Hi.

UPBOT: A Testbed for Cyber-Physical Systems

Tanya Crenshaw, assistant professor Steven Beyer, senior EE undergraduate University of Portland CSET 2010

October 2006

http://varma.ece.cmu.edu/cps/

massively distributed

massively distributed safety-critical

massively distributed safety-critical (sensor) networks

massively distributed safety-critical (sensor) networks and control systems

massively distributed safety-critical (sensor) networks and control systems and also embedded systems

massively distributed safety-critical (sensor) networks and control systems and also embedded systems built from off-the-shelf components

massively distributed safety-critical (sensor) networks and control systems and also embedded systems built from off-the-shelf components executing in open contexts

massively distributed safety-critical (sensor) networks and control systems and also embedded systems built from off-the-shelf components executing in open contexts in real time

massively distributed safety-critical (sensor) networks and control systems and also embedded systems built from off-the-shelf components executing in open contexts in real time monitoring or regulating the physical world

massively distributed safety-critical (sensor) networks and control systems and also embedded systems built from off-the-shelf components executing in open contexts in real time monitoring or regulating the physical world in unpredictable environments

massively distribution ceal (siemeor) networks built from off-the-shelf components and also combodes stesses management monitoring of exegulating in the physical external contents.

networked, component-based, real-time systems that control and monitor the physical world.

October 2006

doing cyber-physical systems research means you are at the mercy of really busy people working at rockwell-collins.

August 2008

is it possible to reproduce a cyber-physical system in a meaningful way?

what features would be necessary for testing security threats and defenses?

how can it be accessible to undergraduates and useful to researchers?

August 2010

the upbot testbed

let's begin with the first question.

is it possible to reproduce a cyber-physical system in a meaningful way?

key characteristics

1. networked control.

cyber-physical systems control the physical world, executing across multiple nodes.

key characteristics

2. enforceable physical properties.

cyber-physical systems interact with unpredictable environments, yet certain physical properties must remain invariant.

key characteristics

3. off-the-shelf-components.

cyber-physical systems are composed of heterogenous commodity parts with varying levels of criticality.

the upbot testbed

the upbot testbed

1. networked control.

2. enforceable physical properties.

3. off-the-shelf components.

what features would be necessary for testing security threats and defenses?

security characteristics

1. networked control.

→ provides multiple points of attack by which one may test against security threats.

security characteristics

2. enforceable physical properties.

⇒ simulations make assumptions that can hide physical issues. A testbed eliminates some of these.

security characteristics

3. off-the-shelf-components.

→ defensive and fault-tolerant measures must be built into software solutions. 3.

how can it be accessible to undergraduates and useful to researchers?

undergraduate opportunities

course modules

senior design project

5 undergraduate research projects

research opportunities

Andrew Nuxoll

Research Question 1 (ongoing):

How successful is the episodic memory-based supervisor at learning how to navigate the robot through a simple maze?

- 1. Drive forward 630 mm.
- 2. Turn right 90 degrees.
- 3. Turn left 90 degrees.
- 4. Turn right 10 degrees.
- 5. Turn left 10 degrees.

Research Question 2 (future work):

Given that the supervisor has already learned a maze, how succesful is the supervisor at navigating the same maze in a threatening environment?

Tanya L. Crenshaw Assistant Professor at the University of Portland

MAIN MENU

HOME

BLOG

ROBODOCS

CONTRIBUTOR

LOGIN

COURSES

RESEARCH

PUBLICATIONS

CONTACT

SEARCH

Latest Updates

Paper Accepted! Ten Steps Connect the gumstix to the iRobot Create

RoboDocs

Welcome to RoboDocs, documentation for developing and interfacing gumstix motherboards to the iRobot Create platforms. Major topics for these RoboDocs include:

Getting Started. The list of materials necessary to build the iRobot Create + gumstix platform, ten steps to building an iRobot + gumstix mobile robot, upbot testbed datasheet.

Gumstix Hardware. Powering the devices, gumstix connex processor, gumstix verdex processor, how to re-flash the gumstix with the factory image.

Interfacing. Pinout for the mini DIN-7 serial port on the iRobot Create, setting up a terminal emulator to communicate with a gumstix, setting up the wifistix to communicate wirelessly with the gumstix, configuring the gumstix UART to communicate with the iRobot Create.

Development. A sample program that blinks the LEDs on the iRobot Create, the public code repository for the upbot testbed.

Contributors. Steven Beyer, Tanya L. Crenshaw.

RoboDocs

Getting Started Gumstix Hardware Interfacing Development

http://kaju.dreamhosters.com

Tanya L. Crenshaw Assistant Professor at the University of Portland

MAIN MENU

HOME

BLOG

ROBODOCS

CONTRIBUTOR

LOGIN

COURSES

RESEARCH

PUBLICATIONS

CONTACT

SEARCH

Latest Updates

Paper Accepted! Ten Steps Connect the gumstix to the iRobot Create

RoboDocs

Welcome to RoboDocs, documentation for developing and interfacing gumstix motherboards to the iRobot Create platforms. Major topics for these RoboDocs include:

Getting Started. The list of materials necessary to build the iRobot Create + gumstix platform, ten steps to building an iRobot + gumstix mobile robot, upbot testbed datasheet.

Gumstix Hardware. Powering the devices, gumstix connex processor, gumstix verdex processor, how to re-flash the gumstix with the factory image.

Interfacing. Pinout for the mini DIN-7 serial port on the iRobot Create, setting up a terminal emulator to communicate with a gumstix, setting up the wifistix to communicate wirelessly with the gumstix, configuring the gumstix UART to communicate with the iRobot Create.

Development. A sample program that blinks the LEDs on the iRobot Create, the public code repository for the upbot testbed.

Contributors. Steven Beyer, Tanya L. Crenshaw.

RoboDocs

Getting Started Gumstix Hardware Interfacing Development

http://kaju.dreamhosters.com

From its DB-25 serial port, the iRobot Create has multiple pins which supply +15V @ 1.5A when the iRobot is powered on. These are pins 10, 11, and 12. Powering the gumstix motherboards from the iRobot battery requires stepping down this +15V supply to +5V. To do so, build a simple step-down circuit using an L7805, a +5 Positive Voltage Regulator.

L7805 Positive +5V Voltage Regulator

I have not been successful at powering the gumstix from a single iRobot Create DB-25 pin. Instead, I power the gumstix motherboard and the gumstix wifistix separately from pin 10 and pin 11 using two L7805's, as shown in the circuit diagram below:

questions and collaborators welcome!

I do not think a bunch of dorky robots compare to an F-22.

I do think the upbot testbed offers a low barrier to entry for undergraduates and researchers in cyberphysical system security.

thank you

university of portland:

http://up.edu

robodocs:

http://kaju.dreamhosters.com

public code repository:

http://code.google.com/p/upbot/