Cryptographic Device Support for FreeBSD

Samuel J. Leffler

Errno Consulting
sam@errno.com

ABSTRACT

FreeBSD recently adopted the OpenBSD Cryptographic Framework [Keromytis et al, 2003]. In
doing so it was necessary to convert the core framework to function correctly in a fully-preemp-
tive/multiprocessor operating system environment. In addition several issues with the basic
design were found to cause significant performance loss. After addressing these issues we found
that FreeBSD outperformed OpenBSD on identical hardware by as much as 100% in tests that
exercise only the cryptographic framework. These optimizations result in similar performance
improvements for facilities like IPsec that make heavy use of the cryptographic framework. We
observed that FreeBSD’s Fast IPsec [Leffler, 2003] typically outperforms OpenBSD’s IPsec
implementation [Miltchev et al, 2002] by more than 50% on identical hardware.

We conclude that the OCF cryptographic API can be optimized and re-tuned to deliver substan-
tially better performance than the original OCF implementation with large gains in both through-
put and latency. Moreover these changes can be made with no impact on clients of the crypto-
graphic framework: both user and kernel sofware designed for the original OCF is easily ported

to the FreeBSD implementation of OCF.

1. Background and Introduction

Cryptographic transformations are an important com-
ponent of security applications and protocols.
Because these operations are computationally expen-
sive vendors have developed products that accelerate
the calculations and offload the work from the main
processor. The OpenBSD Cryptographic Framework
(OCF) [Keromytis et al, 2003] was developed to pro-
vide a uniform interface to cryptographic resources.
It provides an in-kernel API to cryptographic
resources and a device interface for user-level access
to hardware-accelerated cryptographic operations.
This functionality is critical for high performance
implementations of security protocols such as IPsec
[Kent & Atkinson, 1998], SSL [Freier et al, 1996],
TLS [Dierks & Allen, 1999], DNSSEC [Eastlake,
1999], ssh [Ylonen et al, 2002], and Kerberos [Kohl &
Neuman, 1993]. Good cryptographic support is also
important for implementing encrypted secondary stor-
age [Gattaneo et al, 2001] and virtual memory
[Provos, 2000].

Recognizing the importance of this facility, FreeBSD
recently adopted the OCF. Porting the software how-
ever required addressing several issues.

e The OCF was designed for a uniprocessor system
without kernel preemption. The FreeBSD 5.0
operating system has fine-grained locking and the
kernel is fully preemptive. This required a rewrite
of the core crypto functionality.

e The I/O framework used on OpenBSD is different
than that used by FreeBSD. The crypto device
drivers required significant modification to deal
with these differences.

e The OCF duplicates cryptographic support already
present in FreeBSD for the KAME IPsec software.
In some cases the existing implementations are
superior to those provided by the OCF. Rather
than duplicate this software each component was
evaluated and the best was chosen.

After addressing these issues we looked at the perfor-
mance and found that it was suboptimal. [Keromytis
et al, 2003] states the “OCF attains 95% of the theo-
retical peak device performance.” These results how-
ever are for relatively slow devices and fail to consider
the overhead required to reach that performance. Fur-
thermore, the 95% figure is misleading in that it is
attained for a case that rarely occurs and where the
majority of the overhead of the OCF is hidden by the
raw computational cost.

In analyzing the performance of OCF we found sev-
eral problems that contribute to suboptimal perfor-
mance for all operations:

1) The OCF requires two kernel thread context
switches for each operation. On many systems the
peak performance of the OCF is limited by the
rate at which the system can do context switches.

2) The OCF forces all crypto operations to pass twice
through a single kernel thread. Combining the
dispatch and return processing in a single thread
increases latency.

3) Crypto device drivers trade off throughput for
latency. This has a detrimental effect on the per-
formance of network protocols where latency is
critical.

Furthermore it was observed that when crypto devices
are overloaded the OCF reacts by discarding opera-
tions instead of applying flow-control techniques.
This results in severe performance loss for network
protocols as this action is equivalent to discarding
packets.

With these problems corrected FreeBSD was found to
outperform OpenBSD on identical hardware by as
much as 100% in tests that exercise only the crypto-
graphic framework. The overhead of using the cryp-
tographic facilities was dramatically reduced raising
the peak performance and making more of the CPU
available for non-cryptographic work. These opti-
mizations result in similar performance improvements
for facilities like IPsec that make heavy use of the
cryptographic framework. For example, FreeBSD’s
Fast IPsec [Leffler, 2003] outperforms OpenBSD’s
IPsec implementation [Miltchev et al, 2002] by more
than 50% on identical hardware running netperf over
a 3DES+SHAL tunnel.

The remainder of this paper is organized as follows.
Section 2 describes the cryptographic framework and
discusses the effort needed to make it operate in a
fully preemptive environment. Section 3 discusses
performance issues, starting with the tools used to
evaluate performance and progressing through each of
the issues that were identified in the software. Section
4 describes performance results for FreeBSD and
compares them to OpenBSD. Section 5 outlines the
the status and availability of this work and talks about
future work. Section 6 gives conclusions.

2. Porting the Cryptographic Framework to
FreeBSD 5.0

The OCF is comprised of three components:

1) A core set of code that manages a registry of
crypto device drivers, dispatches crypto operations
to drivers, and coordinates the return of results
from drivers to the submitter.

2) Crypto device drivers that submit crypto opera-
tions to hardware devices and return results to the
crypto core.

3) The /devi/crypto pseudo-device driver that pro-
vides linkage between user-level software and the
core crypto support.

The core crypto support and the /dev/crypto driver
are simple pieces of software. The crypto device
drivers however represent a significant development
effort. Some aspects of cryptographic device hard-
ware that vendors refuse to disclose have been
reverse-engineered and this work is embodied in these
drivers. In considering the integration of the OCF into
FreeBSD it was important to maintain the driver API
so that existing drivers could be easily reused and so
that ongoing development could be shared by both
OpenBSD and FreeBSD communities.

The initial port of the OCF to FreeBSD 5.0 was rea-
sonably straightforward. Instead of using processor
priority to insure critical code are not executed con-
currently, locking primitives were used to guard con-
current access to data structures. This resulted in cer-
tain constructs being recast and some code being
rewritten. For example, the OCF blocks concurrent
access to all its data structures by raising the proces-
sor priority to splimp. This effectively blocks all con-
current activity in the lower half of the kernel from re-
entering the code. In FreeBSD 5.0 however splimp
does nothing; instead concurrency primitives such as a
mutex must be used. But simply replacing splimp
usage with a single mutex does not work unless the
mutex semantics are relaxed to permit recursive
acquisition. Instead each of the data structures used
by the cryptographic framework were given their own
mutex and some code was reorganized to insure con-
sistent lock ordering is used to avoid deadlocks. The
end result is easier to understand and permits greater
concurrency. The only downside is that mutex primi-
tives have more overhead than simply manipulating
the processor priority level. In practice this additional
overhead is swamped by other costs and not critical to
overall performance.

3. Performance Analysis

This section briefly describes the tools and techniques
used to evaluate performance and then discusses the
performance problems that were identified.

3.1. Tools

OpenBSD provides no statistics or other facilities for
understanding the performance of the OCF. The only
tools for evaluating performance treat the system as a
“black box’; e.g. the openssl tool from the OpenSSL
distribution.

We began by instrumenting the core software and
each crypto device driver. Every error or failure is
accounted for separately so problems can be deter-
mined immediately. (This is especially important for
understanding problems reported by naive users.)

Next, tools were developed to exercise the crypto
functionality. One such tool is the cryptotest pro-
gram that submits symmetric-key crypto operations
through the /dev/crypto device and verifies the
results. cryptotest measures performance over a
range of operations and parameters and is a basic tool
for evaluating software changes and hardware config-
urations®.

Finally a profiling facility was added that timestamps
crypto requests as they pass through the system. At
important points in the processing of crypto requests
these timestamps are used to calculate minimum,
maximum, and average time spent doing each task.
The cryptotest program has a —p option that enables
collection of profiling statistics over the duration of a
run.

Time (ns)
Task Avg Min Max | Description
Dispatch 115 114 640 | Delay before op is
handed to driver.
Invoke | 155883 154143 193937 | Delay before op is
returned by driver.
Done 2295 2196 18342 | Delay before call-
back method is
invoked.

Callback 341 323 733 | Duration of call-
back method pro-
cessing.

Table 1: Sample crypto profiling results

Table 1 shows the results from running cryptotest on a
system with a Broadcom BCM5822 accelerator card.
The machine has an Asus P4B533-V Intel845G moth-
erboard with 1.8 GHz P4 processor. The Broadcom
card was in a 32-bit/33MHz PCI slot. The tests per-
formed 3DES calculations on 8192-byte buffers. Four
values are calculated; one for each of the tasks done
by the core crypto framework. The Invoke value is
especially interesting as it gives an approximation of

1 The cryptotest program described here is derived
from code provided by Theo de Raadt.

the peak processing capability of the hardware (mod-
ulo the overhead of the device driver). In this case 8
kilobytes were processed in an average of 156 mil-
liseconds for a peak bandwidth of 410 Mb/s. Profiling
adds a fixed overhead to each operation; reducing per-
formance results by 2-8%. This facility is described
in more detail in Section 4.

3.2. Problems

The normal flow of crypto operations in the OCF is as
follows:

1) Client formulates a crypto operation and submits
it through the “crypto_dispatch” routine. This
routine places the request on a “dispatch queue”
and notifies a kernel thread.

2) The kernel thread removes the operation from the
dispatch queue and calls “crypto_invoke™ to hand
the request off to the appropriate crypto device
driver.

3) The crypto device driver processes the operation.
Typically this is done by submitting one or more
commands to the hardware device. Some drivers
however may process the data immediately; e.g.
the software crypto driver.

4) When the crypto request is completed the crypto
driver calls the “crypto_done” routine to notify
the crypto subsystem the request is done. This
routine places the request on a “return queue” and
notifies a kernel thread.

5) The kernel thread removes the operation from the
return queue and invokes the callback method
associated with the request.

This scheme requires two kernel thread context
switches to process each cryptographic request. The
trip through the kernel for dispatch is done so that
batching can be carried out [Keromytis, 2003]; except
the OCF does not support batching. The second trip
through the kernel thread for returning requests is
done because the callback methods typically take a
long time to run. By moving this work from the
device driver (typically in the interrupt service rou-
tine) this long-running work can be done at a low
interrupt priority level. The problem with this is that
all callback methods are handled in this way, so even
those methods that do very little incur this overhead.

For many systems the peak performance of the OCF is
limited by number of context switches the system can
perform. Reducing this overhead is therefore impor-
tant.

3.2.1. Separating Dispatch and Return of Results

The first observation was that doing dispatch and
return processing in a single kernel thread was subop-
timal. While the two tasks were interleaved this still
introduced latency as return processing is potentially
very time consuming and could block the dispatch of
operations to the hardware. Splitting the work into
separate threads eliminated contention for shared
resources and reduced latency, especially under
FreeBSD 5.0 where the kernel is preemptive. Further-
more, under FreeBSD 5.0 doing both tasks in a single
thread required that access to both the dispatch and
return queues be synchronized with one lock which
increased contention further. When dispatch and
return processing was split into separate threads IPsec
performance increased by 10-15%.

3.2.2. Eliminating Context Switch Over head

Next it was observed that dispatch processing does
not need to be done in a kernel thread [Stone, 2002].
Replacing the kernel thread with a software interrupt
thread reduces the cost to enter the dispatch loop by
more than 50% on FreeBSD 4.8.

Dispatch Time (ns)
SWI Thread Speedup
Avg 427 1519 3.6x
Min 380 1292
Max | 9248 12585

Table 2: Software interrupt- vs thread-based dispatch

Table 2 shows measurements of the dispatch time col-
lected with cryptotest and profiling on the Asus-based
test machine. We also tried to convert the return pro-
cessing thread to a software interrupt but this failed
because the callback methods were not prepared to be
entered at an elevated priority level.

The main difficulty with converting the dispatch
thread from a kernel thread to a software interrupt
thread was managing the interrupt masks and syn-
chronization with other threads of execution in the
kernel. A new “spl”, splcrypto, was defined that
blocks both the software interrupt thread, crypto hard-
ware interrupts, and all networking software inter-
rupts. This is used within the core crypto code to
guard access to data structures that are used in the
software interrupt thread.

After converting the dispatch procedure to a software
interrupt thread it was observed that most operations
can be dispatched without a context switch at all!
Recall that the reason for switching to another thread
is to have a common location to batch operations.
However most crypto requests should not be batched

because batching them increases latency, reducing
overall performance. This is especially true of net-
work protocols such as IPsec.

To handle this conflict between a need for low latency
and a desire for high throughput we introduced the
notion of batchable crypto requests. Requests that
are marked batchable are queued and dispatched from
the dispatch thread that is entered through a software
interrupt. Crypto drivers are supplied a hint at step 2
in the above procedure that indicates whether more
operations will follow immediately; this permits
drivers to safely batch operations together. Opera-
tions that are not marked batchable are sent to the
crypto drivers immediately without passing through
the dispatch thread. Doing this requires no changes to
the dispatch thread.

Dispatch Time (ns)
Direct SWI Speedup
Avg 108 427 4x
Min 99 380
Max 1634 9248

Table 3: Direct- vs software interrupt--based dispatch

As Table 3 shows, direct dispatch lowers dispatch
overhead dramatically. In addition, variance (not
shown) is significantly reduced which is important for
clients like network protocols.

While the above techniques eliminate the context
switch needed to dispatch operations they do not elim-
inate the context switch prior to invoking the callback
method. As discussed earlier, the callback method
may take a long time to execute so typically should
not be run directly from the crypto device driver.
Some callback methods however execute quickly. In
particular the callback method for the /dev/crypto
device driver does little more than wakeup the thread
that submitted the request. This callback can safely
be called from the device driver without switching to
the crypto return thread. Crypto requests that want
their callback methods invoked directly mark their
request appropriately. This eliminates the context
switch normally required to return results. Clients
however must be careful when submitting requests as
the results may be ready before they can wait for
them. (To aid in recognizing this, the crypto frame-
work now marks crypto operations done on comple-
tion so clients can submit an operation, synchronize
access to the operation data structure, and then verify
a request is incomplete before blocking to wait for a
result.) With this change operations submitted
through /dev/crypto can be done without any context
switches! Table 4 compares the cost of using

immediate callbacks to passing through the return
thread.

Return Time (ns)
Immediate Task Speedup

Avg 98 3102 33x
Min 97 3010
Max 455 15098

Table 4: Immediate- vs task--based returns

Similar to the above technique, when a crypto device
driver operates synchronously (e.g. the software
crypto driver), passing callbacks through the return
thread is typically unnecessary. When a caller is pre-
pared for immediate callback with a result it can mark
operations appropriately and bypass the trip through
the return thread. This last optimization effectively
returns the overhead of using software crypto support
to the cost of a function call. The only downside to
this technique is that because the callback is done in a
continuation style there are two extra stack frames
required to process a request to completion, which
may be significant for a kernel that is running close to
the limit of its kernel stack size.

Note that all these optimizations reduce the overhead
of using the crypto subsystem. This is most notice-
able for operations with small operands as the cost to
do the cryptographic operation is small compared to
the overhead to process it. As operand size grows the
time spent computing the result reduces the impor-
tance of the optimizations described here. However
since operand size typically exhibits a bi- or tri-modal
distribution these optimizations have a significant
impact on real-life performance.

3.2.3. Tuning Driversto Minimize Latency

Two crypto device drivers were imported from
OpenBSD when this work was brought into FreeBSD.
These drivers support the hardware devices most read-
ily available: those based on the Hifn 7951, Hifn 7811
and Broadcom 58xx. Both drivers attempt to batch
symmetric crypto operations when possible. Typi-
cally this is possible only when the device is under
load. It was observed however that this batching has a
severe performance penalty for applications like 1Psec
because it increases the latency for most operations.
The drivers have been changed to batch operations
only if they are explicitly marked batchable.

3.2.4. Flow Control for Cryptographic Operations

The OCF assumes that once an operation is sent to a
crypto device driver for processing it will either suc-
ceed or fail permanently. Failures due to lack of

resources are treated as permanent failures. Callers
may interpret the error code for failed operations and
resubmit them but this is never done. This has ramifi-
cations for clients of the OCF. For IPsec, for exam-
ple, a failed crypto request is equivalent to dropping a
packet. This can cause higher level protocols such as
TCP to initiate backoff algorithms and for perfor-
mance to drop.

In many instances drivers can quickly recover from
conditions that are reported to the OCF as errors. For
example, the Hifn 7951 has a small ring of descriptors
that may be exhausted when under load. Since the
ring is known to be full when an error occurs one can
assume an operation will complete soon and space
will be available to submit a new operation. Rather
than fail a request because there are no descriptors it
is more efficient to queue it and “push back™ on the
crypto dispatch logic until resources become free.
While this can cause excessive queueing of requests,
in practice, this does not happen because other flow
control mechanisms come into play (e.g. network
traffic stops flowing).

Crypto device drivers may return an ERESTART
error when given a request they cannot process. This
should be used only when there is a shortlived
resource exhaustion. The crypto framework will
queue the request and mark the driver as “blocked”
so subsequent requests will be queued and not submit-
ted to the driver. The driver must determine when it is
ready to accept requests again and call
“crypto_unblock™ to clear the blocked condition on
the driver. The ubsec (Broadcom) and hifn (Hifn
7951, 7811, etc.) drivers both implement this flow
control scheme. Statistics indicate this condition hap-
pens frequently for the Hifn 7951 when under load.
To demonstrate this the cryptotest program was run
with 28 threads concurrently submitting operations to
a single 7951-based card (a Soekris vpn1201 PCI card
installed in the Asus-based test machine).? Over the
course of the test run 51% of the requests required
restarting because of temporary resource exhaustion
(no space in the command/result rings). Without this
flow control mechanism these operations would have
failed. If the operations were submitted on behalf of
IPsec they would have caused packets to be dropped.

2 Note that the number of threads had to be signifi-
cantly inflated because the test was run with an opti-
mized system. This behaviour was initially encountered
with an unoptimized system running IPsec under a
three-client load.

4. Performance Results

To evaluate the changes described in this paper
numerous tests were conducted. The results presented
here were mostly collected using the cryptotest tool
described above. A few results from higher-level
applications such as IPsec are also presented; a more
in-depth discussion of those results is found in [Lef-
fler, 2003]. Note that while cryptotest was used to
collect most of the results presented here, the data
were validated using other tools such the openssl pro-
gram. After more than a year of testing and tuning
cryptotest is considered a reliable indicator of system
performance.

Table 5 shows results from running cryptotest on the
Asus-based test machine running FreeBSD 4.8 with a
variety of hardware devices, while Table 6 shows the
results using OpenBSD 3.3 (release) on the same test
machine and cryptographic hardware devices.®

Operand 7951 7811 5822
Size |3DES MD5 SHA1|3DES MD5 SHA1|3DES MD5 SHAL
8 119 19 15 19 19 19 30 29 29
16 | 3.8 38 3.0/ 39 38 38 6.0 59 58

32 | 76 76 6.0/ 76 7.6 7.7/ 117 116 115
64 |14.812.011.9| 153 152 151 22.6 224 22.1
128 |23.122.218.9| 285 28.3 27.0] 41.4 429 422
256 |36.235.231.0| 49.7 50.9 41.8] 749 80.1 78.7
512 |51.254.246.3| 75.7 72.3 72.3128.0141.5138.9

Operand 7951

Size [3DES MD5 SHA1

7811
3DES MD5 SHA1

5822
3DES MD5 SHAL

1024
2048
4096
8192

8 |12 11 11
16 | 25 19 21
32 | 46 39 4.2
64 | 9.2 83 75

128 |16.212.8 14.0
256 |27.324.124.0
512 |41.540.538.1
54.057.552.3
65.973.0 64.3
715841725
76.891.177.3

12 12 11
22 24 23
46 48 4.0
91 87 76
18.6 16.6 15.3
32.9 30.8 27.6
539 529 54.1
80.4 87.3 843
106.5123.3116.5
124.1149.6142.3
138.9176.2161.9

15 13 15

31 30 22

6.1 6.0 53
11.8 11.8 11.7
22.7 22.0 20.6
43.0 405 41.2
729 77.6 80.6
119.1147.7127.3
199.6 241.3239.8
282.3356.6 355.0
333.1436.8 459.6

Table 6: Cryptotest results for Openbsd 3.3 (release)

Operand 7951

Size |0BSD FBSD %(diff

7811

5822

OBSD FBSD %difff OBSD FBSD %diff|

8 | 12 19
16 | 25 38
32 | 46 7.6
64 | 9.2 148
128 |16.2 23.1
256 |27.3 36.2
512 |41.5 51.2

1024 |54.0 63.1
2048 |659 713
4096 |71.5 76.4
8192 |76.8 78.4

58
52
65
60
42
32
23
16

8

6

2

12 19 58
24 39 62
46 7.6 65
9.1 153 68
18.6 28.5 53
329 49.7 51
53.9 75.7 40
80.4 99.3 23
106.5120.6 13
12411365 9
13891451 4

15 3.0 100

31 6.0 93

6.1 11.7 91
11.8 226 91
22.7 414 82
430 749 74
72.9128.0 75
119.12055 72
199.6 282.1 41
282.33469 22
333.1380.2 14

1024
2048
4096
8192

63.169.8 59.5
71.379.2 69.5
76.488.2 75.8
78.493.579.2

99.3109.0104.7
120.6143.9134.7
136.5170.9157.3
145.1188.7170.9

205.5235.1232.1
282.1348.1344.5
346.9457.2454.4
380.2531.9530.0

Table5: Cryptotest results for FreeBSD 4.8

The OpenBSD results are comparable to where
FreeBSD was before any of the optimizations
described in this paper were done.

Table 7 directly compares the FreeBSD and OpenBSD
results for 3DES on the three devices. As the operand
size increases the processing time of the computation
reduces the effect of the lower submission overhead.
For faster hardware however this is not true because
the host is not fully utilizing the cryptographic hard-
ware. For operand sizes less than 2048 bytes
FreeBSD outperforms OpenBSD by at least 70% for
the fastest hardware device and typically it outper-
forms OpenBSD by at least 50%.

3 OpenBSD 3.3 does not work correctly on the test
machine with the Broadcom BCM5822 unless APM
support is disabled. Before this was discovered each
cryptographic operation took about 1 second to com-
plete! However, even with this workaround hardware-
assisted IPsec does not function correctly.

Table 7: 3DES performance comparison on Asus P4B433-V

To understand the importance of these optimizations
on slower systems the cryptotest measurements were
repeated on a Dell XPS 300 system (300 MHz Intel
PII processor and 64 Mbytes of memory) using each
of the hardware crypto devices. Again FreeBSD 4.8
and OpenBSD 3.3 were used.

Operand 7951 7811 5822
Size |OBSD FBSD %(diff| OBSD FBSD %diff| OBSD FBSD %diff
8 [0.7 11 57| 07 1157| 09 11 22
16 15 21 40| 15 21 40 1.7 23 35
32 | 30 39 30| 30 43 43| 34 45 32
64 | 55 74 34| 59 80 3| 66 89 34
128 |10.4 136 30| 11.6 14.7 26 | 126 17.6 39
256 |18.1 22.6 24| 199 265 33| 24.1 326 35
512 |289 352 21| 346 44.0 27| 43.3 59.3 36
1024 |40.2 46.6 15| 529 64.2 21| 71.3 934 30
2048 |51.3 56.8 10| 73.3 86.3 17 (106.2134.1 26
4096 [60.2 62.8 4| 92.8100.1 7 |149.5169.7 13
8192 |65.1 66.7 2 |105.8110.0 3 (178.8191.7 7

Table 8: 3DES performance comparison on Dell XPS 300

As Table 8 shows, the performance difference
between the two systems is less significant. This

appears to be due to the higher overhead to setup 1/0
operations (e.g. slower bus) reducing the direct benefit
of using an outboard cryptographic accelerator. There
are also some anomalous results that may be caused
by inaccuracy in the timing data (as before, it was
necessary to disable APM support in OpenBSD to get
it to process cryptographic operations in a reasonable
manner).

Finally, Table 9 shows the result of running the net-
perf performance testing tool [Jones, 2003] between
the Asus-based test machine and a second machine
with a Tyan S2707G2N motherboard and a 1.8 GHz
P4 processor. Both machines used dedicated Intel
gigabit Ethernet NICs; the Asus machine had an
82540 NIC located in a 32-bit PCI slot, while the
Tyan system used an 82545 NIC with a 64-bit PCI
interface. Both systems used Broadcom BCM5822
cards: on the Asus machine the crypto cards were in a
32-bit PCI slot; on the Tyan machine the cards were in
a 64-bit PCI slot. The systems were physically con-
nected by a cross-over cable. First the netperf
tcp_stream_script script was used to collect data on an
unencrypted connection for a variety of socket sizes.
Next, a 3DES+SHA1 IPsec tunnel was setup using
static keying and the same tests were rerun with cryp-
tographic calculations done in software on the host or
by the 5822. The figures in the table were reported
with a 99% confidence interval (as determined by net-
perf). Note that no comparable results for OpenBSD
were available for the 5822 because the tests failed to
complete.

Throughput (10°6bits/sec)

System Sender MsgSize Raw S/W 5822

OBSD Asus 4096 541 27 -
FBSD Asus 4096 624 42 160
OBSD Asus 8192 530 27 -
FBSD Asus 8192 624 42 160

OBSD Asus 32768 519 27 -
FBSD Asus 32768 627 42 159

OBSD Tyan 4096 648 27 -
FBSD Tyan 4096 797 44 170
OBSD Tyan 8192 650 27 -
FBSD Tyan 8192 798 44 170
OBSD Tyan 32768 653 27 -
FBSD Tyan 32768 799 44 169

Table 9: Netperf test results

Interpreting these results without careful inspection of
the way these two IPsec implementations work is dif-
ficult. Nonetheless some useful information can be
gleaned.

First, remember that the Tyan-based system had both
NIC and Broadcom devices in 64-bit PCI slots while

the Asus-based system has only 32-bit PCI support.
This difference is noticeable in the netperf results and
also when running non-network tests like cryptotest.

In lieu of results for the 5822, the software-based
crypto results are the most useful in comparing perfor-
mance of the crypto subsystems. FreeBSD is 55%
faster than OpenBSD on the Asus machine and 62%
faster on the Tyan machine. Remember that
OpenBSD requires two context switches for each
crypto operation; this accounts for much of the perfor-
mance difference. Otherwise the different results
between the two machines is due to the 32- versus
64-bit PCI NIC for the sender.

Netperf results tend to be dominated by the perfor-
mance of the sender. When using the 5822 the
FreeBSD system was typically about 30% idle on the
sender and 40% idle on the receiver (according to the
vmstat program). Statistics maintained by the
FreeBSD Broadcom driver show that on the slower
system (the Asus-based machine) a peak of 9 crypto
operations were pending completion by the hardware
and 20 operations pending in the system (queued
waiting for the hardware to have room to accept
another operation). On the Tyan-based system these
numbers were 6 and 9. Furthermore, 78% of the
crypto requests processed by the sender found the
hardware device busy and unable to accept a new
request. Together these numbers indicate the perfor-
mance was limited by the crypto hardware.

Running netperf end-to-end over an IPsec connection
does not show the full possible performance because
the processing is heavily influenced by the location of
the sending process. For example, on the sender the
data originates in a TCP socket and so must be copied
for transmission. Further, when forming an IPsec
packet on the sender multiple mbufs are typically cre-
ated requiring the crypto driver to process fragmented
operand data. By contrast, when a system is operating
as an endpoint of an IPsec gateway, packets do not
originate or terminate on the machine. Instead IPsec
packets are received, processed, and then forwarded to
their destination. In this configuration the data is
almost always contiguous in memory and does not
require copying for potential retransmission. Conse-
quently load on the crypto hardware is very different,
and utilization is typically 100%.

Finally, it has been observed that to fully utilize fast
crypto hardware such as the Broadcom 5822, CPU
performance (for Intel-based systems at least) is
important. Results for the netperf test described
above scale almost directly to the clock speed of Intel
P4 and Xeon™ processors up to 2.53 GHz (the

maximum clock speed that was available at the time
these tests were done). With 2.4GHz processors end-
to-end netperf results with 5822 support exceed 200
Mb/s.

5. Status and Future Work

The initial port of the OCF to FreeBSD was done in
September 2001. Integration of this work into
FreeBSD was completed November 2002 and com-
mitted to the stable branch a month later. The work
described here is freely available as part of the
FreeBSD 5.0 and 4.8 releases. It is currently being
integrated into the NetBSD operating system [Stone,
2003]. Several vendors have incorporated the frame-
work in commercial products.

The techniques described in this paper have not been
applied to asymmetric crypto operations. Applying
them is straightforward and should yield significant
performance improvements.

Otherwise, future work falls into two broad cate-
gories: improved device support and load balancing.
The current software supports only a few hardware
devices and some of these have underwhelming per-
formance or are too expensive and/or too difficult for
the average consumer to obtain. The main impedi-
ment here is the non-disclosure of programming infor-
mation. New products are expected that will address
both of these concerns.

Otherwise, the most significant deficiency in the cur-
rent framework is the inability to use protocol-specific
hardware operations. Most vendors of crypto hard-
ware optimize their products for use as ‘“all-in-one”
devices that take an IPsec/SSL/TLS packet and parse
the protocol and perform the cryptographic transforms
in a single request. This is incompatible with the cur-
rent general-purpose API provided by the OCF. Sup-
porting these kinds of operations requires exposing
state that is currently private to the protocols. How-
ever adding this is the only way that some hardware
devices can be used at all as they do not otherwise
provide access to the cryptographic transformation
hardware.

Load balancing refers to efficiently supporting multi-
ple crypto devices in a single system. These devices
may be add-in devices or dedicated CPU’s in a multi-
processor system. The OCF does very little in this
regard; when multiple devices are present in a system
it will assign them in a round-robin fashion when cre-
ating sessions for symmetric crypto operations.
Asymmetric operations do not consider multiple
devices; they are dispatched to the first available
device that can handle the request. In addition it has

been understood for a while that the setup overhead
for communicating with hardware devices can be too
high to justify submitting small data buffers. Instead
such operations should be handled by the main CPU.
All these issues requires similar functionality. Experi-
mental work is ongoing to calculate operation-specific
cost metrics for cryptographic devices and then use
that to dynamically schedule operations as they are
submitted. This scheme handles symmetric and
asymmetric operations and includes the software
crypto device driver so that, for example, operations
on small data buffers can be processed in software
when appropriate.

6. Conclusions

FreeBSD has imported the OpenBSD Cryptographic
Framework. In the process the core code has been
rewritten to work correctly in a preemptive environ-
ment. We have added statistics and developed tools to
aid in understanding system performance and to help
in the event of problems. Several deficiencies in the
OCF have been identified and corrected. These
changes result in a system that performs as much as
100% faster than the OCF on identical hardware. For
facilities like IPsec that make heavy use of the crypto-
graphic framework, these changes can improve perfor-
mance by more than 50%.

We conclude that the OCF cryptographic API intro-
duced by [Keromytis et al, 2003] can be optimized
and re-tuned to deliver substantially better perfor-
mance than the original OCF implementation with
large gains in both throughput and latency. Moreover
these changes can be made with no impact on clients
of the cryptographic framework: both user and kernel
software designed for the original OCF is easily
ported to the FreeBSD implementation of OCF.

7. Acknowledgements

This work is derived from the OpenBSD crypto-
graphic framework; without it this work would not
have been possible. Jason Wright and Angelos
Keromytis of were especially helpful in understanding
certain design decisions in the OCF. Theo de Raadt
provided the original code from which cryptotest was
created. Jonathan Stone first suggested that there was
excessive overhead in the OCF; this motivated me to
attack the problem.

I am especially grateful to Vernier Networks for fund-
ing much of this work and providing access to their
equipment. Global Technologies Group, Inc. (GTGI)
provided two XI-Crypto (Hifn 7811) boards and
funded FreeBSD device support for their cards. Soren

Kristenson of Soekris Engineering provided two
vpn1201 cards (Hifn 7951).

References

Dierks & Allen, 1999.
T. Dierks & C. Allen, “The TLS Protocol Version
1.0,” RFC 2246 (January 1999).

Eastlake, 1999.
D. Eastlake, “Domain Name System Security Exten-
sions,” RFC 2535 (March 1999).

Freier et al, 1996.
A. Freier, P. Karlton, & P. Kocher, “The SSL Proto-

col Version 3.0”
http://home.netscape.com/eng/ss 3/draft302.txt
(November 1996).

Gattaneo et al, 2001.
G. Gattaneo, L. Catuogno, A. Del Sorbo, & P. Per-
siano, “The Design and Implementation of a Trans-
parent Cryptographic Filesystem for UNIX,”
FREENIX Track: Usenix Annual Technical Confer-
ence (June 2001).

Jones, 2003.
R. Jones, “Netperf 2.2pl3: network performance eval-
uation tool,” http://mww.netperf.org (February 11,
2003).

Kent & Atkinson, 1998.
S. Kent & R. Atkinson, “Security Architecture for
the Internet Protocol,” RFC 2401 (August 1998).

Keromytis, 2003.
A. Keromytis, Private email (January 2003).

Keromytis et al, 2003.
A. Keromytis, J. Wright, & T. de Raadt, “The Design
of the OpenBSD Cryptographic Framework,”
USENIX Annual Technical Conference (June 2003).

Kohl & Neuman, 1993.
J. Kohl & C. Neuman, “The Kerberos Network
Authentication Service (V5),” RFC 1510 (September
1993).

Leffler, 2003.
S. Leffler, “Fast IPsec: A High Performance IPsec
Implementation for UNIX Systems,” BSDCon 2003
(September 2003).

Miltchev et al, 2002.
S. Miltchev, S. loannidis, & A. Keromytis, “A Study
of the Relative Costs of Network Security Protocols,”
FREENIX Track: Usenix Annual Technical Confer-
ence, p. 41-48 (June 2002).

Provos, 2000.
N. Provos, “Encrypting Virtual Memory,” Proceeding
of the USENIX Security Symposium (August 2000).

Stone, 2002.
J. Stone, Private email: Re: anyone working on
crypto processor support? (November 2002).

Stone, 2003.
J. Stone, Private email: preliminary port of sys/open-
crypto to NetBSD (March 2003).

Ylonen et al, 2002.
T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, & S.
Lehtinen, “SSH Protocol Architecture,” Internet WIP
draft-ietf-secsh-architecture-12.txt (January 2002).

Biography

Sam Leffler has been actively working with UNIX
since 1975 when he first encountered it at Case West-
ern Reserve University. While working for the Com-
puter Systems Research Group (CSRG) at the Univer-
sity of California at Berkeley he helped with the
4.1BSD release and was responsible for the release of
4.2BSD. He has contributed to almost every aspect of
BSD systems; most recently working (again) on the
networking subsystem. You can contact him via
email at <sam@errno. coms.

