
Replayable Voting Machine Audit Logs

Arel Cordero David Wagner
University of California, Berkeley

Abstract

Audit logs are an important tool for post-election inves-
tigations, in the event of an election dispute or problem.
We propose a new approach to logging that is designed
to provide a record of all interactions between each voter
and the voting machine. Our audit logs provide a com-
prehensive, trustworthy, replayable record of essentially
everything the voter saw and did in the voting booth, pro-
viding investigators a tool for reconstructing voter intent
and diagnosing election problems. We show how our
design preserves voter anonymity and protects against
vote-buying and coercion. We implement a prototype
logging subsystem, built on the Pvote voting platform,
and demonstrate that the approach is feasible.

1 Introduction

Elections do not always go smoothly. When problems
occur, or if an election is disputed, it is important that
the voting system preserve forensic evidence that can be
used to investigate reported problems. Many commer-
cial e-voting systems generate and maintain audit logs—
records that describe the operation of a voting machine
in an election—for this purpose. Unfortunately, the au-
dit logs in currently deployed voting systems fall short in
several respects: they often record only minimal infor-
mation, omitting vital information that might be needed
in a post-election investigation [20]; there is not always
a clear pattern to what is logged [11]; there are few pro-
tections to ensure the integrity of the logs, so any fail-
ure of the voting software can also corrupt the audit
logs [4, 10, 17]; and there is no guarantee that the logs
contain an accurate or complete record of what happened
on election day.

We study how to improve this situation. We show that
it is possible to design audit log mechanisms that rem-
edy these shortcomings. Our audit logs are more com-
plete: we expect that in many cases they may help in-

vestigators diagnose reported problems, test hypotheses
about the cause of those problems, check that votes were
recorded and interpreted correctly, reconstruct voter in-
tent (to a certain extent), and possibly even correct prob-
lems. For instance, our audit logs provide useful evi-
dence of a voter’s interaction with the machine, which
may be helpful in reconstructing her intent. Because
audit logs can potentially weaken the degree of voter
anonymity a voting machine provides, they must be care-
fully designed to ensure they protect ballot secrecy. We
show how careful design of the logging data structures
can protect the secrecy of the voter’s ballot and protect
against vote-buying and coercion.

This work is partially inspired by the second author’s
involvement in a post-election investigation of the Sara-
sota Congressional District 13 election [20], where over
13% of DRE ballots recorded no vote in the CD13 con-
test. In that election, a number of voters alleged that
the DRE never gave them a chance to vote in the CD13
contest or that their initial selection in the CD13 contest
was not displayed on the DRE summary screen. One of
the challenges in that investigation was that, to protect
voter privacy, the DREs used in that election did not re-
tain any information that would enable investigators to
recreate exactly what voters did or did not see on the
DRE screen. As a result, those allegations could only be
checked through indirect means. If there had been some
way to replay the sequence of screen images that each
voter saw and the user interface actions the voter took
in response to each screen, this would have enhanced our
ability to investigate the cause of the undervote and to as-
certain voter intent: for instance, we could have checked
whether the CD13 contest was always displayed to every
voter, and we could have checked whether there was any
evidence that some voters’ selections in the CD13 con-
test were not reflected accurately on the final summary
screen. In this paper, we design a way to retain this kind
of information, without violating the secrecy of the bal-
lot.

1.1 Problem Statement

We study how the audit logging mechanisms in elec-
tronic voting machines should be designed. We want to
generate and preserve a comprehensive, trustworthy set
of electronic records that can be used to detect and di-
agnose many kinds of equipment problems and failures.
These logs should record useful evidence of voter intent,
preserve voter anonymity, and avoid interfering with any
other requirements of the voting machine.

We want election investigators to be able to use these
audit logs after the election to reconstruct the interaction
that each voter had with the voting machine. We focus
on designing audit logs that enable investigators to recon-
struct everything the voter saw on the voting machine’s
screen, everything that the voter did (e.g., every location
on the screen that the voter touched, every button that the
voter pressed), and every ballot that was cast as a result
of these actions. Audit logs would not normally be used
to count the votes. Instead, the idea is that, in case of
problems with the election or election disputes, it should
be possible for election investigators to use the logs to re-
construct and infer, as best as possible, the voter’s intent.
Achieving this goal requires recording far more than to-
day’s voting systems.

Ideally, these audit logs would provide an independent
way for investigators to verify that the voter’s intent was
recorded accurately, to correct any errors the machine
may have made, and to gather evidence and test hypothe-
ses about the possible causes of these errors. In practice,
we cannot fully achieve the ideal of full independence:
we do not know how to ensure that the audit log mech-
anism will be truly independent of the voting machine
software. However, we seek to minimize the likelihood
of failures that simultaneously affect both the records of
cast ballots and the audit logs. In particular, we would
like to be able to correct or detect many common kinds
of failures, such as errors in recording the voter’s selec-
tions, user interface flaws, ballot design problems, con-
figuration errors, and touchscreen miscalibration.

However, some kinds of failures are out of scope for
this paper. We assume the software that executes on
election day matches the certified version, and that this
software is free of malicious logic and backdoors; and
we assume that the hardware is trustworthy, correct, and
free of tampering. We make no attempt to detect vio-
lations of these assumptions, so our audit logs can not
solve all problems (especially security issues that involve
malicious insiders)—but we hope they will be useful in
practice nonetheless.

Audit logs must not compromise ballot secrecy. This
poses a significant technical challenge: the more infor-
mation we record, the greater the risk that this might
provide a way to link voters to how they voted, or that it

Voting
Machine

Logging

Input
from voter

Output
to voter

Figure 1: Conceptual problem statement. An audit log
should record the I/O of a voting system as closely as
possible to what the voter experiences.

might provide a way for voters to prove how they voted,
sell their votes, or be coerced. Many obvious schemes
have serious ballot secrecy problems.

We focus on building audit logs for machines that in-
teract directly with a voter, namely, for DREs and elec-
tronic ballot markers (EBMs).

It would be useful if these audit log mechanisms could
be deployed on existing voting systems, without hard-
ware changes. Because many jurisdictions have recently
deployed new e-voting systems, they may be reluctant or
unable to replace their equipment any time soon. There-
fore, we’d prefer a way to retrofit existing voting systems
with better audit log mechanisms simply by upgrading
their software. In practice, this restriction places limits
on what we can accomplish, so we examine what is the
best that can be done simply through software upgrades.
We also investigate how future voting system platforms
could better support trustworthy audit log mechanisms.

1.2 Our Approach
How do we improve the trustworthiness of the logging
system? By isolating the logging subsystem from the
rest of the voting machine code, we minimize the possi-
ble interactions between the logging code and the rest of
the voting software. Also, we design the logging code to
be as simple and robust as possible, in hopes that this will
make it easier to get right, easier to verify, and easier to
trust. As we shall see later, the logging subsystem can be
dramatically simpler than the rest of the voting software.

How do we make audit logs more useful? Audit logs
exist to record evidence of voting machines’ operations.
We propose that these logs should record the sequence
of all I/O from the voting machine as experienced by the
voter, or as close to that as possible. We record all out-
puts: if the voting machine has a LCD screen, we will
record every image displayed on the screen; if it has a
printer, we record all text that is printed. Similarly, we
record all inputs: if the voting machine has a touchscreen

2

input, we record the position of every touch the voter
makes; if it has physical buttons, we record every press
of these buttons; if it supports other kinds of input (e.g.,
for accessibility), we record those input events as well.
Because this essentially captures all the ways the vot-
ing machine can communicate with the voter, and vice
versa, and because the results of the voting machine (i.e.,
the final vote tallies) should be determined by the vot-
ers’ interaction with the machine through this interface,
I/O-based audit logs can capture useful evidence of voter
intent.

We store these events in the order they occur, so that
it is possible to replay the sequence of all interactions
between the voter and the voting machine. We call
these types of audit logs replayable, because the I/O
can be replayed on an independent system without re-
implementing any of the logic of the voting machine. As
a result, election investigators can use this data to replay
anonymized voting sessions and test hypotheses about
the election results.

How do we address ballot secrecy? Any system that
records votes in the order they are recorded endangers
voter anonymity, because it allows an observer who no-
tices the order in which voters cast their ballots and who
has access to this electronic record to learn how each
voter voted. We protect ballot secrecy by ensuring that
the order in which voters vote is independent of the data
associated with them. For each voter, we bundle up all of
the audit log entries associated with that voter into a sin-
gle record, so that there is one record per voter—and then
we store these records in a random order. Moreover, we
are careful to avoid recording the absolute time at which
any voter interacts with the voting system or the length
of time that it takes for a voter to vote, since these can
also breach ballot secrecy.

How do we avoid interfering with the rest of the vot-
ing software? We must be sure that adding our log-
ging subsystem to an existing voting machine will not
disrupt or interfere with its operation. If the legacy vot-
ing software works correctly on its own, then adding our
logging subsystem must not cause it to crash, deadlock,
misbehave, or otherwise endanger the security, usability,
reliability, or privacy of the voting machine. To achieve
this goal, we rely upon hardware or software isolation
mechanisms (e.g., memory protection or type-safe lan-
guages) to prevent the logging code from interfering with
the code or state of the rest of the voting software; we
expose only a narrow interface between these two soft-
ware components; we strive to minimize the complexity
of the logging subsystem; and we structure our logging
code so we can demonstrate that its operations terminate
successfully in bounded time.

2 Design

2.1 Simplicity
In our architecture, the voting machine contains two
components: the voting subsystem (this includes the
legacy voting software; it implements the user interface,
voting logic, and vote-recording functionality, among
other things) and the logging subsystem (which is respon-
sible for storing log records in a private manner). Our
logging subsystem presents a minimal interface to the
rest of the voting machine. Essentially, we export only
an append record function1. Compared to the complex
requirements of a voting machine, this may represent a
significant simplification.

2.2 Isolation
We assume that we have a trusted platform that provides
some mechanism for isolation, and we use it to enforce
the separation between the logging system and the vot-
ing machine. We have two requirements. First, to ensure
that all logged events accurately represent what the voter
experienced, the isolation mechanism must protect the
logging subsystem in case the voting subsystem misbe-
haves or runs amok. Second, it must protect the voting
subsystem from any negative effects of the logging sub-
system. We do not want the introduction of our logging
subsystem to reduce the overall security, privacy, or reli-
ability of the voting machine.

Protecting the logging system. The isolation mecha-
nism should prevent the voting subsystem from bypass-
ing or fooling the logging subsystem. In particular, since
we are interested in recording the I/O of the system,
the logging system should accurately capture all voter-
visible I/O, despite any efforts otherwise by the voting
machine. This means that we must mediate the voting
subsystem’s access to I/O devices and ensure that a copy
of all inputs and outputs visible to the voter are also sent
to the logging subsystem. Also, the logging subsystem
needs its own storage medium where the logs can be
recorded, and the isolation mechanism must prevent the
voting subsystem from reading or writing these logs. Fi-
nally, the voting subsystem must not be able to modify
the private state or code of the logging subsystem.

Protecting the voting system. The isolation mecha-
nism must prevent the logging subsystem from modify-
ing the private state or the code of the voting subsystem.
The voting subsystem needs its own storage medium

1Features for reading or deleting log entries should not be avail-
able to the voting machine’s trusted election-day logic, and hence are
omitted from its code base.

3

Hardware
OS

Voting Log

Hardware
VMM

OS OS
Voting Log

Hardware
OS

Language
Voting Log

OS
Voting Log

OS
Hardware

(1) (2)

(3) (4)

Figure 2: Four architectural choices for isolating the vot-
ing and logging subsystems from each other.

where electronic cast vote records and other data can
be recorded, and we must prevent the logging subsystem
from accessing that data.

Ways to implement isolation. We identify four differ-
ent ways to meet these requirements (see Figure 2):

1. We could use hardware isolation, e.g., by running
the voting subsystem on one microprocessor and the
logging subsystem on another microprocessor and
restricting their connectivity to each other and to I/O
devices [16].

The Prime III voting system works similarly. It
physically routes the video and audio output of the
voting machine through a VHS recorder [19, 5], and
the video tape serves as a record or log of the vot-
ing session. Although now the physical security of
the recorder and tapes must be trusted, this provides
strong isolation. A misbehaving—even maliciously
programmed—voting machine will have to struggle
to avert the logging mechanism. Voter anonymity,
however, remains an issue in Prime III, as we dis-
cuss below and in Section 5.

2. We could use OS isolation mechanisms. For in-
stance, we could run the voting subsystem and the
logging subsystem in two separate processes and
rely upon OS memory protection to keep them sep-
arate.

3. We could use a virtual machine monitor, running the
voting subsystem and logging subsystem in two dif-
ferent virtual machines [6]. This allows us to medi-
ate all of their interactions with each other and with
I/O devices using a small module integrated into the
VMM [8].

4. We could use a type- and memory-safe program-
ming language for isolation, relying upon these lan-
guage features to ensure that one subsystem cannot

Display

Voting
Machine
Software

Voter

1 2 3 4
DriverGraphics CardCable

Logging
System

Figure 3: Four possible places where the video output
signal could be recorded. All transformations to the
video signal that occur after it is recorded and before it
is seen by the voter can cause undetected inaccuracies in
the audit log and hence must be trusted.

tamper with the private state or code of the other
subsystem.

These approaches have different tradeoffs. For instance,
hardware isolation may provide the greatest level of as-
surance, but it would require hardware changes to exist-
ing voting machines. Software isolation may be easier to
retrofit, but it requires trust in the OS kernel, VMM, or
language platform.

We note that the isolation mechanism does not need
to be perfect to be useful. Even a suboptimal isola-
tion mechanism can still be useful for detecting prevalent
classes of important failures, like configuration or oper-
ator errors. Experience suggests that, for many election
administrators, these problems are more palpable and ur-
gent threats than the adversarial threats computer secu-
rity experts often take for granted.

2.3 Crafting a replayable audit log

Capturing voter intent. As explained in Section 1.2,
we are primarily interested in recording the I/O of the
voting machine, as experienced by the voter. However,
the extent to which we can do this is limited by where in
the data path the I/O is recorded. Consider the example
of video output. Figure 3 shows four places where the
video signal could be recorded. With the exception of
perhaps an external camera mounted near the eye-level
of the voter (1), the video that is recorded will be trans-
formed before the voter sees it. For instance, record-
ing the analog video output from the video card (2), the
digital bitmap rendered by the graphics card (3), or the
screen images produced by the graphics device driver (4)
would not differentiate between an image displayed on a
clean screen, or one displayed on an obscured or dam-
aged screen. Similarly, a signal recorded from the graph-
ics card frame buffer (3) may not detect a disconnected
cable or a fault in the hardware D/A converter, though it

4

could detect bugs in the device driver or voting software
that cause the wrong image to be displayed.

Voter anonymity. As one might imagine, what gets
logged strongly affects the degree of voter anonymity of
the system. Even without recording the voter’s name,
face, voice or any other identifying information, data
from the voter’s interaction with the voting machine may
still be enough to identify her. For instance, if we store
a timestamp with each log entry, and if the log entry can
be linked to a record of the voter’s votes, then this may
be enough to link a voter with how they voted. This is es-
pecially unfortunate since common practices—and even
the Voluntary Voting System Guidelines [1]—suggest
timestamping all log entries. We protect voter anonymity
by never associating timestamps with our log entries. A
voting machine is always free to keep a separate supple-
mental log where all entries are timestamped as long as
those entries reveal nothing about how the voter voted;
we consider that out of scope for this paper.

More subtly, duration information can compromise
voter anonymity. For instance, if each log entry records
the amount of time it took for the voter to vote, and if
each log entry can be linked to a record of that voter’s
votes, then an observer who notes how long it took for
Alice to vote may be able to infer how Alice voted.
Even partial information about the time the voter spends
on a particular screen could potentially violate voter
anonymity. We counter this threat by never storing dura-
tion information: the log record associated with a voter
contains the sequence of screen images and input events
but no information about the duration between these
events. This does leave one residual risk: if the num-
ber of events is correlated to the time it takes for a voter
to vote, this may endanger voter anonymity. We leave it
to open work to evaluate this issue more thoroughly.

It is impossible to protect voter anonymity if the vot-
ing subsystem is malicious or buggy. Therefore, our
anonymity goals are conditioned on the assumption that
the voting subsystem is correct, non-malicious, and does
not itself violate voter anonymity.

We address vote-buying and coercion in Section 2.5.

Video. Video—the sequence of screen images shown
on the voting machine’s display—is arguably the ma-
chine’s primary channel of communicating with the
voter. Ideally we would like to record this video in real
time, so that election investigators can replay a “movie”
of the video images that the voter saw. However, real-
time video reveals vote duration, which is a problem for
voter anonymity. Instead of recording real-time video,
we record a frame of video only when the image on
the screen changes. Because voting machines typically
show static content that changes only in response to user

input events—for instance, they normally do not dis-
play animations—this approach redacts timing informa-
tion by concealing how long the voter spends on each
screen.

This approach essentially consists of run-length en-
coding the video, and then omitting the run lengths. Un-
fortunately, this approach does remove some informa-
tion that may be relevant to election investigators: for
instance, if investigators are concerned that the voting
machine took too long to respond to user inputs, our au-
dit logs will not contain enough information for them to
investigate this hypothesis.

We assume that the voting subsystem does not display
the current time to the voter on the screen. Fortunately, it
should be straightforward to modify legacy voting soft-
ware to ensure that this is the case.

We do not record audio. Real-time audio recording
has the same problem with duration as video. However,
unlike a sequence of static screen images, audio output is
inherently temporal. We have not found any clean solu-
tion to this problem. Consequently, in our design, we
do not record audio outputs from the voting machine.
We recognize that this may omit important information
that would be useful in an election investigation, and we
consider it an interesting open problem to eliminate this
limitation.

Other issues. Other subtle issues can threaten voter
anonymity. First, input device preferences may be cor-
related with voter identity, especially for less common
accessibility devices. For instance, if an observer notices
that Alice is the only voter to vote using a sip-and-puff
input device, and if the input modality is recorded in the
audit log, then it will be possible to identify the log entry
that corresponds to Alice and hence learn how she voted.
We currently do not have a good solution to this problem,
so our approach currently fails to support accessibility.

Second, externally controlled signals might mark or
identify audit logs. For instance, if the voting machine
accepts speech input (presumably through voice recog-
nition), external sounds or noise may be reflected in the
audit log entries and thus may endanger voter privacy.
We do not support this kind of voting interface; we as-
sume that the user interface is such that all input events
come from the voter, not from the environment.

2.4 Storing the logs anonymously

The way we store the logs—the data structure we use and
the physical medium on which it is stored—also affects
voter anonymity. To avoid revealing information about
the order in which log entries were inserted into the log,

5

we require the log storage unit to be history indepen-
dent [13, 9, 12]. See Section 3.4 for the data structure
and algorithms we use.

2.5 Vote-buying and coercion

It is important that we prevent voters from proving how
they voted, even in the case where voters are colluding
with a vote-buyer or coercer. While we cannot com-
pletely eliminate these risks, we can provide reasonable
protection. In particular, we require that the logging sub-
system avoid making the problem any worse than it al-
ready is with existing voting systems.

We only attempt to prevent vote-buying and coercion
under the following threat model. We assume that the
voting machine and all voting software is non-malicious
(for a malicious voting machine can easily enable vote-
buying). We are not concerned about attacks where the
vote-buyer or coercer are in collusion with an election
official or other insider. There are already many ways
that a voter can prove how she voted to her election offi-
cial: for instance, she can enter a pre-arranged unique
string as a write-in in some contest, or she can enter
an unusual pattern of votes in down-ballot races. Our
audit logs do provide additional ways to do so, for in-
stance by entering a special pre-arranged sequence of
“next screen”/“previous screen” inputs, but this does not
provide the voter with any extra power she does not al-
ready have. For these reasons, we assume that all elec-
tion officials and other insiders are trusted not to coop-
erate in vote-buying or coercion schemes. Instead, we
focus only on preventing vote-buying and coercion by
outsiders, and we attempt to ensure that voters cannot
prove how they voted to any outsider.

Despite the possibility of voter collusion, an audit log-
ging system still must provide anonymity to the remain-
ing voters. In other words, if a voter is not intentionally
colluding with an insider to prove how they voted, we do
not want their ballot or audit log to be linkable to their
identity. We acknowledge that the increased information
we record about a voting session reveals strictly more in-
formation that could be used to link it to a voter. For in-
stance, an elderly voter with known poor motor reflexes
may have a distinct pattern of voting that may indirectly
appear in the audit logs. The extent to which this is a
problem is a subject for future work, but we point out that
this kind of information already exists in other forms of
voting, such as the pressure and method of filling in bub-
bles, or the handwriting for a write-in candidate.

Ideally, we would prefer if all audit logs could be rou-
tinely released to the public, to enable any interested
party to perform their own analysis on these logs. Unfor-
tunately, a policy of releasing our audit logs to the public

after every election introduces vote-buying and coercion
risks.

One way to prevent vote-buying and coercion would
be to treat our audit logs as privileged (not public) infor-
mation. Under this model, election officials would pro-
tect the confidentiality of these logs and avoid disclosing
them to untrusted individuals. In particular, audit logs
would not be released to the public. This would suffice to
ensure that voters cannot use the audit logs to mark their
ballots and prove to an outsider how they voted, elimi-
nating the incentive for vote-buyers or coercers to try to
pressure voters. This strategy mirrors the requirement
that electronic cast vote records must not be released in
raw form to the public (lest they enable vote-buying or
coercion via pattern voting or special write-ins); in other
words, in this model, audit logs would be subject to the
same confidentiality requirements as existing cast vote
records. Somewhat surprisingly, this is sufficient to en-
sure that our audit logs do not make vote-buying and
coercion any easier. In this model, our scheme would
not harm the transparency of the voting system, but nei-
ther would it improve transparency: the logs would al-
low election officials to investigate election results, but
not allow members of the public to perform their own
investigation.

Another possibility would be to accept some risk of
vote-buying and coercion in exchange for better trans-
parency. For instance, officials might ordinarily treat au-
dit logs as privileged, except that in the special case of a
contested election, the logs might be released to the in-
dependent auditors, candidates, and their representatives.
Ultimatey, the extent to which audit logs should be kept
private depends on many factors, including the risk of
vote buying and coercion in any particular region, so the
handling of our audit logs may be a policy matter that is
best left to local election officials who are familiar with
local conditions.

3 Implementation

We prototyped our design by extending Pvote [21], a vot-
ing system written in Python. Pvote is already remark-
ably compact because of its use of a pre-rendered user
interface. Unfortunately, a security review by five com-
puter security experts suggested that, even for a system
as small as Pvote, it is still difficult to be confident that
voting software is free of bugs [22].

3.1 Isolation
Pvote is written in Pthin, a subset of Python that includes
only a small number of language primitives. Our pro-
totype relies on the memory- and type-safety of Pthin
for isolation. In particular, this makes it easy to verify

6

INIT()
1 session id←{0,1}128 uniformly at random
2 sequence id← 0

LOG(s1,s2, ...,sk)
1 s← SERIALIZE(session id,sequence id,s1,s2, ...,sk)
2 sequence id← sequence id +1
3 ADD-RECORD(s)

Figure 4: Algorithms to initialize a log record, and ap-
pend entries to it, utilizing the ADD-RECORD(·) method
of the HIDS (see Figure 9). SERIALIZE may use any
method for serializing its inputs to a uniquely decodable
string, e.g., using length-prepending.

that no function in Pvote can access or modify any part
of the logging component’s memory or instructions ex-
cept through the logger’s public interface, and vice versa.
This interface supports only three publicly accessible op-
erations2: INIT(), which begins a new log record for a
voting session; LOG(·), which appends an event to the
record; and COMPRESS(·), an optional helper function
we discuss in Section 3.3. Algorithms for the first two
operations are described in Figure 4.

3.2 The logging subsystem

We implemented the logging subsystem in 110 lines of
Pthin code. An additional 100 lines of code support read-
ing and reconstructing the logs so they can be replayed
after the election (see Figure 5).

In our system, a log is a set of log records, each cor-
responding to a single voter. A log record is an ordered
sequence of events. Each event is an ordered sequence
of arbitrary-length byte strings. (See Figure 6.) Thus,
we execute INIT() once for each voter at the beginning
of their voting session to create a new log record, and we
invoke LOG(·) at every voter-visible I/O event to append
the event to that log record. It is up to the programmer to
log events consistently. Fortunately, we have found that
it is easy to manually inspect the code to verify that the
logging functions are called at every relevant place in the
Pvote code.

In our implementation, the first string of an event rep-
resents the type of event that occurred. The remaining
parameters include data for that event. The events we
log in our prototype are summarized in Figure 7. For
instance, the place in the code that reads a touch event
calls

2Python does not itself distinguish between public and private or
protected methods, but we found it easy to verify by inspection of the
code that only the “public” methods are ever called within Pvote.

Log.log("touch", x, y)

where x and y are string representations of the integer
coordinates (pixel offsets) where the screen was touched.
Likewise, whenever the screen is updated, we record the
new image that will be displayed on the screen, in raw
bitmap form.

Video. As we discuss in Section 2.3, we do not record
real-time video. Instead we record a screenshot of the
display whenever the display image changes. Our im-
plementation uses the Pygame [14] library to record the
bitmap displayed to the voter. In particular, in the one
place in the Pvote code where the display update method
is called, we log the raw RGB pixel data of the complete
displayed image.

3.3 Compression

Recording bitmap images can be memory and bandwidth
intensive. For better efficiency, we experimented with
compressing the bitmap data before logging it. We were
interested in capturing this data exactly, so we consid-
ered two lossless compression schemes: run-length en-
coding, an encoding that replaces runs of identical bytes
with a single byte followed by the length of the run; and
the standard zlib encoding. For run-length encoding,
we tested implementations in Python and C. For the zlib
encoding, we used the standard zlib library of Python
(written in C). While we do not rule out other forms of
compression, we found run-length encoding particularly
appealing for its simplicity, and its suitability for com-
pressing screenshots containing large regions of the same
color.

A drawback of compression is the complexity it adds
to the logging subsystem. Libraries written in C addi-
tionally lack the memory- and type-safety properties of
a pure Python implementation. In this case, we must
treat compression as a trusted operation, another reason
to prefer a simple algorithm like run-length encoding.
Despite the drawbacks, our evaluation of compression
found it very useful for improving the performance of
logging video keyframes in our prototype (see Section 4).

3.4 History independent data structure

As we explain in Section 2.4, the order of the voting ses-
sion log records must be anonymized. We design our log
data format to be history independent:

“A data structure implementation is history in-
dependent if any two sequences S1 and S2 that
yield the same content induce the same distri-
bution on the memory representation.” [13]

7

Election-day mission-critical functions Supporting functions
Log Init. & logging: 23 lines Reconstructing records: 41 lines
HIDS Adding records: 87 lines Listing records: 39 + Resetting: 20 lines
Total 110 lines 100 lines

Figure 5: Lines of Python code, as counted by sloccount[18].

History Independent
Data Store (HIDS)

Sequential log record of voting session (with N events)

E1 E2 E3 EN. . .

Figure 6: A conceptual view of logging. A log record consists of an ordered sequence of log events. The log records
are stored in the HIDS in a random order.

Event Type Parameters Explanation
display bitmap, width, height Records the raw RGB image whenever display changes.
touch x, y Logs coordinates whenever the voter presses the screen.

key-press key Logs any keypad button that was pressed.
print text Records data sent to ballot printer.

ballot-definition-read hash When ballot-definition is read, records its SHA-1 hash.
reset-button - Indicates a voting session is complete and will reset.

Figure 7: Pvote I/O events that our system logs.

Data

Header
Block Size (m)

Block 1 Next Ptr.

Block 2 Next Ptr.

Block N Next Ptr.

…

Length

Length

Length

Free/used bit
Head bit (signifies commit; written last)

No. Blocks (n)

Figure 8: The basic data structure of the History Independent Data Structure (HIDS) used by our logging system. This
structure is intended to map well to NAND flash memory, where each row of the data section maps to a page in flash.

8

We need our history independent data structure (HIDS)
to provide an efficient insertion operation; support for
large, variable-length records; and a simple implementa-
tion. However, the last requirement, simplicity, is our pri-
mary objective because we want to make the code easy
to verify and to gain confidence in.

The HIDS we implement is shown in Figure 8. Given
a block size m and the total number of blocks n, we ini-
tialize the data section of our HIDS to the known default
value of the underlying memory (e.g., 0). To ensure that
insertions will not fail, we require the HIDS to allocate a
constant factor c more space than it expects to use. For
expository purposes we assume c = 2. The data structure
is a table of blocks plus metadata, which may be linked
to other blocks to form a list. The HIDS is used to store
the set of log records, and each record is inserted ran-
domly into this structure as a linked list of blocks. By
design, the only operations this data structure supports
are ADD-RECORD(·), which adds a record randomly to
the HIDS (see Figure 9), and LIST-RECORDS(), which
reconstructs the contents of all the records in a random
order. The latter operation is only done to retrieve the
data after an election, so its performance is not as impor-
tant. Deletion and lookup of records are intentionally not
supported.

To insert records, we use a cryptographically-strong
pseudo-random number generator (PRNG). Although a
hash-based approach is also viable—and there are rea-
sons it may be appealing3—we choose to work with a
PRNG to minimize the complexity of the code.

Theorem 3.1. Our HIDS is history independent.

Proof. Our data structure is a table of blocks. Each
record insertion writes data to one or more unused
blocks. Each block is selected independently and uni-
formly at random from the remaining unused blocks.
Suppose we insert r records (comprising k blocks) into
a data structure of n total blocks. Let σ denote the state
of the resulting data structure after these insertions. The
probability of seeing the memory representation σ after
these r insertions is

Pr[σ] =
1
n
× 1

n−1
× 1

n−2
×·· ·× 1

n− (k−1)
,

independent of the order in which in these records were
inserted. Therefore, the data structure is history indepen-
dent.

Theorem 3.2. If we allocate twice as much space as re-
quired (c = 2), ADD-RECORD(·) will fail with probabil-
ity at most 2−128.

3Particularly, a hash-based approach with a unique, deterministic
ordering of the records avoids possible subliminal channels [12].

ADD-RECORD(record)
1 b← dLENGTH(record)/me
2 data← Split record into list of m-sized blocks
3 for i← 0 to b−1
4 do loc[i]← CHOOSE-FREE-BLOCK()
5
6 for i← 0 to b−1
7 do WRITE-SPECIFIED-BLOCK(i)
8
9 j← loc[0]

10 length j← LENGTH(record)
11 head bit j← True

WRITE-SPECIFIED-BLOCK(i)
1 j← loc[i]
2 used bit j← True
3 block j← data[i]
4 if i < b−1
5 then next ptr j← loc[i+1]

CHOOSE-FREE-BLOCK()
1 for i← 0 to 127
2 do r←{0,1, ...,n−1} uniformly at random
3 if not used bitr
4 then return r
5 error “fail gracefully”

Figure 9: Algorithm for inserting records into our history
independent data structure (HIDS). We assume the table
is a constant factor larger than the maximum expected
size, to keep the data structure sparse and allow for fast,
simple insertion.

Proof. Assume that our HIDS contains space for n
blocks of data, and that we insert records contain-
ing at most n/2 blocks in aggregate. At any time
ADD-RECORD(·) is called, at least n/2 blocks are avail-
able, so the probability of selecting a non-empty block in
lines 2–4 of CHOOSE-FREE-BLOCK() is p ≤ 0.5. The
probability of failing to find a free block after 128 inde-
pendent trials is p128 ≤ 2−128.

We designed this data structure to be resilient in the
face of hardware failures. In particular, consider a fail-
stop model where at any point the storage device can fail,
causing all subsequent reads and writes to fail with an
error. We assume that all small writes are atomic and
synchronous, with no re-ordering of reads or writes. As
a reminder, we assume that the data storage device is
originally initialized to a default value (e.g., 0), differ-
ent from the encoding of True. With these conditions,
we can prove:

9

Theorem 3.3. Under this failure model, if
ADD-RECORD(·) fails while trying to insert a record,
the data structure will not be corrupted. Also, any
partially inserted record(s) can be distinguished from
complete records.

Proof. The first thing that gets written to a block is
its used bit, which is flipped to True in line 2 of
WRITE-SPECIFIED-BLOCK(·). In the failure model out-
lined above, this happens atomically. Once this bit
is flipped, this block (even if not completely written)
will not be selected by CHOOSE-FREE-BLOCK() again.
Moreover, since we use the underlying storage medium
in a write-once fashion, any failure that may occur dur-
ing writing of this log record will not affect the other log
records that have previously been successfully inserted
into the data structure.

What we need to show then is that an incomplete
block, or a block that is part of an incomplete record (i.e.,
part of a linked list of blocks that was never commit-
ted), will be distinguishable from a block from a com-
plete record. The final line of ADD-RECORD(·) sets
head bit j← True for the first block of the record. Under
the assumptions given earlier, this happens atomically,
after the previous operations have completed. A com-
plete record is therefore recognizable because it starts
with a “head block”, i.e., a block with head bit set.
Blocks that are part of an incomplete record (including
incomplete blocks) will be “head-less” and therefore dis-
tinguishable.

Physical storage. The history independence of the de-
vice that stores our HIDS must also be considered. For
instance, even though our data structure is write-once,
the file system on which it is stored may for its own
reasons decide to rearrange the physical memory, while
maintaining the appearance of a consistent and station-
ary logical address space. In fact, file systems optimized
for flash, our target storage medium, will do this for the
sake of reliability and performance [7]. We are not aware
of any existing electronic voting system that takes this
into account. For example, the Sequoia voting system
attempts a history independent data structure for storing
vote records. The storage device, however, is a commod-
ity removable Compact Flash card running a standard file
system not designed for history independence [4].

Our data structure is designed so it can be stored di-
rectly on NAND flash memory, in lieu of a file system,
bypassing the flash translation layer (FTL) normally re-
sponsible for mapping logical addresses to physical ones
to provide wear-leveling and other useful functions. We
discuss below how we compensate for this.

Our data structure maps onto NAND flash in the fol-
lowing way. Each row of the data section (containing

used bit j, head bit j, length j, block j, and next ptr j) will
be stored in its own page in flash (the block size m would
be chosen accordingly). To make this work well, we have
designed the HIDS to meet the following requirements:
the data structure should modify storage in a write-once
fashion (since re-writing is slow and creates the possibil-
ity that failures could corrupt data structure invariants);
the data structure should take into account the reduced
reliability of writing data in flash (the flash translation
layer normally accounts for this with bad block mapping
techniques [7]); and the data structure should account for
wear-leveling (again the flash translation layer normally
accounts for this).

It is easy to verify that our data structure is write-once
in the sense that a bit that has been programmed to 1 or
0 is never modified. However, NAND flash is usually
programmed a page at a time. By writing the first block
of a record last (along with its head bit), we get a data
structure that is write-once with page granularity.

Writing directly to flash exposes us to common relia-
bility problems normally handled by the flash translation
layer. We can make up for this by keeping a list of bad
blocks to avoid4 that is fixed and static for the duration of
an election, and by using error correcting codes (ECC).
NAND flash usually provides a little extra memory per
page specifically for ECC. Instead of maintaining a dy-
namic bad block map, and moving blocks around when
they fail5, we can use ECC to detect and correct single-
bit errors in place. After the election, we recover the
original stored values and update the static bad block list.

The final common function of the flash translation
layer is to perform wear-leveling, a function that ensures
the distribution of writes is spread out over many blocks
and not concentrated on a few. Because our data structure
is write-once, and writes are uniformly distributed over
its memory space, our data structure implicitly wear-
levels.

3.5 Authentication and integrity of the log
There is an orthogonal—but important—issue to our dis-
cussion of trustworthy replayable audit logs, and that is
ensuring that the logs cannot be tampered with and that
they are authentic. We consider this out of the scope of
our paper, though we point out two possible approaches.
First, one could imagine the voting machine digitally
signing the entire data structure following the election.
This would not protect against mid-day attacks, but it

4Defective blocks in NAND flash are typically identified at the time
of manufacturing. Blocks may also fail in operation, for which a bad
block map is usually maintained.

5Dynamic bad block mapping would typically copy bad blocks to
new locations when an error is detected and update the bad block map.
However, either of these actions could unwittingly reveal information
about the history of the data structure.

10

Figure 10: A screenshot of our replay mechanism show-
ing a selection screen previously shown to a voter. The
cross-hair indicates the location of a touch event in the
box for Arnold Schwarzenegger.

could help reduce chain-of-custody concerns. Alterna-
tively, one could use history-hiding, append only signa-
tures [3] to sign each block of data as it is entered into
the HIDS, limiting the extent of a mid-day attack.

3.6 Replay Mechanism

The recorded I/O should be descriptive enough that it is
possible to replay the logs without any knowledge of the
voting machine’s design and without re-implementing
any of its logic. Our implementation is similar to a video
player, in that the user may select any one of the vot-
ing sessions (not knowing when the session took place)
and step or play through all the events (see Figures 10
and 11). The replay program then renders images on the
screen and displays the location of every touch on the
touchscreen.

4 Evaluation

4.1 Setup

We evaluated our implementation on a ballot definition
based on the November 7, 2006 General Election of Con-
tra Costa County, California6. This example ballot defi-
nition included only five contests from that election. The
five contests are presented to the voter on 12 distinct
screens, linked by “next” and “previous” buttons. There
are also separate screens for entering write-in candidates.

6This ballot definition is included with version 1.0b of the Pvote
source code.

SWITCHING TO RECORD 2 of 3.
Record 2 has 62 log entries.
0 ['hash', '\x9f\x81eJ\x05\xa9\xe8QN\xe7}#...']
1 ['display_changed', 'x\x9c\xec\xddu\xb8\x15...', '1024', '768']
2 ['key', '306']
3 ['key', '306']
4 ['touch', '382', '220']
5 ['touch', '573', '596']
6 ['touch', '805', '692']
7 ['display_changed', 'x\x9c\xec\x9du\x9cU...', '1024', '768']
8 ['touch', '90', '682']
9 ['display_changed', 'x\x9c\xec\xddu\xb8...', '1024', '768']
10 ['touch', '797', '723']
11 ['display_changed', 'x\x9c\xec\x9du\x9c...', '1024', '768']
12 ['key', '54']
13 ['touch', '621', '575']
14 ['touch', '857', '708']
15 ['display_changed', 'x\x9c\xec\xddyx\x14...', '1024', '768']
16 ['touch', '634', '300']
17 ['display_changed', 'x\x9c\xec\xdd\x07X...', '1024', '768']
18 ['touch', '624', '370']

.
.
.

Figure 11: An example of recorded events that can later
be replayed. Within a record (a voting session), the
entries are sequential. However, the order of records
is independent of the actual order of voters. Note that
the display changed entry includes as a parameter
a serialized bitmap image (truncated in the figure) of the
entire screen as shown to the voter.

We use a 1GB history independent data structure, al-
located as 524,288 blocks, each 2KB long. We log the
events shown in Figure 7, and we compress the video
images using run-length encoding. We used a 1.83 GHz
Intel Core Duo processor MacBook Pro running Mac OS
10.5 with 1.5GB 667MHz DDR2 SDRAM and an 80GB
Toshiba Serial-ATA hard drive for our tests.

4.2 Performance measurements

We tested the performance of our prototype implementa-
tion on this ballot definition by casting a number of test
votes using our code. We have not conducted a formal
user study, but we expect these figures to be useful indi-
cators of the viability of our approach.

For this ballot definition, our system records on the or-
der of 100 separate I/O events per voting session. These
events occupy on the order of 1500–2000 blocks in the
HIDS (using run-length encoding), which amounts to 3–
4MB of flash memory used per voting session. The ma-
jority of this data is image data because every change
on the screen requires us to record a 2MB screenshot of
the display. As a result, although most events use only
a small fraction of the 2KB block they are written to,
the total space consumption is dominated by the display
events.

These measurements can be used to estimate the
amount of flash memory that will be needed, as a func-
tion of the number of votes cast. We assume that the
size of the storage medium will be conservatively pro-
visioned to ensure that the HIDS does not become more

11

Run Length Encoding

CPU time

(ms)

Est. write

time (ms)

Resulting

Size

Total time

(ms)

Average

Max

Std. Dev.

16.48 19.48 5.05% 35.95

19.16 33.60 8.81% 52.63

0.97 6.09 1.63% 6.78

Zlib Compression

CPU time

(ms)

Est. write

time (ms)

Resulting

Size

Total time

(ms)

Average

Max

Std. Dev.

72.89 7.67 1.92% 80.55

94.25 14.65 3.77% 108.90

6.34 2.84 0.76% 8.72

No Compression

CPU time

(ms)

Est. write

time (ms)

Resulting

Size

Total time

(ms)

Average

Max

Std. Dev.

0.02 384.01 100.00% 384.03

0.08 394.43 100.00% 394.44

0.01 4.98 0.00% 4.98

Compression Latency

CPU Time Write Time

RLE

Zlib

None

16.48 19.48

72.89 7.67

0.02 384.01

0

100

200

300

400

RLE Zlib None

Average Compression Latency

T
im

e
 (
m

s
)

Compression Algorithm

CPU Time
Write Time

Average time to log one image

CPU time to

compress

Estimated

insertion time

Resulting size after

compression

Lines of C code

to implement

Total estimated

time

No compression

Zlib compression

Run-length enc.

0 ms 384 ms 2,304 KB 100.00% 0 lines 384 ms

73 ms 8 ms 44 KB 1.92% 7734 lines 81 ms

16 ms 19 ms 116 KB 5.05% 101 lines 36 ms

Figure 12: A comparison of average latencies incurred by compressing and storing one screenshot image in our
prototype implementation. Images are 1024x768 pixel RGB images, about 2MB each uncompressed. The total time
to log an image is estimated as the sum of the CPU time to compress and the time to insert the compressed image into
the HIDS. The estimated insertion time is a function of the number of random-access reads and writes required to insert
the image data into the HIDS. For evaluation we assume a cost of 25µs for random-access reads and 300µs for random-
access programming to a 2KB block, representative of what might be expected in a NAND flash implementation. The
third column shows the average size of a compressed screenshot, and the fourth column shows the compression ratio
of the compression scheme. The number of lines of C code required to implement compression is also shown to give
the reader a sense of the relative complexity of compression.

than 50% full. With these parameters, a 1GB HIDS can
accommodate approximately 150 voters without exceed-
ing the 50% capacity limit, for an election with a similar
number of contests as the one we tested. Our experi-
ence is that it is rare for a single DRE to process more
than 100–150 voters on election day, due to limits on
how quickly voters can make it through the voting pro-
cess. Consequently, we expect that 1GB of flash memory
should suffice for an election with a similar, five-contest
ballot definition.

We also measured the latency introduced by our log-
ging subsystem, to evaluate whether it would affect the
responsiveness of the user interface. Our measurements
showed that the total latency is dominated by the time
it takes to store screenshots, which even after compres-
sion are 50–100 times the size of other logged events.
We found that the time to store a screenshot in the au-
dit log can be attributed almost entirely to two factors:
the CPU time to compress the raw bitmap image, and
the time to read and write blocks on non-volatile storage.
We measured the CPU time for compressing screenshots
on our implementation; results are shown in the first col-
umn of Figure 12. Also, we found that inserting a RLE-
compressed screenshot to the audit log requires about 65
random-access page reads and writes to flash memory,
on average. Based on an expected latency of 25µs per
random-access read and 300µs for programming a 2KB
page, we estimated the flash-related latency that our im-
plementation would incur. The second column of Fig-
ure 12 shows these flash latency estimates for each com-
pression method7, and the last column shows our predic-
tion of the total latency introduced by our logging sub-

7These estimates are measured in the best case, when the HIDS is
empty. In worst-case conditions, where the HIDS is up to 50% full, the
number of reads will increase by at most a factor of 2×, while all other
contributions to latency remain unchanged.

system per user interface event. For instance, when using
RLE compression, we expect that our logging subsystem
will introduce less than 40ms of latency per user inter-
face event. We do not expect this to noticeably affect the
responsiveness of the voting machine’s user interface.

To cross-check these estimates, we also validated
these latency estimates by measuring the performance of
our implementation on a laptop, using a hard disk instead
of a flash device for nonvolatile storage. Of course, seeks
are much slower on a hard disk, so one would expect
this to be appreciably slower as a result. After correct-
ing for the difference in seek times, the measured perfor-
mance on our laptop is consistent with our estimates in
Figure 12.

4.3 Practicality and cost
Our experimental setup includes only five contests. The
actual election had 115 different contests with on the or-
der of 40 contests shown to any single voter, or about
eight times the size of our test ballot. If we extrapolate
proportionally from the performance estimates above we
would expect to need 8GB of storage for a machine
servicing fewer than 150 voters. If we further assume
NAND flash costs $10 per GB, this comes out to a mem-
ory cost of $80 per machine or around 53 cents per voter.
Because the memory is reusable, this cost could be amor-
tized over multiple elections. While this is just a rough
estimate, it indicates that the cost of this scheme is not
outright prohibitive. Given the declining cost of storage,
we expect that replayable audit logs will become more
affordable in the future.

While thinking of ways to reduce costs, we considered
recording the complete voting sessions of only a random
sample of voters. While the resulting audit logs could
certainly be useful to detect and analyze many threats

12

and failure modes, this comes at the expense of a com-
plete picture of the election day events. There is a qual-
itative difference between explaining an argument to the
public based on complete data, versus an equally strong
argument based on statistics.

4.4 Discussion of goals
We achieve a usable, replayable logging system in a
small number of lines of code. The algorithms chosen—
and our design choices in general—prioritize simplicity
over efficiency and features, for the purpose of increas-
ing the trustworthiness of the code and design. Our use
of language-based isolation, however, is suboptimal even
though it may still be useful for a large class of problems,
particularly those involving misconfiguration or operator
error. Hardware-based isolation, on the other hand, could
result in a strong replayable auditing system.

Our system records all the relevant I/O Pvote provides
to a voter except audio. We leave audio to future work
because of our concern with duration and anonymity.
Our approach of recording only screen images results in
data that captures useful evidence of voter intent, while
removing precise duration information. It is less clear
how to do something similar for audio, because audio is
inherently temporal.

5 Related Work

The two most closely related works we know of are
Prime III [5] and the independent audit framework of
Garera et al. [8]. Prime III is a voting system espe-
cially designed to accommodate voters with visual or au-
ral impairments. In Prime III, all video and audio from
the voting machine is copied to a VHS or DV record-
ing device as it is displayed to the voter. This ensures
that the audit logs are independent of the proper func-
tioning of the software in the voting machine. However,
Prime III’s electronic records reveal significant informa-
tion about the time, order and duration of votes cast and
thus endanger voter anonymity. In addition, Prime III
records only output from the voting machine, but not in-
puts from the voter, such as the location where voters
touch the screen. Our work extends their approach by
recording all I/O experienced by the voter, and by better
protecting voter anonymity.

The independent audit framework approach of Garera
et al. monitors the behavior of the voting machine by
analyzing its video output in real time. They use com-
puter vision techniques to infer important state transi-
tions (such as a candidate being selected or a vote be-
ing cast) and then they log these inferred transitions. In
comparison, our system does not try to analyze this data
in real time, but rather logs all I/O so that this data can

be analyzed after the election. They use a virtual ma-
chine monitor to isolate the monitoring system from the
voting machine. While their approach is good for voter
anonymity because it does not record I/O, it does not save
as much evidence for post-election investigations.

Ptouch, a predecessor to Pvote, takes a step in the di-
rection of replayable audit logs [21]. Ptouch does not
record any I/O during the process of voting and does not
record full screen images, but it does introduce the idea
of recording data exactly as it is seen by the voter. For
each candidate selected by the voter, Ptouch records a
bitmap image of the candidate’s name (as seen and se-
lected by the voter during the voting process) in the elec-
tronic cast vote record.

The Auditorium project developed techniques for en-
suring the robustness and integrity of event logs using lo-
cally networked voting machines [15]. Their work stud-
ies how to log data, while we examine the question of
what to log, so their work is complementary.

Molnar et al. [12] introduced the notion of history in-
dependence to vote storage on voting machines.

A review [20] of voting machine firmware used in
Sarasota County motivated our study of audit logs that
capture user behavior in greater detail than found in cur-
rent voting systems. In that election, some voters alleged
that the CD13 contest was never displayed to them, that
their initial selection did not appear on the confirmation
screen, or that the voting machine did not recognize their
attempts to select one candidate in that contest. Unfortu-
nately, the audit logs available in that election were lim-
ited. If voting machines in Sarasota County had been
equipped with the kind of audit log mechanism proposed
in this paper, investigators would have had considerably
more evidence to investigate these allegations and would
have been able to replay voter sessions to see whether
these allegations were accurate.

Bellovin first proposed the idea of full-interaction au-
dit logs to us in private communication in 2004 [2].
Tyson later independently proposed a similar concept,
motivated by his work in the Sarasota County voting re-
view [20]. This paper explores this concept in greater
detail.

6 Conclusion

We propose a method for recording reliable audit logs
directly that record the interactive behavior of the voting
machine as it is experienced by the voter. We call these
replayable audit logs, and we show they can be gener-
ated by recording data directly from the I/O of the voting
machine. We also show how to protect ballot secrecy by
logging frames of video only when the image changes
and by protecting the confidentiality of audit logs. As a

13

result, this approach allows useful evidence of voter in-
tent to be logged, while protecting the anonymity of the
voter. Our prototype implementation demonstrates the
practicality as well as limitations of the approach.

Acknowledgments

Steve Bellovin and Gary Tyson first suggested this re-
search direction to us, and we gratefully acknowledge
their contributions. We also thank Juan Gilbert, Prabal
Dutta, Adrian Mettler, David Molnar, and the anony-
mous reviewers for their helpful feedback. Thank you
also to Shereen Daly for her exceptional patience and
kind moral support of the first author. This research was
supported by NSF CNS-0524745.

References
[1] Voluntary voting system guidelines, 2005. http:

//www.eac.gov/voting%20systems/
voting-system-certification/2005-vvsg.

[2] BELLOVIN, S. M. Personal communication, August 2004.

[3] BETHENCOURT, J., BONEH, D., AND WATERS, B. Crypto-
graphic methods for storing ballots on a voting machine. In In
Proceedings of the 14th Network and Distributed System Secu-
rity Symposium (2007), pp. 209–222.

[4] BLAZE, M., CORDERO, A., ENGLE, S., KARLOF, C., SASTRY,
N., SHERR, M., STEGERS, T., AND YEE, K.-P. Source Code
Review of the Sequoia Voting System, July 2007. http:
//www.sos.ca.gov/elections/voting systems/
ttbr/sequoia-source-public-jul26.pdf.

[5] CROSS, E. V., ROGERS, G., MCCLENDON, J., MITCHELL,
W., ROUSE, K., GUPTA, P., WILLIAMS, P., MKPONG-RUFFIN,
I., MCMILLIAN, Y., NEELY, E., LANE, J., BLUNT, H., AND
GILBERT, J. E. Prime III: One Machine, One Vote for Ev-
eryone. In On-Line Proceedings of VoComp 2007 (July 2007).
http://www.vocomp.org/papers/primeIII.pdf.

[6] DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A.,
PRATT, I., WARFIELD, A., BARHAM, P., AND NEUGEBAUER,
R. Xen and the art of virtualization. In Proceedings of the ACM
Symposium on Operating Systems Principles (October 2003).

[7] GAL, E., AND TOLEDO, S. Algorithms and data structures for
flash memories. ACM Computing Surveys 37, 2 (2005).

[8] GARERA, S., AND RUBIN, A. D. An independent audit frame-
work for software dependent voting systems. In 14th ACM con-
ference on Computer and Communications Security (2007).

[9] HARTLINE, J., HONG, E., MOHR, A., PENTNEY, W., AND
ROCKE, E. Characterizing history independent data structures.
In International Society for Analysis, its Applications and Com-
putation (2002).

[10] INGUVA, S., RESCORLA, E., SHACHAM, H., AND WALLACH,
D. S. Source Code Review of the Hart InterCivic Voting Sys-
tem, July 2007. http://www.sos.ca.gov/elections/
voting systems/ttbr/Hart-source-public.pdf.

[11] KOHNO, T., STUBBLEFIELD, A., RUBIN, A., AND WALLACH,
D. Analysis of an electronic voting system. In IEEE Symposium
on Security and Privacy (2004).

[12] MOLNAR, D., KOHNO, T., SASTRY, N., AND WAGNER,
D. Tamper-Evident, History-Independent, Subliminal-Free Data
Structures on PROM Storage -or- How to Store Ballots on a Vot-
ing Machine (Extended Abstract). In IEEE Symposium on Secu-
rity and Privacy (2006).

[13] NAOR, M., AND TEAGUE, V. Anti-persistence: History indepen-
dent data structures. In Symposium Theory of Computing (2001).

[14] Pygame. http://www.pygame.org/.

[15] SANDLER, D., AND WALLACH, D. S. Casting votes in the audi-
torium. In USENIX/Accurate Electronic Voting Technology Work-
shop (2007).

[16] SASTRY, N., KOHNO, T., AND WAGNER, D. Designing vot-
ing machines for verification. In USENIX Security Symposium
(2006).

[17] WAGNER, D., CALANDRINO, J. A., FELDMAN, A. J., HAL-
DERMAN, J. A., YU, H., AND ZELLER, W. P. Source Code
Review of the Diebold Voting System, July 2007. http:
//www.sos.ca.gov/elections/voting systems/
ttbr/diebold-source-public-jul29.pdf.

[18] WHEELER, D. A. SLOCCount User’s Guide, 2004. http://
www.dwheeler.com/sloccount/sloccount.html.

[19] WILLIAMS, P., CROSS, E. V., MKPONG-RUFFIN, I., MCMIL-
LIAN, Y., NOBLES, K., GUPTA, P., AND GILBERT, J. E. Prime
III: Where Usable Security and Electronic Voting Meet, February
2007. http://www.usablesecurity.org/papers/
primeIII.pdf.

[20] YASINSAC, A., WAGNER, D., BISHOP, M., DE MEDEIROS,
T. B. B., TYSON, G., SHAMOS, M., AND BURMESTER,
M. Software Review and Security Analysis of the
ES&S iVotronic 8.0.1.2 Voting Machine Firmware, Febru-
ary 2007. http://election.dos.state.fl.us/pdf/
FinalAudRepSAIT.pdf.

[21] YEE, K.-P. Building Reliable Voting Machine Software. PhD
thesis, UC Berkeley, 2007.

[22] YEE, K.-P. Report on the Pvote security review. Tech. Rep.
UCB/EECS-2007-136, EECS Department, University of Califor-
nia, Berkeley, Nov 2007.

14

http://www.eac.gov/voting%20systems/voting-system-certification/2005-vvsg
http://www.eac.gov/voting%20systems/voting-system-certification/2005-vvsg
http://www.eac.gov/voting%20systems/voting-system-certification/2005-vvsg
http://www.sos.ca.gov/elections/voting_systems/ttbr/sequoia-source-public-jul26.pdf
http://www.sos.ca.gov/elections/voting_systems/ttbr/sequoia-source-public-jul26.pdf
http://www.sos.ca.gov/elections/voting_systems/ttbr/sequoia-source-public-jul26.pdf
http://www.vocomp.org/papers/primeIII.pdf
http://www.sos.ca.gov/elections/voting_systems/ttbr/Hart-source-public.pdf
http://www.sos.ca.gov/elections/voting_systems/ttbr/Hart-source-public.pdf
http://www.pygame.org/
http://www.sos.ca.gov/elections/voting_systems/ttbr/diebold-source-public-jul29.pdf
http://www.sos.ca.gov/elections/voting_systems/ttbr/diebold-source-public-jul29.pdf
http://www.sos.ca.gov/elections/voting_systems/ttbr/diebold-source-public-jul29.pdf
http://www.dwheeler.com/sloccount/sloccount.html
http://www.dwheeler.com/sloccount/sloccount.html
http://www.usablesecurity.org/papers/primeIII.pdf
http://www.usablesecurity.org/papers/primeIII.pdf
http://election.dos.state.fl.us/pdf/FinalAudRepSAIT.pdf
http://election.dos.state.fl.us/pdf/FinalAudRepSAIT.pdf

	Introduction
	Problem Statement
	Our Approach

	Design
	Simplicity
	Isolation
	Crafting a replayable audit log
	Storing the logs anonymously
	Vote-buying and coercion

	Implementation
	Isolation
	The logging subsystem
	Compression
	History independent data structure
	Authentication and integrity of the log
	Replay Mechanism

	Evaluation
	Setup
	Performance measurements
	Practicality and cost
	Discussion of goals

	Related Work
	Conclusion

