
UPBOT: A Testbed for Cyber-Physical Systems

Tanya L. Crenshaw and Steven Beyer

University of Portland

Portland, Oregon

crenshaw@up.edu, beyer11@up.edu

Abstract
Developing software for cyber-physical systems presents

a unique challenge. These systems are not simply soft-

ware; they are composed of software running on a col-

lection of machines that present a risk to human safety

if anything goes wrong. Researchers want to create lan-

guages and tools that aid in the development of secure

and fault-tolerant software, but they cannot simply “try

out” their ideas on a fighter jet.

This paper describes our modest UPBOT testbed. Pro-

nounced yoō-pē-bät, it has three features that aptly com-

prise a cyber-physical system: networked control, en-

forceable physical properties, and off-the-shelf compo-

nents. We offer that UPBOT can be used to effectively

test security threats and defenses against cyber-physical

systems; it presents multiple points of attack on a pro-

grammable, component-based system whose on-board

intelligence may maintain safety-critical properties de-

spite malicious attack. Given its low cost and low barrier

to entry it may be especially useful to: i) undergraduates

interested in learning about the domain; ii) researchers

who lack access to oft-unavailable real systems but want

to evaluate their solutions for cyber-physical systems.

1 Introduction

We are surrounded by machines. There’s the obvious

list: laptop, cellphone, mp3 player, e-book. But there are

others. Thermostats maintain our office building temper-

atures. City busses are equipped with a 280 horsepower

engine controlled by four processors. All of these ma-

chines — from the laptop to the bus engine — are con-

trolled by some kind of software.

Be it the iPhone app developer or embedded systems

engineer, it is our hope that anyone writing software for

these machines asks these two fundamental questions:

1. Does the code do what it’s suppose to do?

2. What does the code do when it breaks?

These two questions practically span the whole of

computer science. Generic answers border on the philo-

sophical; they do little to provide solace to the airplane

passenger who has been lifted into the air by ninety-four

short tons of metal controlled by armies of processors

and programs.

Instead, we offer that developers need tools grounded

in their specific domain. We ground our own investiga-

tions in cyber-physical systems, distributed networks of

real-time systems that monitor and control the physical

world. They include critical infrastructures such as au-

tomobiles and avionics. Their software must do what it

should. It must be both fault-tolerant and secure; it must

respond to unexpected inputs or malicious attacks in a

way that does not risk human safety.

Software engineering practices lack the foundations

necessary to reason about these complex systems, unable

to uncover satisfying answers to those two fundamen-

tal questions. Researchers are currently working towards

many visionary solutions. They work towards domain-

specific languages [17] [24] and robust software archi-

tectures [11] [16]. They work towards middlewares that

mitigate complexity [2] [29]. They work towards better

verification tools [21]. But the kinds of researchers who

are good at developing new software solutions are often

far removed from those who are good at building cars or

thermostats.

So the need and the domain are at odds with each

other. Developers need tools grounded in their specific

domain. Researchers want to develop tools, but they can-

not simply “try out” their ideas on a fighter jet.

In response, we have created a testbed that comprises a

combination of features that reproduce a cyber-physical

system: networked control, enforceable physical proper-

ties, and off-the-shelf components. Our testbed promises

multiple opportunities for evaluating and conducting in-

teresting research in many areas; this paper focuses on

the areas of security and artificial intelligence. We of-

fer that UPBOT can be used to effectively test secu-

1

rity threats and defenses against cyber-physical systems.

Our testbed presents multiple points of attack on a pro-

grammable, component-based system whose on-board

intelligence may maintain safety-critical properties de-

spite malicious attack.

The rest of the paper is as follows. Section 2 ex-

plores the features required for a cyber-physical systems

testbed. Section 3 describes our testbed and Section 4

describes our experiments in the testbed. Section 5 de-

scribes how the testbed has been used as a teaching tool

and Section 6 highlights our lessons learned. Section 7

addresses related work and then we conclude.

2 Defining Testbed Needs

Cyber-physical systems have four characteristics of

interest. First, their domains include avionics, auto-

mobiles, health management networks, energy, and de-

fense. For these domains, safety is paramount. Sec-

ond, architectures for these systems are complicated,

pieced together from third-party components or compo-

nents reused from previously deployed systems. Some

of these components are fully verified and some are not.

Third, because they relate to the physical world, they are

subject to unreliable interactions. Sensor input is spo-

radic or incorrect, and control commands are not always

followed with precision. Finally, as networking capabil-

ity in these systems becomes more ubiquitous, so do the

security threats against them.

Offering researchers a meaningful cyber-physical sys-

tems testbed requires reproducing the above characteris-

tics in tangible ways. We offer that a testbed requires:

Networked Control. A classical, discrete time control

system relates to the physical world; it requires reliable

communication, minimal jitter, and hard deadlines [26].

Networked control as seen in cyber-physical systems fur-

ther requires execution across multiple nodes while mit-

igating delay, packet loss, and packet corruption. More-

over, networked control presents multiple points of at-

tack by which one may test against security threats.

Enforceable Physical Properties. Cyber-physical sys-

tems execute in open contexts in which they interact with

dynamic and unpredictable physical environments [5].

Certain physical properties must remain invariant. While

simulations are a powerful means to uncovering a sys-

tem’s problems, a physical testbed eliminates assump-

tions that may hide additional problems [12].

Off-the-Shelf Components. Cyber-physical systems are

composed of heterogeneous systems built from off-the-

shelf components all talking to each other across multi-

ple networks. As a result, such components must be pro-

grammable; defensive and fault-tolerance measures must

be built into any software solutions to provide the neces-

sary level of security or assurance.

3 The UPBOT Testbed

Given the previous discussion of the requirements for a

meaningful cyber-physical system, we offer our UPBOT

testbed. It features networked control of a small fleet of

three iRobot Create robots that we have enhanced with

wireless communication.

3.1 Physical deployment

The physical deployment of the UPBOT testbed involves

four main components.

The body of the testbed is deployed on an iRobot

Create, the educational version of the popular iRobot

Roomba, vacuum excluded. It has no autonomous in-

telligence; it drives as commanded and it reports sensor

data when asked. Its sensors include: i) a left bump and

right bump sensor that are activated with the iRobot Cre-

ate bumps into an obstacle; ii) four cliff sensors on its un-

dercarriage that are activated when the iRobot reaches a

precipice like a stair or balcony; iii) an infrared receiver.

The nerves comprise a process executing on a gum-

stix, a small ARM-based motherboard running the Linux

Operating System. The nerves communicate with the

body over a serial cable using iRobot’s comprehensive

Serial Command Interface (SCI) protocol. The nerves

translate high-level commands to SCI commands and is-

sue them to the body. The nerves also format and convey

sensor data to the brain.

The brain is a second process executing on the gum-

stix. It makes local decisions and issues high-level com-

mands to the nerves. Because the gumstix is equipped

with a wireless card, the brain can also receive high-level

commands from an external supervisor and issue those

commands to the body via the nerves. The brain then

communicates sensor data wirelessly to the supervisor.

Finally, the supervisor is an artificial intelligence

component deployed on a desktop machine not directly

connected to the body. It makes more complex deci-

sions and uses wirelessly-received sensor data to model

the world as perceived by the body.

3.2 Architecture

Having introduced the physical deployment of the UP-

BOT testbed, we now present its software architecture.

Presented in Figure 1, the architecture forms a networked

control loop with the various components located on dif-

ferent computing platforms.

2

body
drive and sense.

Physical World

iRobot + gumstix platform

Software World

brainstem

creates two processes which communicate with the client and the body.

nerves

translate high-level commands
to iRobot commands; poll,
format and convey sensor data.

supervisor

issue commands;
model the perceived world.

Desktop Machine

Software World

client

convey commands;
obtain sensor data.

brain

poll for external commands
and convey to nerves; convey
sensor data to supervisor.

sensor data

iRobot
commands

high-level
commands

formatted
sensor data

Figure 1: Architecture diagram for the UPBOT testbed. In its networked control loop, sensor data is conveyed from

the body all the way up to the supervisor which issues high-level commands that are translated and conveyed to the

body.

Starting from the bottom-right of the figure, the nerves

continuously poll the body for the most recent sen-

sor data. The nerves translate this sensor data into a

friendlier format: ten bits of timestamped data indicate

which sensors have been activated. Because both the

brain and the nerves are processes executing on the same

gumstix platform, the formatted sensor data is conveyed

from the nerves to the brain over shared memory.

When the brain obtains the latest sensor data, it may

perform two possible operations. It may make a local

decision and issue commands back to the nerves. Or it

may simply convey the sensor data to the supervisor.

Finally, the brain and the supervisor communicate

wirelessly over a socket. The brain relays to the su-

pervisor the formatted sensor data it received from the

nerves. The supervisor uses this data to model the per-

ceived world and calculate its next high-level command.

This command is issued to the brain, which conveys it to

the nerves, which translate it to the appropriate sequence

of iRobot commands, completing the loop.

3.3 Meeting the Needs

In Section 2, we offer that for a testbed to be meaningful

for cyber-physical systems research, it must posses three

important characteristics. We address these three in turn

with respect to our UPBOT testbed:

Networked Control. Our UPBOT testbed sees a net-

worked control loop since the supervisor, the brain and

nerves, and the body are all located on different comput-

ing platforms. Across the three robots in our testbed, this

presents multiple points of attack by which one may test

against security threats.

Enforceable Physical Properties. Because the UPBOT

features a body conducting itself in the physical world,

our testbed offers a set of enforceable physical proper-

ties. For example, one could write an application that

ensures the body never falls off a precipice.

Off-the-Shelf Components. Our UPBOT testbed has

no expensive custom hardware. Instead, it features af-

fordable off-the-shelf components: the iRobot Create,

an ARM-based gumstix motherboard, a wifistix wire-

less card, an embedded version of the Linux operating

system, and a Debian-based desktop PC. The gumstix

motherboard and PC are fully programmable and offer a

means to build and evaluate defensive and fault-tolerance

measures into the system. The hardware cost for one of

our iRobot + gumstix platforms is $456.00.

We do not mean to claim that a bunch of dorky robots

are just like a fighter jet. But neither is our testbed just

a toy example. We offer that the above characteristics

provide a testbed that aptly reproduces a cyber-physical

system, but simplifies the overwhelming complexity of a

deployed system such that UPBOT is accessible by re-

searchers and undergraduates alike.

Moreover, the iRobot Create is not a toy robot. It is

an affordable yet complex mobile robot platform. The

Create is developed by iRobot, a company that develops

a number of government and industrial robots such as

the autonomous Wayfarer battlefield robot currently un-

der research and development for urban reconnaissance

3

missions [28]. Such robots are part of much bigger cyber

physical systems in the defense domain.

Finally, while we have offered how the UPBOT

testbed reproduces general characteristics of a cyber-

physical system, it is also an apt simplification of existing

ones. Architectures like the iRobot Wayfarer [28] or the

Mars Rover [9] [12] have the same kind of triumvirate as

UPBOT: supervisor, brain, and body. A supervisor com-

municates goals to the brain whose on-board intelligence

works to achieve such goals, working with a body layer

that controls motors and obtains sensor information. Be-

cause we have combined a Create with a gumstix moth-

erboard, we not only have a commercial-grade robot but

also computing power enough to make the robot semi-

autonomous, able to conduct itself for short periods until

it gets new goals from the supervisor. Because UPBOT

has the same architecture as other real world systems,

we feel that investigations conducted in UPBOT can un-

cover results that will generalize to other cyber-physical

systems.

Certainly UPBOT does not have the scale of larger

testbeds such as FIDO [12], a system used by the Jet

Propulsion Laboratory to evaluate software solutions for

the Mars Rovers. But as successful as such testbeds are

at helping experts uncover problems, they are not gener-

ally accessible. These bigger testbeds are closed behind

doors that are only opened by hefty security clearances

or life changing re-employment.

4 Experiments

Our testbed offers multiple opportunities for evaluating

and conducting interesting research in many areas; this

paper focuses on the areas of security and artificial in-

telligence. We are currently conducting experiments to

evaluate our artificially intelligent supervisor equipped

with an episodic memory system [23].

In our current experiments, the supervisor and brain

follow a strict alternation. The supervisor issues a com-

mand to the brain; the brain responds with the sensor data

that resulted from the command. The list of commands

that the supervisor may issue to a robot are:

1. Drive forward 630 mm.

2. Turn right 90 degrees.

3. Turn left 90 degrees.

4. Turn right 10 degrees.

5. Turn left 10 degrees.

In the case of the drive forward command, the robot

stops if an obstacle is encountered. Since the robot turns

in place, there is no need to check for obstacles for the

turning commands.

iRobot

Figure 2: One of our testbed robots navigates a simple

maze, 630 mm by 1260 mm in size. The robot learns

how to find the infrared transmitter over multiple trials.

As the supervisor is developed, the maze will become

more complex.

4.1 Learning a Maze in a Safe Environ-

ment (ongoing)

Our first ongoing experiment focuses on the learning ca-

pability of the supervisor. We want to answer one high-

level research question, How successful is the episodic

memory-based supervisor at learning how to navigate

the robot through a simple maze?

Very preliminary results, as shown in Figure 3, demon-

strate that we need to improve our learning algorithm,

and focus more on accelerated learning. Bottom line:

the supervisor is currently a slow learner; it does not do

a good job of exploiting past successes. Certainly our re-

sults are lamentable in terms of the artificial intelligence

community, but they point to the kinds of experiments

we can conduct in our testbed. As we continue devel-

opment of our supervisor, we look forward to improved

results. We also look forward to comparing our approach

to other AI approaches, such as reinforcement learning.

Though we simulate the robot in a perfect environment

and obtain data that displays a smooth learning curve,

we cannot say the same for our testbed. It may be obvi-

ous, yet it cannot be said enough: Simulating the robot

over thousands of perfect, almost instantaneous trials is

far different than actually controlling a physical testbed

robot that encounters physical obstacles.

4.2 Navigating a Maze in a Threatening

Environment (future work)

As part of our future work, we seek to use UPBOT as a

testbed for evaluating an episodic memory-based intelli-

gence to detect security threats to a cyber-physical sys-

tem. Our second experiment will continue investigating

the capability of the artificially intelligent supervisor in

a threatening environment. We want to answer one high-

4

Trials

1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

m
o

v
e

s
 t

o
 �

n
d

 t
h

e
 t

ra
n

s
m

it
te

r

0

50

100

150

200

250

300

350

400

Figure 3: A series of ten trials in which the artifi-

cially intelligent supervisor conducts the robot through

the simple maze. For each trial, we report the number of

moves taken to discover the transmitter. Our results are

lamentable, but they point to the kinds of experiments we

can conduct in our testbed.

level research question: “Given that the supervisor has

already learned a maze, how successful is the supervisor

at navigating the same maze in a threatening environ-

ment?”

An episodic memory architecture enables the supervi-

sor to detect novel situations [23]. If the supervisor has

already learned the maze in a safe environment, how will

it perform if a malicious agent is also sending wireless

commands to the robot, or if a malicious agent has over-

burdened the brain with useless processes?

5 UPBOT as a Teaching Tool

As much as UPBOT has been built to reproduce impor-

tant characteristics of a cyber-physical system, it has also

been built to be accessible to undergraduates at the Uni-

versity of Portland. To that end, UPBOT has been largely

implemented by three undergraduate students, including

the second author of this paper.

The development of the testbed has progressed as a

series of directed study projects for undergraduates:

• Fall 2009. A junior electrical engineering under-

graduate interfaces a gumstix motherboard to an

iRobot and writes a small program that controls the

iRobot Create to drive a pre-planned path and play

a song.

• Spring 2010. A junior electrical engineering under-

graduate develops a client-server application such

that one may issue driving commands from a desk-

top machine wirelessly to the iRobot Create + gum-

stix mobile robot.

• Summer 2010.1. A senior electrical engineering

undergraduate increases the robustness of the UP-

BOT brain software so that it may execute and con-

trol the iRobot for multi-hour long experiments.

• Summer 2010.2. A sophomore computer science

undergraduate develops a device driver for a digital

compass so that the UPBOT architecture may lever-

age not only iRobot Create sensor data, but heading

information as well.

• Summer 2010.3. A senior computer science under-

graduate implements an artificially intelligent su-

pervisor using an episodic memory architecture.

The syllabus for the Spring 2010 directed study course

responsible for the wireless connectivity portion of the

testbed features three main course objectives:

1. Use cross-compilers for the C programming lan-

guage.

2. Perform embedded systems development in a UNIX

environment using hardware and software tools

such as oscilloscopes, digital multi meters, apt-get,

tcpdump, objdump, gcc, kermit, grep.

3. Develop and debug wireless networking programs

for embedded systems using socket programming.

Course objectives aside, it is unfair to simply hand a

motherboard and a robot to an undergraduate and say,

“Go to it”. The nature of the embedded systems pro-

gramming demanded by UPBOT is outside the scope of

much of any computer science or electrical engineering

curriculum. As a result, pair programming [3] has been

a key player in developing UPBOT through undergradu-

ate work, with the student always taking the role of the

driver.

6 Lessons Learned

We reflect on what we have learned from building the

UPBOT testbed, what worked well, and what did not.

6.1 What Worked Well

Leverage What You Know. Given that building a

testbed is work-intensive, we did not want to add any

unnecessary learning curve to our work. Moreover, we

wanted to keep our materials costs low. As the bulk of

our experiences were with the Linux Operating System,

we sought hardware that could run it.

5

Document What You Know. Building a testbed in-

volves working many hours to uncover mundane details

about serial port and wireless card configurations. It is

easy to forget or misplace such details. To that end, we

have disciplined ourselves to maintain on-line documen-

tation for interfacing the gumstix to the iRobot Create,

including “Ten steps to building an iRobot + gumstix

mobile robot”, recently requested by a local-area com-

pany, Galois, Inc. These resources are publicly available

at http://kaju.dreamhosters.com under ‘RoboDocs’.

Ask Questions, Then Design. To design a testbed that

would be meaningful for a wide variety of cyber-physical

systems researchers, we talked to them. Different fea-

tures stood out as important to different fields:

• Artificial intelligence. Important to this field is a

hierarchical software architecture that mirrors the

kind of hierarchical decision making typically per-

formed. With UPBOT, the brain may make a small

set of local decisions while the supervisor may

make centralized decisions, or decisions that de-

mand greater computational power.

• Safety-critical systems. Important to this field is a

networked system architecture built from modules

with varying levels of criticality. High-critical mod-

ules must continue safely when other modules have

failed or communication has been severed. With

UPBOT, if the connection between the supervisor

and the brain fails, the latter safety-critical module

may continue making local decisions to keep the

body safe.

6.2 What Did Not Work Well

Take Care in Choosing Hardware. The gumstix hard-

ware is somewhat challenging to use. First, the gumstix

connex was discontinued soon after purchasing it. Sec-

ond, gumstix documentation is offered only in the form

of on-line articles, FAQs, a mailing list, and a sparse

wiki. Given a time-machine, we would choose a differ-

ent motherboard to interface to the iRobot Create.

Use Elegant Interprocess Communication. Given the

architecture for the UPBOT testbed presented in Fig-

ure 1, many activities are happening concurrently. For

example, the brain and the nerves are continuously pass-

ing sensor data and commands back and forth. It is

nowhere near elegant; it requires a lot of tedious imple-

mentation details related to interprocess communication

with sockets and pipes. Bugs are inevitable.

7 Related Work

We have built the UPBOT testbed to offer researchers

a meaningful testbed for evaluating their software solu-

tions in the cyber-physical systems domain. Other work

seeks to achieve this goal. The Convergence Lab at the

University of Illinois at Urbana-Champaign [15] focuses

on the challenges of networked control and features a

small fleet of remote-controlled cars. Unlike our testbed,

the cars have no on-board intelligence and are depen-

dent on a centralized trajectory planner which directs the

cars. Larger-scale testbeds are also available [14]. We

appreciate the scale of such testbeds, but we offer that

an advantage to UPBOT’s scale is a lower barrier to en-

try. Like UPBOT, other testbeds focus on education, in-

cluding [19] which sees iRobot Creates controlled by the

now-retired gumstix connex motherboard. The popular

robotics platform Player/Stage is installed on the gumstix

to empower its programmers with a high-level API that

makes it easy to control the robot. However, because we

wanted UPBOT to be useful for both computer science

and electrical engineering undergraduates, we control the

robot with lower-level C programming.

It is not always feasible or desirable to build a physical

testbed. Simulation-based testbeds also offer value. One

approach is to specify a hardware-in-the-loop (HIL) test

environment; the hardware to be controlled is simulated

in real-time and the control software is tested against the

simulation. Much of an automobile is controlled by soft-

ware, so industry relies on HIL to evaluate systems such

as braking, steering, or emissions control [7]. Automo-

biles are not the only domain. Armbruster et al. have

developed an HIL for bulk power systems control [1].

Though a useful approach to evaluating a system, HILs

are limited by the combinatorial complexity of the hard-

ware being simulated.

Especially in the area of security, it is sometimes nec-

essary to build a testbed that offers realistic scenarios.

Both [4] and [25] offer a traditional large-scale IT sys-

tem in which researchers can deploy and evaluate net-

work services. As of 2006, PlanetLab [25] offered a

testbed comprising 694 nodes in 35 countries. The scale

of such projects is impressive; UPBOT does not boast

such a scale. Still, compared to traditional IT systems,

many cyber-physical systems have different needs for se-

curity their defenses [8]. Cyber-physical systems have

comparatively simpler network dynamics but they must

protect the system under control; an ideal example is the

power substation that continues to deliver power to its

customers despite a malicious attack.

In traditional IT systems, many defenses against mal-

ware have been based on detecting known malware.

In the days of DOS-based viruses, malware detection

schemes boiled down to string matching algorithms that

6

searched for the current set of known viruses [22]. Since

then, malware has become more complex: encrypted and

polymorphic viruses [6], worms, bots, and rootkits [27].

Today’s malware detectors look for malicious code frag-

ments and signatures instead of whole programs. Yet

for cyber-physical systems, security rarely means look-

ing for a signature of a known trojan horse

Instead, what perhaps may make more sense for de-

fending cyber phyiscal systems is the behavior blocking

approach. Behavior blocking software may flag suspi-

cious code or monitor real-time program behaviour for

sequences of malicious actions. It then isolates the of-

fender in a sandbox; an administrator determines if it

should be removed or allowed to run [20].

To block malicious behavior, it must first be detected.

This is sometimes described in the literature as anomaly

detection and has been developed in areas ranging from

machine learning to statistics [10]. Often, these sys-

tems build models of normal data and detect deviations.

As described in Section 4.2 We seek to use UPBOT as

a testbed for evaluating an episodic memory-based in-

telligence to detect threats to a cyber-physical system.

Other works have seen anomaly detection in similar do-

mains, including [13] which applies anomaly detection

to telemetry data for early detection of component fail-

ures in spacecraft and [18] which applies anomaly detec-

tion to network intrusion.

8 Conclusion

Developing software for cyber-physical systems presents

a unique challenge. These systems are composed of soft-

ware running on a collection of machines that present a

risk to human safety if anything goes wrong. It is dif-

ficult to evaluate software solutions for cyber-physical

systems because so much of these systems exist in the

physical world.

UPBOT is not a fighter jet, nor is it just a toy exam-

ple that focuses on clean carpets. We offer that UPBOT

can be used to effectively test security threats and de-

fenses against cyber-physical systems; it presents mul-

tiple points of attack on a programmable, component-

based system whose on-board intelligence may maintain

safety-critical properties despite malicious attack.

For more information on the technical imple-

mentation details for UPBOT, please refer to

http://kaju.dreamhosters.com under ‘RoboDocs’.

We respectfully request that those who use our docu-

mentation to build an iRobot Create + gumstix mobile

robot platform please cite this paper.

9 Acknowledgments

This work was made possible by the University of Port-

land Arthur Butine Faculty Development Fund. We are

grateful to those who provided comments that made this

paper better: Joe Hendrix, Joe Hoffbeck, Steve Miller,

Jelena Mirkovic, Andrew Nuxoll and the anonymous re-

viewers of the CSET’10 workshop.

References

[1] Austin Armbruster, Matt Ryan, Xiaoqing Frank

Liu, Ying Cheng, and Bruce M. McMillin. Hard-

ware/software co-design for power system test de-

velopment. In WISER, pages 83–88, 2004.

[2] Girish Bagliga, Scott Graham, Lui Sha, and P. R.

Kumar. Etherware: Domainware for wireless con-

trol networks. Object-Oriented Real-Time Dis-

tributed Computing, IEEE International Sympo-

sium on, 0:155–162, 2004.

[3] K. Beck. eXtreme Programming Explained: Em-

brace Change. Addison Wesley Longman, 2000.

[4] Terry Benzel, Robert Braden, Dongho Kim, and

Cliford Neuman. Experiences with deter: A testbed

for security research. In In 2nd IEEE Conference

on Testbeds and Research Infrastructure for the De-

velopment of Networks and Communities (Trident-

Com), 2006.

[5] Azer Bestavros. Towards safe and scalable cyber-

physical systems. In NSF Workshop on Cyber-

Physical Systems, 2006.

[6] Matt Bishop. Computer Security: Art and Science.

Addison Wesley Professional, 2003.

[7] Manfred Broy. Challenges in automotive software

engineering. In ICSE ’06: Proceedings of the 28th

international conference on Software engineering,

pages 33–42, New York, NY, USA, 2006. ACM.

[8] Alvaro A. Cardenas, Saurabh Amin, and Shankar

Sastry. Secure control: Towards survivable cyber-

physical systems. In ICDCSW ’08: Proceedings

of the 2008 The 28th International Conference on

Distributed Computing Systems Workshops, pages

495–500, Washington, DC, USA, 2008. IEEE

Computer Society.

[9] Rebecca Castano, Tara Estlin, Daniel Gaines, An-

dres Castano, Caroline Chouinard, Ben Bornstein,

Robert C. Anderson, Steve Chien, Alex Fukunaga,

and Michele Judd. Opportunistic rover science:

7

Finding and reacting to rocks, clouds and dust dev-

ils. In IEEE Aerospace Conference, March 2006.

[10] Varun Chandola, Arindam Banerjee, and Vipin Ku-

mar. Anomaly detection: A survey. ACM Comput.

Surv., 41(3):1–58, 2009.

[11] Bruce Douglass. Real-Time Design Patterns.

Addison-Wesley Publishing Company, 2003.

[12] Tara A. Estlin, Daniel M. Gaines, Caroline

Chouinard, Rebecca Castao, Benjamin Bornstein,

Michele Judd, Issa A. D. Nesnas, and Robert C.

Anderson. Increased mars rover autonomy using AI

planning, scheduling and execution. In 2007 IEEE

International Conference on Robotics and Automa-

tion, ICRA 2007, 10-14 April 2007, Roma, Italy,

pages 4911–4918. IEEE, 2007.

[13] Ryohei Fujimaki, Takehisa Yairi, and Kazuo

Machida. An approach to spacecraft anomaly de-

tection problem using kernel feature space. In KDD

’05: Proceedings of the eleventh ACM SIGKDD in-

ternational conference on Knowledge discovery in

data mining, pages 401–410, New York, NY, USA,

2005. ACM.

[14] Annarita Giani, Gabor Karsai, Tanya Roosta,

Aakash Shah, Bruno Sinopoli, and Jon Wiley.

A testbed for secure and robust scada systems.

SIGBED Rev., 5(2):1–4, 2008.

[15] Scott Graham and P. R. Kumar. The convergence

of control, communication, and computation. Pro-

ceedings of PWC 2003: Personal Wireless Com-

munications. Lecture Notes in Computer Science,

2775, 2003.

[16] Cheolgi Kim, Mu Sun, Sibin Mohan, Heechul

Yun, Abdullah Al-Nayeem, Lui Sha, and Tarek

Abdelzaher. A framework for the safe interoper-

ability of medical devices in the presence of con-

nection failures. In International Conference on

Cyber-physical Systems (ICCPS), Stockholm, Swe-

den, April 2010.

[17] David Kitchin, Adrian Quark, William Cook, and

Jayadev Misra. The Orc programming language.

In Proceedings of FMOODS/FORTE 2009, June

2009.

[18] Ar Lazarevic, Aysel Ozgur, Levent Ertoz, Jaideep

Srivastava, and Vipin Kumar. A comparative study

of anomaly detection schemes in network intrusion

detection. In In Proceedings of the Third SIAM In-

ternational Conference on Data Mining, 2003.

[19] Maja J Matarı́c, Nathan Koenig, and David Feil-

Seifer. Materials for enabling hands-on robotics

and stem education. In AAAI Symposium on Robots

and Robot Venues: Resources for AI Education,

March 2007.

[20] E Messner. Behavior blocking software repels new

viruses. Network World, January 2002.

[21] Steven P. Miller, Elise A. Anderson, Lucas G. Wag-

ner, Michael W. Whalen, and Mats P.E. Heimdahl.

Formal verification of flight critical software. In

Proceedings of the AIAA Guidance, Navigation and

Control Conference and Exhibit, August 2005.

[22] Carey Nachenberg. Computer virus coevolution.

Communications of the ACM, 40(1), January 1997.

[23] Andrew Nuxoll and John E. Laird. Extending cog-

nitive architecture with episodic memory. In AAAI,

pages 1560–1564, 2007.

[24] John Peterson, Paul Hudak, and Conal Elliott.

Lambda in motion: Controlling robots with haskell.

In PADL, pages 91–105, 1999.

[25] Larry Peterson, Andy Bavier, Marc E. Fiuczynski,

and Steve Muir. Experiences building planetlab. In

In Proceedings of the 7th USENIX Symp. on Oper-

ating Systems Design and Implementation (OSDI,

2006.

[26] Charles L. Phillips and H. Troy Nagle. Digital Con-

trol System Analysis and Design. Prentice Hall,

1994.

[27] Willam Stallings and Lawrie Brown. Computer Se-

curity: Principles and Practice. Pearson Prentice

Hall, 2008.

[28] Brian Yamauchi. The wayfarer modular naviga-

tion payload for intelligent robot infrastructure. In

SPIE, Vol. 5804, 85, March 2005.

[29] Yuanfang Zhang, Christopher Gill, and Chenyang

Lu. Reconfigurable real-time middleware for

distributed cyber-physical systems with aperiodic

events. In ICDCS ’08: Proceedings of the 2008

The 28th International Conference on Distributed

Computing Systems, pages 581–588, Washington,

DC, USA, 2008. IEEE Computer Society.

8

