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Abstract

We take an information-theoretic approach to sequential
election auditing. By comparing how far an empirical
distribution of audited votes diverges from any distribu-
tion in which the reported outcome is incorrect, we gain a
high degree of confidence in the outcome when our pro-
cedure confirms the reported results.

1 Introduction

Post-election audits are a standard method of providing
some assurance that the reported outcome of an election
actually reflects the voters’ intent. When votes are cast
on paper ballots, post-election audits allow verification
that the election outcome is correct, independent of any
misbehavior by ballot scanning and tabulation machinery
(see, e.g., [11]). Many electoral jurisdictions now require
some sort of post-election audit such as California’s hand
recount of 1% of the precincts.

We believe that audit procedures must have three prop-
erties to be useful in real elections to (statistically) guar-
antee that the final outcome is correct.

• First, audits must be risk-limiting [25]. If the audit
certifies the outcome reported in the initial count,
then either that outcome is correct or a bad event oc-
curred — namely the audit failed to find enough ev-
idence that the reported outcome is incorrect when
it actually is. An audit is risk-limiting if its design
provides a statistical bound on the probability that
the bad event occurred.

• Second, audits must be resilient to error. Some au-
dits are designed to find a discrepancy: a single mis-
counted ballot. Such audits allow efficient certifica-
tion of an election when some fraction of the ballots
are counted and no discrepancies are uncovered.
However, our analysis of data from the 2008 Min-
nesota Senate race suggests that a small but nonzero
fraction of ballots are miscounted in real elections;
when such discrepancies are few compared to the
reported election margin they should not lead to a
full hand count.

• Third, audits must be feasible. LA County — ad-
mittedly an outlier — requires counting seven days
a week for almost the entire 28 days allowed by Cal-
ifornia law to complete its 1% manual count [17].
When elections are extremely close or the initial
count is incorrect, it is natural to expect that every
ballot must be counted by hand, but audits that man-
date manual counts of 20% of the ballots even in an
election with a wider margin of victory could not
realistically be implemented.

An audit may be risk-limiting without being resilient to
error. For example, audits designed to look for a single
miscounted ballot are clearly not resilient to error; how-
ever, if after finding a miscount, they proceed to a full
hand count then they are risk-limiting.

Our contribution. In this paper, we propose an audit-
ing scheme that is risk-limiting, resilient to error, and
feasible. Unlike many previous auditing schemes, ours
operates at the level of ballots, not precincts. As we dis-
cuss below, this means that it requires a mechanism for
identifying individual ballots, a nontrivial change from
today’s election procedures. In exchange, our scheme is
able to provide strong statistical risk limits while count-
ing many fewer ballots than current precinct-based audit-
ing schemes.

As discussed below, we believe that our risk anal-
ysis can be improved, giving rise to even more effi-
cient auditing schemes using our techniques. Even so,
the efficiency afforded by ballot-based audits like ours
or like Stark’s [26] suggests an important open prob-
lem: Do comparably efficient precinct-based auditing
schemes exist? The current lack of such schemes pro-
vides a strong argument for investing in the infrastructure
needed to support ballot-based auditing.

At the core of our algorithm is a simple but powerful
idea. Each ballot has a reported value, which we know
from the initial count, as well as an actual value, which
we would determine by means of a hand count. We are
concerned about consequential errors: ones in which the
actual winner differs from the reported one. Suppose we
knew that our adversary, who is trying to steal the elec-
tion, would be using a specific joint distribution M of
actual and reported values: for each ballot, he has deter-
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mined what its reported values will be based on its actual
value. By sampling and counting some fraction of the
ballots, we obtain an approximation M̂ to the underlying
distribution. The question we ask is: Assuming the un-
derlying distribution is M, how likely is a random sample
of ballots to yield the approximation M̂? (The probabil-
ity is computed over the choice of ballots to count.) If
this probability is sufficiently small, say less than some
bound ξ , then this is evidence that the underlying distri-
bution is not M, so the adversary is not stealing the elec-
tion, and we can certify the election. The risk of miscer-
tification is the probability, assuming that the underlying
distribution actually is M, of drawing a sample M̂ so very
unlikely (i.e., below the bound ξ ) that we certify the elec-
tion. By setting ξ appropriately, we can guarantee that
this probability is at most α , the desired miscertification
risk level.

In the real world, of course, adversaries are not so
helpful as to tell us the distribution of their malfeasance.
To rule out any consequential tampering, we would have
to compare against all distributions of actual and re-
ported values in which the actual winner differs from the
reported one. Unfortunately, there are far too many such
distributions that we would have to consider — the num-
ber grows like n8 for a two-candidate election with n bal-
lots. In general, the exponent grows with the square of
the number of candidates.

Surprisingly, by using tools from information-theoret-
ic statistics and from convex optimization, we are able to
do just what we have argued is difficult: given sampled
ballots, rule out all distributions of actual and reported
values in which the actual winner differs from the re-
ported one, using a computationally efficient procedure.
This is because the set of distributions against which we
must compare is convex, and we can minimize our test
statistic (Kullback-Leibler divergence) over this set us-
ing convex optimization procedures.

Building on our techniques, we propose a simple and
concrete audit procedure. Ballots are counted in batches
selected using simple random selection with replace-
ment. From all of the ballots selected, we construct an
empirical distribution M̂ of the ballots sampled and com-
pute a measure of the discrepancy between M̂ and all
possible (real) distributions M of ballots for which the
reported outcome is incorrect. Based on this discrepancy
measure, we either stop the audit and confirm the result
or we count another batch.

Using data from the 2008 Minnesota Senate race re-
count, we are able to construct synthetic datasets with
realistic rates of optical scan errors, on which we evalu-
ate our scheme by simulations. The results are promis-
ing and highlight the power of ballot-based auditing and
of convex optimization. However, the simulations also
show that our analysis is far too conservative: With our

proposed parametrization, our observed miscertification
rate is much less than α , which conversely means that we
count more ballots than are necessary to certify elections.
We believe that our analysis can be improved, making
possible an even more efficient audit procedure.

Related work. In 1975, Roy Saltman [21] proposed a
method by which one could gain confidence in an elec-
tion’s outcome. This problem did not receive much atten-
tion for several decades. In recent years interest has been
renewed and the problem of providing strong guarantees
for the outcome’s correctness has been studied along two
orthogonal axes.

The first axis concerns exactly what an audit that con-
firms the reported outcome guarantees. The earlier work
focused on finding evidence of a single miscounted vote
(see [10] and the references therein). If no evidence is
found after counting some specified number of ballots,
then the outcome is correct with high probability. Unfor-
tunately, in any election using paper ballots and optical-
scan hardware, some ballots will be miscounted and once
a single miscount has been discovered, these audit proce-
dures provide no guarantee about the correctness of the
reported outcome.

In contrast to finding a single error, Stark [22] pro-
posed the first complete audit procedure that specifies
what to do when miscounts are discovered. Rather than
being concerned with finding evidence of a single mis-
count, Stark’s procedure looks for evidence that the re-
ported outcome is incorrect — a so-called material error.
Follow up work produced procedures that are easier to
follow and statistically more powerful. As would be ex-
pected, Stark’s procedures require significantly more bal-
lots to be counted than the earlier work focused on find-
ing a single error.

The second axis of study concerns the size of each
sample to be audited. Most auditing procedures operate
at the granularity of a precinct as that is the granularity
at which most results are tabulated. The traditional orga-
nization of elections into precincts makes this a natural
model. Neff [18], Johnson [15], Calandrino et al. [4], and
Sturton et al. [27] note that the statistical power of post-
election audits would be greatly increased by reducing
the unit of an audit to a single ballot. (Intermediate sub-
precinct audit units, such as individual voting machines,
appear to provide no such gain in statistical power.) The
downside to ballot-based auditing is that, to perform it,
one needs a way to associate an electronic record of a
ballot — the cast vote record (CVR) — with the physical
ballot, for example, by printing a unique serial number
on each ballot as they are being counted [4] or by weigh-
ing stacks of ballots [27].

The efficiency of any ballot-based auditing scheme de-
pends on being able to efficiently select arbitrary bal-
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lots to count based on the CVRs selected by the auditing
algorithm. This issue has been studied by Calandrino
et al. [4] and Sturton et al. [27]. However, in the absence
of real-world experience with single-ballot methods, it
is unclear how expensive finding each ballot will be in
practice.

The first attempt at an error-tolerant, risk-limiting au-
dit scheme that proceeds in stages was described by
Johnson [15]. Unfortunately, Johnson’s analysis is not
truly risk limiting when multiple stages are used. For a
discussion of this issue in the context of our approach,
see Section 3.3.

Concurrently with our work, Stark proposes another
ballot-based auditing scheme [26]. Stark’s scheme uses
different mathematical tools than ours and is not directly
comparable. However, for similar risk guarantees, his
approach appears to use fewer ballots to certify some
elections which contain few errors. Nevertheless, we be-
lieve that with a less conservative analysis of our risk
(see Section 3), our approach will be statistically more
powerful (see Section 4.2).

Assumptions and limitations. Because in this paper
we study a scenario considerably different from those
studied earlier, it is worth stating the basic assumptions
underlying our mathematical model and algorithm.

• We assume that each counted ballot has an associ-
ated index and for any index, we can efficiently re-
trieve and examine both the CVR and the physical
ballot. In particular, we assume that we can sample
a ballot uniformly from all ballots cast in the elec-
tion.

• We assume that examining a ballot reveals perfectly
the actual value of the ballot.

We emphasize that at present no deployed voting sys-
tem is configured to support ballot-based auditing. Mak-
ing use of our audit techniques would require substantial
changes to election procedures. We view our results as
an additional demonstration of the statistical power of
ballot-based auditing compared to traditional precinct-
based auditing, and hope that this demonstration will
spur the development and deployment of voting systems
that support ballot based auditing (cf. [4, 27]).

With each ballot having an index, sampling consists
of drawing random entries from a table and then finding
the corresponding CVR and paper ballot. Drawing ran-
dom entries from a table is a straight-forward procedure
using any random number generator, but see Cordero
et al. [6], Hall [12], Calandrino et al. [5], Rescorla [20],
and Heninger [13] for caveats on specific methods.

A drawback of our scheme is that although the convex
optimization computation at its heart can be efficiently

carried out, it is opaque from the viewpoint of election
observers. Given the data from a sample count of ballots,
the computation is deterministic, and so can be carried
out on multiple computers. Thus, a transcript of the com-
putations performed during an audit would enable out-
side observers to verify that the computation proceeded
as intended.

We chose to implement our auditing scheme in MAT-
LAB because of MATLAB’s excellent support for nu-
merical computation and its mature Optimization Tool-
box.1 The downside to our choice is that MATLAB is
closed-source and expensive, making our prototype im-
plementation less immediately useful to voting officials.
We believe that it is also possible to implement the re-
quired algorithms in open-source, freely-available soft-
ware for numerical computation such as GNU Octave or
even more general math software such as Sage. It should
also be possible to write a customized procedure for per-
forming the specific minimization problem in our algo-
rithm using standard libraries.

Any implementation used for a real election audit
should include a transcript of its computation for inde-
pendent verification that the procedure was correctly fol-
lowed. A discussion of this issue is outside the scope of
this paper.

2 A mathematical model for single-ballot
sampling

We consider a slightly simplified model for sequentially
auditing ballots after an election. We consider elections
of the form “vote for 1 candidate.” To model a vote for
no candidate we introduce a fake candidate. Most mod-
els consider election auditing by precinct, in which entire
precincts are counted and the sums are compared to the
reported outcomes from that precinct. Here we pool all
ballots cast into one collection and audit batches of bal-
lots sampled uniformly from this combined pool. This
procedure allows us to use classical tools from probabil-
ity theory to analyze the results of the audit.

Mathematically, we model a set of C candidates as a
set X = {0,1,2, . . . ,C} with a ballot cast for 0 signify-
ing no vote or “white ballot.” We focus on the case of
C = 2, which is a contest between two candidates. A
description of how to extend our results to more candi-
dates is given in Section 5. In the course of the elec-
tion, n ballots are cast. We model the n ballots as a set
Xn = {X1,X2, . . . ,Xn} where for each i ≤ n, the variable
Xi takes values in X. Thus Xi = 2 corresponds to the ith
ballot being a vote for Candidate 2, and Xi = 0 corre-
sponds to a vote for no candidate.

The true outcome of the election is the fractions of
the ballots in Xn that were cast for the different candi-
dates. We write the fractions as a C+1-dimensional vec-
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Table 1: Notation

Symbol Meaning

α maximum probability of miscertifying an election (risk level)
γ upper bound on the probability of error for each stage
∆t smallest value of divergence between M̂t and any R ∈ R

ξt per-round threshold parameter
b(α,m) naïve bound on the number of ballots needed to detect one miscount

Bt set of ballots sampled in the batch t
C number of candidates
Dx set of outcomes for which x is the winner
kt number of ballots in a batch t
Kt number of ballots sampled through batch t: Kt = ∑

t
j=1 k j

M empirical joint distribution of ballots
M̂t empirical joint distribution of sampled ballots
p true fractions of votes for each candidate
q reported fractions of votes for each candidate
R set of joint distributions where the true winner is not the reported winner
T maximum number of batches to be sampled
X set of candidates (including null candidate)
Xi true value of ith ballot
Yi recorded value of ith ballot

tor p = (p(0), p(1), p(2)) and refer to p as the empirical
distribution of Xn. Letting 1(Xi = x) = 1 when Xi = x
and 0 when Xi 6= x, we can write the following equation
for p(x):

p(x) =
1
n

n

∑
i=1

1(Xi = x). (1)

The true winner of the election — the candidate who
won the most votes — is

wtrue(p) = argmax
x∈X\{0}

p(x). (2)

Unfortunately, errors (potentially caused by fraud) oc-
cur when the ballots are counted, and the initial election
results may not reflect the true outcome p. We say the
ballot i is recorded as a variable Yi that also takes values
in X, where Yi may be different from Xi. The reported
outcome of the election is the empirical distribution of
the set Y n = {Y1,Y2, . . . ,Yn} given by

q(y) =
1
n

n

∑
i=1

1(Yi = y). (3)

The reported winner of the election is

wreported(q) = argmax
y∈X\{0}

q(y). (4)

An audit is a procedure for sampling the ballots,
recording the true values, and deciding whether the re-
ported winner wreported is the same as the true win-
ner wtrue, or whether a full hand-count of the ballots

is required to decide this fact. If the auditor decides
that wreported = wtrue, we say that she certifies the re-
ported outcome. Suppose the audit samples some set
A ⊆ {1,2, . . . ,n} of the ballots. We assume that an au-
ditor looking at ballot i can determine Xi perfectly; Yi is
precisely the CVR and thus is already known. The audi-
tor has to decide on the basis of {(Xi,Yi) : i ∈ A} whether
or not to certify the election.

We are interested in risk-limiting audits. In a risk-
limiting audit with risk level α , ballots are sampled ran-
domly and we have the guarantee: If wreported 6= wtrue,
then the audit will require a full hand-count with proba-
bility (over the choice of the sample) at least 1−α . An-
other way of phrasing this is that the audit is conservative
in the following sense: If the true result of the outcome is
different than the reported outcome, then the probability
that the audit certifies the election is smaller than α . Set-
ting the value α is a policy question; values between 1%
and 25% have been studied in prior work. The number
of ballots to be sampled depends on the parameters α

and C, and on the reported outcome q of the election.
To see why the number of ballots required depends

on q, consider the following two scenarios involving two
candidates. In the first, the reported outcomes are 20%
for Candidate 1 and 80% for Candidate 2, and in the sec-
ond, they are 49.9% for Candidate 1 and 50.1% for Can-
didate 2. In the first case, in order for the winner to not
be Candidate 2, there must have been massive irregular-
ities in the counting, so that Xi 6= Yi for more than 30%
of the votes. Even a small subset of the ballots sampled
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would show that the true values Xi are different from Yi.
However, if even a small sample shows very little irreg-
ularity, the auditor can be quite certain that a full count
would still result in Candidate 2 winning. In the second
scenario, even a small number of irregularities could re-
sult in the election flipping. An auditor would require a
larger sample to have the same certainty Candidate 2 was
the true winner.

The auditor’s decision whether to certify the election
depends on the values reported by the audit. We therefore
consider a sequential auditing scheme that samples ad-
ditional ballots until the auditor is assured that the risk of
miscertification is low [23]. The audit operates in steps,
which we index by t = 1,2, . . . ,T . At the tth step, the
auditor samples a batch of kt ballots Bt ⊂ {1,2, . . . ,n},
with replacement,2 and computes a test statistic using all
of the ballots At =

⋃t
i=0Bi audited so far. This statistic

is used to bound the probability that the reported out-
come is incorrect; the auditor compares this statistic to
a threshold chosen as a function of α , the desired risk
level. If the test statistic exceeds the threshold it certifies
the election; if not, it moves to step t + 1 and samples
another batch of ballots.

Our auditing scheme is based on estimating the em-
pirical joint distribution of the true and reported ballot
values. This is a (C+ 1)-by-(C+ 1) matrix M in which
the element M(x,y) located in the xth row and yth col-
umn is the fraction of the total ballots for which the true
vote was Xi = x but it was recorded as Yi = y. The true
joint distribution is therefore

M(x,y) =
1
n

n

∑
i=1

1(Xi = x,Yi = y). (5)

The marginal distributions on X and Y are p and q re-
spectively:

p(x) = ∑
y∈X

M(x,y), (6)

q(y) = ∑
x∈X

M(x,y). (7)

We would like to use the evidence from the audit to es-
timate the true joint distribution M. For simplicity, con-
sider the tth step of the audit so that Kt = ∑

t
j=1 k j ballots

have been sampled thus far. From the t batches sampled
we can construct an estimate M̂t of M by

M̂t(x,y) =
1
Kt

t

∑
j=0

∑
i∈B j

1(Xi = x,Yi = y). (8)

This is the empirical joint distribution of the sampled bal-
lots. The double summation emphasizes that in the rare
event that the same ballot is sampled in B j and B j′ , it is
counted in M̂t for each time it is sampled.

The last part we need is to model the assumption that
the winner of the election is different than reported. We
illustrate this for the simple two-candidate election with
X = {0,1,2}, and describe the model for more candi-
dates in Section 5. The winner of the election is different
than reported if the true outcome p has a winner wtrue(p)
not equal to wreported(q). Let Dc be the set of distribu-
tions d such that the winner of the election is c — that
is, the set of potential values for p. For example, in a
two-candidate election, we have

D2 =

d :

d(x)≥ 0 ∀x ∈ X,

d(0)+d(1)+d(2) = 1,
d(2)> d(1)

 . (9)

The first two conditions say that d is a probability distri-
bution and the third says that Candidate 2 is the winner.

Suppose that wreported(q) = 1. Then, since D2 contains
the set of vote distributions for which the true winner was
Candidate 2, the set of possible joint distributions such
that the reported outcome is q but wtrue(p) = 2 is

R=

R :

R(x,y)≥ 0 ∀x,y ∈ X, ∑
x,y∈X

R(x,y) = 1,

∑
x∈X

R(x,y) = q(y), ∑
y∈X

R(x,y) ∈D2

 .

(10)
This is the set of joint distributions on (X ,Y ) pairs such
that the Y -marginal agrees with the reported values q
and the X-marginal does not agree with the reported out-
come. The set R represents all possible values for the
true underlying distribution M defined in (5) such that
the reported winner was Candidate 2 but the true winner
was Candidate 1.

We can phrase the auditing criteria mathematically us-
ing the notation we have just defined. If the true joint
distribution M ∈ R, then our auditing procedure should
result in a full hand count with probability at least 1−α .
If the true joint distribution M /∈ R then the outcome of
the election is correct, and we would like a test which
uses as few ballots as possible to determine this.

3 An algorithm for ballot-based auditing

Since our auditing algorithm is risk-limiting, we need to
control the probability of certification when the reported
outcome of the election is wrong. In the notation of the
previous section, we want

P(certify |M ∈ R)< α. (11)

For a sequence of values z= (z1,z2, . . . ,zK)∈ZK from
a finite set Z, define the type of z as the probability dis-
tribution

Pz(z) =
1
K

K

∑
i=1

1(zi = z). (12)

5



Algorithm A Sequential auditing procedure

Given: reported outcome q, parameters α , C, T , and k1,k2, . . . ,kT .
Output: true winner w.
Certify← 0, t← 0, γ ← 1− (1−α)1/T .
Kt ← ∑

t
j=1 k j for 0≤ t ≤ T .

M̂0(x,y)← 0 for all x ∈ X and y ∈ X.
while Certify = 0 and t ≤ T do

t← t +1.
Draw kt indices Bt with replacement uniformly from {1,2, . . . ,n}.
M̂t(x,y)← (Kt−1/Kt)M̂t−1(x,y)+(1/Kt)∑i∈Bt 1(Xi = x,Yi = y) for all x ∈ X and y ∈ X.
∆←minR∈R D(M̂ ‖ R).
Compute ξ per Equation (36).
if ∆ > (1/Kt) log( f (M̂)/ξ ) then

Certify← 1.
end if

end while
if Certify = 1 then

Output w← wreported.
else

Count all ballots and compute true distribution M← (1/n)∑
n
i=1 1(Xi = x,Yi = y).

Output w← argmaxx ∑y∈X M(x,y).
end if

For our purposes, Z= X×X, the set of pairs of possible
actual and reported votes for a ballot. Thus, if all of the
ballots cast in an election are arranged in some sequence
of (xi,yi) pairs, then the empirical joint distribution M
is the type of the sequence. Using Z instead of X×X

simplifies the notation in much of what follows and will
be used frequently.

Let PK be the set of types with denominator K — that
is, for every P∈PK and every z∈ Z, the probability P(z)
is an integer multiple of 1/K — then for any P ∈ PK , de-
fine the type class of P to be the set of sequences of
length K with type P:

T (P) = {z ∈ ZK : Pz = P}. (13)

As a final piece of notation, for a probability distribu-
tion R, and a sequence z ∈ ZK drawn i.i.d., let RK(z) =
∏

K
i=1 R(zi) be the probability of drawing the sequence z

according to the distribution R.
If we consider a round of the auditing algorithm as a

decision procedure At(M̂) ∈ {0,1} such that At(M̂) = 1
if it certifies the election after drawing a sample of ballots
of size Kt with type M̂t , then the probability of this round
certifying is

P(certify |M ∈ R) = ∑
M̂t

MKt
(
T (M̂t)

)
·At(M̂t) (14)

= ∑
M̂t∈Ct

MKt
(
T (M̂t)

)
, (15)

where Ct is the set of types on which At certifies (inde-
pendent of the behavior of the other rounds).

The sum in (15) is impossible to calculate directly
since we do not know M — at least not without counting
all of the ballots. Instead, we can bound the sum in two
steps. The first step is to get a bound on MKt

(
T (M̂t)

)
given that M is in R. The second step is to slice the
certification region Ct into two pieces, compute bounds
on their sizes, and compute bounds on the probability of
sampling from each of the regions.

Bounding the probability of an audit sample. For
any known probability distribution R, a standard result in
information theory [7, Theorem 11.1.2] tells us we can
compute the probability of any sequence z:

RK(z) = exp
(
−K[D(Pz ‖ R)+H(Pz)]

)
. (16)

The first term in the exponent is the Kullback-Leibler
(KL) divergence, which is defined as

D(P ‖ R) = ∑
z∈Z

P(z) log
P(z)
R(z)

, (17)

where the logarithm is base e. The KL-divergence is a
measure of how close two distributions are,3 and appears
frequently in the literature on hypothesis testing. If P
and R are far apart, so that ∑z |P(z)−R(z)| is large, then
D(P ‖ R) is large as well. The second term in the ex-
ponent is the standard notion of Shannon entropy of a
distribution

H(P) = ∑
z∈Z

P(z) log
1

P(z)
. (18)
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By summing over all elements in the type class of P ∈
PK , we can compute the probability of T (P),

RK(T (P))= |T (P)|exp
(
−K[D(P ‖ R)+H(P)]

)
= f (P)exp

(
−K ·D(P ‖ R)

)
(19)

where

f (P) = |T (P)|exp
(
−K ·H(P)

)
≤ 1. (20)

The size of the type class is a simple multinomial coeffi-
cient

|T (P)|=
(

K
K ·P(z1), . . . , K ·P(z|Z|)

)
(21)

where {z1,z2, . . . ,z|Z|}= Z.
Since we are trying to bound the chance of certifica-

tion given Mt ∈ R, we can evaluate RKt
(
T (M̂t)

)
exactly

for each R ∈ R. To be conservative, we want to find
the largest probability over all possible true vote distri-
butions R ∈ R. This corresponds to finding the smallest
value of the KL-divergence D(M̂t ‖ R) over R ∈ R:

∆t = min
R∈R

D(M̂t ‖ R). (22)

The minimum value can be computed using any con-
strained convex optimization routine such as MATLAB’s
fmincon function; see Appendix A.

Therefore, when M ∈ R,

MKt
(
T (M̂t)

)
≤ f (M̂t)exp(−Kt∆t). (23)

This forms the basis of our certification test: If

f (M̂t) · exp(−Kt∆t)< ξt , (24)

for some ξt to be determined later, then the algorithm
certifies the election.

Slicing the certification region. The second step to
bounding the sum in (15) is to bound the size of the cer-
tification region Ct . Unlike the bounds in the previous
step — which are as tight as they can be up to neglecting
the discrete nature of R in the optimization — the bound
in the second step is extremely loose. This looseness rep-
resents the major opportunity for improving on our re-
sults. See Section 4.2 for evidence of just how much
improvement potentially remains.

Recall that Z= X×X. One very simple bound on the
size of C is the number of types with denominator Kt ,

|PKt |=
(

Kt + |Z|−1
|Z|−1

)
. (25)

With this, we can bound the sum in (15) by

P(certify |M ∈ R)≤ |PKt | f (M̂t)exp(−Kt∆t). (26)

This bound is perfectly valid and an audit procedure that
works can be constructed around it, but we can do better.

Pinsker’s inequality [7], another standard result from
information theory, states that the l1 distance between
two distributions ‖P− R‖1 = ∑z∈Z |P(z)− R(z)| is re-
lated to the KL-divergence by

D(P ‖ R)≥ 1
2
‖P−R‖2

1. (27)

This justifies our assertion earlier assertion that if P and R
are far apart then the divergence is large. We can use
Pinsker’s inequality to partition the certification region
Ct into two pieces, C1

t and C2
t .

Let G(δ ) = {P ∈ PKt : ‖P−M‖1 ≤ δ}. For any
M̂t ∈ G(δt), either the algorithm does not certify, or
f (M̂)exp(−Kt∆t) < ξt . Note that |G(δt)| is an upper
bound on the size of C1

t = Ct ∩G(δt)— the set of distri-
butions on which the algorithm certifies and has l1 norm
at most δt from M. We can bound the size of G(δt) by a
volume argument (see Appendix B) to get

|G(δt)| ≤
(2δtKt +2|Z|)|Z|−1

(|Z|−1)!
. (28)

Let C2
t = Ct \C1

t ⊂ G(δt)
C. Then for any distribution

M̂t /∈ G(δt), we have

δt < ‖M̂−M‖1 ≤
√

2D(M̂ ‖ M). (29)

and thus

f (M̂t)exp
(
−Kt ·D(M̂t ‖ M)

)
< exp(−Kδ

2
t /2). (30)

As before, we can bound the size of C2
t by |PKt |. This

is, of course, a massive overstatement of the size of C2
t ,

but each distribution in C2
t has an exponentially small

probability and our size bound is polynomial so the con-
tribution to the risk from C2

t can be controlled with a rea-
sonable choice of δt .

Putting this all together, the risk rt of miscertification in
round t is bounded by

rt = P(certify |M ∈ R) (31)

= ∑
M̂t∈C1

t

MKt
(
T (M̂t)

)
+ ∑

M̂t∈C2
t

MKt
(
T (M̂t)

)
(32)

< ξt |C1
t |+ e−Kδ 2

t /2|C2
t | (33)

< ξt ·
(2δtKt +2|Z|)|Z|−1

(|Z|−1)!
+ e−Kt δ

2
t /2|PKt |. (34)

We want the maximum risk of miscertification in each
round to be at most a constant γ so, for a given number
of ballots Kt sampled up to round t, we need to pick pa-
rameters ξt and δt such that rt < γ . One way to do this is
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to let the second term in (34) be equal to some ε-fraction
of γ . Solving for δt , we get

δt =

√
2
Kt

log
|PKt |
εγ

. (35)

Now we set the first term in (34) equal to (1− ε)γ and
solve for ξt :

ξt =
(1− ε)γ(|Z|−1)!
(2δtKt +2|Z|)|Z|−1 . (36)

Plugging (36) into our certification test gives us our per-
round test statistic:

∆t >
1
Kt

log
f (M̂t)

ξt
. (37)

Thus far we have described an algorithm which takes
batches of size kt and after each batch computes an esti-
mate M̂t . The last piece is to ensure a full hand-count if
the audit cannot certify the election. We set a number T
and say that if T total batches have been audited and (24)
(equivalently, (37)) has still not been satisfied, then we
do a full hand-count of all of the ballots. Note that un-
der our assumptions, a full hand-count reveals the true
outcomes p of the election.

3.1 A naïve bound

A simple lower bound on the number of ballots that need
to be drawn in order to detect at least one ballot that has
an error, given that the election outcome is incorrect, de-
pends only on the margin m (as a fraction of n). Since
the presence of an m/2 fraction of votes that change the
margin by two is enough to change the outcome of the
election, the probability of sampling b ballots (with re-
placement) and not seeing any errors is (1−m/2)b. We
can set this equal to α and solve for b to determine the
minimum number of ballots any algorithm searching for
errors with a risk level α must sample if no errors are
detected:

b(α,m) =
logα

log(1−m/2)
. (38)

We call b(α,m) the naïve bound.
Since this bound is computed by throwing away in-

formation, in principle, it is possible for an auditing al-
gorithm to sample fewer than b = b(α,m) ballots and
certify the election with risk level α . Despite this, in the
normal case, an auditing algorithm will require more bal-
lots so b is a useful reference point when setting the batch
sizes.

3.2 Computing the threshold statistics

It is important in a sequential scheme that the statistics
be efficiently computable at each time step. Computing
M̂t is simple, since it just involves updating the counts.
Computing δt and log( f (M̂t)/ξt) is straight forward.

We must show that ∆t in (22) has a unique minimum
and is efficiently computable. We need two facts: firstly,
that the set R is convex, and secondly, that D(M̂ ‖ R)
is a convex function in R. The first fact follows directly
from the definition, since R is defined by a set of linear
constraints. The second fact is standard [8, p. 50]. There-
fore the threshold value ∆t is efficiently computable be-
cause it involves minimizing a convex function over a
convex set, which can be done by standard techniques;
see Appendix A. For two-candidate elections it is a 9-
dimensional problem and the minimization takes a less
than a second in MATLAB using built-in functions. The
complexity scales quadratically with the number of can-
didates for a single election. For auditing multiple con-
tests, further evaluation is needed, but modern software
systems routinely handle hundreds of such larger-scale
optimization problems in under a minute. For context,
the time spent counting the ballots to use in the audit
dwarfs the computation time by orders of magnitude.

3.3 Setting the parameters

The procedure described above has several parameters
which must be set in order to implement our procedure.
The most important of these parameters is the threshold γ

used in (36). Our bound says that that if (37) is satisfied,
then the sample M̂t occurs with probability less than γ for
every distribution in R. Thus with probability γ , we make
the wrong decision. Since we are sampling up to T times,
the chance that our procedure results in a full hand-count
when the reported winner is incorrect is at least (1− γ)T

(see Stark [23]). By setting 1−α = (1−γ)T and solving
for γ , we get a conservative setting

γ = 1− (1−α)1/T . (39)

The other parameters that we must set are the batch
sizes kt , the maximum number of total batches T , and
the fraction ε . For concreteness, in the remainder of the
paper, we set ε = 0.01 and T = 5. Since we desire not to
count too many ballots yet at the same time count enough
that we can certify most correct elections without a full
hand count, we let k1 = 9b and kt = b for t > 1 where
b = b(α,m) is the naïve bound given in Section 3.1; thus
Kt = (9+ t)b. In this way, we count at most 13b bal-
lots before certifying the election or going to a full hand
count. With a tighter analysis of the auditing algorithm,
the number of ballots counted could be reduced, perhaps
significantly reduced; see Section 4.2.

Our complete scheme is Algorithm A.

8



3.4 Example

We illustrate our algorithm via a numerical example.
Suppose we have an election with 100,000 votes cast,
and the true and reported votes were according to the fol-
lowing table.

reported vote
true vote None Candidate 1 Candidate 2

None 1500 300 600
Candidate 1 400 46300 600
Candidate 2 100 200 50000

That is, 600 votes for Candidate 1 were reported for Can-
didate 2, 200 votes for Candidate 2 were reported for
Candidate 1, 100 votes for Candidate 2 were reported
as blank, and so on.

Dividing each element of this table by the sum, we
obtain the true joint distribution of the election,

M =

0.015 0.003 0.006
0.004 0.463 0.006
0.001 0.002 0.500

 . (40)

If we sum down each column of M we get the reported
outcomes q and if we sum along each row we get the true
outcomes p:

q =
(
0.020 0.468 0.512

)
, (41)

p =
(
0.024 0.473 0.503

)
. (42)

From the reported outcome q the winner was Candidate 2
by a 4.4% relative margin, but the true margin is 3.0%.
So the outcome of the election is correct, but by a smaller
amount than reported.

We can construct the set D1 of possible true outcomes
for which Candidate 1 is the winner, as in (9). This is the
set of d = (d(0),d(1),d(2)) where each entry is nonneg-
ative, they add up to 1, and d(1) > d(2). Then, we can
write the set of joint distributions as in (10). This is the
set of all matrices with nonnegative entries:

R =

R(0,0) R(0,1) R(0,2)
R(1,0) R(1,1) R(1,2)
R(2,0) R(2,1) R(2,2)

 , (43)

such that summing each column is equal to q and sum-
ming each row is something in D1.

Suppose we want a risk of α = 0.01, then if we run the
algorithm for up to T = 5 rounds, (39) says we should set

γ = 1− (1−0.01)1/5 ≈ 0.0020. (44)

From α and the reported margin m = 4.4%, we can com-
pute the naïve bound

b(1%,4.4%) =

⌈
log(0.01)

log(1−0.044/2)

⌉
= 208. (45)

Table 2: Sequence of example test statistic values.

t Kt log 1
ξt

∆t
1
Kt

log f (M̂t )
ξt

1 1872 50.63 0.0079 0.0184
2 2080 51.10 0.0086 0.0166
3 2288 51.53 0.0064 0.0151
4 2496 51.91 0.0257 0.0136

The five batch sizes are k1 = 1872 and kt = 208 for t > 1.
We begin by randomly sampling 1872 ballots for the

first batch (t = 1) and calculate the empirical distribu-
tion M̂1 according to (8). Suppose we measure the fol-
lowing counts.

reported vote
true vote None Candidate 1 Candidate 2

None 39 6 19
Candidate 1 6 840 8
Candidate 2 3 0 951

Dividing by 1872 gives,

M̂1 =

0.0208 0.0032 0.0101
0.0032 0.4487 0.0043
0.0016 0.0000 0.5080

 . (46)

Next, we calculate ∆1 per (22), which is the minimum
of D(M̂1 ‖ R) over all R ∈ R. We can find the minimiz-
ing R numerically using standard optimization tools; see
Appendix A. The minimum is attained at R = R∗:

R∗ =

0.0157 0.0024 0.0151
0.0034 0.4656 0.0144
0.0009 0.0000 0.4825

 , (47)

and ∆1 = 0.0079, which is smaller than the threshold
(1/1872) log( f (M̂1)/ξt) = 0.0184. Therefore, we can-
not certify the election yet and we draw another batch of
ballots.

Continuing in this way, we get a sequence of ∆t and
(1/Kt) log( f (M̂t)/ξt) given in Table 2. After 2496 bal-
lots are counted, ∆4 > (1/2496) log( f (M̂4)/ξ4) and the
auditing procedure certifies the election.

4 Evaluation

We experimentally evaluate our algorithm by simulating
elections with varying parameters. Our simulations show
that the statistical bounds on the risk of miscertification
actually hold in practice; in fact, they show that with this
analysis, the risk of miscertification is essentially zero.
This is a check that both our math and implementation
are correct. We also demonstrate that, with the param-
eters given in Section 3.3, our algorithm has sufficient
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statistical power to certify elections without a full hand
count. This is required because an auditing algorithm
without sufficient power to certify any election without a
full hand count will never miscertify, but is of no practi-
cal value.

4.1 Validating miscertification bounds

A post-election, risk-limiting auditing algorithm has two
competing goals: control the probability of certifying an
election where the reported vote totals are incorrect and
minimize the number of ballots counted when the re-
ported outcome is correct. As the first goal is paramount,
we design our algorithm to have strong guarantees that
if the election is certified then either it is correct or an
event with probability at most α occurred — that event
being that we failed to find enough evidence that the out-
come was incorrect.

To experimentally verify our results, we consider sev-
eral elections with n = 100,000 ballots between two can-
didates in which the reported results are incorrect. Up to
five rounds of counting occur (T = 5) and the batch sizes
are as in Section 3.3 so that after 5 rounds 13b ballots
have been counted where b = b(α,m) is the naïve bound
(Section 3.1). The risk level is set to α = 1% and we vary
the margin m between 0.5% and 5%. To run simulations,
we need some joint distribution of votes for which the
reported winner is not the actual winner; to that end, we
let

M =

 0 .4m 0
0 .5− .4m 0
.4m .2m .5− .6m

 . (48)

An audit for each value of m is simulated 10,000 times. If
our analysis were tight, we would expect to see roughly
an α = 1% fraction of miscertification for each election.
Instead, we see that not a single election was miscerti-
fied. As we’ll see shortly, this is because our analysis
requires us to count far more ballots than should really
be necessary. As a result, our sample M̂ differs from
the true distribution M by only a small amount with high
probability and it is easy to distinguish a correct election
from an incorrect election.

4.2 How conservative is our analysis?

In Section 3, we gave an extremely conservative risk
analysis. As a result, we were forced to audit a larger
number of ballots than if we had a tighter analysis. In
this section, we give evidence that there is substantial
room for improvement.

Recall that in round t, the algorithm will certify the
election if f (M̂t)exp(−Kt∆t) < ξt . Thus, the greater ξt ,
the more likely the election will be certified. To that end,
we simulate 100,000 independent rounds for each of the

Table 3: Values of ξ̂ and p̂ from Figure 1.

K ξ̂ (×10−9) p̂ (%)

1b 350.07 47.72
1.5b 188.78 94.08

2b 84.41 99.76
9b 4.31 100.00

eight sample size and election combinations described
below. To be risk-limiting at a risk level α = 1% for a
five round audit, we set the per-round risk to γ ≈ 0.002
and expect to see a γ-fraction of miscertifications for the
incorrect election with an appropriately chosen ξt .

Figure 1 shows the measured probability of certify-
ing two different elections — with a margin of 0.5% for
four different sample sizes K: 1b, 1.5b, 2b, and 9b,
where b = b(1%,0.5%) is the naïve bound — given the
test statistic threshold value ξ . In each of the four fig-
ures, the top solid line is the measured probability of cer-
tifying an election where the reported outcome is correct:
the election parameters are identical to the bidirectional
errors condition in the next section. The bottom solid line
is the measured probability of miscertifying an election
in which the reported outcome is incorrect: the election
parameters are identical to those of the previous section.
The dashed line is the per-round risk level γ ≈ 0.002 for
a five round audit. The mixed dotted and dashed line
(· - · -) is the measured probability p̂ of certifying the cor-
rect election in this round, given a test statistic threshold
of ξ̂ — represented by the dotted, vertical line — corre-
sponding to a per-round risk of γ . Table 3 shows the
threshold ξ̂ and probability p̂ for each of the sample
sizes.

Recall that Section 3.3 sets the initial batch size k1 =
9b. Figure 1d and Table 3 show that the threshold ξ̂ cor-
responding to a measured risk of miscertifying the sec-
ond election with a sample of size K = 9b is approxi-
mately ξ̂ ≈ 10−9. Using this threshold, the probability
of certifying the first election 100%. For comparison,
using our conservative analysis, we set ξ1 ≈ 10−22.

These results suggest that sampling 9b ballots in the
first round is far too many. Figures 1a, 1b, and 1c give
evidence that a significant savings in terms of ballots
counted can be gained by a tighter risk analysis.

One interesting side effect of our analysis being so
conservative is that the risk level α can be made much
smaller with very little change in the number of ballots
required to certify correct elections. For example, chang-
ing from α = 1% to α = 0.1% requires essentially no
change to the number of ballots that need to be counted.
For comparison, Stark’s procedure [26] requires twice as
many ballots when moving from α = 1% to α = 0.1%.
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(a) Sample size K = 1b.
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(b) Sample size K = 1.5b.
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(c) Sample size K = 2b.
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(d) Sample size K = 9b.

Figure 1: Measured certification rates for a round of auditing for a correctly reported election and an incorrectly reported
election versus the threshold parameter ξ for four sample sizes.

4.3 Expected number of ballots counted

The second goal of a post-election, risk-limiting audit
is to minimize the number of ballots counted when the
outcome is correct — that is, to maximize the statistical
power of our test. We simulate elections with correctly
reported results not to validate our math but to experi-
mentally determine the power of our algorithm. It is im-
portant to remember that the expected number of ballots
counted during the audit is independent of the size of the
election, except for quantization effects.

We consider auditing four kinds of elections differing
in their error rates only. Our template is an election with
two candidates who each receive 45% of the 100,000
votes cast. The template is then modified so that the dif-
ference in votes between the candidates is then increased

to be an m fraction of the votes, where m ranges between
.5% and 5%.

No errors. The first case we consider is when there are
no errors. Thus, we have

M =

.1 0 0
0 .45−m/2 0
0 0 .45+m/2

 . (49)

“Natural” unidirectional errors. In a roughly similar
proportion to the error rates of the 2008 Minnesota Sen-
ate race, we add to the previous election 16 miscounts4 of
the form, “a vote for Candidate 1 was mistakenly counted
for no one,” and similarly for the other candidate. For ex-
ample, the voter made a stray mark on the ballot and the
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Figure 2: Average number of ballots counted vs. percent
relative margin for four types of elections.

ballot was counted as being over voted. We have

M =

.1 0 0
ε .45−m/2− ε 0
ε 0 .45+m/2− ε

 , (50)

where ε = 16/100,000.

“Natural” bidirectional errors. Rather than consider
what happens when the error is all of the form “votes
for a candidate were counted as no-votes,” we consider
48 ballots of that form for each candidate and 32 ballots
of the form “no-votes were counted for a candidate” for
each candidate. Thus, the reported totals for each (real)
candidate are exactly as they are in the previous scenario,
but the errors are more extreme. We have

M =

.1−4ε 2ε 2ε

3ε .45−m/2−3ε 0
3ε 0 .45+m/2−3ε

 , (51)

where ε is unchanged.

“Natural” bidirectional errors with 2-errors. Mod-
ifying the previous scenario, we introduce 8 votes for
the first candidate reported for the second candidate and
8 votes for the second counted for the first. These
so-called 2-errors change the reported margin by two.
Again, the reported totals for each candidate remain the
same,

M =

.1−4ε 2ε 2ε

3ε .45− (m+7ε)/2 ε/2
3ε ε/2 .45+(m−7ε)/2

 ,

(52)
where ε is unchanged.

For each margin fraction m and each of the error rates,
we simulate 1000 audits with risk level α = .01, T = 5
batches, and batch sizes given in Section 3.3. The (aver-
age) fractions of ballots counted vs. the margin as a frac-
tion of n = 100,000 for each of the four error conditions
are plotted in Figure 2.

For margins at least as large as 1.5%, Figure 2 shows
that only a few thousand ballots need to be counted in or-
der to confirm elections with roughly realistic error rates.
For smaller margins, it is more difficult to certify elec-
tions. Nevertheless, for large elections with small mar-
gins, counting 25,000 ballots may be feasible.

5 Extensions

The models and examples discussed here were for simple
elections with only two candidates. We briefly touch on
some extensions to our analysis for use in more general
elections: handling multiple candidates, auditing multi-
ple contests, errors in auditing, and improving our thresh-
olds.

We can easily modify our results to handle elections
with more than two candidates. The only challenge, the-
oretically, is that the set R as we have defined it may not
be convex. However, for each candidate c ∈ X different
from wreported, we can define sets

Dc =

d :

d(x)≥ 0 ∀x ∈ X,

∑
i

d(i) = 1,

d(w)> d(wreported)

 (53)

Rc =

R :

R(x,y)≥ 0 ∀x,y ∈ X, ∑
x,y∈X

R(x,y) = 1,

∑
x∈X

R(x,y) = q(y), ∑
y∈X

R(x,y) ∈Dc

 .

(54)

For each c we can compute ∆t(c) for R = Rc and then
take the minimum of ∆t(c) over all c 6= wreported. This
procedure corresponds to doing pairwise tests between
the reported winner and all reported losers. In a single-
race election with C candidates the dimension for the
optimization grows quadratically with C, and we would
have to do C such optimizations. From a numerical
standpoint, our current analysis is probably too loose to
handle more candidates as a number of terms contain
the square of the number of candidates in the exponent;
however, it may be the case that the additional informa-
tion gained about the distributions is sufficient to account
for what is lost by moving to multiple candidates. Much
of this could be mitigated by an improved analysis, but
more simulation is also needed to validate the scaling
performance of our methods.
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Previous authors have considered auditing multiple
elections simultaneously (e.g., [24]). The statistical
methods we use here can be adapted to more com-
plex election outcomes by employing additional pairwise
tests: for auditing K races simultaneously with a max-
imum of C candidates in any race, it would require K
times more computation than a single race with C candi-
dates. It may be possible to modify our proposed math-
ematical framework to instead increase the dimension of
the optimization problem; we leave this for future work.

Another problem which can occur in practice is errors
in the auditing. Mathematically, we can model this as
some uncertainty about the accuracy of our estimate M̂.
If the auditing errors are on the order of the margin of the
election, then we run the risk of miscertifying the elec-
tion when we assume M̂t is accurate. A way to fix this
is to associate to M̂t an “uncertainty” set and minimize
D(M̂t ‖ R) over both R ∈R and M̂t in the uncertainty set.

As our experiments show, our analysis is very con-
servative. Better bounds on the probability of miscer-
tification, for example by better bounds on the sizes
of C1 and C2 could lead to a nearly 10-fold reduction
in the number of ballots needed to certify correct elec-
tions while still maintaining the risk level. This is the
major open problem posed by our paper. Additionally,
it may be possible to increase the value of γ used in our
simulations. This would involve a more careful evalua-
tion of how our threshold condition behaves after batch
t + 1 conditioned on the fact that the threshold was not
satisfied at time t. Such an analysis has been done by
Stark [25] but those techniques (based on martingales)
do not appear to apply to our test statistic directly.

6 Conclusions

We have presented a risk-limiting, statistical, ballot-
based auditing algorithm that is resilient to errors, based
on information-theoretic statistics and convex optimiza-
tion. Our auditing algorithm is more efficient than cur-
rent precinct-based auditing schemes. Our simulations
suggest that the analysis we rely on for parameter se-
lection could be improved, allowing for more efficient
auditing. We believe that our algorithm provides an ar-
gument for installing the infrastructure required to use
ballot-based auditing in elections.
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A An optimization program

The most computationally difficult part of Algorithm A
is computing the minimization

∆ = min
R∈R

D(M̂ ‖ R). (A.1)

Each time we need to compute this minimum, we form
the function

fM̂(R) = D(M̂ ‖ R)

= ∑
x,y∈X

M̂(x,y)
(

logM̂(x,y)− logR(x,y)
)
. (A.2)

Care must be taken to ensure that R(x,y) 6= 0 whenever
M̂(x,y) 6= 0. Similarly, if M̂(x,y) = 0 for some x,y ∈ X,
then the summand corresponding to (x,y) should be zero.
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Thus, fM̂ is a real-valued function of (C+ 1)2 variables
R(0,0),R(0,1), . . . ,R(0,C),R(1,0),R(1,1), . . . ,R(C,C).

We want to minimize fM̂(R) subject to the constraint
R∈R; (10). All of the constraints that define the feasible
region R are linear equalities or inequalities:

∀x,y ∈ X R(x,y)≥ 0 (A.3a)

∑
x,y∈X

R(x,y) = 1 (A.3b)

∀y ∈ X ∑
x∈X

R(x,y) = q(y) (A.3c)

∑
y∈X

R(l,y)≥∑
y∈X

R(w,y) (A.3d)

where l is the reported loser and w is the reported win-
ner. By treating R as a (C + 1)2-dimensional vector
r= (R(x,y))x,y, these constraints can be expressed in ma-
trix form Ar = b and A′r≤ b′.

By Taylor’s theorem in several variables, a (twice) dif-
ferentiable function f can be written as

f (x+h) = f (x)+hT
∇ f (x)+

1
2

hT H( f )(x)h+ · · ·
(A.4)

where ∇ f (x) and H( f )(x) are the gradient and Hessian
of f evaluated at x, respectively. As a result, many opti-
mization algorithms either require the gradient and Hes-
sian of the objective function or perform better with ac-
cess to them. For the case of fM̂ , the gradient and the
Hessian are taken with respect to the (C+ 1)2 variables
R(x,y) and are easily computed,

∇ fM̂(R) =
(
−M̂(x,y)

R(x,y)

)
x,y

(A.5)

H( fM̂)(R) = diag
(

M̂(x,y)
R(x,y)2

)
x,y

(A.6)

where diag(v) is the diagonal matrix with the elements
of v down the main diagonal.

Minimizing (A.2) subject to the constraints in (A.3)
can be accomplished by using one of the standard con-
strained, nonlinear minimization algorithms such as in-
terior point algorithms [2, 3, 28], [1, Chapter 11] or se-
quential quadratic programming algorithms [19, Chap-
ter 18]. A custom solver can be written or an off-the-
shelf numerical package such as MATLAB’s Optimiza-
tion Toolbox can be employed.

In general, with C candidates, the objective func-
tion fM̂ is minimized C−1 times where l in (A.3d) varies
over the candidates other than the reported winner. The
minimum value of all C− 1 minimizations is thus the
value ∆ from (A.1).

B Bounding the certification region

To provide an (extremely loose) upper bound on the size
of the certification region C1, we use Pinsker’s inequal-
ity to relate the size of C1 to an upper bound on the size
of G(δ ). Then, by treating |Z| − 1-dimensional differ-
ence vectors as a cube in R|Z|−1 (with the l1 metric), we
can bound the number of such cubes which lie in a ball
with a slightly larger radius δ ′.

Lemma 1. Fix 0 < δ < 1 and some distribution M. Let
δ ′= δ + |Z|/K. Then for G(δ ) = {P∈PK : ‖P−M‖1≤
δ}, the size of G(δ ) is bounded above by

|G(δ )| ≤ (2δ ′K)|Z|−1

(|Z|−1)!
. (B.1)

Proof. Consider a distribution P ∈ G(δ ) and let S = P−
M as an element of R|Z|. Denote by S̃ the first |Z| − 1
components of S.

By the definition of G(δ ), ∑z |S̃(z)| ≤ δ so S̃ lies in the
closed δ -ball

B(δ ) =
{

Q ∈ R|Z|−1 : ‖Q‖1 ≤ δ
}
. (B.2)

Since P and M are a probability distributions, the |Z|th
component of S is uniquely determined by the other com-
ponents and thus the map sending P 7→ S̃ is injective.

Now we compute the volume of a distribution and
bound how many can lie in the ball. The reason for
expanding the radius to δ ′ from δ is to ensure that the
volume taken up by all distributions in G(δ ) is wholly
contained in B(δ ′). In R|Z|, we can think of each dis-
tribution as occupying a cube of side length 1/K from P
to P+[0,1/K)|Z|. By truncating the last component, we
see that this cube corresponds to S̃+[0,1/K)|Z|−1. This
cube is entirely contained within B(δ ′) and furthermore,
no element of the cube can correspond to a point in PK
other than P.

Therefore, |G(δ )| ≤K|Z|−1 Vol(B(δ ′)). Since B(δ ′) is
an l1 ball, its volume is [29]

Vol(B(δ ′)) =
(2δ ′)|Z|−1

(|Z|−1)!
. (B.3)

Notes
1http://www.mathworks.com/products/
optimization/

2Thus, Bt is actually a multiset.
3Note that KL-divergence is not a proper metric [7].
4Since our sample election is roughly 30 times smaller

than the 2008 Minnesota Senate race, we scale the
roughly 500 errors to 16.
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