Isolated virtualised clusters:

Testbeds for high-risk security experimentation and training

José M. Fernandez (*) École Polytechnique de Montréal

Information Systems Security Research Lab (Laboratoire SecSI)

(*) Joint work with:

- Carlton Davis, Pier-Luc St-Onge Lab SecSI, Montréal, Canada
- Joan Calvet, Wadie Guizani, Mathieu Kaczmarek, Jean-Yves Marion LORIA, Nancy, France

Agenda

- The Problem and the Objective
- ➤ The History
- The Design Criteria
- > Architecture Description
- > The Accomplishments
- > Lessons Learned
- > Future Work

Definition(s)

CSET

Computer Security Experimentation Testbed

Summary of Contributions

- 0. A very non-original and ambiguous acronym...
- 1. An alternative approach for CSET
 - → Isolated virtualised clusters
- 2. A proposed list of design criteria for CSET
- Conducting some "first-of-a-kind" really cool experiments
 - → In-lab Botnet re-creation (3000 bots)
 - → In-lab training of security grad students
- Some lessons learned about building/operating a CSET

Why a CSET?

- Trying to bring some of the benefits of the scientific method to Computer Security R&D
- In particular
 - 1. Experimental Control
 - 2. Repeatability
 - 3. Realism
- In contrast with
 - Mathematical modelling and simulation
 - Field experimentation

Desiderata and challenges of a CSET

- From CSET Workshop CFP
 - Scale
 - Multi-party Nature
 - Risk
 - Realism
 - Rigor
 - Setup/Scenario Complexity

Risks of CS R&D and CSET

- Confidentiality
 - Privacy of data (e.g. network traces)
 - Details of "real" system configurations
 - Security product design features
 - High-impact vulnerability information
 - Dual-use tools and technology (e.g. malware)
- Integrity and Availability
 - Effect on outside systems
 - University computing facilities
 - Internet

The SecSI/LORIA Story

Lab SecSI

École Polytechnique, Montréal

•2005

•Initial design and grant proposal to Canadian Foundation for Innovation (CFI)

•2006

•CFI Grant approved: 1.2 M\$

•2007-2008

Construction and eqpt acquisition

•2009-

- •Tool comparative analysis & configuration
- Initial experiments
- First student projects

•2010

- First large scale experiments
- Graduate course taught on testbed

Laboratoire Haute Sécurité INPL/LORIA, Nancy, France

•2007

•LORIA and regional government support for LHS

•2008

Collaboration starts with Lab SecSI

•2009

•Eqpt acquisition & config

•2010

•Official launch 1 July

Risk Management Measures

- 1. Self-imposed Laboratory Security Policy
 - Strong physical security
 - "Onion" model
 - Separate access control & video surveillance
 - Strong logical security
 - "Air gap" whenever possible
 - Personnel security

Risk Management Measures

2. University-imposed Review Committee

- Aims at reducing computer security researchrelated risks
- Tasks
 - Evaluates risk
 - Examines benefits of research against risks.
 - Examines and vets counter-measures and project
- Includes external members and experts
- → Not imposed by research granting-agencies

CSET design criteria

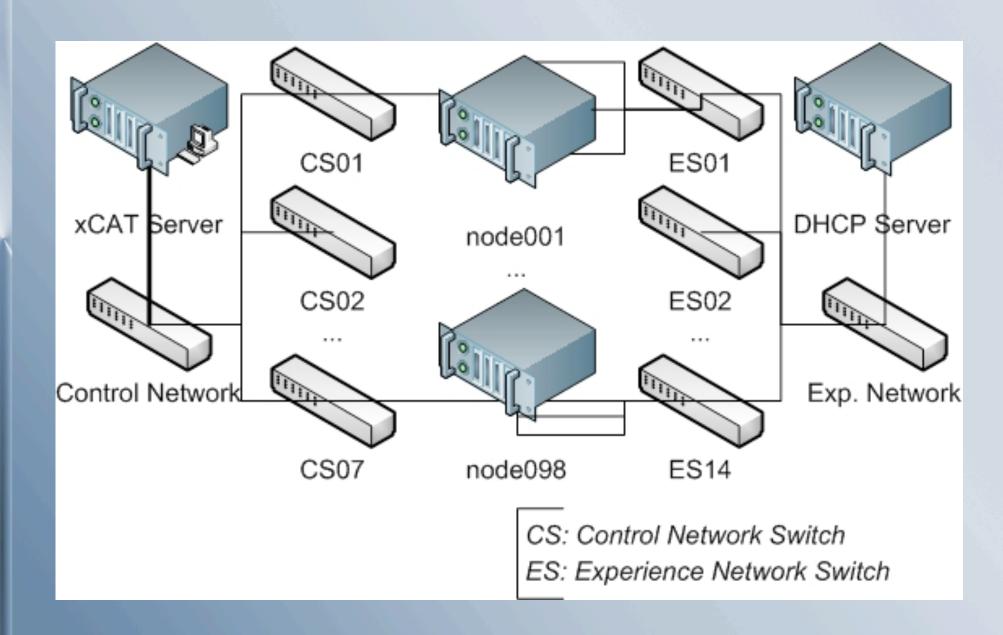
In order to achieve overarching goals of

- Realism
- Scale
- Flexibility

We defined the following criteria →

- 1. Versatility
- 2. Synchronisation
- 3. Soundness
- 4. Transparency
- 5. Environment
- 6. Background
- 7. High-level Exp. Design
- 8. Deployability
- 9. Manageability
- 10. Portability
- 11. Sterilisability

Isolated Virtualised Clusters


Isolated

- Research programme required high-risk experiments
- Lack of control on typical network-layer isolation measures
- Tried to follow model of Government of Canada security policy and IS security policy

Virtualisation

- Scale, scale !!
 - •Emulated machine typically does not require much CPU
 - Test conducted showed typical machine could support 50-100 VM
- "Built-in" manageability and portability
- Challenges/questions
 - VM/host isolation
 - Versatility
 - Cost

Network Architecture

Baby & Mumma Cluster

"Baby"

- 14 machines
- Used for
 - Student training
 - Experiment development
 - Low-risk experiments
 - Experiments requiring network connectivity
 - Very high-risk experiments (before and after sanitisation)
 - Increasing "Mumma"'s firepower

"Mumma"

- •98 machines
- Used for at-scale experiments
- Always isolated
- Can be partitioned (air gap) for conducting simultaneous experiments
- Supporting infrastructure
 - Adjacent console room
 - •12 Tb file server

Management tools

- Considered two options: DETER and xCAT
- xCAT
 - "eXtreme Cluster Administration Tool"
 - Open-source, initially developed/supported by IBM
 - VMWare ESX support initially custom-developed, now mainstream
 - Allows deployment and management of VM as if they were real nodes
 - Allows high-level design with VM as design element (higher granularity)

Design methodology

- Higher level design
 - 1. On paper high-level environment design
 - 2. Generate VM images for each machine type
 - 3. Write Perl scripts to generate xCat tables (as per design)
- Deployment
 - Run xCat scripts → deploys and configures all VMs in a few hours
- Network configuration
 - No ability to generate switch configuration (yet)
 - Manual network configuration (patch panel/switch)
- Measurement & Monitoring
 - Custom monitoring/measurement application run on VM
 - Network traffic sniffing
 - VM management tools

Achievements - SecSI

1. DDoS experiment

- Study of DoS resilience of various SMTP servers
- 50 machines, run "on-the-metal"

2. Waledac Botnet Experiment

- Recreated complete Waledac C&C infrastructure
- Sybil attack experiment on 3000-bot Waledac

3. Graduate Security Course

- Mandatory worm-experiment lab assignment
- 2x from-scratch class projects (IDS & "concept" botnet)

Lessons Learned

- There is a lot to learn from high-scale, high-risk experiments in isolated testbeds (Wow!)
 - It cannot be learnt by other methods (e.g. in-the-wild experiments)
 - It is less risky...
- Disadvantages
 - Access by researchers complicated
 - Experiment design and testing more arduous
 - → "baby" cluster not a luxury...

Lessons Learned

- Virtualisation
 - Larger scale, more flexibility
 - Deployment and monitoring not supported by all toolkits (e.g. DETER)
 - Some experiments still need to be run on-the-metal (synchronisation)

Achieving CSET design criteria

- 1. Versatility
- 2. Synchronisation ???
- 3. Soundness
- 4. Transparency ???
- 5. Environment
- 6. Background
- 7. High-level Exp. Design
- 8. Deployability
- 9. Manageability
- 10. Portability
- 11. Sterilisability ???

Future Work

- 1. Investigate/manage risk of VM containment failure
- 2. High-level design
 - More intuitive tools (vs. Perl scripts)
 - Granularity to the process/programme
- 3. Environment
 - Include network topology in high-level design
 - Automated network configuration deployment ("a la" DETER)
- 4. Background
 - A whole other topic in itself....
- 5. Make a cool DVD....