
FIOS: A Fair, Efficient Flash I/O Scheduler

Stan Park Kai Shen

University of Rochester

1 / 21



Background

Flash is widely available as mass storage, e.g. SSD

$/GB still dropping, affordable high-performance I/O

Deployed in data centers as well low-power platforms

Adoption continues to grow but very little work in robust I/O
scheduling for Flash I/O

Synchronous writes are still a major factor in I/O bottlenecks

2 / 21



Flash: Characteristics & Challenges

No seek latency, low latency variance

I/O granularity: Flash page, 2–8KB

Large erase granularity: Flash block, 64–256 pages

Architecture parallelism

Erase-before-write limitation

I/O asymmetry

Wide variation in performance across vendors!

3 / 21



Motivation

Disk is slow → scheduling has largely been
performance-oriented

Flash scheduling for high performance ALONE is easy (just
use noop)

Now fairness can be a first-class concern

Fairness must account for unique Flash characteristics

4 / 21



Motivation: Prior Schedulers

Fairness-oriented Schedulers: Linux CFQ, SFQ(D), Argon

Lack Flash-awareness and appropriate anticipation support

Linux CFQ, SFQ(D): fail to recognize the need for anticipation
Argon: overly aggressive anticipation support

Flash I/O Scheduling: write bundling, write block preferential, and
page-aligned request merging/splitting

Limited applicability to modern SSDs, performance-oriented

5 / 21



Motivation: Read-Write Interference

0 1 2

P
ro

ba
bi

lit
y 

de
ns

ity

I/O response time (in msecs)

Intel SSD read (alone)

0 0.2 0.4 0.6
P

ro
ba

bi
lit

y 
de

ns
ity

I/O response time (in msecs)

Vertex SSD read (alone)

0 100 200 300

P
ro

ba
bi

lit
y 

de
ns

ity

← all respond quickly

I/O response time (in msecs)

CompactFlash read (alone)

6 / 21



Motivation: Read-Write Interference

0 1 2

P
ro

ba
bi

lit
y 

de
ns

ity

I/O response time (in msecs)

Intel SSD read (alone)

0 0.2 0.4 0.6
P

ro
ba

bi
lit

y 
de

ns
ity

I/O response time (in msecs)

Vertex SSD read (alone)

0 100 200 300

P
ro

ba
bi

lit
y 

de
ns

ity

← all respond quickly

I/O response time (in msecs)

CompactFlash read (alone)

0 1 2

P
ro

ba
bi

lit
y 

de
ns

ity

I/O response time (in msecs)

Intel SSD read (with write)

0 0.2 0.4 0.6

P
ro

ba
bi

lit
y 

de
ns

ity

I/O response time (in msecs)

Vertex SSD read (with write)

0 100 200 300

P
ro

ba
bi

lit
y 

de
ns

ity

I/O response time (in msecs)

CompactFlash read (with write)

Fast read response is disrupted by interfering writes.

6 / 21



Motivation: Parallelism

1 2 4 8 16 32 64
0

2

4

6

8

Number of concurrent I/O operations

S
pe

ed
up

 o
ve

r 
se

ria
l I

/O

Intel SSD

 

 

Read I/O parallelism Write I/O parallelism

1 2 4 8 16 32 64
0

1

2

3

4

Number of concurrent I/O operations
S

pe
ed

up
 o

ve
r 

se
ria

l I
/O

Vertex SSD

SSDs can support varying levels of read and write parallelism.

7 / 21



Motivation: I/O Anticipation Support

Reduces potential seek cost for mechanical disks

...but largely negative performance effect on Flash

Flash has no seek latency: no need for anticipation?

No anticipation can result in unfairness: premature service
change, read-write interference

8 / 21



Motivation: I/O Anticipation Support

0

1

2

3

4

I/O
 s

lo
w

do
w

n 
ra

tio

 

 

Linux CFQ, no antic.

SFQ(D), no antic.

Full−quantum antic.

Read slowdown

Write slowdown

Lack of anticipation can lead to unfairness; aggressive anticipation
makes fairness costly.

9 / 21



FIOS: Policy

Fair timeslice management: Basis of fairness

Read-write interference management: Account for Flash I/O
asymmetry

I/O parallelism: Recognize and exploit SSD internal
parallelism while maintaining fairness

I/O anticipation: Prevent disruption to fairness mechanisms

10 / 21



FIOS: Timeslice Management

Equal timeslices: amount of time to access device

Non-contiguous usage
Multiple tasks can be serviced simultaneously

Collection of timeslices = epoch; Epoch ends when:

No task with a remaining timeslice issues a request, or
No task has a remaining timeslice

11 / 21



FIOS: Interference Management

0 1 2

P
ro

ba
bi

lit
y 

de
ns

ity

I/O response time (in msecs)

Intel SSD read (with write)

0 0.2 0.4 0.6
P

ro
ba

bi
lit

y 
de

ns
ity

I/O response time (in msecs)

Vertex SSD read (with write)

0 100 200 300

P
ro

ba
bi

lit
y 

de
ns

ity

I/O response time (in msecs)

CompactFlash read (with write)

Reads are faster than writes → interference penalizes reads
more

Preference for servicing reads

Delay writes until reads complete

12 / 21



FIOS: I/O Parallelism

SSDs utilize multiple independent channels

Exploit internal parallelism when possible, minding timeslice
and interference management

Parallel cost accounting: New problem in Flash scheduling

Linear cost model, using time to service a given request size
Probabilistic fair sharing: Share perceived device time usage
among concurrent users/tasks

Cost =
Telapsed

Pissuance

Telapsed is the requests elapsed time from its issuance to its
completion, and Pissuance is the number of outstanding requests
(including the new request) at the issuance time

13 / 21



FIOS: I/O Anticipation - When to anticipate?

Anticipatory I/O originally used for improving performance on disk
to handle deceptive idleness: wait for a desirable request.
Anticipatory I/O on Flash used to preserve fairness.

Deceptive idleness may break:

timeslice management

interference management

14 / 21



FIOS: I/O Anticipation - How long to anticipate?

Must be much shorter than the typical idle period for disks

Relative anticipation cost is bounded by α, where idle period is

Tservice ∗
α

1−α
where Tservice is per-task exponentially-weighted

moving average of per-request service time
(Default α = 0.5)

ex. I/O → anticipation → I/O → anticipation → I/O → · · ·

15 / 21



Implementation Issues

Linux coarse tick timer → High resolution timer for I/O
anticipation

Inconsistent synchronous write handling across file system and
I/O layers

ext4 nanosecond timestamps lead to excessive metadata
updates for write-intensive applications

16 / 21



Results: Read-Write Fairness

0

8

16

24

32

I/O
 s

lo
w

do
w

n 
ra

tio

4−reader 4−writer on Intel SSD

 

 

proportional
slowdown

←

Raw device I/O

Linux CFQ

SFQ(D)

Quanta
FIOS

0

8

16

24

32

proportional
slowdown

←

Raw device I/O

Linux CFQ

SFQ(D)

Quanta
FIOS

I/O
 s

lo
w

do
w

n 
ra

tio

4−reader 4−writer (with thinktime) on Intel SSD

Average read latency Average write latency

Only FIOS provides fairness with good efficiency under differing
I/O load conditions.

17 / 21



Results: Beyond Read-Write Fairness

0

8

16

proportional
slowdown

←

I/O
 s

lo
w

do
w

n 
ra

tio

4−reader 4−writer on Vertex SSD

 

 

Raw device I/O

Linux CFQ

SFQ(D)

Quanta
FIOS

Mean read latency

Mean write latency

0

2

4

6

8

proportional
slowdown

←

I/O
 s

lo
w

do
w

n 
ra

tio

4KB−reader and 128KB−reader on Vertex SSD

 

 

Raw device I/O

Linux CFQ

SFQ(D)

Quanta
FIOS

Mean latency 4KB read

Mean latency 128KB read

FIOS achieves fairness not only with read-write asymmetry but
also requests of varying cost.

18 / 21



Results: SPECweb co-run TPC-C

0

2

4

6

8

10

12

R
es

po
ns

e 
tim

e 
sl

ow
do

w
n 

ra
tio

SPECweb and TPC−C on Intel SSD

 

 
28

Raw device I/O

Linux CFQ

SFQ(D)

Quanta
FIOS

SPECweb

TPC−C

FIOS exhibits the best fairness compared to the alternatives.

19 / 21



Results: FAWNDS (CMU, SOSP’09) on CompactFlash

0

1

2

3

T
as

k 
sl

ow
do

w
n 

ra
tio

 

 

← proportional slowdown

Raw device I/O

Linux CFQ

SFQ(D)

Quanta
FIOS

FAWNDS hash gets FAWNDS hash puts

FIOS also applies to low-power Flash and provides efficient fairness.

20 / 21



Conclusion

Fairness and efficiency in Flash I/O scheduling

Fairness is a primary concern
New challenge for fairness AND high efficiency (parallelism)

I/O anticipation is ALSO important for fairness

I/O scheduler support must be robust in the face of varied
performance and evolving hardware

Read/write fairness and BEYOND

May support other resource principals (VMs in cloud).

21 / 21


