
Automating Network Monitoring on Experimental Testbeds

Michael Golightly
Princeton University
mgolight@gmail.com

Jack Brassil
HP Laboratories

jack.brassil@hp.com

Abstract

Despite experimental testbeds’ rapid growth and contin-
ued strong demand by researchers, the power of testbeds
can be further increased by providing additional tools
to help experimenters instrument their experiments. Ex-
perimenters with improved instrumentation support can
deepen their understanding of experiment operation, and
have an easier task of generating high quality datasets to
share with the community.

We introduce a prototype tool that automatically de-
ploys an instrumentation overlay on an existing testbed
experiment. Netflowizemodifies instantiated experi-
ments to collect experiment-wide flow statistics. The
resources consumed by the flow collection process are
specified by the experimenter. NetFlow records are
widely used by the networking and security research
communities for tasks ranging from traffic engineering
to detecting anomalous behaviors associated with zero-
day attacks. We discuss tool design and implementation,
present usage examples, and highlight the many chal-
lenges of auto-deploying an experiment-wide monitoring
infrastructure.

1 Introduction

Cyber security research continues to be hampered by the
lack of quality data sets available to the research com-
munity. One factor contributing to this scarcity is the
difficulty experimenters face in collecting and preserv-
ing useful data. Yet experimental testbeds offer relatively
few services specifically targeted at instrumenting exper-
iments.

In this paper we outline the design, functionality, and
performance characteristics of Netflowize, an automated
deployment tool for experimental network monitoring.

The tool was developed to automatically collectnet-
flow [1] information for any Emulab [2] experiment’s
network topology. NetFlow is a powerful flow monitor-
ing tool heavily used by large-scale network administra-
tors, but has been relatively lightly used byexperimenters
in testbed settings. The ability to export NetFlow data
is a native capability on all but the least expensive IP
routers and L2/3 switches, and the tools available to pro-
cess collected data are numerous.

Though conceived as a general purpose network mea-
surement platform with applications to traffic engineer-
ing, accounting and billing, NetFlow has been embraced
by the network security research community. Some
recent applications of NetFlow include studies in net-
work forensics [3], botnet discovery [4], and incident
detection; many other security research applications are
considered at conferences such as CERT’sFloCon [5].
Though NetFlow itself is of immediate interest to many
experimenters, our extensible deployment framework
was designed to generalize beyond NetFlow to support
other monitoring tools. Hence what we learned about
automated deployment is of general interest to readers
considering automated monitoring of experiments using
various other tools.

But deploying such network monitoring tools effec-
tively – consuming minimal experiment resources and
experiment behavior – takes fairly sophisticated users
deeply familiar with each individual tool, and often
experience with implications of instrumentation design
choices. While many experimenters could benefit from
enhancing instrumentation of their experiment, only
some choose to. Yet we envision future testbeds with
thousands of physical servers each with tens or hundreds
of virtual machines, and in this setting individual exper-
iment size will likely grow enormously. Automated de-
ployment promises to be a tractable approach to monitor

such large-scale experiments.
In this paper we highlight the challenges faced in de-

veloping automated testbed instrumentation though the
lens of netflowize development. In Sections 2 & 3 we
introduce our motivation, and briefly review background
on NetFlow. Section 4 describes our design goals, and
details our implementation, including our approaches
to the tradeoff between system resources and NetFlow
probe and collector placement. The next section dis-
cusses some simple application examples. The final sec-
tion presents our conclusions, and argues that automated
deployment tools will be valuable in diverse settings be-
yond experimental testbeds, including commercial pub-
lic clouds.

2 Methodology

Despite the wide acceptance and success of experimental
testbeds, services for instrumenting experiments have de-
veloped slowly. We believe that lack of instrumentation
support is a key contributing factor to the rarity of useful
data sets collected by – and available to – the security
and networking research communities. Yet instrument-
ing individual experiments of unknown type and purpose
seems possibly beyond what a testbed can hope to pro-
vide. In the face of the additional complexity and cost,
experimental testbed operators have provided some lim-
ited hardware and software tools (e.g., Endace DAG cap-
ture hardware [6]), but have largely left the experimenter
to use standard platforms and create measurement sys-
tems for themselves.

In this paper we challenge testbed operators to sharpen
their focus on offering services that enable the exper-
imenter to deploy an experiment-specific instrumenta-
tion overlay. To investigate the feasibility and challenges
of automated instrumentation deployment, we set out to
build a prototype based onnetflow. Creating a NetFlow
overlay manually is not out-of-reach for many sophisti-
cated users, but is less likely to be considered by certain
testbed users such as students. The tool, which we be-
lieve will provide insights to other tool developers, has
been made publicly available.

Though we have chosen to deploy NetFlow because
of its immediate relevance to experimenters in both the
network systems and network security research commu-
nities, we have striven to create an extensible framework
which is largely independent of the underlying measure-
ment tool deployed. In particular, we have made no
changes to the open source NetFlow probes and collec-
tors we deploy automatically. Hence, and tool that can
operate in a client-server (or sensor-collector) mode can

in principal be deployed with our framework. In par-
ticular, we imagine it to be straightforward to use other
software-based measurement systems such assflowand
packet sniffers such astcpdump.

3 Background

The NetFlow protocol was originally developed by Cisco
Systems to collect flow information for various account-
ing purposes. Versions 5 and 9 are the most widely
used formats today. V9 is template-based, allowing it
to be more extensible and easily adaptable to recording
additional flow information. The netflowize tool cur-
rently supports only the v5 protocol, though extending
the framework to v9 is straightforward. A NetFlow v5
packet payload consists of a 24 byte header followed by
at least one 48 byte flow record.

There are two main components to a NetFlow deploy-
ment, the probe and collector. A probe monitors traf-
fic on a network device and generates NetFlow records
that are sent to a collector. NetFlow probes are natively
supported on most routers and many enterprise class L2-
3 ethernet switches, and are usually configured through
a CLI that allows specific interfaces to be monitored
and filters to be constructed to monitor specific flows.
Software-based NetFlow probes, collectors, visualizers,
etc, are available with packages such asflow-tools[21]
andSiLK [22] that can be run on most Unix-based sys-
tems.

A network flow is informally defined to be a unidi-
rectional sequence of packets with some logical associ-
ation (e.g., those packets belonging to a TCP connec-
tion). More precisely, a widely accepted definition is a
sequence of packets whose headers match a specified n-
tuple observed during an interval of time at a single point
(e.g., router egress link). An example of such a tuple
might be

< src IP, dest IP, src port, dest port, IP

protocol, IP Type of Service>

Each newly observed flow triggers creation of a 48-
byte NetFlow record; NetFlow v5 records contain the
following fields:
By analyzing flow data at multiple vantage points, an
experiment-wide picture of traffic flow and traffic vol-
ume can be built.

For efficiency, NetFlow records are usually trans-
ported periodically via a UDP packet containing a 24
byte NetFlow header and multiple flow records, up to
30 (24 for v9) in a 1500 byte datagram. Consequently,
records might be lost due to network error or conges-
tion, particularly if experiment instrumentation support

Table 1: Partial NetFlow Record
Byte position Contents Description

0-3 srcaddr Source IP address
4-7 dstaddr Destination IP address
8-11 nexthop IP address of next hop router
12-13 input SNMP index of interface
14-15 output SNMP index of interface
16-19 dPkts Total packets
20-23 dOctets Total number of L3 bytes
32-33 srcport TCP/UDP source port
34-35 dstport TCP/UDP destination port

37 tcpflags TCP flags seen
38 prot IP protocol type
39 tos IP type of service (ToS)

is poorly designed to support record generation rates.
Maintaining NetFlow data can be computationally ex-

pensive for a router (or software probe’s host machine)
and burden the host CPU or hardware to the point where
it runs out of capacity. To avoid loading problems and re-
duce the volume of collection data, packets may be sam-
pled; rather than examine every packet in a flow, sam-
pled NetFlow records are estimates of the actual mea-
sured flow volume.

3.1 NetFlow in Emulab

Multi-tenant environment instrumentation presents a
fundamental design challenge. The testbed operator re-
quires system-wide monitoring to maintain overall sys-
tem health, while experimenters require experiment-
wide monitoring for performance validation and mea-
surement. Testbeds such as Emulab emulate arbitrary
network topologies using a flat L2 infrastructure and vir-
tualization techniques such as VLANs. In some cases,
switches such as the Cisco Catalyst 65xx-class used in
schooner[6] provide native NetFlow support. However
relatively few devices offered as client test resources
currently support NetFlow natively. Though of poten-
tial benefit to experimenters, most testbeds don’t export
NetFlow data that can be obtained from infrastructure
switches, nor offer mechanisms to interact (e.g., through
NetFlow filters) with such data.

In Emulab LANs and links requiring traffic shaping
operations such as packet loss or rate limits are emulated
by compute nodes (i.e.,shapernodes). As we will see
in Section 4 this presents additional complexity for auto-
mated monitoring deployments.

4 Goals, Design and Implementation

Instrumenting testbeds has received considerable atten-
tion in recent years [7], [8]. However testbed opera-
tors have first focused on offeringtestbed-widerather
than experiment-wide tools, and have made these tools
visible to experimenters. One such example is Planet-
Lab’s [9] CoMon[11], which tracks compute system per-
formance and operation. CoMon data is archived, and
experimenters may view either node-level or slice-level
statistics to better understand experiment behavior.

The benefit of this approach for operators is that a
tool of manageable complexity provides a service to both
the operator and experimenters. But this approach pro-
vides little flexibility for experimenters who might seek,
say, a finer grain view of their experiment. We envision
the testbed operator providing tools that offer a targeted,
controllable view of each individual active experiment.
The goals we set for designing netflowize included:

• Extensibility Though our prototype deploys Net-
Flow probes and collectors, it is extensible and can
be readily modified to create monitoring overlays
intended to measure other network behaviors.

• Flexibility Experimenters need to be able to
specify the granularity of monitoring data they col-
lect. We expect the degree of granularity demanded
by experimenters to evolve as an experiment pro-
gresses from a debugging phase to a final data col-
lection phase.

• Coverage Though many tools focus on measure-
ment at specific points in a topology, our emphasis
was on building an experiment-wide data collection
system.

• Resource Usage Control Monitoring demands
compute and storage resources, and experimenters
should be offered alternative overlay approaches
that require use of varying quantities of resources,
particularly in testbeds where node utilization is
high.

As we will see in the following section, these design
goals drove various design decisions.

4.1 Design

An experimenter must be able to balance instrumentation
needs and available hardware support. Consider the net-
work first. Hardware devices can easily generate tens of
thousands of NetFlow records per second; a probe gener-
ating 10,000 NetFlow packets/second can consume 120

Mbits/sec of bandwidth. Since collectors aggregate traf-
fic from many probes, their ingress links can be expected
to reach capacity first. A collector running on a modern
commodity server is roughly capable of processing 40K
flows per second. We note that PlanetLab nodes may
generate 100s of thousands of flows in a day. Today in
practice we see much smaller numbers of active flows on
Emulab. In our own project use, we rarely had occasion
to exceed 500 simultaneous active flows on a 100 Mb
link.

A key design problem we face with a netflow over-
lay is where to place probes and collectors in a arbitrary
experiment topology, while seeking to strike a balance
between 1) avoiding duplicate flow counting, 2) using
the minimal required hardware support, and 3) obtaining
complete experiment coverage.

4.2 Determining the Overlay Topology

Suppose we propose to modify an experiment to provide
additional hardware and/or software resources for instru-
mentation (including probes and collectors). Determin-
ing the topology of such an overlay obviously demands
knowledge of the experimental network.

A naive approach to overlay creation proceeds as fol-
lows; extract a network topology from its specification
– the experiment’sns topology description – and then
modify it to add required overlay hardware and software
components. In principle, this approach can be executed
prior to the experiment’s instantiation. Yet consider the
following example of a perfectly valid topology descrip-
tion:

Example 1:

$ns duplex−link [$ns node] [$ns node]\\
10Mb 0ms DropTail

Though perhaps bad form, Emulab will fill in unspeci-
fied details and create 2 nodes running the default operat-
ing system, and assign the nodes’ names (e.g.,tbnode-n1
and tbnode-n2), and perhaps name the connecting link
tblink-l3. Next consider a more common topology spec-
ification:

Example 2:

create nodes

for { set i 0 } { $i < 2 } { incr i } {
set node ($i) [$ns node]
tb−set−node−os $node ($i) FBSD410−STD

}
create link

set link0 [$ns duplex−link $node (0) $node (1)
10Mb 0ms DropTail]

Extracting node names is necessary to configure the
collector that each probe instance is assigned to. In

either above example, parsing the script to determine
node naming is challenging; in some complicated scripts
even determining the number of nodes requested is
formidable.

The challenges of topology identification are further
complicated by factors such as the insertion of nodes to
implement link traffic shaping, which are invoked im-
plicitly. While the need for shaping nodes can be de-
termined from the script, multiple shapers can be im-
plemented on a single shaper node; one can not eas-
ily determine the number of physical shaper nodes used
in a given experiment instantiation. We note that other
tools have circumvented the complexity of parsing and
modifying scripts by choosing experimenter interaction.
Deterlab’s [10] Security Experimentation Environment
(SEER) [13], [14], instructs the user to explicitly enter
nscommands to create a control node, and install tarfiles
and perform an initialization.

4.3 Post-Instantiation Modifications

The difficulties encountered in attempting to automati-
cally determine a topology accurately and overlay an in-
strumentation infrastructure by modifying annsfile sug-
gest that in many cases it is preferable to instantiate an
experiment first – prior to its modification. The process
proceeds as follows: instantiate an experiment, obtain
the details associated with assigned resources, swap out
the experiment, modify the ns-script (e.g., add nodes, de-
ploy tarballs) and make other changes necessary for the
instrumentation overlay, and swap the instrumented ex-
periment back in.

The feasibility of such an approach relies upon 2 Em-
ulab resource allocation system properties:

• Persistence of resource assignmentsEmulab re-
source assignments are ’sticky’. Resources assigned
to an experiment are not immediately decommis-
sioned and placed in the resource pool available for
other experiments. Swapping an experiment out and
back in will use the same resources. Persistent re-
sources support powerful features such as an exper-
imenter’s ability to ’modify’ an instantiated experi-
ment.

• Exposure of experiment resource instantiation de-
tails Emulab exposes low-level details of experi-
ment instantiation (e.g., switch ports) via anXML-
RPC interface. Experimenters can get a list of all
nodes, links, and associated names. The following
example illustrates available low-level information
for traffic shaping nodes.

Figure 1: The number of ’shaper’ nodes used to instan-
tiate the 3 emulated links in this 3 node network can be
difficult to predict.

Suppose we seek to implement the simple 3 node,
fully connected mesh topology depicted in Fig-
ure 1. The number of physically distinct shaper
nodes used to emulab the links can be difficult to
know, and is determined in part by the number of
physical interfaces available on shaper nodes. In
this case two nodes are used to emulate the 3 links,
and theXML-RPC invocation reveals node names,
which can then be directly queried for the interfaces
mapped to links between nodes:

tbdelay0 : cat / var / emulab / boot / delay_mapping
link2 duplex client monitor fxp2 fxp3 60130 60140
link0 duplex client server fxp4 fxp1 60110 60120

tbdelay1 : cat / var / emulab / boot / delay_mapping
link1 duplex monitor server fxp0 fxp1 60110 60120

Given link information gathered throughXML-RPC, we
are now prepared to construct a graph of our experimen-
tal topology. However our call only reveals details about
links between compute nodes, and must still determine
how shaping nodes fit in. As described above, we con-
tact those nodes directly (e.g., via ssh) for attached link
information, and construct the graph as follows:

1. Add all nodes to the graph (compute and shaping
nodes).

2. Add links to graph starting with shaping nodes.
Keep track of links to avoid redundant links.

3. Add links from compute nodes to graph.

4.4 Building the Overlay

The next step is to build an overlay. Experimenters
should have considerable control over how the overlay
is constructed. In particular, an experimenter should be
able so specify whether an instrumentation overlay uses
existing experiment resources, or whether new resources
are to be requested.

Experimenters seeking to create the least intrusive or
heavyweightoverlay choose to incur the cost of acquiring
additional nodes and links to run collector(s) and probes
positioned as network taps. In doing so, experimenters
ensure the least possible impact of measurement on their
experiment’s operation and performance, maximum ex-
periment coverage, and the ability to generate the finest-
grain measurement information. One case where a re-
searcher might prefer this option is during the ’results
collection’ phase of their experiment’s lifetime. Another
example might be where a security researcher is inter-
ested in rapid detection of a malicious flow associated
with a virus spread, and seeks frequent record updates
sent to a collector. As an alternative, an experimenter
might choose to collect as much netflow information as
possible using spare capacity on existing compute re-
sources. An experimenter might select thislightweight
option during the ’debugging’ phase of an experiment’s
lifetime.

Observations of our own experiments suggested that
while compute node CPU usage was often high (see Fig-
ure 2), and the number of network interfaces on some
nodes was exhausted, utilization of the Emulab control
network infrastructure was mostly modest throughout
experiment run-time. Hence, for either overlay construc-
tion mode we choose to conserve resources by always us-
ing the control network to serve as the measurement dis-
tribution network (i.e., transport network between probes
and collector(s)) rather than create a dedicated measure-
ment network. Of course, these starting points do not
prohibit an experimenter from subsequently modifying
the initial overlay construction to realize their desired
measurement network infrastructure.

4.4.1 Lightweight Mode

• Probe placement To find the minimal number of
probes needed to cover all network flows, we be-
gin with an algorithm motivated by theset cover
problem. We first consider each link’s and LAN’s
attached nodes as a set, and start by picking the
node that belongs to the most sets. On the selected
node we run a probe responsible for monitoring the
node’s attached links. Repeat, but only on those sets

 0

 2

 4

 6

 8

 10

 0 0.5 1 1.5 2 2.5 3 3.5 4

%
 C

PU

log(# flows)

fprobe CPU usage

packet size 28 bytes
1 Mbs transmission link
300 ms. duration

Figure 2: CPU utilization by probe on an Emulab PC850 node.

that have yet to be covered.

One complication is that a lossless LAN can be im-
plemented on some systems with an actual switch
(i.e., not a shaper bridge), and hence all traffic will
not be forwarded to all attached links. Here the only
approach ensuring traffic coverage is to run a probe
on every attached node.

• Collector placement Though many optimiza-
tions are possible, we select a node at random,
preferably from the set of nodes not operating as
probes (if nonempty).

4.4.2 Heavyweight Mode

• Probe placement Each link in our experiment
is replaced by a LAN connecting the attached end-
points, as well as a new node we attach to run a
probe. A lossless LAN simply has an additional
new node attached to run the associated probe.
Lossy LANs continue to be probed from attached
nodes.

• Collector placement Each collector is assigned
to a newly assigned standalone node by default.

Before considering examples of tool operation in each
mode, we note that there are several potential shortcom-
ings with our current approach. First, it is unnecessary
to force an experimenter to make a binary choice about

resource consumption. One can imagine a more flexi-
ble approach would be to query a user for the number of
additional resources that should be assigned for instru-
mentation purposes, and have the tool deploy exactly that
number of resources to support probes or collectors in a
most efficient manner. A related deficiency in our cur-
rent approach to ’heavyweight’ operational mode is that
a user has no advance warning of the number of addi-
tional resources that will be required for the instrumented
experiment. As a consequence, the experimenter can not
be certain that sufficient resources are available in the
system’s resource pool.

5 Examples

A few simple examples demonstrate netflow overlay cre-
ation. Figure 3 depicts an experiment with 3 nodes in-
terconnected with a LAN and no requested traffic shap-
ing. End node shaping is explicitly enable to ensure that
superfluous delay nodes are not instantiated. Exactly 3
compute nodes are assigned and interconnected with a
switch. Netflowize’s lightweight overlay deploys probes
on 2 of the compute 3 nodes, recognizing that design’s
sufficiency to observe all flows. Minimizing network
traffic, a single collector is also placed on a probe node.

In heavyweight mode on the same topology, netflow-
ize modifies thens script in a simple yet clever fash-
ion. The single script modification is to disable end node
shaping. When the experimented is swapped out and

Figure 3: A simple 3 node topology.

back in (as necessary in heavyweight mode), two ad-
ditional delay nodes are invoked to implement shaping
(tbdelay0andtbdelay1), one between each of 2 end sys-
tems. NetFlow taps these two delay nodes to run probes
to ensure full experiment coverage, and one of the delay
nodes is also chosen as the collector.

5.1 Implementation

Netflowize comprises approximately 700 lines of
Python code, and employs the widely usedflow-
tools open-source package for netflow record genera-
tion and collection. The tool is publicly available at
http://66.92.233.103/netflowize-0.3.tar.bz2

6 Related Work

A wide range of distributed monitoring systems and ap-
proaches are closely related to our work, including:

• PlanetFlow2PlanetFlow [15] provides a testbed-
wide view of flows on all PlanetLab node interfaces.
PlanetLab operations relies on the data to investi-
gate and resolve complaints received from third par-
ties about suspicious or malicious traffic originating
on a system node. A public web interface to the data
set permits experimenters (and other researchers) to
query either their own slice’s or various aggregate
node or system flow statistics.

A custom version offprobe is deployed on each
PlanetLab node, the only major modification be-
ing support for collecting slice level flow infor-
mation. The CPU overhead of the probe was re-
ported to only be 1-3% under maximum load; Plan-
etFlow uses the substantially more efficientfprobe-
ulog probe software. Under this configuration, it
is reported that there is no need to resort to flow
sampling. Rather than probes sending NetFlow
records directly to a collector, they are stored on
each node locally and periodically collected by a
separate polling-based aggregation process. Real-
time flow monitoring is of course prohibitive with
this design, but it is sufficient for operational needs.
The system as a whole is reported to generate up to
4 TB of data per day, the equivalent of roughly 390
Mbps of netflow packets.

• Orbit Measurement Framework and Library (OML)

With its focus on experimenter control of instru-
mentation on the Orbit wireless testbed, OML [12]
seeks to reduce the burden on experimenters of in-
strumenting their experiments. OML provides an
API that permits individual experimenters to define
measurement points and parameters, and collect and
process measurement data.

• SEER

SEER is an instrumentation workbench that enables
DETER experimenters to simply conduct security
experiments by providing agents for attack and traf-
fic generation, collection and analysis. SEER in-
tegrates various tools for configuring and execut-
ing experiments and provides a user-friendly GUI
for experimenters to use the tools. Like netflow-
ize, SEER strives to make experiment instrumenta-
tion available to users at all skill levels. Netflowize
could be viewed as a tool existing within a multi-
purpose workbench like SEER.

• Emulab Link/Node Tracing

By providing a native, testbed supported instrumen-
tation tool that experimenters can flexibly employ
on their experiment, Emulab’s powerfultrace fea-
ture is close in spirit to our approach. Trace per-
mits packet capture and storage of packet traces at
any link specified in an experiment’sns topology
description.

• Distributed MonitoringThe topic of probe place-
ment for the fullest possible network coverage has

been widely studied [23], [24], [25]. Of particu-
lar interest, CSAMP [19] relies on feedback from
netflow-capable routers on current traffic conditions
to determine data collection points. Their goal was
to reduce redundant flow collection and thereby
increase flow coverage. Their work was focused
from a network administrators standpoint where full
topology, routing, and traffic matrix information
was known.

• DiMAPI DiMAPI [20] creates an API to enable
users to express complex distributed monitoring
needs, choose only the amount of information they
are interested in, and therefore balance the overhead
with the granularity of information collected.

7 Discussion

We have described the development ofnetflowize, a
new tool for researchers to analyze their testbed exper-
iments. We believe that the tool will be particularly
valuable for students and those unfamiliar with deploy-
ing and analyzing netflow. The tool might also be help-
ful for experiments that are exposed to the public inter-
net to observe actual in-the-wild attacks. Security re-
searchers using contained environments such as DETER
will likely find the tool useful for application to anoma-
lous flow detection, and perhaps tracking malware evo-
lution [29], [30], [31], [32]. The tool might eventu-
ally also find benefit in traffic characterization in public
multi-tenant clouds.

Many compelling topics were considered outside the
scope of our project. This included crucial components
of a complete system such as the visualization of gath-
ered netflow data. We have also not directly addressed
the specific monitoring needs that are related to the vir-
tualization of end hosts and interfaces.

Some key lessons we learned included the benefits –
and perhaps necessity – of experiment post-instantiation
instrumentation. Just as crucial is the need for shared re-
source systems to expose even the lowest-level resource
allocation and instantiation details to facilitate experi-
ment monitoring.

References

[1] Cisco IOS NetFlow, http://www.cisco.com/en/us/
products/ps6601/productsios protocolgrouphome.html

[2] Emulab,http://www.emulab.net

[3] E. Pilli, R. C. Joshi, R. Niyogi, ”A Generic Framework
for Network Forensics,”International Journal of Com-
puter Applications, 1(11):1.6, 2010.

[4] Uddin, A., ”Detecting Botnets Based on their Behav-
iors on Perceived from Netflow,”http://courses.cs.ut.ee
/2009/security-seminar/uploads/Main/mohammad-1.pdf

[5] Proceedings ofFlowCon 2011,
http://www.cert.net/flocon.

[6] Schooner,http://www.schooner.wail.wisc.edu

[7] Barford, Paul (Ed), ”GENI Instrumentation and Mea-
surement Systems (GIMS) Specification,”GENI Design
Document 06-12, Facility Architecture Working Group,
2007.

[8] ”INSTOOLS: Instrumentation Tools for a GENI
Prototype”, http://groups.geni.net/geni/wiki/
InstrumentationTools

[9] PlanetLab,http://www.planet-lab.org

[10] Deterlab,http://www.isi.deterlab.net

[11] CoMon,http://comon.cs.princeton.edu

[12] M. Singh, Ott, M, Seskar, I., Kamat, P., ”ORBIT
Measurements Framework and Library (OML): Motiva-
tions, Implementation and Features,”Proc. of Trident-
Com 2005, 2005.

[13] Security Experimentation Environment (SEER),
http://seer.deterlab.net

[14] S. Schwab, B. Wilson, C. Ko, A. Hussain, ”A Secu-
rity Experimentation Environment for DETER”,DETER
Community Workshop on Cyber Security Experimenta-
tion and Test (CSET’07), 2007.

[15] PlanetFlow2,http://planetflow.planet-lab.org

[16] K. Sklower and A. Joseph, ”Very Large Scale Coopera-
tive Experiments in Emulab-Derived Systems,”DETER
Community Workshop on Cyber Security Experimenta-
tion and Test 2007, Boston, August 2007.

[17] K. Sklower and A. Joseph, J. Mirkovic, S. Wei, A. Hus-
sain, B. Wilson, R. Thomas, S. Schwab, S. Fahmy, R.
Chertov, and P. Reiher, ”DDoS Benchmarks and Experi-
mentation Workbench for the DETER Testbed”,Proc. of
the 3rd IEEE Conf. on Testbeds and Research Infrastruc-
tures for the Development of Networks and Communities
(TridentCom 2007), 2007

[18] Global Environment for Network Innovation,
http://www.geni.net

[19] V. Sekar, M. Reiter, W. Willinger, H. Zhang, R. Kom-
pella, D. Andersen, ”CSAMP: A System for Network-
Wide Flow Monitoring”,Proceedings of NSDI’08, 2008.

[20] P. Trimintzios, M. Polychronakis, A. Papadogiannakis,
M. Foukarakis, E. Markatos, Arne Oslebo, ”DiMAPI: An
Application Programming Interface for Distributed Net-
work Monitoring”, Proc. of NOMS’06, 2006

[21] Flow-tools, http://www.splintered.net/sw/flow-tools
/docs/flow-tools.html

[22] System for internet-Level Knowledge (SiLK),
http://tools.netsa.cert.org/silk/

[23] Cantieni, G. R., Iannaccone, G., Barakat, C., Diot, C.,
Thiran, P., ”Reformulating the Monitor Placement Prob-
lem: Optimal Network-Wide Sampling”,Proc. of ACM
CoNeXT 2006, 2006

[24] Chadet, C., Fleury, E., Lassous, I., Herve , Voge, M.-E.,
”Optimal Positioning of Active and Passive Monitoring
Devices,”Proc. of CoNeXT 2005, 2005

[25] Suh, K., Guo, Y., Kurose, J., Towsley, D., ”Locating Net-
work Monitors: Complexity, heuristics and coverage”,
Proc. of IEEE INFOCOM 2005, 2005

[26] Estan, C., Keys, K., Moore, D., Varghese, G., ”Building
a Better NetFlow”,Proc. of ACM SIGCOMM’04, 2004

[27] Kompella, R., Estan, C., ”The Power of Slicing in Inter-
net Flow Measurement”,Proc. of IMC 2005, 2005

[28] Sharma, M., Byers, J., ”Scalable Coordination Tech-
niques for Distributed Network Monitoring”,Proc. of
PAM 2005, 2005

[29] Lakhina, A., Crovella, M., Diot, C., ”Diagnosing
Network-Wide Traffic Anomalies”,Proc. of ACM SIG-
COMM’04, 2004

[30] Mai, J., Chuah, C.-N., Sridharan, A., Ye, T., Zang, H., ”Is
Sampled Data Sufficient for Anomaly Detection?”,Proc.
of IMC 2006, 2006

[31] Sekar, V., Duffield, N., Van Der Merwe, K., Spatscheck,
O., Zhang, H., ”LADS: Large-scale Automated DDoS
Detection System”, Proc. of USENIX ATC 2006, 2006

[32] White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad,
S., Newbold, M., Hibler, M., Barb, C., Joglekar, A., ”An
Integrated Experimental Environment for Distributed
Systems and Networks”,Proc. of OSDI’02, 2002

