
Running mixnet-based elections with Helios

Philippe Bulens
BlueKrypt, OAdeo

Belgium

Damien Giry
BlueKrypt, OAdeo

Belgium

Olivier Pereira
Université catholique de Louvain

ICTEAM – Crypto Group
B-1348 Louvain-la-Neuve – Belgium

Abstract
The Helios voting system is an open-audit web-based
voting system that has been used by various institutions
in real-stake elections during the last few years. While
targeting the simplicity of the election workflow, the ho-
momorphic tallying process used in Helios limits its suit-
ability for many elections (large number of candidates,
specific ballot filling rules, . . .).

We present a variant of Helios that allows an efficient
mixnet-based tallying procedure, and document the var-
ious choices we made in terms of election workflow and
algorithm selection. In particular, we propose a modified
version the TDH2 scheme of Shoup and Gennaro that
we found particularly suitable for the encryption of the
ballots.

Our Helios variant has been tested in two multi-
thousand voter elections. The lessons taken from the
first of these elections motivated some changes into our
procedure, which have been successfully experimented
during the second election. Voter survey data are also
presented.

1 Introduction

Helios [1, 2] is an open-audit web-based voting system,
designed for low coercion elections. The correctness of
Helios elections is guaranteed through a series of audit
procedures. Essentially, voters can (i) audit the ballots
they prepare in order to be convinced that they actually
reflect their vote intention, (ii) verify that their ballot was
correctly recorded by the voting server on a web bulletin
board, (iii) check on the bulletin board that all the ballots
that will be included in the tally correspond to an actual
voter (unless this is explicitly prevented by the election
organizers) and (iv) verify that the tallying procedure has
been run correctly from the ballots displayed on the bul-
letin board.

The privacy of the votes relies on the honesty of the

voting client, on the security of various cryptographic al-
gorithms, and on the honesty of a set of trustees who own
shares of a decryption key.

Since Helios 2.0 [2], and in all real-stake Helios elec-
tions, the election tally is computed by the public homo-
morphic aggregation of individual encrypted ballots into
an encryption of the election outcome [8], which is then
decrypted in a distributed way by a set of trustees. From
a cryptographic point of view, the implemented proto-
col follows the general ideas of Cramer et al. [10], but
treats multiple candidate through separate ciphertexts, as
proposed by Hirt [20] for instance. It also incorporates
several ideas from Benaloh [6] that enable auditing the
ballot preparation system.

While this approach has huge advantages in terms of
simplicity, it also comes with important limitations.

• The validity of the ballots needs to be proved by the
voters, and the complexity of those proofs typically
grows linearly with the number of candidates. As
the Helios code is mostly interpreted in JavaScript,
this becomes an issue as soon as a few dozen of
candidates are to be considered.

• The validity proofs need to be modified for ev-
ery type of ballot filling rule, which can become
quite complex in many cases (see Groth [18] for in-
stance).

Mix networks [7] offer another approach for the tal-
lying of an election. They provide anonymization ser-
vices for encrypted ballots, by shuffling and rerandom-
izing them in a verifiable way. The anonymized ballots
can then be safely decrypted, and the ballot validity veri-
fication and counting procedure can be achieved publicly
on the decrypted ballots rather than in the encrypted do-
main.

A crucial advantage of this approach is that it does not
bring any limitation on the format of the ballots that are
encrypted. This makes the ballot preparation procedure

1

much simpler and efficient, which is highly desirable for
computationally limited voting clients.

We note however that the decryption of all ballots
comes with an important limitation from a security point
of view: much more information is revealed about the
voter’s intentions than in the case of homomorphic tal-
lying techniques. While this amount of information is
identical to the one revealed in traditional paper-based
elections, this however brings several difficulties:

• It makes it impossible to satisfy the requirements of
some tallying procedures, e.g., procedures involv-
ing weighting of votes while fully hiding the level
of support of the candidates as a function of the dif-
ferent weights [2].

• It increases the risk of coercion compared to ap-
proaches that only disclose the election result, e.g.,
facilitating the so-called “Italian attack” in which a
coercer requires the presence of a ballot with a very
specific and improbable voting pattern in the urn.

• It requires more care about independent ballot sub-
mission as, for instance, a voter who submits a (pos-
sibly re-randomized) copy of someone else’s ballot
could then search for two identical decrypted bal-
lots once the tally is completed in order to find out
who that voter voted for.

The situation can sometimes be improved by splitting
each ballot into several sub-ballots that are mixed inde-
pendently, but this should not prevent the eventual valid-
ity verification of the ballots nor increase too much the
cost of the ballot preparation.

Nevertheless, we feel that the possibility to adopt
mixnet-based tallying offers a valuable middle-ground
for different types of elections, which would be much
more difficult to handle otherwise.

Contributions We describe the design of a Helios vari-
ant that allows mixnet-based tallying, and motivate the
choice of the various algorithms and procedures that we
use for ensuring the security of the ballot submission pro-
cedure, running the ballot mixing, and computing the
tally. In particular, we propose a variant of the TDH2
encryption scheme of Shoup and Gennaro [27] that pre-
serves submission security and embeds a homomorphic
ElGamal ciphertext while preserving the efficiency of the
original scheme.

We also document two experiences in running mixnet-
based elections involving several thousands of voters and
relying on different cryptographic algorithms and elec-
tion procedures. The strengths and limitation of the
tested approaches are discussed, and voter survey data
are provided. We believe that most of the lessons we

learned by running these elections and from the survey
data are of interest for e-voting and verifiable elections
in general and, hence, have a scope much broader than
the specific use of Helios or mixnets.

Roadmap We start by reviewing the workflow of a He-
lios election in Section 2. Then, Section 3 describes and
motivates the workflow we propose for Helios elections
with mixnet-based tallying. The specifics of the algo-
rithmic choices we made is then documented in Sec-
tion 4. Eventually, our experiences in running mixnet-
based elections are described in Section 5.

2 Overview of a Helios election workflow

We review the workflow of a Helios 3.1 homomorphic
tallying-based election, as released in March 2011, high-
lighting the aspects that are most important for the intro-
duction of our mixnet-based variant.

Election setup. The election administrator creates a
Helios election by defining a series of parameters: the
election description and URL, the election questions and
possible answers together with ballot filling rules (ap-
proval voting, limited number of answers, . . .), the set
of trustees who hold shares of the election private key,
the election public key, the list of voters or the fact that
this list is kept open and the choice to mask (or not mask)
the voter names through aliases on the bulletin board.

The Election Fingerprint is then computed by hash-
ing all these parameters. This fingerprint is expected to
be distributed to the voters through as many channels as
possible, as it enables them to verify that they are prepar-
ing their ballot in the correct way.

Ballot preparation and submission. Once the elec-
tion is open, voters can prepare ballots for submission
to the voting server. To this purpose, they can either use
their own ballot preparation system (or the one proposed
by someone they trust, e.g., the candidate they would like
to support), or use the ballot preparation system proposed
by Helios.

The Helios ballot preparation system (BPS) down-
loads all election parameters, then recomputes and dis-
plays the Election Fingerprint for verification by the vot-
ers. Voters can then make their choices. The ballot is
then encrypted, and ballot validity proofs are computed.
This phase can quickly become computationally inten-
sive as soon as the number of candidates increases: it
essentially requires 6 modular exponentiations per can-
didate, to which must be added the cost of the proofs that
guarantee that a limited number of candidates have been
selected, if such proofs are needed.

2

The BPS then commits on the resulting ballot by dis-
playing the hash of that ballot for the voter, and proposes
to either submit the ballot to the voting server or to au-
dit it, following an approach proposed by Benaloh [6].
If the voter chooses to audit the ballot, the BPS is re-
quested to display the ballot content together with all the
randomness that has been used to build it. This enables
the voter to use any ballot verification software he likes to
verify whether the ballot was built correctly. As one pos-
sible cause of failure could be the presence of malware
on the client machine (as acknowledged by the Helios
authors [2] and later illustrated by Estehghari et al. [13]),
Helios 3.x simplifies the verification of ballots on dif-
ferent devices by allowing to post spoiled ballots on a
bulletin board from which anyone, including the voter
himself, can later download and verify the ballots. This
procedure offers correctness guarantees as long as voters
perform ballot audits using uncompromised machines,
but of course does not help for privacy. Helios, target-
ing the simplicity of the voting procedure, has not been
designed to provide a full protection of voters against
compromised voting clients and should not be used in
elections in which this is a concern.

Eventually, if the voter decides to submit the prepared
ballot, then the voter authentication process takes place,
the ballot is sent to the voting server, and the voter can
verify that it was correctly received on the election web
bulletin board.

Election tallying. Once the ballot submission phase is
complete and everyone agrees on the web bulletin board
content, the tallying phase starts.

This phase begins with the verification of the valid-
ity of all ballots, which is a completely public operation.
Then, all encrypted ballots are homomorphically aggre-
gated into encryptions of the number of votes received by
each candidate. These ciphertexts (one per candidate) are
eventually decrypted by the trustees, who also provide a
proof of the correctness of the decryption procedure.

The amount of computation that the trustees need to
perform is actually quite limited here: each trustee needs
to compute 3 modular exponentiations per candidate,
which is even cheaper than the cost of preparing a ballot.
This operation can therefore be performed conveniently
through the Helios web interface, like the rest of the elec-
tion process.

3 Workflow for mixnet-based elections

We now discuss the general workflow of mixnet-based
elections, as we designed it, and leave for the next sec-
tion the discussion of the concrete algorithms chosen to
realize this workflow.

3.1 Election setup

The setup for a mixnet-based election is similar to the
one of a homomorphic tallying-based election, except for
the role of the trustees.

While trustees were only needed for the decryption
of the election outcome in homomorphic tallying-based
elections, two different operations need to be completed
now: the shuffling and the decryption of the shuffled bal-
lots.

While several mixnets offer the possibility to shuffle
and decrypt at the same time (starting with the initial
work of Chaum [7]), we prefer adopting a more mod-
ular approach and decided to separate the two concerns
and to have two groups of trustees:

1. Shuffling trustees are responsible of shuffling the
ballots. These trustees do not need to store any se-
cret: they need to internally produce secret data (a
random permutation, . . .) during the shuffling pro-
cess, but should delete these data as soon as their
task is completed.

2. Decryption trustees are responsible of decrypting
the shuffled ballots. These trustees each hold a share
of the election private key, just as in homomorphic
tallying-based elections.

As a result, we need to rely on the decryption trustees
to not violate the privacy of the voters, which they could
do by jointly decrypting the ballots before shuffle, for in-
stance. We also need to rely on the mixing trustees to
keep their shuffling permutations secret in order to make
sure that nobody can link the submitted ballots to the
decrypted ballots. In both cases, a coalition of all the
trustees of the same group is needed to violate the pri-
vacy of the voters. The correctness of the tallying proce-
dure however only relies on computational assumptions
(through the soundness of the zero-knowledge proofs and
the collision resistance of the hash functions that are used
to check integrity) and not on the honesty of the trustees.

From an organizational point of view, it is clear that
the decryption trustees must be chosen in advance, as
they need to jointly produce the election public key be-
fore the election starts. The shuffling trustees, however,
do not need to be determined in advance as they are not
required to generate any secret before the election starts.
So, in order to increase the flexibility of the election pro-
cess, we decide to leave the shuffling trustees undeter-
mined during the setup phase (meaning, they do not need
to be included in the Election Fingerprint), and rely on
the trustees to only accept to decrypt ballots when there
is an agreement that a satisfactory shuffling procedure
happened: we need to trust them on the privacy of the
votes anyway.

3

As running a verifiable shuffle is a computationally
intensive tasks, we believe that keeping the freedom to
adapt the shuffling procedure on-the-fly is an interest-
ing feature. It also opens the possibility to have a set
of servers offering verifiable shuffling services available
around the world, and to let election organizers query
those servers at tallying time, depending on their avail-
ability.

3.2 Ballot preparation and submission
The ballot preparation workflow remains identical to the
one used for elections targeting homomorphic tallying.
The cryptographic algorithms used for the ballot prepa-
ration however serve very different purposes.

Simpler ballots. The ballot format required for homo-
morphic tallying needs to enable everyone to check, in
the encrypted domain, the validity of all the votes, and to
compute an encryption of the election outcome.

In contrast, since a mixnet based tallying procedure
involves decrypting all individual ballots after shuffling,
the validity of the ballot can be checked after decryption
and not at submission time. Furthermore, the format of
the encrypted messages does not need to allow homo-
morphic ballot aggregation.

While the decryption of every individual ballot con-
siderably simplifies the ballot preparation by obliterating
the need to demonstrate the validity of the encrypted bal-
lots, it also makes public the full content of all ballots,
which opens the way to some attacks, like the Italian at-
tack mentioned earlier for instance.

While this cannot be fully prevented with mixnet-
based tallying, the privacy of the voters could also
be compromised through more sophisticated attacks in
which some voters would copy ballots submitted by
other voters and look for identical ballots after decryp-
tion, which should allow them to recognize the copied
ballots with high probability when there is a large num-
ber of ways to fill in a ballot. Furthermore, the detec-
tion of non independent ballots by observers can actu-
ally be made quite difficult as, instead of simply copying
somebody else’s ballot, voters could produce different
but related ballots and/or rerandomize previously sub-
mitted ballots, as originally demonstrated by Pfitzmann
and Pfitzmann [23].

Submission Secure Augmented cryptosystems. This
last attack can be prevented by making sure that ballots
are submitted independently of each other, which can be
enforced by using a submission secure augmented (SSA)
cryptosystem [32]. Such a cryptosystem is essentially an
IND-CCA2 encryption scheme whose ciphertexts con-
tain ciphertexts from another basic encryption scheme.

This basic encryption scheme is typically chosen to be
homomorphic, and a stripping procedure must enable ev-
eryone to check the validity of an augmented ciphertext
without compromising the confidentiality of the basic ci-
phertext (see Section 4.1.1 for a precise definition). The
non-malleability of the IND-CCA2 augmented cipher-
text now guarantees that the only way to submit a ci-
phertext that would be related to another ciphertext is to
submit an exact copy of it, which is easy to detect.

Now, as trustees might decide to use the same private
key in several contexts (questions, elections, . . .), it is
desirable to use an SSA cryptosystem in which the veri-
fication of ciphertext validity includes the verification of
a scope in which that ciphertext can be used: the search
for exact copies can then be reduced to only include ci-
phertexts that are valid within that specific scope. To this
purpose, we also embed the Election Fingerprint as label
in each ciphertext, which prevents copying a ciphertext
from one context and submitting it in another that would
use the same key. So the search for duplicate ciphertexts
can be restricted by usage context.

It would be appealing to go one step further and to
also include the identity of the voters as part of the la-
bel of each ciphertext, as suggested by Cramer et al. [10]
for instance: a copied ciphertext would then be declared
invalid immediately because it would contain the wrong
voter identity. This solution has not been adopted here,
however: in order to prevent the voting client from adapt-
ing its bahaviour according to the identity of the voter,
the identification phase is performed only after the ci-
phertexts have been produced and committed to by the
BPS.

Submission independence in elections based on ho-
momorphic tallying. As we discussed above, inde-
pendent ballot submission is often an important element
to ensure the privacy of the votes when mixnet-based tal-
lying is used and the space of valid ballots is large com-
pared to the number of voters.

The situation is however substantially different when
homomorphic tallying is used and when the number of
candidates is small compared to the number of voters,
e.g., when thousands or even millions of voters must
choose between a few candidates (as it happens for the
presidential elections in many countries for instance), or
when it can be considered unrealistic that a large enough
number of voters would be accepting to give up their vote
and transform it into a copy of somebody else’s vote in
order to violate the privacy of that voter.

Indeed, a homomorphic tally only discloses the elec-
tion outcome instead of individual ballots, which pre-
vents the search for related ballot completion patterns
and strongly limits the privacy impact of ballot depen-
dence. Special care needs however to be taken in or-

4

der to prevent unexpected behaviors of the adopted cryp-
tographic schemes, as demonstrated by Benaloh [5] for
instance, or in very specific elections, as illustrated by
Ben-Or and Linial [4] or by Cortier and Smyth in the case
of Helios for instance [9]. For example, if a voter copies
somebody else’s vote in a three voters election, this voter
will always be able to determine the choices of the other
two voters by inspection of the election outcome.

In some cases, these issues can be further mitigated by
running a tally using secure multiparty computation tech-
niques that would only reveal the identity of the election
winner without disclosing the repartition of the votes be-
tween the candidates.

In that context, one could consider the possibility
to submit a ballot that would be an (unlinkable) copy
of somebody else’s ballot as an interesting feature that
could be offered by voting systems that keep track of the
link between voters and their encrypted ballot. As the
purpose of elections is typically the delegation of some
decision power to the election winner(s), it does not seem
very different to already include the possibility of this
delegation as part of the voting process.

While today’s classical paper-based voting systems
enforce ballot independence, it is not clear whether this
is just a side effect of the adoption of urns for ensuring
the confidentiality of the votes, or a desired feature. It
indeed appears that a system that would allow copying
somebody else’s vote intention in a private way would
not come short of the lists of requirements for voting
systems that we consulted, e.g, those of the Council of
Europe [14] and Wolkamer [34].

By contrast, we observe that ballot independence is
enforced by most technical security definitions for voting
systems that have been proposed in the computer security
and cryptography communities. However, as in the paper
voting case, it often seems to come as a side effect of the
most immediate way to specify the security properties
of a voting system, especially in the commonly adopted
simulation based security setting [5, 12, 17, 31, 32]: se-
curity definitions that would allow the submission of
non-independent ballots would definitely be more com-
plex than the current ones.

We believe it would be an interesting question to fur-
ther investigate the implications of the use of a voting
system allowing the submission of (unlinkable) copies
of ballots in terms of security and quality of the resulting
choices.

3.3 Election tallying
Once everyone agrees on the election bulletin board con-
tent (this could be made official by publishing a signed
version of its content [2]), the tallying phase starts.

At first, the validity and uniqueness of all SSA cipher-

texts included in the ballots is verified, and the embedded
homomorphic ciphertexts are extracted before entering
into the shuffling phase.

Shuffling. A verifiable reencryption mixnet [22, 24] is
made of a sequence of mix servers that each take a se-
quence of homomorphic ciphertexts as input and com-
pute a shuffled and reencrypted version of these cipher-
texts together with a proof of valid shuffling.

The computational load of a mixing server is fairly
large, compared to the work needed to produce one ballot
or to decrypt a single ciphertext: most efficient verifiable
shuffles require 6 to 8 modular exponentiations per El-
Gamal ciphertext (see Groth [19] for some performance
analyses, for instance). As a result, we need to depart
from the browser-only approach of Helios, and ask the
trustees to run the shuffle out of their browser. A Python
script is proposed to this purpose, with code portability
and simplicity in mind.

Decryption and ballot counting. Once the decryption
trustees are convinced that proper mixing happened, that
is, that the correct ballots have been mixed by a set of
shuffling trustees whose coalition is unlikely, they pro-
ceed to the decryption of the resulting ciphertexts.

Again, this task is much more intensive than the elec-
tion outcome decryption procedure in elections based on
homomorphic tallying, as we now need to decrypt all
shuffled ballots. For that reason, we propose another
Python script that can be used by each trustee to com-
pute locally their share of the decryption of each ballot,
together with the corresponding validity proofs.

Eventually, the decryption shares are gathered and
combined, allowing everyone to publicly recover the
plaintext of each individual ballot. At this point, the va-
lidity of each ballot with respect to the ballot filling rules
can be publicly verified, and the final tally computed.

4 Algorithm selection

We now describe the algorithmic choices we made for
our implementations of the above described election
workflow.

4.1 Ballot preparation

As discussed in the previous section, we need to use a
submission secure augmented cryptosystem for encrypt-
ing votes. One ciphertext is computed per question, in-
stead of one ciphertext per candidate as it is done in He-
lios 3.x.

5

4.1.1 Submission Secure Augmented cryptosystems

We recall the definition of augmented cryptosystem [32].

Definition 1. A cryptosystem CS = (Gen,Enc,Dec)
is an augmentation of a cryptosystem CSB =
(GenB,EncB,DecB) if there exists an augmentation
algorithm Aug ∈ PPT and a stripping algorithm
Strip ∈ PT such that:

1. On input 1n, Gen computes (pkB,skB) = GenB(1n)
and (pkA,skA) = AugB(pkB) and outputs (pk,sk) =
((pkA : pkB),(skA : skB)).

2. On input ((skA : skB),c), Dec outputs
DecB

skB(StrippkA,skA(c)).

The general idea for such a scheme is to choose CSB

as a standard homomorphic encryption scheme, e.g., El-
Gamal in our case, and then to augment it into an IND-
CCA2-secure cryptosystem CS in such a way that a ci-
phertext for CS can be stripped from the non-malleable
layer provided through the augmentation in such a way
that only a CSB ciphertext remains.

In order to be submission secure, an augmented cryp-
tosystem must prevent any adversary from gaining a non-
negligible advantage in a game that follows the IND-
CCA2 security game, except that the adversary is al-
lowed to interact with a series of augmentations of the
same basic private key, and to query for some augmented
private key as long as he does not perform any further de-
cryption query for that specific augmentation. We refer
to Appendix A for the precise definition of the submis-
sion security game, as it is enough for our purpose to
consider that an SSA cryptosystem is an IND-CCA2 se-
cure augmented cryptosystem.

4.1.2 Selection criteria

Various schemes could be used as SSA cryptosystems
(a list is provided by Wikström [32].) We adopted the
following selection criteria:

1. Stick as much as possible to the Helios 3.x security
model for the cryptographic primitives.

2. Give priority to efficient solutions for the client.

The security of the cryptographic primitives used in
Helios 3.x can be roughly summarized to rely on the
DDH assumption in the random oracle model: the secu-
rity of ElGamal encryption relies on the DDH problem,
while the proofs are based on the hardness of the DL
problem and on the Fiat-Shamir heuristic.

Choosing to stick to this model rules out a common
and efficient choice for an SSA cryptosystem that con-
sists in adding a Schnorr proof of knowledge [25] of the

randomness used for the ElGamal encryption. This ap-
proach of building a CCA2 secure encryption scheme has
been studied by Tsiounis and Yung [29], and by Schnorr
and Jakobsson [26], but comes at the price of either a
nonstandard extraction assumption in the first analysis,
or of considering G in the generic group model in the
second analysis (see Shoup and Gennaro [27] for dis-
cussion). It is unknown whether a new proof technique
would allow proving the security of this solution in the
random oracle model based on a standard assumption.
So, we preferred to not adopt that solution here.

Another common generic approach for building a
CCA2 secure encryption scheme from any CPA-secure
scheme is the Naor-Yung transform [21] (with thresh-
old variants discussed by Fouque and Pointcheval [16]),
which consists in encrypting a message twice with differ-
ent public keys and proving that the two ciphertexts are
encryptions of the same plaintext. While this solution
presents the advantage of being independent of the spe-
cific CPA secure scheme (i.e., it can be used for Paillier
encryption as well as ElGamal) and to satisfy our crypt-
graphic model requirements, it appeared to be possible
to use more efficient solutions.

We now describe in more details two such solutions
that we actually used in two elections.

4.1.3 A solution based on the Cramer-Shoup cryp-
tosystem.

Cramer-Shoup as an SSA cryptosystem. Wik-
ström [32] proposes a solution for input submission that
is secure in the standard model (that is, without random
oracle), based on the Cramer-Shoup cryptosystem [11].
This solution is as follows (for clarity, we only describe
the non-distributed version of the cryptosystems; the ex-
tension to the distributed setting is immediate from the
way ElGamal is distributed in Helios).

1. On input 1n, GenB selects a prime integer p such
that |p| = n, q = (p − 1)/2 is prime and p =
3 mod 4, together with independent generators g
and g0 of the subgroup G of Z∗p of order q. A colli-
sion resistant hash function H : G3×{0,1}n → Zq
is also selected. A private exponent z ∈ Zq is se-
lected, and the public group element h := gz is com-
puted. The output (pkB,skB) of GenB is then defined
as ((p,g,g0,H,h),(p,z)).

2. On input pkB := (p,g,g0,H,h), AugB selects pri-
vate exponents (x,x0,y,y0) ∈ Z4

q, and computes
the public group elements c := gxgx0

0 and d :=
gygy0

0 . The pair (pkA,skA) is then defined as
((p,c,d),(x,x0,y,y0)).

6

3. On input (pkA : pkB) := ((p,c,d),(p,g,g0,H,h)),
message m ∈ Z∗q, and public label L ∈ {0,1}n,
Enc chooses a random r ∈ Zq and computes
a Cramer-Shoup ciphertext (L,u,u0,e,v) :=
(L,gr,gr

0,m
2hr,crdrH(u,u0,e,L)).

4. On input (pkA,skA,cs) := ((p,c,d),(x,x0,y,y0),
(L,u,u0,e,v)), Strip returns (u,e) if
v = uxux0

0 (uyuy0
0)H(u,u0,e,L) or (⊥,⊥) otherwise.

5. On input (skB,eg) :=((p,z),(u,e)), DecB outputs⊥
if (u,e) = (⊥,⊥) or, otherwise, computes m′ = e/uz

and outputs the unique value in {m′
p+1

4 , p−m′
p+1

4 }
that lies between 1 and q.

It can be observed that we are considering a specific
instance of the Cramer-Shoup scheme here, which allows
the efficient encryption and decryption of messages in Z∗q
(through the message squaring and square root extraction
in Items 3 and 5.) Other choices would be possible, e.g.,
if the message space is small, one could use exponential
ElGamal as in Helios 2.x and 3.x for instance.

Using Cramer-Shoup for ballot submission. We use
the Cramer-Shoup scheme described above as follows.

First, the decryption trustees generate a Cramer-Shoup
key pair in a distributed way and submit the public key,
which is then included in the election description. Then
voters encrypt their ballots using the Election Fingerprint
as label.

Now, once the ballot submission phase is complete,
the private key skA = (x,x0,y,y0) is published, and every-
one can run the Strip algorithm on the ciphertexts pub-
lished on the bulletin board to verify the validity of the
encryptions, and verify the uniqueness of each ciphertext
inside the election. In case of non uniqueness, the most
recent ballot is declared invalid and its sender notified.

The output of the Strip algorithm is made of standard
ElGamal ciphertexts, which can then be sent to the mix
servers.

It can be observed that, as soon as skA becomes pub-
lic, everyone becomes able to execute the Strip algo-
rithm and then becomes able to rerandomize ciphertexts.
Therefore, no ballot encrypted with the (pkA : pkB) pub-
lic key can be accepted as soon as skA is disclosed.
The submission security game [32] however requires that
new augmentations ((pkA)′,(skA)′) can be built from the
same secret key skB without raising any issue. This
would allow splitting an election into different phases,
keeping the same ElGamal key during the whole process
but updating the augmentation regularly (e.g., every day)
in order to be able to perform ballot validity verifications
before the end of the election.

Performance. As multiexponentiation algorithms are
not available among the methods of the Java BigInteger
class used in Helios, an encryption takes 5 modular ex-
ponentiations to a voter. As several hundred of candi-
dates can typically be encoded into one single ciphertext,
this provides a substantial gain compared to the current
cost of 6 modular exponentiations per candidate in a He-
lios 3.1 election. We note however that the cost of these
exponentiations is not the same: the exponential encod-
ing of the voter choices used in Helios 3.1 allows work-
ing in small subgroups of Z∗p (e.g., choosing |p| = 2048
and |q| = 256), while the message encoding technique
that we are using here requires using q = (p−1)/2.

We used this scheme in an election during which we
tallied 4488 votes, which we will discuss in the next sec-
tion. For reasons presented there, we decided to search
for another efficient SSA cryptosystem that would not
need any augmented private key skA.

4.1.4 A solution based on the HTDH2 cryptosystem

Shoup and Gennaro [27] proposed the TDH2 cryptosys-
tem, which is an efficient CCA2 threshold encryption
scheme that offers security relying on the hardness of the
DDH problem in the random oracle model. While the
security guarantees offered for this scheme are weaker
than those of the Cramer-Shoup scheme, we observe that
it does not degrade the security model in which the rest
of the cryptographic algorithms used in Helios offer se-
curity.

The TDH2 scheme however cannot be immediately
used for our purpose, as it is based on the Hash-ElGamal
cryptosystem, which is not homomorphic. More pre-
cisely, the basic ciphertexts have the form (gr,m ⊕
H(hr)), where the hash function H is modeled as a ran-
dom oracle. This scheme can however be modified to
use standard ElGamal encryption instead, while remain-
ing secure in the same security model.

We call that variant the HTDH2 scheme, where the
initial “H” emphasizes the presence of a homomorphic
embedded encryption scheme. As far as we know, this
is the most efficient SSA (or IND-CCA2) cryptosystem
that is based on a homomorphic basic cryptosystem, of-
fers security under standard computational assumptions
(DDH in our case) in the random oracle model, and does
not require a private key augmentation skA.

We describe the HTDH2 scheme as follows.

1. On input 1n, GenB selects integers p and q, z,
generators g and g0, and computes h as in the
Cramer-Shoup scheme. A collision resistant hash
function is also selected: H : G5 ×{0,1}n → Zq.
The output (pkB,skB) of GenB is then defined as
((p,g,g0,H,h),(p,z)).

7

2. On input pkB, AugB outputs is the pair (pkA,skA) =
((p,g,g0),⊥).

3. On input (pkA : pkB) := ((p,g,g0),(p,g,g0,H,h)),
m ∈ Z∗q, and L ∈ {0,1}n, Enc selects
a random pair (r,s) ∈ Z2

q and com-
putes the ciphertext (L,u,e,u0,c, f) :=
(L,gr,m2hr,gr

0,H(u,e,w,u0,w0,L),s + rc) where
w := gs and w0 = gs

0.

4. On input (pkA,skA, tdh) := ((p,g,g0),⊥,
(L,u,e,u0,c, f)), Strip computes w := g f /uc

and w0 := g f
0/uc

0 and returns (u,e) if
c = H(u,e,w,u0,w0,L) or (⊥,⊥) otherwise.

5. DecB works as above.

The SSA security of this scheme is shown in Ap-
pendix B.

Using the HTDH2 scheme for ballot submission.
The HTDH2 scheme can be used essentially in the same
way as Cramer-Shoup. Important differences appear
though, through the fact that no skA key is needed. In-
deed, in that case, the Strip algorithm does not need any
private input, with the implication that the validity of a
ciphertext can be verified as soon as a ciphertext has been
submitted and not when the ballot submission phase is
complete. This simplifies the election workflow substan-
tially, as will be discussed in the next section.

From a performance point of view, the cost of a
HTDH2 encryption is similar to the one of a Cramer-
Shoup encryption, being dominated by the 5 modular ex-
ponentiations.

We used this scheme in an election during which we
tallied 3951 ballots, which we will also discuss in the
next section.

4.2 Ballot shuffling

We use the proof of shuffle recently proposed by Terelius
and Wikström [28, 33]. This choice was motivated by
the conceptual simplicity of the proposed proofs (even
though proofs of shuffle are remarkably complex algo-
rithms), by the performance of their solution, and by the
presumed absence of patents that could restrict the use of
this solution.

The task of each mix server can be separated into two
components.

1. Each mix server first selects a random permutation
and publishes a commitment on that permutation,
together with a proof that it knows an opening of
the commitment that actually is a permutation.

2. Then, each mix server reencrypts and shuffles the
input ciphertexts using the committed permutation,
and provides a proof that the shuffle is consistent
with that committed permutation.

The first step is the most computationally intensive
one and is independent of the actual ballots to be shuf-
fled. This suggests realizing it as part of a precomputa-
tion stage, in order to be able to complete the proof of
shuffle much faster when the actual ciphertexts become
available.

However, it requires the shuffling trustees to proceed
in two steps, between which a secret permutation needs
to be stored. As this would actually increase the com-
plexity of the tallying procedure, we rather decided to
not separate the two components of the proof, and per-
form them in one step.

Implementation. We do not provide a full description
of this shuffle but instead refer the reader to the original
papers. While being fairly complex, the proof of shuffle
itself takes less than 200 lines of Python code.

Our implementation relies on the Python Cryptogra-
phy Toolkit1 for pooling secure randomness, and on the
gmpy2 wrapper for multiprecision arithmetic. Both are
widely available Python extensions.

The efficiently of our code is reasonable for our pur-
pose, as it allows shuffling around 25 ballots per second
using a single processor thread on a standard laptop, us-
ing a prime modulus p of 2048 bits.

Verificatum. Wikström proposes a very complete and
much more efficient implementation of the same algo-
rithms as part of the Verificatum library [30]. This im-
plementation has been written in Java, but also includes
a Modular Exponentiation Extension of the GMP library
(GMPMEE) that speeds up several operations in Verifi-
catum.

While Verificatum would be extremely useful for large
elections, we believe that our simple Python script offers
more portability and simplicity, and is easier to audit,
while being efficient enough for elections requiring the
shuffle of a few thousand ciphertexts.

4.3 Comparison with Helios 1.0

Helios 1.0 [1] already implemented an election proce-
dure using mixnets for tallying. The algorithms and elec-
tion workflow chosen there had been mainly selected for
simplicity and ease of education.

1http://www.pycrypto.org/
2http://www.gmpy.org/

8

In particular, in order to simplify the election proce-
dure, the Helios server was in charge of all privacy re-
lated aspects: (i) it selected the ElGamal key pair used to
encrypt the ballots; (ii) it was mixing the ballots; (iii) it
was decrypting the mixed ballots.

This placed a large amount of trust in the voting server,
but also avoided the questions of trustees that we had to
take care of.

Besides, in order to make the proof of shuffle easier to
explain, the Sako-Kilian [24] proof of shuffle was imple-
mented. This solution is quite inefficient compared to the
solution we adopted, and was reported to require around
20 seconds per ballot [1], using an older computer but
also smaller security parameters (|p| = 1024.) This so-
lution would have been unpractical for the elections we
will describe now.

5 Experiences with mixnet-based elections

We experimented with the election procedures described
in this paper during two elections, one using the Cramer-
Shoup cryptosystem as described in Section 4.1.3 and the
other using the HTDH2 cryptosystem described in Sec-
tion 4.1.4. We now report on these two experiences.

5.1 Election description

Student elections. The two elections we organized
were university student elections, with around 25000 po-
tential voters each, with different races: all students were
entitled to vote for representatives in the general student
council, but also to vote for representatives to the faculty
council in each of the faculty in which they are registered
(student pursuing several degrees concurrently in differ-
ent faculties were allowed to vote for the faculty council
of each of these faculties).

The ballots of these races were particularly large: the
candidates were organized in lists, some of these lists
counting 127 candidates with up to 259 candidates on
a single ballot. Voters were allowed to select as many
candidates as they wanted as long as they selected them
inside a single list. The size of the ballots was the techni-
cal motivation to use mixnet-based tallying in these elec-
tions.

Electronic and paper voting. The elections were or-
ganized in two steps. First, during four days (including a
weekend), students were allowed to vote electronically.
Then, during the next two days, standard paper voting
took place. One of the key motivations for the use of
electronic voting was to enable students in exchange pro-
grams or doing internships to vote without needing to be
on campus. It was however decided to maintain paper

voting days in order to be able to organize voting desks
in the main hall of each faculty of the university, allow-
ing to prompt walking students to vote immediately: pa-
per voting enables a large number of votes to be collected
in parallel at the same public place (e.g., at the end of a
class) without needing to install a large number of com-
puters.

In order to prevent double voting, voter lists were
printed at the end of the electronic voting phase with a
clear mark indicating who voted already.

We actually decided to take benefit of these paper vot-
ing days as a period of audit for the bulletin board: the
students who voted electronically were allowed to re-
quest to vote by paper by submitting a signed document
demanding the cancellation of their electronic vote. This
was made possible thanks to the fact that Helios keeps
track, through the web bulletin board, of the link between
the identity of the voters and their encrypted vote. So,
cancellation of electronic votes was made visible to ev-
eryone on the bulletin board, but was done only when
the election commission held a document proving that
the cancellation was performed by request of the voter.

Implementation architecture. The electronic voting
system was hosted on a standard Debian server inside
the university infrastructure. The computational load re-
mained extremely limited on the server during the whole
election.

Authentication of the voters was performed using the
standard login and passwords used by the students to ac-
cess the university web portal, as well as with their stu-
dent card number.

The election URL was widely advertised through dif-
ferent channels (other websites, emails, public display
on the campus, . . .) and the voting server authentication
was strengthened through DNSSEC. The security of the
server itself was improved through various security hard-
ening techniques, and no substantial hacking attempt has
been detected during the elections.

Tallying procedure The task of shuffling the ballots
was devoted to three shuffling trustees. Besides, as for
other elections [2], six decryption trustees were desig-
nated to generate and hold the private election keys even-
tually used to decrypt the shuffled ballots. Three keys
were generated independently of each other and held by
two trustees each. This procedure was preferred to a fully
threshold procedure as it simplified the organisational
matters: each pair of trustee was allowed to produce their
key at any time and in one step, while a threshold proce-
dure would require more than one round and some level
of synchronization.

After verification of the validity and uniqueness of
all ciphertexts, the ballots were gathered on the voting

9

server in a single tarball. The shuffling trustee then, se-
quentially, downloaded the ballots, computed the ver-
ifiable shuffle, and uploaded the resulting ballots and
proofs to the voting server. Each shuffling trustee ver-
ified the proofs provided by the other trustees.

The decryption trustees proceeded in a similar way:
they each downloaded the tarball containing the last
shuffled ballots, computed the decryption and decryp-
tion proofs locally, and uploaded the result on the vot-
ing server. That phase was much faster than the previous
one, as the computational load was smaller and, more im-
portantly, because all the work was performed in parallel
without any synchronization.

The decryption proofs were eventually verified and the
election outcome computed and published. That out-
come was also transmitted to the team in charge of coor-
dinating the paper tally for integration with their results.

5.2 Election statistics
The following number of votes were tallied during the
two elections:

Election 1 Election 2
Electronic 4488 3951
Paper 2564 3016

The difference in the repartition of the votes between
the two polling mechanisms in the two elections seemed
to follow the level of advertising activity exercised by
the students organizing the election. A graph displaying
the evolution of the number of collected electronic votes
with time is shown in Figure 1. The strong increase in
the voting rate that followed the advertising performed
during the last 8 hours of the electronic election can be
observed easily.

Figure 1: Evolution of the number of votes submitted
during the four electronic voting days of the second elec-
tion.

Very few voters requested the cancellation of their
electronic vote: 4 ballots were canceled during the sec-
ond election. Each time, the motivation of the voter was
to be able to change his/her mind about the candidates
(s)he wanted to support rather than the conviction of a
failure of the voting system.

During the two elections, all submitted ballots were
declared valid, that is, the Strip algorithm always suc-
ceeded, no duplicate ciphertexts were submitted, and the
decrypted ballots were all valid. This contrasts with the
paper elections, during which a few dozen of ballots were
declared invalid due to violation of the ballot filling rules.

5.3 Lessons from election days

Mixnets vs. homomorphic tallying. Running a
mixnet-based tallying showed to be remarkably more
challenging than computing a homomorphic tally, which
can be expected from the comparison of the two tallying
procedures.

The tallying procedure of both elections took a few
hours, even though the tallying of the second election
went much faster for reasons we describe below. Most
of this time was actually not used by computation, as
we expected, but by organizational matters: setting up
the trustee’s machines, transferring data in a reliable
way, making sure to not break the confidentiality of the
keys, . . .

It would be highly desirable to make the tallying pro-
cedure faster, as its length increases the risks of errors
in the manipulation of sensitive data, but also because
voters expect that an electronic tally, being automated,
would require a matter of seconds.

Cramer-Shoup vs. HTDH2. The motivation for
the adoption of the HTDH2 cryptosystem rather than
Cramer-Shoup in the second election was to simplify the
audit and tallying procedures.

At first, it allowed verifying the validity and indepen-
dence of the ballots as soon as they were submitted and
not after the release of private key augmentation skA.
This is much more convenient as it allows resolving any
potential conflict on that matter immediately during the
ballot submission phase rather than during the tallying
phase.

It also removed the steps needed to open and publish
the shares of skA held by the trustees, which were needed
to check the validity of the ballots. Simplifying the role
of the trustees showed to be very useful too.

Student survey. Students were invited to complete an
online survey after the election. 158 responses were col-
lected.

97% of the responses came from students who voted,
and 95% of them actually voted electronically. We sup-
pose that this bias comes from the form of the survey: we
can imagine that students accepting to fill an electronic
survey are more likely to also be willing to fill a ballot
electronically.

10

58% of the responders report having verified the pres-
ence of their ballot on the web bulletin board. Among
them, 89% did so immediately after submitting their bal-
lot, while only 7% did another verification later. While
this second proportion is much lower, it still appears to
be high enough to provide strong confidence in the cor-
rectness of the bulletin board.

On asking whether an electronic only voting solution,
a paper only voting solution, or a mixed voting solution
should be kept, 23% of the responses supported elec-
tronic only voting, 1% supported paper only voting, and
77% supported the mixed solution. This last solution is
the one the student committees decided to keep for the
next years.

6 Conclusion

Mixnet-based tallying shows to be very useful for the or-
ganization of elections as soon as the number of candi-
dates increases, or when the ballot filling rules become
too esoteric to enable efficient zero-knowledge validity
proofs.

Our experiences convinced us however that it is desir-
able to stick to homomorphic tallying techniques as long
as they are feasible, as a mixnet-based tallying is substan-
tially more complex and delicate to organize properly.

As part of an ongoing effort to improve the modularity
of Helios, which started with the 3.1 release, we plan to
integrate our mixnet workflow and algorithms into the
Helios trunk, which would then offer the possibility to
choose between homomorphic or mixnet-based tallying
according to the specific needs of each election.

In order to be able to benefit of the performances of
the Verificatum library, we also plan to build an inter-
face that will allow converting the format of our Helios-
style ElGamal ciphertexts into a data format that could
be managed by Verificatum. This would also provide
two independent implementations of the same proof of
shuffle, relying on mostly independent software stacks
(up to the GMP library).

Acknowledgements

We thank Ben Adida, Benoı̂t Libert, and Douglas Wik-
ström for many interesting interactions on the integration
of mixnet-based election into Helios, on the TDH2 cryp-
tosystem, and on the proof of shuffle in the Verificatum
library.

We are also very grateful to David Bernhard,
Véronique Cortier, Ben Smyth, and Bogdan Warinschi
for our discussions on ballot independence and tech-
niques to enforce it.

We really thank the anonymous EVT/WOTE referees
for their numerous comments and sugguestions, which
helped improving this document.

This work was partially supported by the Interuniver-
sity Attraction Pole P6/26 BCRYPT. Olivier Pereira is
a research associate of the Belgian Funds for Scientific
Research F.R.S.–FNRS.

References
[1] ADIDA, B. Helios: web-based open-audit voting. In SS’08: Pro-

ceedings of the 17th conference on Security symposium (Berke-
ley, CA, USA, 2008), USENIX Association, pp. 335–348.

[2] ADIDA, B., DE MARNEFFE, O., PEREIRA, O., AND
QUISQUATER, J.-J. Electing a University President Using Open-
Audit Voting: Analysis of Real-World Use of Helios. In Elec-
tronic Voting Technology Workshop/Workshop on Trustworthy
Elections (Aug. 2009), T. M. D. Jefferson, J.L. Hall, Ed., Usenix.

[3] BELLARE, M., AND ROGAWAY, P. Random oracles are practical:
A paradigm for designing efficient protocols. In ACM Conference
on Computer and Communications Security (1993), pp. 62–73.

[4] BEN-OR, M., AND LINIAL, N. Collective coin flipping, robust
voting schemes and minima of banzhaf values. In 26th Annual
Symposium on Foundations of Computer Science (1985), IEEE,
pp. 408–416.

[5] BENALOH, J. Verifiable Secret-Ballot Elections. PhD thesis, Yale
University, jan 1987.

[6] BENALOH, J. Simple verifiable elections. In Proceedings of the
USENIX/Accurate Electronic Voting Technology Workshop 2006
on Electronic Voting Technology Workshop (Berkeley, CA, USA,
2006), USENIX Association.

[7] CHAUM, D. Untraceable electronic mail, return addresses, and
digital pseudonyms. Commun. ACM 24, 2 (1981), 84–88.

[8] COHEN, J. D., AND FISCHER, M. J. A robust and verifiable
cryptographically secure election scheme (extended abstract). In
26th Annual Symposium on Foundations of Computer Science
(1985), IEEE, pp. 372–382.

[9] CORTIER, V., AND SMYTH, B. Attacking and fixing helios:
An analysis of ballot secrecy. In Proceedings of the 24th IEEE
Computer Security Foundations Symposium (CSF’11) (jun 2011),
IEEE.

[10] CRAMER, R., GENNARO, R., AND SCHOENMAKERS, B. A
secure and optimally efficient multi-authority election scheme.
In Advances in Cryptology - EUROCRYPT ’97 (1997), W. Fumy,
Ed., vol. 1233 of Lecture Notes in Computer Science, Springer,
pp. 103–118.

[11] CRAMER, R., AND SHOUP, V. A practical public key cryptosys-
tem provably secure against adaptive chosen ciphertext attack.
In Advances in Cryptology - CRYPTO ’98 (1998), H. Krawczyk,
Ed., vol. 1462 of Lecture Notes in Computer Science, Springer,
pp. 13–25.

[12] DE MARNEFFE, O., PEREIRA, O., AND QUISQUATER, J.-J.
Simulation-based analysis of e2e voting systems. In Proceed-
ings of the First Conference on E-Voting and Identity (VOTE-ID
2007) (Oct. 2007), A. Alkasar and M. Volkamer, Eds., no. 4896
in LNCS, Springer, pp. 137–149.

[13] ESTEHGHARI, S., AND DESMEDT, Y. Exploiting the client vul-
nerabilities in internet e-voting systems: Hacking helios 2.0 as an
example. In Electronic Voting Technology Workshop/ Workshop
on Trustworthy Elections (EVT/WOTE ’10) (2010), D. Jones, J.-J.
Quisquater, and E. Rescorla, Eds., USENIX.

11

[14] Recommendation rec(2004)11 of the committee of ministers
to member states on legal, operational and technical standards
for e-voting. https://wcd.coe.int/wcd/ViewDoc.jsp?id=
778189&Site=CM.

[15] FIAT, A., AND SHAMIR, A. How to prove yourself: Practical
solutions to identification and signature problems. In Advances in
Cryptology - CRYPTO ’86 (1986), A. M. Odlyzko, Ed., vol. 263
of Lecture Notes in Computer Science, Springer, pp. 186–194.

[16] FOUQUE, P.-A., AND POINTCHEVAL, D. Threshold cryptosys-
tems secure against chosen-ciphertext attacks. In Advances in
Cryptology - ASIACRYPT 2001 (2001), C. Boyd, Ed., vol. 2248
of Lecture Notes in Computer Science, Springer, pp. 351–368.

[17] GROTH, J. Evaluating security of voting schemes in the universal
composability framework. In Applied Cryptography and Network
Security, ACNS (2004), M. Jakobsson, M. Yung, and J. Zhou,
Eds., vol. 3089 of Lecture Notes in Computer Science, Springer,
pp. 46–60.

[18] GROTH, J. Non-interactive zero-knowledge arguments for vot-
ing. In Applied Cryptography and Network Security (2005),
J. Ioannidis, A. D. Keromytis, and M. Yung, Eds., vol. 3531 of
LNCS, pp. 467–482.

[19] GROTH, J. A verifiable secret shuffle of homomorphic encryp-
tions. Journal of Cryptology 23, 4 (2010), 546–579.

[20] HIRT, M. Multi-Party Computation: Efficient Protocols, Gen-
eral Adversaries, and Voting. PhD thesis, ETH Zurich, Sept.
2001. Reprint as vol. 3 of ETH Series in Information Security
and Cryptography, ISBN 3-89649-747-2, Hartung-Gorre Verlag,
Konstanz, 2001.

[21] NAOR, M., AND YUNG, M. Public-key cryptosystems provably
secure against chosen ciphertext attacks. In Proceedings of the
Twenty Second Annual ACM Symposium on Theory of Computing
(1990), ACM, pp. 427–437.

[22] PARK, C., ITOH, K., AND KUROSAWA, K. Efficient anonymous
channel and all/nothing election scheme. In Advances in Cryp-
tology - EUROCRYPT ’93 (1994), T. Helleseth, Ed., vol. 765 of
Lecture Notes in Computer Science, Springer, pp. 248–259.

[23] PFITZMANN, B., AND PFITZMANN, A. How to break the di-
rect rsa-implementation of mixes. In Advances in Cryptology
- EUROCRYPT ’89 (1989), J.-J. Quisquater and J. Vandewalle,
Eds., vol. 434 of Lecture Notes in Computer Science, Springer,
pp. 373–381.

[24] SAKO, K., AND KILIAN, J. Receipt-free mix-type voting scheme
- a practical solution to the implementation of a voting booth. In
Advances in Cryptology - EUROCRYPT ’95 (1995), L. C. Guillou
and J.-J. Quisquater, Eds., vol. 921 of LNCS, Springer, pp. 393–
403.

[25] SCHNORR, C.-P. Efficient identification and signatures for
smart cards. In Advances in Cryptology - CRYPTO ’89 (1989),
G. Brassard, Ed., vol. 435 of Lecture Notes in Computer Science,
Springer, pp. 239–252.

[26] SCHNORR, C.-P., AND JAKOBSSON, M. Security of signed el-
gamal encryption. In Advances in Cryptology - ASIACRYPT 2000
(2000), T. Okamoto, Ed., vol. 1976 of Lecture Notes in Computer
Science, Springer, pp. 73–89.

[27] SHOUP, V., AND GENNARO, R. Securing threshold cryptosys-
tems against chosen ciphertext attack. J. Cryptology 15, 2 (2002),
75–96.

[28] TERELIUS, B., AND WIKSTRÖM, D. Proofs of restricted shuf-
fles. In Progress in Cryptology - AFRICACRYPT 2010 (2010),
D. J. Bernstein and T. Lange, Eds., vol. 6055 of Lecture Notes in
Computer Science, Springer, pp. 100–113.

[29] TSIOUNIS, Y., AND YUNG, M. On the security of elgamal
based encryption. In Public Key Cryptography, First Interna-
tional Workshop on Practice and Theory in Public Key Cryptog-
raphy, PKC ’98 (1998), H. Imai and Y. Zheng, Eds., vol. 1431 of
Lecture Notes in Computer Science, Springer, pp. 117–134.

[30] WIKSTRÖM, D. Verificatum. http://www.verificatum.

com.

[31] WIKSTRÖM, D. A universally composable mix-net. In Theory of
Cryptography (2004), M. Naor, Ed., vol. 2951 of Lecture Notes
in Computer Science, Springer, pp. 317–335.

[32] WIKSTRÖM, D. Simplified submission of inputs to protocols.
In Security and Cryptography for Networks, 6th International
Conference (2008), R. Ostrovsky, R. D. Prisco, and I. Visconti,
Eds., vol. 5229 of Lecture Notes in Computer Science, Springer,
pp. 293–308.

[33] WIKSTRÖM, D. A commitment-consistent proof of a shuffle. In
Information Security and Privacy – ACISP (2009), C. Boyd and
J. M. G. Nieto, Eds., vol. 5594 of Lecture Notes in Computer
Science, Springer, pp. 407–421.

[34] WOLKAMER, M. Evaluation of Electronic Voting, vol. 30 of Lec-
ture Notes in Business Information Processing. Springer, 2009.

A Submission Security

We provide the submission security definition from Wik-
ström [32].

In the submission security game, the adversary is
given a public key pkB of the basic cryptosystem. It can
request that the experiment generates a fresh augmenta-
tion (pkA

j ,skA
j) = Aug(pkB), stores (pk j,sk j) = ((pkA

j :
pkB),(skA

j ,skB)), and returns pk j = (pkA
j : pkB) to the

adversary. This is done by submitting the integer j to
its pkA

(·)-oracle. Any subsequent identical queries on j
give the same pk j. It can ask decryption queries. This
is done by submitting an index and ciphertext pair (j,c)
to its Decsk(·)(·)-oracle. It can request that the experi-
ment reveals an augmentation skA

j by submitting j to its
skA

(·)-oracle, but after such a query no more decryption
queries of the form (j,c) for some ciphertext c are al-
lowed. Then the adversary must chose an index i and
two challenge messages m0 and m1. The game is param-
eterized by a bit b and returns a challenge ciphertext of
the form c′ = Encpki(mb). The adversary is then again
allowed to: ask for more fresh public keys, ask more
decryption queries with the exception of decryption of
(i,c′), and request more augmentations. Finally, it out-
puts a guess b′ of b. If the cryptosystem is submission se-
cure, then the difference in distributions of b′ with b = 0
or b = 1 respectively should be negligible.

This game is summarized below.

12

Submission Security Experiment Expsub−b
CS,CSB,A

(n).

(pkB,skB) ← GenB(1n)

(pkA
j ,skA

j) ← Aug(pkB) for j = 1,2,3, . . .

(pk j,sk j) ← ((pkA
j : pkB),(skA

j : skB))

(i,m0,m1,st) ← A
pkA

(·),skA
(·),Decsk(·)(·)(choose, pkB)

c′ ← Encpki(mb)

d ← A
pkA

(·),skA
(·),Decsk(·)(·)(guess,st)

Definition 2 (Submission Security). An augmentation
CS of CSB is said to be submission secure if ∀A ∈ PT∗:
|Pr[Expsub−0

CS,CSB,A
(n) = 1]−Pr[Expsub−1

CS,CSB,A
(n) = 1]| is neg-

ligible.

B Security of the HTDH2 scheme

The submission security of the HTDH2 cryptosystem
follows from its IND-CCA2 security, as its augmentation
does not involve any secret value.

Therefore, we show the following result.

Theorem 1. In the random oracle model, the HTDH2
augmented cryptosystem is IND-CCA2 secure assuming
that the DDH problem is hard in the underlying group G.

Proof. The proof is organized as a sequence of games,
the first of which being the IND-CCA2 game, and the
last being such that the adversary is not left with any ad-
vantage.
GAME 1. This is the traditional IND-CCA2 game. The
adversary Adv receives a HTDH2 public key and can
query a decryption oracle. It then makes a challenge
query including a label l′ and two messages m0,m1. The
challenger answers this query with a challenge cipher-
text (l′,u′,e′,u′0,c

′, f ′) that is an encryption of mb, where
b is a random bit chosen by the challenger. Adv can keep
accessing the decryption oracle, as long as he does not
query it on the challenge ciphertext. Eventually, Adv
outputs a bit b′. The advantage of this adversary is then
defined as |Pr[b = b′]− 1/2|. We show that this quan-
tity is negligible by defining a sequence of other games
such that the advantage of Adv between two consecutive
games only changes by a negligible quantity and the ad-
vantage of Adv in the last game is 0.
GAME 2. This game is identical to the previous one ex-
cept that the experiment is aborted if Adv makes a ran-
dom oracle query on a message that contains u′ before
the challenge query happened.

Since u′ is independent of Adv’s view until the chal-
lenge query happened, this restriction can only make a

difference if Adv guesses u′, which happens with negli-
gible probability.
GAME 3. Observing that c′ and f ′ form a standard NIZK
proof that logg(u) = logg0

(u0), we define this game to be
identical to the previous one, except that the elements c′

and f ′ are now computed by running the proof simulator
and patching the random oracle H adequately, that is, c′

and f ′ are chosen at random and H is patched in such a
way that H(u′,e′,g f ′/uc′ ,u′0,g

f ′
0 /uc′

0 , l
′) = c′. This patch

can always be done thanks to the restriction introduced
in the previous game, and the resulting view of Adv is
indistinguishable of the previous one thanks to the ZK
property of the DL equality proof.
GAME 4. This game is identical to the previous one, ex-
cept that, in the key generation procedure, the challenger
chooses a random value t ∈ Zq and sets g0 = ht instead
of choosing g0 as a random generator of G independent
of g.

This change does not make any difference in the view
of Adv.
GAME 5. This game is identical to the previous one,
except for the following change in the way the challenger
answers decryption queries:
a. On decryption queries on ciphertexts that contain the

elements (u′,u′0), answer as per the specification of
the decryption algorithm.

b. On decryption queries on ciphertexts that do not con-
tain these elements, compute m′ as e/u1/t

0 instead of
e/uz.

This does not make any difference for Adv, except if he
is able to produce a fake DL equality proof by himself,
which would contradict the soundness of the proof.
GAME 6. This game is identical to the previous one,
except that a random element s∈Zq is now selected, and
e′ is computed as m2

bhs while u′0 is computed as gs
0.

We show that an adversary who would have an ad-
vantage in distinguishing this game from the previous
one would have the same advantage in solving the DDH
problem in G.

To this purpose, we build a DDH distinguisher that
receives a challenge (α,β ,γ) with respect to base g (that
is, α = ga, β = gb and γ is either equal to gab or is a
random group element), which he uses as follows: (i) h
is set to α , (ii) u′ is set to β , (iii) e′ is set to m2

bγ , (iv) u′0
is set to γ t , and (v) all other variables are computed as
in Game 5. It can now be observed that, if (α,β ,γ) is a
DH triple, then the view of Adv is exactly as in Game 5
while, if (α,β ,γ) is a random triple, the view of Adv is
exactly as in Game 6. As a result, an adversary who can
make a difference between these two games is also able
to solve the DDH problem with the same probability.

To sum up, the challenge ciphertext now looks as:
(l′,u′ = gr,e′ = m2

bhs,u′0 = gs
0,c
′, f ′), where r,s,c′ and f ′

13

are chosen at random. We can also observe that the re-
lation logg(u

′) = logg0
(u′0) does not hold in general any-

more, even though Adv can verify that the corresponding
proof still holds (this comes from the change in Game 3).

GAME 7. This game is identical to the previous one,
except that the experiment now aborts if A makes a de-
cryption query on a ciphertext (L,u,e,u0,c, f) such that
u = u′, u0 = u′0 and the ciphertext validity proof checks.

We show that this change will actually cause an abort
if the adversary is able to solve the DL problem in G. To
this purpose, we make the following observations:

(i) The decryption query must have been made after
the challenge query, or the experiment would have
been aborted as in Game 2.

(ii) (l,e,c, f) 6= (l′,e′,c′, f ′), or the query would be in-
valid.

(iii) If (c, f) = (c′, f ′) then e 6= e′ or l 6= l′ and the adver-
sary must therefore have been able to forge a proof
that logg(u

′) = logg0
(u′0) even though this relation

does not hold with overwhelming probability, and
using a random oracle query different (thanks to e
or l) from the one resulting from the computation
of the challenge ciphertext. The probability that the
random oracle query provides an answer that makes
a valid proof is 1/q.

(iv) If (c, f) 6= (c′, f ′), then (w,w0) 6= (w′,w′0). Indeed,
if any of the two elements of the pair are equal
(say, w = w′), then Adv could be used to com-
pute two pairs (c, f) and (c′, f ′) such that g f u−c =

g f ′u−c′ , from which one can compute logg(u) =
(f − f ′)/(c− c′). Now, the differences of the w
values allows using the same argument as above.

GAME 8. This game is the same as the previous one,
except that the challenger now computes e′ as a random
group element. It is clear that, in this case, the advantage
of Adv must be null as its view is independent of the bit
b.

We again show that an adversary who would have an
advantage in distinguishing this game from the previous
one would have the same advantage in solving the DDH
problem in G.

To this purpose, we build a DDH distinguisher that re-
ceives a challenge (α,β ,γ) with respect to base g, which
he uses as follows: (i) a random element t ∈ Zq is se-
lected, (ii) g0 is set to α t , (iii) h is set to gt , (iv) e′ is set
to m2

bβ , (v) u is selected at random, (vi) u′0 is set to γ ,
(vii) all other variables are computed as in Game 5. This
distinguisher is able to answer all decryption queries by
using the secret t, as in the original scheme. This makes
a difference with the previous game only if he has to an-
swer a decryption query containing an invalid DL equal-
ity proof, which is ruled out by the proof soundness prop-
erty and the abort condition from the previous game.

We now observe that, if (α,β ,γ) is a DH triple, then
the view of Adv is exactly as in Game 7 and, if (α,β ,γ)
is a random triple, then the view of Adv is exactly as in
Game 8 since β becomes an independent random group
element.

14

