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Abstract

Existing optical scan voting systems depend on the in-
tegrity of the scanner. If a compromised — or merely
faulty — scanner reports incorrect results, there is no
ready mechanism for detecting errors. While methods
exist for ameliorating these risks, none of them are en-
tirely satisfactory. We propose an alternative: a radically
open system in which any observer can simultaneously
and independently count the ballots for himself. Our ap-
proach, called OpenScan, combines digital video record-
ings of ballot sheet feeding with computer vision tech-
niques to allow any observer with a video camera to ob-
tain a series of ballot images that he can then process
with ordinary optical scan counting software. Prelim-
inary experimental results indicate that OpenScan pro-
duces accurate results at a manageable cost of around
$1000 in hardware plus $0.0010 per ballot counted.

1 Introduction

Optically scanned paper ballots are widely regarded by
computer scientists as the most secure voting technol-
ogy [11, 24] in common use. However, while in theory
paper ballots are verifiable the reality is quite different;
the actual ballot scanning and tabulating is performed by
machines and there is no straightforward way for voters
to verify that those machines are performing correctly.

The current “gold standard” approach for verifying the
ballot scanning process is to perform a manual audit:
once the ballots are scanned and subtotals have been pub-
lished, a random sample of ballot batches are selected,
hand-counted, and compared to the subtotals. In a “risk-
limiting” audit [1] additional batches are counted until
either all the ballots have been hand counted or there is
strong statistical evidence that a full hand count would
not change the winner of the contest. Because the audit
is performed publicly, educated observers can convince
themselves that the original tabulation was correct (or
more properly, that a hand count would not change the
outcome.) Unfortunately, existing batch-based auditing
techniques are highly inefficient: the most efficient tech-
nique, described by Stark, [21], can easily require count-
ing over 10% of ballots to confirm even a very lopsided

victory in an election of moderate size1 at weak risk lim-
its [20]. Single-ballot techniques [14, 6] have been pro-
posed and are far more efficient, but suffer from a number
of practical difficulties involving chain of custody and
ballot selection (see, for instance, Sturton et al. [22].)
An additional difficulty with risk-limiting auditing tech-
niques is that they require significant statistical sophis-
tication, so it is not obvious to the layman that even a
successful audit confirms the reported result. (A trusted
third party could verify that the statistical computation is
carried out correctly, but not necessarily the randomness
by which audited precincts are chosen [9, 7].)

An alternative approach, recently demonstrated by the
Humboldt Election Transparency Project,2 is to rescan
all the ballots with an independent scanner, and then
publish the scanned images. Third parties can indepen-
dently process the images (either manually or via optical
scanning software) and compare their results to the re-
ported subtotals. Unfortunately, rescanning approaches
do not provide a comparable level of third party veri-
fiability to audits because outsiders must trust the res-
canning process, which — even it is performed indepen-
dently — cannot be directly verified [18]. Third party
verifiability requires performing a manual audit process
to compare the rescanned records against the paper bal-
lot records, thus negating the transparency and efficiency
gains that rescanning is supposed to provide.

We consider a different approach, one that allows for
an arbitrary number of third parties to simultaneously in-
dependently scan and tabulate the ballots, thus providing
full third-party verifiability with minimal manual inter-
vention. In this third approach, election officials allow
observers to set up their own video cameras and then
briefly display each ballot so it can be recorded. The
observers can then use computer vision software to scan
and count the ballots and even produce ballot images
suitable as input to traditional optical scan software.

The idea for such a camera-based scanning system was
first proposed by Anwar Adi in 2006, though we were

1Say, 50,000 to 100,000 votes. The median number of votes cast for
President in the 2008 general election in a California county is 71,779,
based on data from http://www.sos.ca.gov/elections/
sov/2008_general/.

2Online: http://www.humtp.org/. Last visited 16 April
2010.
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unaware of Adi’s proposal when developing our system
(see Section 1.2 for discussion of related work). In this
paper, we describe the OpenScan system, which imple-
ments and extends Adi’s idea to provide a system that is
fully automated, practical for use in real-world elections
with low error rates, and that separates ballot image re-
construction from counting, thereby increasing election
transparency beyond what was envisioned by Adi.

1.1 The OpenScan System

In a conventional optical scan system, only election offi-
cials are able to directly observe ballot contents. Even if
election officials publish complete ballot images or cast
vote records (CVRs), voters must trust that those im-
ages accurately reflect the ballots. The Humboldt ETP
partially ameliorates this limitation by providing a sin-
gle additional set of images that is quasi-independently
generated (the ETP staff have a special relationship with
the registrar of voters). Clearly, however, this approach
cannot scale to an arbitrary number of observers. Each
new scan requires passing every ballot through yet an-
other optical scanner and potentially damages the bal-
lots, as well as presenting serious ballot custody issues.
What is needed is a mechanism for allowing multiple ob-
servers to scan the ballots in parallel. However, this is
not practical with commodity optical scanners, which re-
quire physical contact with the ballots.

A fundamental insight, due to Anwar Adi (see Sec-
tion 1.2), is that fast, accurate ballot scanning is possi-
ble without using a conventional optical scanner. High
resolution digital video cameras are readily available, in-
expensive, and capture images of sufficiently high qual-
ity to use for ballot interpretation. If election officials
allow observers to capture digital video of cast ballots,
then the observers can use computer vision software of
their choice to process the video to scan and count the
recorded ballots. Several observers can participate si-
multaneously, each using her own video camera. Al-
though at most one of these cameras can observe the
ballots from an ideal angle, we show that computer vi-
sion techniques can be used to account for perspective
and other distortion in the observed ballots, transform-
ing the captured images so that they are rectangular. The
entire system can be automated, including isolating im-
ages of each individual ballot, transforming the images
so that they are rectangular, and processing them for bal-
lot markings, with the result being tabulatable CVRs.
Our OpenScan system is a proof-of-concept of such a
camera-based scanning system for use in US-style real-
world elections. OpenScan produces rectified ballot im-
ages from a video stream and feeds these images to Mitch
Trachtenberg’s Ballot Browser software for interpreta-
tion.

Because the observers are able to run software and
hardware of their choice, the need to trust third parties
is significantly reduced. In particular, there is no need
to trust equipment provided by election officials. While
in the majority of cases, we would expect observers to
use a third-party (e.g., open source) scanning and inter-
pretation package, it is possible for a technically minded
(and especially paranoid) observer to construct her own
camera-based scanning system out of commodity com-
ponents (cameras, computers, generic computer vision
libraries, etc.). While it is theoretically possible that
these components might come compromised from the
factory, this seems extremely unlikely given that each ob-
server could use different components and thus in order
to succeed an attacker would need to compromise de-
vices from a large number of manufacturers.

Figure 1 provides an abstract overview of the expected
workflow. Some mechanical ballot transport system (a
sheet feeder, belt, etc.) is used to carry the ballots one at
a time in front of a set of video cameras. We emphasize
that this is the only interdependency between election of-
ficials and observers: election officials provide the ob-
serving opportunity and observers bring their own equip-
ment and simply mount it as directed by officials.

In Figure 1 we see two cameras, A and B, both focused
on ballot number 2. Each camera independently records
each ballot, passes the video through a computer vision
system which determines the boundaries of the ballot,
corrects for distortion introduced by off-angle camera
positioning, and produces a series of images, each of
which represents a single ballot. These images are then
passed to a vote processing system that determines which
votes have been cast in each contest. In principle, the
vote processing system could be the same as those al-
ready in use for central count optical scan systems. Many
such systems operate with off-the-shelf scanners and we
would simply be replacing those scanners with our cam-
era plus computer vision apparatus.

We envision three potential deployment scenarios for
OpenScan:

Secondary scanning. In the simplest and least intru-
sive scenario, OpenScan is deployed independently
of the official tabulation. The ballots are passed in
sequence through some sort of sheet feeding mech-
anism which briefly exposes each ballot. Observers
can then record them and perform their own tabula-
tion. This scenario, unlike the others, is compatible
with both precinct count and central count optical
scanning, since the recording process can be per-
formed with ballots which were previously scanned
in the precinct.

Parallel scanning. If the optical scanner is con-
structed so that each ballot is at some point exposed
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Figure 1: Overview of OpenScan.

(either before or after scanning), then the ballots can
be recorded during the official scanning process.
Thus, we in parallel construct an official record and
an unofficial independent record. Indeed, the entire
ballot need not be exposed at once: the computer vi-
sion system could reconstruct an entire ballot from
several slices exposed over time (though our proto-
type does not support this mode of operation).

Primary scanning. Finally, we can imagine a sys-
tem in which we discard the official optical scan-
ner entirely and simply have a sheet feeder, with the
official tabulation being done by an OpenScan-like
system, in parallel with the independent tabulations.
Clearly, this scenario places the highest demands on
the speed and accuracy of the system, as it is being
used for the official tally, not just as an independent
check.

Although our (naïve) prototype implementation pro-
cesses images much more slowly than our camera pro-
duces them, the SIFT algorithm at its core is amenable
to optimization, parallelization [25, 10], and GPU im-
plementation [19]. With an optimized implementation
backed by GPU hardware, it should be possible to per-
form image and ballot processing as fast as the ballots
are fed and scanned. This would allow real-time rec-
onciliation between the multiple independent observers,
each of whom would also have his system’s raw recorded
video stream for later analysis.

1.2 Related Work

OpenScan shows that it is feasible for independent elec-
tion observers, using off-the-shelf equipment and auto-
mated computer vision techniques, to generate ballot im-
ages suitable for scanning and tabulation by optical scan
software. It thus combines two lines of research: the first
on producing ballot images for subsequent verification,
the second on third-party optical scan at-a-distance us-
ing video cameras.

The first line of related work, on producing ballot im-
ages, is exemplified by the Humboldt Election Trans-
parency Project, discussed above. In addition, Nagy et
al. [16] describe a design for a precinct ballot counter
based on a conventional still video camera mounted in
a clear box. Their measurements give confidence that
high accuracies are achievable under ideal conditions,
but because their system only allows for a single cam-
era (presumably controlled by voting officials) which is
positioned directly in front of a single ballot and care-
fully illuminated, their system does not provide for any
level of third party verifiability of the ballot contents.

The second line of related, on using video cameras and
computer vision techniques to allow independent vote
tabulation by election observers, was initiated by Anwar
Adi, who in 2006 proposed the idea in the BlackBoxVot-
ing.org forums [2]; Adi and his coauthors later presented
a prototype implementation at VoComp 2007 [3].3 We
have also seen the idea of independent, manually trig-
gered, cameras capturing single images independently
suggested in private fora.

The fundamental contribution of our work compared
to Adi’s is that our use of SIFT and other more so-
phisticated computer vision techniques allows OpenScan
to produce not vote counts but rectified ballot images
suitable for posting (à la the Humboldt Election Trans-
parency Project) or feeding into commodity ballot opti-
cal scan software for counting. In addition, compared to
Adi et al.’s prototype implementation, OpenScan works
with standard optical scan ballots used in US elections,
rather than special-purpose ballots; and automatically
recognizes ballots in a video stream, rather than requiring
manual frame selection for each ballot. Finally, we pro-
vide in this paper a complete evaluation, including sepa-
rate train and test cycles, showing that OpenScan can be
used on real-world ballots with very low error rates.

The primary competitor to a system like OpenScan
is end-to-end cryptographic voting; see, for instance,

3We are grateful to Doug Jones for bringing this line of work to our
attention after our paper was submitted to EVT/WOTE.
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Figure 2: Our prototype system: scanning frame, camera, and printer-based sheet feeder. Letters A, B, C, and D represent the
locations of the camera in our experiments. The labels 1 and 2 mark the location of the output tray and printer, respectively.

[8, 5]. Such systems provide third-party verifiable elec-
tions without any need to publish even cast vote records,
let alone ballot images. By contrast, OpenScan makes
full ballot images available to any observer who cares,
and thus significantly reduces voter privacy; when a full
ballot image is available, it is straightforward to mark
ballots in a way that a third party can recognize. This
appears to be a problem with any system which posts
ballot images, and it is unclear how to alleviate it even
with systems where the images can be processed before
dissemination [18]. This is a case of a tradeoff between
third-party verifiability and privacy.

The primary advantages of OpenScan vis-à-vis end-
to-end systems is that it is conceptually far simpler:
observers can immediately appreciate how OpenScan
works even if they do not understand the details of the
computer vision software. Moreover, no change at all is
required in voter behavior — the only change required is
by election officials who expose the ballots to recording.

2 System Description

2.1 Recording Process

Our prototype system is shown in Figure 2: Our sheet
feeding mechanism (labeled 2) is a generic inkjet printer,
an EPSON Workforce 30. Completed ballots are fed into
the printer input paper tray and then we “print” blank
pages to cause each sheet to advance through the printer
and into the output tray. Each ballot thus appears in the
output tray briefly face up before the next ballot is fed on
top. The printer feeds at 30 pages/minute. At the base of
the output tray, we added a small paper basket to catch
and stabilize the ballots as they are printed.

The printer is surrounded by a rectangular steel frame
which allows for stable camera mounting in a variety

of positions. Our camera, a JVC Everio GZ-HM400,
is then bolted to the frame pointing at the output tray.
Because the position of the printer is fixed with respect
to the camera, we can adjust the focus when the camera
is mounted and then leave it fixed for the entire capture
process. We capture video at 25 fps and at a resolution
of 1920 x 1080, and record it on the onboard flash mem-
ory. At this recording speed, we can record up 2hr56m
of video in the internal memory and another 2hr40min
with an SDHC card. Our experiments (described in Sec-
tion 3), used four ballot positions, corresponding to one
quadrant of a square with three cameras on each side, so
in principle at least 9 cameras could be mounted simul-
taneously while maintaining the same camera angles we
are using.

2.2 Rectifying Ballot Images

Once we have recorded continuous video of the ballots,
the next step is to process it into a series of rectified ballot
images. The workflow is shown in Figure 3.

Adobe Premiere Elements The first step is to use
Adobe Premiere Elements4 to convert the full motion
video into a series of discrete ballot images saved on disk
as JPEG images. This is a relatively straightforward pro-
cedure using the ‘Export As Sequence’ option. Figure 4
shows sample frames from camera positions A and D.

Corner Detection The first stage in our pipeline is to
run a Harris corner detector [12]. The primary purpose
of this algorithm is to determine whether a frame has
a low enough level of blur that we might plausibly be
able to process it. If the number of corners returned by

4Online: http://www.adobe.com/products/
premiereel/. Last visited 16 April 2010.
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Figure 3: Processing stage 1: producing rectified ballot images.

(a) Position A

(b) Position D

Figure 4: Examples of video frames generated from positions A and D.

(a) Before calibration (b) After calibration

Figure 5: The video frame, before and after calibration.
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Figure 6: Feature extraction and matching. Green lines represent matches considered to be geometric inliers, while red lines
are outliers. The right image shows the rectified video ballot.

the corner detector is below a threshold, we discard the
frame. Otherwise, we pass the image to the next process-
ing stage.

Initial Image Rectification Once overly blurred
frames are discarded, we next perform an initial recti-
fication pass. Prior to processing the first frame, we ask
the user to calibrate the camera by clicking on four con-
trol points labeled in our rig. We use a single image of
a ballot without any marks filled in as a template. Using
these calibration points, we estimate a homography [13]
between the video frame and template image to normal-
ize the viewing angle. This provides an initial correction
for camera angle — though this correction is incomplete
because the ballots do not lie entirely flat in the output
tray nor are they entirely straight. Figure 5 shows the
frame before and after calibration.

SIFT The major image correction stage is performed
by SIFT [15]. We use SIFT feature extraction and match-
ing to find corresponding key points between the tem-
plate and corrected video frame. After a correspondence
is established, we estimate another — more precise —
homography between the video frame and template, this
time using the discovered keypoints. We then apply
the homography to all keypoints and determine them to
be either inliers — keypoints that are geometrically con-
sistent with the transformation — or outliers. Figure 6
shows the the correspondences between keypoints in our
template and a video frame.

2.3 Generating Unique Ballots

Once we have a set of fully rectified images, we then
need to consolidate all the separate images of each bal-

lot into a single image. This process, shown in Figure 7,
occurs in two stages. First, we find all the images corre-
sponding to the same ballot. Second, we merge all those
images into a single image.

Identifying the Images of a Single Ballot Isolating
the sequence of images of a single ballot uses two
types of measurements: the locations of matching fea-
ture points and corner count. In order to detect the start
of a sequence we check if a feature point matches in the
upper 20% region of the ballot. This provides a strong
cue that a new ballot has been produced (ballots are fed
bottom first into the tray) and is sitting near the base of
our tray. We consider this as the start of a new ballot se-
quence. We continue assigning ballots to the sequence
until the corner count falls below a threshold, at which
point we start ignoring frames until the start trigger is
again observed.

The intuition behind the end trigger is that when a new
page is entering the scene, the corner count falls precipi-
tously due to the motion blur. Figure 9 shows the consis-
tent pattern of corner count over time. Note that this cor-
ner detection method will not work well with a conveyor
belt-style sheet feeder, since the amount of blur will be
mostly constant. However, other mechanisms, such as
looking for gaps between each page, would likely be us-
able to distinguish sheets.

Figure 8 shows this sequence of events. All frames
occur between the start and end are collected and consol-
idated in the next step.

Although our prototype implementation assumes that
all ballots are oriented the same way, it would be possible
to handle different ballot orientations with essentially no
overhead. SIFT features are invariant to rotation, so a
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(a) (b)

Figure 10: High (a) and low-resolution (b) merged images of the same ballot.

single ballot template will match against any orientation;
the estimated homography will capture and correct for
the rotation. A small amount of additional logic could
adjust the start trigger accordingly.

Producing a Consolidated Image The final computer
vision stage is to consolidate all of the disparate images
of a single ballot into a single image. In theory, these
images should be identical but of of course in practice
they are not. We merge the ballots on a pixel-by-pixel
basis. First, we do black and white thresholding on each
image, assigning each pixel of each image to be black
or white. Then we give each image a weighted “vote”
on every pixel as to whether it should be black or white,
where the weight is determined by the number of match-
ing feature points from that frame: more matching fea-
ture points means more influence on the final image.

More formally, let A represent an accumulation of
votes indexed by pixel p as A(p). Let Bi represent a bal-
lot in a sequence of n associated ballots. Let Mi represent
the number of matching feature points in frame i. We
construct A as,

A(p) =
n

∑
i=1

{
Mi : Bi(p) = 1
−Mi : otherwise

(1)

The final consolidated ballot F is,

F(p) =

{
1 : A(p)> 0
0 : otherwise

(2)

Figure 10 shows the output of this process. The left
image is at full 952x1200 resolution, while the right has
been resized to be only 600 pixels high. While the higher
resolution image looks far better, the opscan targets in the
smaller image are still quite visible.

The general problem of combining many low resolu-
tion images into a single high resolution image has been
well-studied in computer vision and remains an active
area of research. The work of [17] provides a detailed
survey of the area. We use a simple pixel voting method
in our approach, but plan to investigate more sophisti-
cated methods of super-resolution in future work.

In our implementation, we used code from VLFeat5

and Peter Kovesi’s Computer Vision libraries.6

5Online: http://www.vlfeat.org/. Last visited 23 June
2010.

6Online: http://www.csse.uwa.edu.au/~pk/
Research/MatlabFns/. Last visited 23 June 2010.
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(a) (b)

Figure 11: The left image (a) is oriented in a way that is readable by Ballot Browser while the right (b) has very minor rotation
and is unreadable. The sensitivity of the software motivated us to disable any internal pre-processing in our experiments.

2.4 Ballot Interpretation

At the end of the procedure in Section 2.3, we have a
single black and white ballot image for each ballot. The
final stage of the process is to determine what votes have
been cast at each position. In our prototype we use the
Ballot Browser software written by Mitch Trachtenberg
for the Humboldt Election Transparency project. This
software consumes images and outputs CVRs, so is suit-
able for our purposes. However, there is no inherent de-
pendency on Ballot Browser; any optical scan processing
software would be equally usable. We are using it purely
for convenience.

3 Experimental Results

In this section, we describe our initial experiments to
measure the accuracy of OpenScan.

3.1 Methodology

We began with a sample of 50 arbitrarily selected bal-
lots downloaded from the Humboldt ETP from the May

19, 2009 special election.7 These were single-sided bal-
lots with 6 contests, each with 2 opscan targets. The im-
ages we have are 1275x1648 pixels and were subject to
JPEG compression and thus display a number of visible
compression artifacts. We printed each ballot on a sheet
of ordinary printer paper and then fed those through our
printer-based sheet feeder. We captured video from four
camera positions, indicated by the letters A, B, C, and D
in Figure 2, capturing the same 50 ballots from each po-
sition. These positions correspond to the viewing angles
shown in Table 1.

Position X angle Y angle
A 0 0
B 20 0
C 0 15
D 20 15

Table 1: Camera angles in degrees.

We used a test/train protocol: we used an initial sam-
ple of 50 ballots to develop the system and tune parame-

7Online: http://www.humtp.com/ballots.htm. Last
visited 23 June 2010.
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ters. Once we were satisfied with the results, we used a
separate batch of 50 ballots for testing. Those results are
reported in the following section. In future, we would
like to try with a much larger sample.

3.2 Results

In order to evaluate the results of OpenScan, we need to
consider three metrics:

• Consistency between the results from multiple an-
gles.

• Correctness with respect to manual interpretation of
the ballots.

• Consistency with Ballot Browser’s interpretation of
the original images.

For all 50 ballots, our four camera angles agreed in all
ballot positions (600 opscan targets). These results also
match our manual interpretation of the ballots. Thus, for
our limited trial we are achieving a 0% error rate. A
larger sample would presumably allow us to estimate a
more accurate, nonzero, error rate.

In our usage of Ballot Browser, we observed that bal-
lot misalignment in the image was a significant source
of error. When reading the original full resolution ballot
images, Ballot Browser returns errors on 6 out of the 50
ballots (missing 72 marks), due to misalignments in the
images (minor rotations of the ballots during the man-
ual scanning process). Figure 11 shows an example of
a readable and unreadable ballot by the original Ballot
Browser. This sensitivity in the software prompted us to
disable any image correction pre-processing performed
by Ballot Browser in our experiments. In our approach,
ballots from video are aligned automatically using SIFT
to match the pose of a template, and thresholded to better
manage lightly marked entries. In further experiments,
we provided Ballot Browser with the original test ballot
images aligned using SIFT and thresholded (in the same
way as our video ballots) and observed it was able to read
all markings with 0% error.

4 Discussion

In order to assess the suitability of OpenScan for the sce-
narios discussed in Section 1.1, we need to consider four
major practical factors: accuracy, speed, cost, and com-
patibility with existing systems. This section treats each
of these in turn.

4.1 Accuracy

While further experiments are required, the experiments
described in Section 3 suggest that OpenScan is suffi-

ciently accurate for independent auditing (the first two
scenarios) of all but the closest contests. For compari-
son, Appel’s precinct-level analysis [4] of the 2008 Min-
nesota Senate rate concludes that the “gross” error rate
(the number of votes added or subtracted for a single
precinct) of optical scanners was 99.91%. However, as
this data only goes down to the precinct level, it excludes
errors within a precinct which cancel each other out and
so underestimates the per-ballot error.

The VVSG 2005 requires a very low error rate (one
error in 500,000 ballot positions) [23], but the standards
do not appear to require accurate results with imperfect
ballots. Thus it is an open question whether a system
like OpenScan has a high enough level of accuracy for
primary scanning.

Note that even were it not possible to produce ballots
sufficiently good to feed into ballot scanning software,
just the ability to isolate individual ballots from video
adds significant value: Ballot-based audits require the
ability to pick a single identifiable ballot out of the entire
corpus of cast ballots. Performing this selection manu-
ally presents a logistical barrier to deployment of such
systems; a system like OpenScan can provide direct con-
firmation of the contents of a given ballot without having
to go to the paper records. The relevant images can then
be pulled out of the video stream and even if partial, one
of the frames is likely to contain enough information to
be comparable to the relevant CVR.

4.2 Performance

The major shortcoming of our current system is perfor-
mance: on the Intel Core 2 (quad core, 2.83 GHz), it
takes approximately 4 seconds to process a frame that
passes the corner test. (Frames rejected earlier on are
of course faster.) Around 25 frames per ballot pass the
corner check. Thus, simply by processing frames simul-
taneously on the four CPU cores, we expect to be able
to process all frames corresponding to a single ballot in
about 25 seconds of wall clock time, or at about 1/12th of
real time, given our current 30 pages/minute feed mech-
anism. It should be possible to obtain additional speedup
in the SIFT algorithm at the heart of our frame process-
ing by making use of the GPU [19]. Alternatively, we
might improve performance by using vision algorithms
specific to ballot images instead of the general-purpose
SIFT algorithm. However, even with the existing soft-
ware, it would be possible to process ballots as fast as
they are scanned by using more CPU cores — most ob-
viously by outsourcing processing to a cloud computing
cluster like Amazon EC2, something we consider again
in Section 4.3.

The more important question is whether we can main-
tain acceptable accuracy while improving speed: at 30
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ballots/minute OpenScan is around an order of magni-
tude slower than high-end central count optical scan sys-
tems. For instance, the Sequoia Insight 400C can operate
at up to 400 ballots/minute.8 For primary and secondary
scanning, this does not present an issue: OpenScan is so
cheap that it is practical to simply purchase 10X more
units (see Section 4.3).

However, for parallel scanning applications, we must
match the rate at which the scanner operates, which
would mean that we captured far fewer frames per bal-
lot, with a potential loss of accuracy (our current camera
would obtain less than 4 frames/ballot with the Insight
400C. Higher speed cameras are available and it may be
possible to compensate in that way, but we have not made
any serious investigation of this avenue.

4.3 Cost

The fixed cost of our OpenScan system is extremely
low — a suitable camera is available for under $1000 and
cheap printers are similarly inexpensive (and of course
can be shared between users). Developing our prototype,
including both writing the software and building the rig,
took two weeks, full time, for a graduate student special-
izing in computer vision. An additional cost is computa-
tion, but as noted above, we can outsource that cost. A
single core of our test machine can do approximately 15
frames/minute and is approximately the speed of a single
EC2 compute unit.9

A single High-CPU Extra Large instance (8 virtual
cores; 2.5 EC2 compute units per core) could pro-
cess 300 frames/minute, or approximately 12 seconds of
video per compute minute at 25 fps. With a feed mech-
anism of 30 ppm, this gives 6 ballots per minute. With
approximately half the frames failing the corner test and
requiring less processing, the effective rate is nearly dou-
bled, to around 11 ballots per minute. At Amazon’s cur-
rent price of $0.68/hr/instance for this instance type, the
cost would be approximately $0.0010/ballot, which is
well within the range of even a relatively casual election
observer: a million voter election would cost $1000 to
fully recount via OpenScan. With our current software
implementation, a cluster of three machines as powerful
as EC2’s High-CPU Extra Large instance would process
the ballots in real time, i.e., as fast as our prototype paper-
feed mechanism outputs them, around 30 ballots/minute.

Of course, central-count optical scanners, like other
critical election headquarters devices, are not connected
to the Internet, a practice for which there is ample good
reason [11]. Official tabulation using OpenScan could

8Online: http://www.sequoiavote.com/documents/
Insight400C.pdf. Last visited 16 April 2010.

9Online: http://aws.amazon.com/ec2/pricing/. Last
visited 16 April 2010.

therefore not make use of EC2 for OpenScan compu-
tation. Even so, third party observers could make use
of EC2 — perhaps after the fact, if sufficient bandwidth
is not available at election headquarters — since the se-
curity of their systems is not critical like that of the
jurisdiction’s official systems. Security flaws in these
third-party systems exposed by connection to the In-
ternet would allow attackers to obtain images of the
scanned ballots, something they could obtain by setting
up their own OpenScan system at election headquarters
(but cf. [18]). Alternatively, it is possible to view our
calculations above simply as estimates of the commodity
CPU cost of deploying OpenScan.

4.4 Compatibility with Existing Systems

Aside from the performance issues mentioned in Sec-
tion 4.2, there are a number of logistical challenges in-
volved with using OpenScan in existing optical scan vot-
ing deployments. First, many jurisdictions use double-
sided ballots. It is not entirely clear how to construct
a version of OpenScan which will simultaneously scan
both sides of the ballot. One possibility might be to pass
the ballots over a clear plate so that cameras could be
mounted above and below, but we do not have designs
for this type of equipment. More likely, it would be nec-
essary to make multiple passes through each ballot.

A second problem is that many existing central count
optical systems allow ballots to be fed in in any orien-
tation. A production version of OpenScan would need
to adjust for this issue and straighten ballots regardless
of their orientation. This is not likely to be especially
difficult, however, as we simply need to determine the
rough orientation in order to apply the right template. In
the future, ballots could be marked to make this problem
easier.

A final problem is ballot visibility. OpenScan requires
that the entire ballot be visible to the camera (though it
might be possible in principle to build a system in which
the entire ballot was never visible at once). We have not
investigated whether existing central count optical scan
systems ever provide this level of visibility. If not, par-
allel scanning with OpenScan will be problematic. Note
that this issue does not apply to either primary or sec-
ondary scanning applications, as those can use separate
sheet feeding equipment.

4.5 Avenues for Future Work

While promising, OpenScan remains a prototype, and
needs substantial additional engineering before it could
be used even as an additional check via a secondary scan
separate from the official tabulation.

First, we would like to have a completely integrated
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system that could just be pointed at an (arbitrary) paper
feed mechanism and would output a CVR for each bal-
lot as soon as it was scanned. Such a system would be
able to act as a check during the tabulation process. The
current system is not yet fully integrated and so manual
intervention is required to transfer images between Pre-
miere and the ballot selection/rectification system and
then again to Ballot Browser. This is a straightforward
engineering task.

Second, OpenScan would need to be faster and more
robust against various types of ballot reorientation. As
discussed in Sections 1.1 and 2.2, we are using compar-
atively naïve algorithms so there is likely to be substan-
tial room for improvement both in terms of speed and
robustness. We would also need to add support for dif-
ferent ballot styles (this is mostly a matter of being able
to support multiple templates).

Finally, a more thorough evaluation of accuracy is re-
quired. We would like to process a much larger ballot
corpus and compare our results against those from a cer-
tified central count optical scanner in order to get a more
accurate estimate of the accuracy of the system. This
may require replacing Ballot Browser with a more ro-
bust ballot processing system. It may even be possible to
plug our images into an existing ballot processing system
that is designed to operate with a commodity scanner and
thus is prepared to receive externally generated images.

5 Conclusions

OpenScan is a fully transparent optical scan counting
system. OpenScan records digital video of voted ballots
and uses computer vision techniques to produce a series
of ballot images which can then be processed into Cast
Vote Records. Because OpenScan works with inexpen-
sive commodity digital video cameras, it allows multiple
independent observers to simultaneously verify that opti-
cal scan ballots were correctly counted without requiring
them to have any physical contact with the ballots, thus
preserving the ballot chain of custody. Preliminary ex-
periments suggest that OpenScan has an acceptable level
of accuracy to be used for verification purposes; further
work is required to determine if it is suitable for primary
vote counting.
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