
USENIX Association

Proceedings of the
BSDCon 2002

Conference

San Francisco, California, USA
February 11-14, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

SystemStarter and the Mac OS X Startup Process

Wilfredo Sánchez
wsanchez@mit.edu

Kevin Van Vechten
kevinvv@uclink4.berkeley.edu

Abstract

This paper documents a program in Mac OS X called SystemStarter. SystemStarter brings the system from its
initial state up to a state where basic services are running and a user may log in. It replaces the previous /etc/rc
startup sequence employed by Mac OS X's predecessors in order to address some additional goals set forth by the
Mac OS X project.

SystemStarter is part of the BSD subsystem in Mac OS X, now known as Darwin, though it's creation predates
Darwin as an open source project; it was therefore created by a single author, though it now enjoys several
contributors.

Background

 Mac OS X is the latest version of Apple's operating
system for its Macintosh computer line. One of the
unique attributes of Mac OS X as compared to previous
versions of Mac OS is the use of BSD as its base
system implementation. During the Mac OS X
operating system bringup, a great deal of effort was
spent on integrating the many facilities of Mac OS on
this new BSD foundation [1]. For the most part, BSD
facilities did not have to change significantly in order
to accomplish this. One of the few that did is the
system startup sequence.

 Mac OS X started largely form the code base for a
prior OS product called Mac OS X Server, once better
known by its code name "Rhapsody." Rhapsody uses a
startup sequence inherited from OpenStep. The kernel
launches init, which runs a script /etc/rc as per
BSD convention. /etc/rc would then run scripts in
the directory /etc/startup in lexical order based
on filenames. The script 0100_VirtualMemory
would run before the script 1600_Sendmail, for
example. When these scripts finish, /etc/rc would
exit and init would then bring up the multiuser login
prompt as configured in /etc/ttys.

The Problem

 This mechanism was simple, and by allowing separate
scripts for each service to be run at startup, it allowed
users to insert services into the startup sequence in a
straightforward manner. However, there were several
drawbacks:

• The lexigraphic ordering is fragile. If we were to
change the order in which scripts run, or insert or delete
a new standard service into the sequence, we may have
to renumber several of the files. This means that a user
(or a vendor package installer) would have to place
additional scripts into different locations in the order
depending on the system version, and it would be
impossible to know that the future system releases
would not again break the ordering.

• The startup sequence is inherently limited to
serialization by this design. It may make a lot of sense
to run a disk-intensive task such as cleaning up /tmp
while simultaneously running a network-blocked
operation such as requesting a DHCP lease. In the
/etc/startup scheme, these were always run in
sequence, failing to take advantage of the systems
ability to manage multiple resources simultaneously.

• It was not easy to know which scripts were installed
by the user, and which are part fo the system software,
as they are co-mingled.

• /etc is hidden by the Finder. A user should be able
to copy and manage startup scripts at a well-known
location, but /etc, /var, /usr, and other Unix
directories are by default hidden from view.

• Graphical startup was difficult. The window system
must start very early in order to display startup
progress, and the startup scripts would need some way
to update the display. Rhapsody used a command-line
tool which could draw directly to the display's frame
buffer before the window system was running, but this
was difficult to maintain and highly limiting. You
could not, for example, localize text, as font support
wasn't available, etc.

Alternatives

 Other BSD systems were using schemes that we
similar, usually involving a couple of scripts in
addition to /etc/rc which were specific to
networking, loading kernel modules, etc.

 System V systems (such as Solaris, and in it's own
quirky way Linux) had a fairly different mechanism that
was worth studying.

 System V uses separate scripts similar to our
/etc/startup scripts, but each script has the ability
to stop as well as start a service, which provides for the
possibility of a shutdown sequence and the ability to
start and stop services after the system is running as the
user needs them [2]. Extending /etc/startup to
allow this would be fairly easy, and the value of doing
so was clear, so it quickly made it to the list of features
to include in a new scheme.

 Another feature in System V startup is the concept of
runlevels, which represent different system states [3].
Single user mode is one runlevel, multiuser mode is
another. There are other runlevels for intermediate
states, as well as pseudo-runlevels for shutdown and
restart. This concept didn't last long on the feature list.
The value of having runlevels is questionable at best,
their semantic meaning is vague (which is not helped
by their being labeled with numbers instead of names),
they add a significant degree of complexity in
managing startup scripts (Which runlevels provide
which services? How do you handle transitions?), and
explaining all of this to a non-technical user (in fact,
even a technical user) is not a simple exercise.

 It should be noted that NetBSD began work on a
replacement for its /etc/rc [4] shortly after work on

SystemStarter had begun. Wilfredo Sánchez, who had
started the work on SystemStarter, passed along his
current design ideas, but though the goals overlapped,
the projects had already gone down different design
paths and not much collaboration came of it.

Solutions

 The initial design was to create a new program, called
SystemStarter, which will be responsible for managing
the startup process. Services will be described by
"startup items," which know how to start a service, the
service's dependencies, and other information such as
user-visible strings. SystemStarter will compute an
order for starting items based on the dependencies and
see that the items are run accordingly.

 SystemStarter is implemented in C using Mac OS's
CoreFoundation framework, which provides a number
of useful data types (strings with encoding support,
arrays, hash tables) and functionality (XML parsing,
interprocess communication, run loop, object reference
counting) in as object-oriented a fashion as allowed by
the C language.

Startup Items

 Startup items are comprised of several parts, and
implemented as a directory containing several well-
defined files. Each file addresses a specific part of the
item's functionality. In Mac OS parlance, this is
termed a "bundle" directory. In the application
toolkits, bundles are often treated as single objects,
similar to files.

 As with other startup mechanisms, a program, usually
a shell script, describes the activity required in order to
start the service(s) provided by the item. The script is
given a "start" argument during system startup. In
the future, the "stop" and "restart" arguments will
be sent to the script at other times. (See "Ongoing
Work" below). /etc/rc.common provides some
useful functions (for example, the GetPID function
used here gets a process ID registered in /var/run, if
available) as well as a standard mechanism for handling
arguments passed in by SystemStarter. For example, a
script for starting cron might look like:

#!/bin/sh

. /etc/rc.common

case $1 in
 start)
 ConsoleMessage "Starting cron"
 cron
 ;;

 stop)
 if pid=$(GetPID cron); then
 ConsoleMessage "Stopping cron"
 kill -TERM "${pid}"
 else
 echo "cron is not running."
 fi
 ;;

 restart)
 ConsoleMessage "Restarting cron"
 if pid=$(GetPID cron); then
 kill -HUP "${pid}"
 else
 cron
 fi
 ;;

 *)
 echo "$0: unknown argument: $1"
 ;;
esac

 In addition to a procedure for starting its service(s), a
startup item needs to provide enough information so
that it can calculate an order for all of the startup items.
This information is described in a property list file in
the item. The format of the file is either a NeXT
property list, or XML. (XML is the preferred format

for preference files in Mac OS X, and can be edited
with a tool like PropertyListEditor, but we will use the
NeXT format here because it is significantly more
compact and readable, and friendly to manipulation as
raw text.) And example for cron:

{
 Description = "timed execution services";
 Provides = ("Cron");
 Requires = ();
 Uses = ("Cleanup", "Network Time");
 OrderPreference = "Late";
 Messages =
 {
 start = "Starting timed execution services";
 stop = "Stopping timed execution services";
 };
}

 A human-readable description of the item is presently
used in debugging only, but may also be used by a
startup manager application in the future. Strings are
also provided for display to the user when the item is
starting and stopping. In the future, these strings will
be passed by the script via IPC to SystemStarter, rather
than hard-coded in the property list, which will allow
for more accurate progress indicators.

 A list of services provided by the item is noted, for
use by dependent items. For modularity, it is generally
best that separate services each reside in separate items,
but there may be cases where a single server is used to
provide more than one service, therefore a list is
allowed. Similarly, a list of services on which the item
is dependent is given. These fall into two classes.
Some services may be required, in which case, the
SystemStarter will not attempt to start the item unless
the requirements are started first (which may mean the
item never starts). Other services are desired, but
optional. For example, cron is a time-based service,
which makes it desirable that the computer's clock be
synchronized with the network before starting cron, but
failure to do so should not prevent cron from starting at
all. In this example, cron also wishes to wait on
system cleanup, and has no hard requirements.

 CoreFoundation's property list parser is used to read
the property list and generates an object graph using its
CFDictionary, CFArray, and CFString object types.
The items are represented in memory as CFDictionary
objects. The original plan was to generate a new object
graph directly representing the dependency tree for fast
searching of dependents. However, in the current
implementation items are simply stored in a CFArray
and searched linearly. Whenever an item's script exits,
all remaining items are checked to see if their
dependencies are now met in light of the newly
available service(s). The code to manage an array is
much simpler, and given that the number of startup
items on a system is not expected to be large, the
anticipated performance benefit of generating a
dependency tree in memory is negligible.

 Additional files in the startup item contain localized
versions of the strings provided for user-visible display.

Filesystem Layout

 Traditionally System V [5], Linux [6], and BSD
systems search for startup scripts in a subdirectory of
/etc, such as /etc/init.d. This is undesirable
for SystemStarter because the /etc directory is hidden
from view in Mac OS X, and because it does not allow

third-party startup items to be easily distinguished from
the standard items provided by the system distribution.
In order to address both of these issues, SystemStarter
searches for startup items in one of several directories.
Startup items provided with the system distribution are
stored in the /System/Library/StartupItems
directory; these are said to be in the "system domain."
Users and third-parties are encouraged to place items in
the /Library/StartupItems directory, known as
the "local domain." Items in the local domain are not
deleted or replaced when the system is upgraded.
Furthermore, if an item in the local domain provides
the same service as an item in the system domain, the
item in the local domain takes precedence. In this way,
a user may supersede a standard item without worrying
about the behavior reverting after a system upgrade.

Work is in the design stage to provide support for a
"network domain" which could be used to ease remote
administration of many machines. After mounting a
site-local NFS filesystem, SystemStarter could be
prompted to search for startup items in
/Network/Library/StartupItems. The
network domain would take precedence over the system
domain, but not the local domain.

Graphical Startup

 The majority of Unix-variant systems boot in a text
console and print out significant debugging information
as the system starts up. While this is useful at times,
it can be rather baffling to most consumer users. In
Rhapsody, we had a program called fbshow, which
could draw to the display's frame buffer directly during
startup, after which we would start the (PostScript)
window server. It would draw a progress panel on
screen and could print status text in one font. This was
inflexible in that the graphics it used were compiled
into the binary, and text was not internationalizable (eg.
no Japanese fonts). In Mac OS X, the window server
was far more lightweight, and could be started very
early in the startup process. This gave full font
support, plus all of the display features of CoreGraphics
(a.k.a. Quartz), such as PDF rendering and
compositing.

 It should be noted that because SystemStarter boots
the system, its failure due to a crash can be catastrophic
to the user. The more API the program draws on, the
more libraries need to be loaded, and the greater
likelihood of failure due to something like a corrupt file
on disk. This is particularly relevant to SystemStarter,
because it will be responsible for running fsck, which
checks for corrupt files and repairs them. For this

reason, rather than making the SystemStarter dependent
on CoreGraphics framework (and whatever
CoreGraphics depends on), the built-in display
functionality in SystemStarter is text based and the
Quartz code is placed in a loadable module. If the
module fails to load, SystemStarter falls back to text-
mode. This also enables additional modules to be
written, which proved useful in Darwin, where an X11
module can provide graphical boot using XFree86.

Ongoing Work

 Written by Wilfredo Sánchez as an employee of Apple,
SystemStarter was first publicly released in Darwin 1.0
and remained mostly unchanged through the release of
Mac OS X 10.0 (which corresponded to the Darwin 1.3
release). It successfully provided a user-extensible
system startup mechanism, and a graphical startup
consistent with the Mac OS experience. After the
release of Mac OS X 10.0, Darwin Committers
Wilfredo Sánchez and Kevin Van Vechten continued
work on SystemStarter to provide a more complete
feature set.

Starting and Stopping Services

 System V and other BSD systems provide a
mechanism to start and stop services after the boot
sequence. This feature is valuable, and useful to the
system control panels, which allow users to enable and
disable services as they see fit. However, care should
be taken to ensure that when services are started or
stopped, dependencies are accounted for. Work is being
done on SystemStarter so that an item's dependencies
are accounted for automatically using the dependency
graph of each item.

 For example, if the user asks to enable NFS,
SystemStarter should ensure that portmap is running.
Similarly, if portmap is terminated, SystemStarter
should ensure that NFS is shut down as well. This is a
difficult exercise, as the interaction between the control
panels, the service manager, and the user can become
rather complicated. For example, the user should be
informed that shutting down one service will result in
others shutting down as well. This information is
tracked by SystemStarter, but would somehow have to
get to the user via the control panel. Additional work
is still in the design stage which may add a way for
applications like the control panels to pass useful
information like this from SystemStarter to the user.

Parallel Startup

 One of the goals of SystemStarter going forward is to
transition from a serialized startup sequence to a more
flexible parallel startup sequence. A side effect of
having a serialized startup sequence is that only one
service can be brought up at a time. This limitation
prevents the startup sequence from taking any
advantages of the operating systems ability to schedule
multiple tasks simultaneously such that system
resources are maximally used. For example, if the
system was booted after a power failure or crash, the
filesystems on disk will be dirty and must be verified
before they are mounted. This process is very disk
intensive and can take some time. Similarly, many
systems are configured to acquire their network
parameters via a service like DHCP or NetInfo. When
the network is busy, this can also take some time while
waiting on a response from the network service. If
startup is serialized, the system must wait on the disks
to be checked and then wait on the network
configuration. However, there is no reason why both of
these cannot happen at in parallel, so that the actual
time spent during startup is only that of the longer of
the two services, rather than the combined total of both.

 Because SystemStarter uses a dependency graph for
startup items rather than an ordered list, it is possible
to implement a sequence where items run in parallel.
As new services become available, each pending service
can be started if its dependencies are then satisfied.

Partial Startup and Shutdown

 There are times when administrators wish to boot into
single user mode to debug or recover parts of the
system. In those cases, it is often desirable to bring the
system up to an arbitrary point in the startup sequence.
While the System V approach offers runlevels to allow
the system to be in one of several predefined states, the
runlevels are discrete and offer no assistance when a
state other than one defined by one of the runlevels is
desired.

 Work is underway to enable SystemStarter to allow the
system administrator bring up enough of the system to
provide a specified service. For example, requesting
that the "Network" service be brought up will start up
all services required to use the network, but will not
start any additional services. SystemStarter uses its
dependency graph to determine what the specified
service's prerequisites are. SystemStarter then selects
only the items which are required, and performs the
standard startup sequence using this subset of startup

items.

 It is also possible to take advantage of the dependency
graph to providing a logical system shutdown
sequence. Traversing the dependency graph in the
opposite direction from startup, SystemStarter runs
each script with a "stop" argument such that each
script's dependents are stopped before the antecedent is
stopped. For example, a request to stop the
"Network" service will stop all of the services that
require the network, then bring down the system's
network interfaces.

Interprocess Communication

 During a traditional startup sequence, startup scripts
print messages to the console and system log to report
their progress for logging and debugging purposes.
However, during graphical boot, it is desirable to print
messages which indicate to the user (at a simpler level)
what is going on. An inter-process communication
mechanism in being implemented so startup scripts can
send messages to SystemStarter which in turn displays
them during graphical boot.

 During the startup sequence, SystemStarter listens for
messages on a named Mach port. Messages are
composed of an XML property list which specifies the
type of message and its arguments. Startup scripts use
a provided tool to send a message to SystemStarter
which will be displayed on-screen. Each message
contains a token identifying the startup item which
originated it. SystemStarter then attempts to localize
the message based on the localization dictionaries
provided with each startup item. Finally the localized
message (or the original message if no localization
could be provided) is displayed.

 The XML property list format for IPC messages was
chosen to ensure maximum forward and backward
compatibility between future versions of SystemStarter
and tools that communicate with it. Mach ports were
chosen for the IPC mechanism because Darwin's
CoreFoundation library, which SystemStarter already
used extensively to manage its internal data structures,
provides a simple API for sending messages between
processes using Mach ports. Additionally, Mach port
invalidation callbacks are used to monitor startup item
termination, allowing both process termination events
and IPC events to be handled from a single event loop.

 More IPC message types are planned. Specifically,
messages allowing startup scripts to report the success
or failure of a particular task would be useful, as items

may provide multiple services and accounting for which
specific services are running would improve
SystemStarter's dependency tracking. Ultimately
startup scripts may be required to respond to a
"status" command, reporting to SystemStarter the
status of each service the item provides. This
information will be useful in determining which
services the system can provide at a given time, as well
as what state graphical controls should be set to when
displaying system control panels.

Conclusion

 In its initial release, SystemStarter succeeded in
removing the fragile lexigraphic ordering of startup
items, providing a graphical boot sequence, and
separating third-party scripts from those of the system
distribution. Although SystemStarter differs
significantly from other system startup mechanisms,
the startup item scripts are fairly similar to those found
on other systems. Porting startup items to Darwin
involves slight modifications to a startup script and the
creation of a property list file describing the item.
Thus, SystemStarter effectively accomplished its goals
with low overhead and a minimal loss of compatibility.

Availability

 SystemStarter is available in Mac OS X and Darwin
systems. The source code of SystemStarter is available
as part of the Darwin project at:
http://www.opensource.apple.com/

About the Presenters

 Wilfredo Sánchez is a 1995 graduate of the
Massachusetts Institute of Technology, after which he
co-founded an Internet publishing company, Agora
Technology Group, in Cambridge, Massachusetts; he
then worked on enabling electronic commerce and
dynamic applications via the world wide web at Disney
Online in North Hollywood, California. Fred later
worked as a senior software engineer at Apple
Computer in Cupertino, California, primarily on
Darwin, the BSD subsystem in Mac OS X, as a
member of the Core Operating System group, and as
engineering lead for Apple's open source projects. He
continues to work on Darwin as a volunteer developer.
Fred is also a member of the Apache Software
Foundation, and a contributor to various other projects,
including NetBSD and FreeBSD. He now works at

KnowNow, Inc. as developer community manager.

 Kevin Van Vechten is an undergraduate at the
University of California, Berkeley, majoring in
Electrical Engineering and Computer Science. He
works as a consultant specializing in custom database
and networking solutions. Kevin also contributes to
Darwin and other various projects.

References

[1] Wilfredo Sánchez; The Challenges of Integrating
the Unix and Mac OS Environments; USENIX 2000
Technical Conference; San Diego, California; 2000

[2] Sun Microsystems, Inc.; How to Use a Run
Control Script to Stop or Start a Service; System
Administration Guide. Volume 1. Solaris 8 System
Administrator Collection. Fatbrain, February 2000.
116.

[3] Sun Microsystems, Inc.; Run Levels; System
Administration Guide. Volume 1. Solaris 8 System
Administrator Collection. Fatbrain, February 2000.
109-110.

[4] Luke Mewburn; The Design and Implementation of
the NetBSD rc.d System; USENIX 2001 Technical
Conference; Boston, Massachusetts; 2001

[5] Sun Microsystems, Inc.; Adding a Run Control
Script; System Administration Guide. Volume 1.
Solaris 8 System Administrator Collection. Fatbrain,
February 2000. 117.

[6] Red Hat, Inc.; Behind the Scenes of the Boot
Process; The Official Red Hat Linux Reference Guide.
Red Hat Linux 7.2. Red Hat, Inc., 2001.

