core-Edge architecture, as one approach
to producing designs that may be easier for people
to modify by hand at a later date. This is a trivial
problem for Appia compared to designing the topol-
ogy itself – but its existing infrastructure makes it
easy to supply this solution for people who prefer
it.

� Packaging the tools so that they can be made more
widely available, including integrating them more

Figure 10: The graphs illustrate SAN solution costs for the
four different Appia design algorithms across 20 different prob-
lems of the indicated type. For each graph, test instances 1–10
correspond to tests with high port saturation, and tests 11–20
have low-saturated ports. The problem scale was restricted to
five hosts and five devices, to allow the optimal (integer pro-
gramming) algorithm to complete in a reasonable time.

Figure 11: FlowMergeand QuickBuilderrunning times as a
function of the number of flows.

tightly with our storage-system design tool suite [2,
4].

� Verifying that our algorithms work for new SAN
protocols such as switched Ethernet, and for design-
ing additional network types, such as LANs.

Opportunistically, we also expect to improve our algo-
rithms’ effectiveness and their runtime – but we feel
that these are probably both “good enough” for us to be
able to turn our attention towards the other opportunities
listed above.

7 Conclusions

The Appia tool and its algorithms are able to design high
quality SAN designs. Those designs are quite close to
the optimal ones, in cases where we can evaluate them
directly – and are several times less expensive than some
manual designs we have seen, where over-provisioning
by a factor of three “just to be safe” is a common ap-
proach.

In our interactions with customers and the domain ex-
perts who support them, we have learned that although it

is helpful for Appia’s SAN designs to be as cost effective
as possible, it is probably even more important that they
can be shown to be correct – the chance of human error
has been greatly reduced. The value of this is extremely
high in the complex, mission- and business-critical envi-
ronments for which SAN design is done.

In summary, we feel that Appia and its algorithms solve
a key, hard problem in storage systems – and one that
is only going to grow in importance as the number,
scale, and complexity of the SAN-based storage solu-
tions grows.

7.1 Acknowledgements

We are endebted to Li-Shiuan Peh for getting the Appia
project off the ground and aptly naming it, to Ren Wu and
Eric Anderson for their help with implementation of our
algorithms, to Rick Rosenthal for his helpful input for the
exposition of this paper, and to several other colleagues
at HP Labs for their support during this project.

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, and M.R. Reddy,
Applications of network optimization, Network Mod-
els (M. O. Ball, T. L. Magnanti, C. L. Monma, and
Nemhauser G. L., eds.), Handbooks in Operations Re-
search and Management Science, vol. 7, North Holland,
1995, pp. 1–83.

[2] G.A. Alvarez, E. Borowsky, S. Go, T. H. Romer,
R. Becker-Szendy, R. Golding, A. Merchant, M. Spasoje-
vic, A Veitch, and J. Wilkes,Minerva: an automated re-
source provisioning tool for large-scale storage systems,
ACM Transactions on Computer Systems (2001).

[3] A. Amiri, A system for the design of packet-switched com-
munication networks with economic tradeoffs, Computer
Communications21 (1998), 1670–1680.

[4] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,
and A. Veitch,Hippodrome: running circels around stor-
age administration, File and Storage technologies (FAST)
(Monterey, CA), January 2002.

[5] A. Atamtürk,On capacitated network design cut-set poly-
hedra, Research report, IEOR Department, University
of California at Berkeley, December 2000, Available at
http://ieor.berkeley.edu/˜atamturk.

[6] F. Barahona, Network design using cut inequalities,
SIAM Journal on Optimization6 (1996), 823–837.

[7] D. Bienstock, S. Chopra, and O. Gunluk,Minimum cost
capacity installation for multicommodity network flows,
Mathematical Programming81(1998), no. 2–1, 177–199.

[8] D. Bienstock and O. Gunluk,Capacitated network de-
sign. polyhedral structure and computation., INFORMS
Journal on Computing8 (1996), 243–259.

[9] Designing next-generation fabrics with Brocade switches,
White paper, Brocade Networks, San Jose, CA,

October 2001, http://www.brocade.com/SAN/pdf/
CoreEdgeRev10901.pdf.

[10] S. Chopra, I. Gilboa, and S. T. Sastry,Source sink flows
with capacity installation in batches, Discrete Applied
Mathematics85 (1998), 165–192.

[11] C.-H. Chu, G. Premkumar, C. Chou, and J. Sun,Dynamic
degree constrained network design: a genetic algorithm
approach, Proceedings GECCO-99. Genetic and Evo-
lutionary Computation Conference. Eighth International
Conference on Genetic Algorithms (ICGA-99) and the
Fourth Annual Genetic Programming Conference (GP-
99), vol. 1, 1999, pp. 141–148.

[12] N. Deo and S.L. Hakimi,The shortest generalized Hamil-
tonian tree, Proceedings of the 6th Annual Allerton Con-
ference, 1968, pp. 879–888.

[13] Overview of fibre channel technol-
ogy, Fibre Channel Industry Association,
http://www.fibrechannel.com/technology/, accessed
November 2001.

[14] P.C. Fetterolf and G. Anandalingam,A Lagrangian re-
laxation technique for optimizing interconnection of local
area networks, Operations Research40 (1992), 678–688.

[15] M.R. Garey and D. S. Johnson,Computers and in-
tractability: A guide to the theory of NP-completeness,
W. H Freeman and Company, San Francisco, CA, 1979.

[16] B. Gavish,A general model for the topological design
of computer networks, IEEE Global Telecommunications
Conference, no. 3, December 1986, pp. 1584–1588.

[17] , Topological design of computer communication
networks-the overall design problem, European Journal
of Operational Research58 (1992), 149–172.

[18] B. Gendron, T. Crainic, and A. Frangioni,Multicommod-
ity capacitated network design, Telecommunications Net-
work Planning (B. Sanso and P. Soriano, eds.), Kluwer
Academic Press, 1999, pp. 1–19.

[19] J.W. Herrmann, G. Ioannou, I. Minis, and J.M. Proth,A
dual ascent approach to the fixed-charge capacitated net-
work design problem, European Journal of Operational
Research95 (1996), 476–490.

[20] K. Holmberg and Di Yuan,A Lagrangean heuristic based
branch-and-bound method for the capacitated network
design problem, Proceedings of International Symposium
on Operations Research, September 1996, pp. 78–83.

[21] J. M Kleinburg,Single source unsplittable flow, Proceed-
ings of the 37th Annual IEEE Symposium on Foundations
of Computer Science, 1996, pp. 68–77.

[22] T. L. Magnanti, P. Mirchandani, and R. Vachani,Model-
ing and solving the capacitated network loading problem,
Operations Research43 (1995), 142–157.

[23] T. L. Magnanti and L. A. Wolsey,Optimal trees, Network
Models (M. O. Ball, T. L. Magnanti, C. L. Monma, and
Nemhauser G. L., eds.), Handbooks in Operations Re-
search and Management Science, vol. 7, North Holland,
1995, pp. 503–615.

[24] T. L. Magnanti and R.T. Wong,Network design and trans-
portation planning, Transportation Science8 (1984), 1–
55.

[25] S.C. Narula and C.A. Ho,Degree-constrained minimum
spanning tree, Computers and Operations Research7
(1980), 239–49.

[26] Li-Shiuan Peh, The appia topology solver: imple-
mentation, Technical report HPL–SSP–98–13, Hewlett-
Packard Laboratories, Palo Alto, CA, September 1998,
http://www.hpl.hp.com/SSP/papers/#Appia.

[27] V. Sridhar and J.S. Park,Benders-and-cut algorithm for
fixed-charge capacitated network design problem, Euro-
pean Journal of Operational Research125 (2000), 622–
32.

