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Background

Flash is widely available as mass storage, e.g. SSD

$/GB still dropping, affordable high-performance I/O

Deployed in data centers as well low-power platforms

Adoption continues to grow but very little work in robust I/O
scheduling for Flash I/O

Synchronous writes are still a major factor in I/O bottlenecks
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Flash: Characteristics & Challenges

No seek latency, low latency variance

I/O granularity: Flash page, 2–8KB

Large erase granularity: Flash block, 64–256 pages

Architecture parallelism

Erase-before-write limitation

I/O asymmetry

Wide variation in performance across vendors!
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Motivation

Disk is slow → scheduling has largely been
performance-oriented

Flash scheduling for high performance ALONE is easy (just
use noop)

Now fairness can be a first-class concern

Fairness must account for unique Flash characteristics
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Motivation: Prior Schedulers

Fairness-oriented Schedulers: Linux CFQ, SFQ(D), Argon

Lack Flash-awareness and appropriate anticipation support

Linux CFQ, SFQ(D): fail to recognize the need for anticipation
Argon: overly aggressive anticipation support

Flash I/O Scheduling: write bundling, write block preferential, and
page-aligned request merging/splitting

Limited applicability to modern SSDs, performance-oriented
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Motivation: Read-Write Interference
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Motivation: Read-Write Interference
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Fast read response is disrupted by interfering writes.
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Motivation: Parallelism
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SSDs can support varying levels of read and write parallelism.
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Motivation: I/O Anticipation Support

Reduces potential seek cost for mechanical disks

...but largely negative performance effect on Flash

Flash has no seek latency: no need for anticipation?

No anticipation can result in unfairness: premature service
change, read-write interference
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Motivation: I/O Anticipation Support
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Linux CFQ, no antic.

SFQ(D), no antic.

Full−quantum antic.

Read slowdown

Write slowdown

Lack of anticipation can lead to unfairness; aggressive anticipation
makes fairness costly.
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FIOS: Policy

Fair timeslice management: Basis of fairness

Read-write interference management: Account for Flash I/O
asymmetry

I/O parallelism: Recognize and exploit SSD internal
parallelism while maintaining fairness

I/O anticipation: Prevent disruption to fairness mechanisms
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FIOS: Timeslice Management

Equal timeslices: amount of time to access device

Non-contiguous usage
Multiple tasks can be serviced simultaneously

Collection of timeslices = epoch; Epoch ends when:

No task with a remaining timeslice issues a request, or
No task has a remaining timeslice
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FIOS: Interference Management
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Reads are faster than writes → interference penalizes reads
more

Preference for servicing reads

Delay writes until reads complete
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FIOS: I/O Parallelism

SSDs utilize multiple independent channels

Exploit internal parallelism when possible, minding timeslice
and interference management

Parallel cost accounting: New problem in Flash scheduling

Linear cost model, using time to service a given request size
Probabilistic fair sharing: Share perceived device time usage
among concurrent users/tasks

Cost =
Telapsed

Pissuance

Telapsed is the requests elapsed time from its issuance to its
completion, and Pissuance is the number of outstanding requests
(including the new request) at the issuance time
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FIOS: I/O Anticipation - When to anticipate?

Anticipatory I/O originally used for improving performance on disk
to handle deceptive idleness: wait for a desirable request.
Anticipatory I/O on Flash used to preserve fairness.

Deceptive idleness may break:

timeslice management

interference management
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FIOS: I/O Anticipation - How long to anticipate?

Must be much shorter than the typical idle period for disks

Relative anticipation cost is bounded by α, where idle period is

Tservice ∗
α

1−α
where Tservice is per-task exponentially-weighted

moving average of per-request service time
(Default α = 0.5)

ex. I/O → anticipation → I/O → anticipation → I/O → · · ·
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Implementation Issues

Linux coarse tick timer → High resolution timer for I/O
anticipation

Inconsistent synchronous write handling across file system and
I/O layers

ext4 nanosecond timestamps lead to excessive metadata
updates for write-intensive applications
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Results: Read-Write Fairness
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Only FIOS provides fairness with good efficiency under differing
I/O load conditions.
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Results: Beyond Read-Write Fairness
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FIOS achieves fairness not only with read-write asymmetry but
also requests of varying cost.
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Results: SPECweb co-run TPC-C
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FIOS exhibits the best fairness compared to the alternatives.
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Results: FAWNDS (CMU, SOSP’09) on CompactFlash
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FIOS also applies to low-power Flash and provides efficient fairness.
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Conclusion

Fairness and efficiency in Flash I/O scheduling

Fairness is a primary concern
New challenge for fairness AND high efficiency (parallelism)

I/O anticipation is ALSO important for fairness

I/O scheduler support must be robust in the face of varied
performance and evolving hardware

Read/write fairness and BEYOND

May support other resource principals (VMs in cloud).

21 / 21


