
CDE: Using System Call Interposition to Automatically Create
Portable Software Packages

Philip J. Guo and Dawson Engler
Stanford University

Abstract

It can be painfully hard to take software that runs on
one person’s machine and get it to run on another ma-
chine. Online forums and mailing lists are filled with
discussions of users’ troubles with compiling, installing,
and configuring software and their myriad of dependen-
cies. To eliminate this dependency problem, we cre-
ated a system called CDE that uses system call interposi-
tion to monitor the execution of x86-Linux programs and
package up the Code, Data, and Environment required
to run them on other x86-Linux machines. Creating a
CDE package is completely automatic, and running pro-
grams within a package requires no installation, config-
uration, or root permissions. Hundreds of people in both
academia and industry have used CDE to distribute soft-
ware, demo prototypes, make their scientific experiments
reproducible, run software natively on older Linux distri-
butions, and deploy experiments to compute clusters.

1 Introduction

Most programmers want other people to run their soft-
ware. Unfortunately, the path from having a piece of
software running on the programmer’s own machine to
getting it running on someone else’s machine is fraught
with potential pitfalls. For instance, the programmer
might have forgotten to document a crucial step in the
magic incantation needed during the installation process.
Or forgotten to list a library version dependency, leading
to mysterious run-time errors when the wrong version
gets silently run on the user’s machine. Or listed the right
library version, but one which is either hard to obtain
or conflicts with a library needed by a different program
on the user’s machine. Or the software itself might re-
quire libraries that depend on many other libraries, which
themselves need to be transitively obtained and installed
by the user, leading to an aggravating experience known
as dependency hell. Finally, the user might lack the per-

missions or willingness to risk installing software pack-
ages as root in the first place, a common occurrence on
corporate machines and clusters administered by IT staff.

To alleviate these frustrations, we have created an
open-source tool named CDE that monitors program exe-
cution using ptrace and automatically packages up the
Code, Data, and Environment required to run a set of
x86-Linux programs on other x86-Linux machines [1].

The main benefits of CDE are that creating a package is
completely automatic, and that running programs within
a package requires no installation, configuration, or root
permissions, thereby eliminating dependency hell.

The main limitation of CDE is that it is not guaran-
teed to find all the dependencies required for a complete
package, so it is up to the user to insert additional files if
necessary. Also, packages are only portable across ma-
chines with a compatible architecture and Linux kernel
version. Despite these limitations, CDE has been down-
loaded over 2,000 times, and we have received hundreds
of emails from users who have used it to quickly test and
deploy software without installing any dependencies.

2 CDE system overview
We will use an example to introduce the core features of
CDE. Suppose that Alice is a climate scientist whose ex-
periment involves running a Python weather simulation
script on a Tokyo dataset using this Linux command:

python weather_sim.py tokyo.dat

Alice’s script (weather_sim.py) imports some 3rd-
party Python extension modules, which consist of opti-
mized C++ numerical analysis code compiled into shared
libraries. If Alice wants her colleague Bob to run and
build upon her experiment, then it is not sufficient to just
send her script and tokyo.dat data file to him. Even if
Bob has a compatible version of Python on his machine,
he will not be able to run her script until he compiles,
installs, and configures the extension modules that she
used (and all of their transitive dependencies).

cde-package/
 cde-root/
 usr/
 lib/

/usr/lib/weather.so

weather.so

cde <command>

open()

copy

cde-package/
 cde-root/
 usr/
 lib/

/usr/lib/weather.so

weather.so

cde-exec <command>

redirect open()

Bob's computer

Alice's computer

filesystem

filesystem

1.

3.

2.

Figure 1: Example use of CDE: 1.) Alice runs her com-
mand with cde to create a package, 2.) Alice sends
package to Bob’s computer, 3.) Bob runs command with
cde-exec, which redirects file accesses into package.

2.1 Creating a new package with cde
To create a self-contained package with all dependencies
required to run her experiment on another machine, Alice
prepends her command with the cde executable:

cde python weather_sim.py tokyo.dat

cde runs her command normally and uses the Linux
ptrace mechanism to monitor all files it accesses
throughout execution. cde creates a new sub-directory
called cde-package/cde-root/ and copies all of
those accessed files into there, mirroring the original
directory structure. For example, if her script dy-
namically loads an extension module (shared library)
named /usr/lib/weather.so, then cde will copy it
to cde-package/cde-root/usr/lib/weather.so

(see Figure 1). When execution terminates, the
cde-package/ sub-directory (which we call a ‘CDE
package’) contains all of the files and environment vari-
ables required to run Alice’s original command.

2.2 Executing a package with cde-exec
Alice zips up the cde-package/ directory and transfers
it to Bob’s Linux machine. Now Bob can run Alice’s ex-
periment without installing anything on his machine. He
unzips the package, changes into the sub-directory con-
taining the script, and prepends the original command
with the cde-exec executable (also in the package):

cde-exec python weather_sim.py tokyo.dat

cde-exec sets up the environment variables saved
from Alice’s machine and executes the version of
python and its extension modules from within the pack-
age. cde-exec uses ptrace to monitor all system
calls that access files and rewrites their path arguments
to the corresponding paths within the cde-package/

cde-root/ sub-directory. For example, when her script
requests to load the /usr/lib/weather.so extension
library using an open system call, cde-exec rewrites
the path argument of the open call to cde-package/

cde-root/usr/lib/weather.so (see Figure 1). This
path redirection is essential, because /usr/lib/

weather.so probably does not exist on Bob’s machine.
Not only can Bob reproduce Alice’s exact experiment,

but he can also edit her script and dataset and then re-
run to explore variations and alternative hypotheses, as
long as he does not cause the script to import new Python
extension modules that are not in the package.

3 Implementation

CDE uses the Linux ptrace system call to monitor the
target program’s processes, read and write to its memory,
and modify its system call arguments, all without requir-
ing root permission. We implemented CDE by adding
2500 lines of C code to the strace system call moni-
toring tool. The same ideas could be used to implement
CDE for other architectures or operating systems.

3.1 Creating a new package with cde

Primary action: The main job of cde is to use ptrace
to monitor the target program’s system calls and copy all
of its accessed files into a self-contained package. Af-
ter the kernel finishes executing a syscall that takes a file
path string as an argument (the ‘File path access’ cate-
gory in Table 1) and is about to return to the target pro-
gram, cde wakes and observes the return value. If the
return value signifies that the indicated file exists, then
cde copies that file into the package.

Prior to copying a file into the package, cde creates all
necessary sub-directories and symbolic links to exactly
mirror that file’s location. If a file is a symlink, then both
it and its target must be copied into the package.

If the copied file is an ELF binary, then cde searches
its contents for constant strings that are filenames and
then recursively copies those files into the package. This
simple hack works well in practice to partially overcome
CDE’s limitation of only being able to gather dependen-
cies on executed paths, since many binaries dynamically
load libraries named by constant strings.

Category Linux syscalls cde action cde-exec action

File path access open[at],mknod[at],fstatat64

access,faccessat,readlink[at]

truncate[64],stat[64],creat

lstat[64],oldstat,oldlstat Copy file into package Redirect path into package
chown[32],lchown[32]

fchownat,chmod,fchmodat

utime,utimes,futimesat

Local IPC sockets bind,connect none Redirect path into package

Mutate filesystem link[at],symlink[at] Repeat in package Redirect path into package
rename[at],unlink[at]

mkdir[at],rmdir

Get current dir. getcwd Update current dir. Spoof current dir.

Change directory chdir,fchdir Update current working directory

Spawn child fork,vfork,clone Track child process or thread

Execute program execve Copy bin & linker into pkg Maybe run dynamic linker

Table 1: The 48 Linux system calls intercepted by cde and cde-exec, and actions taken for each category of syscalls.
Syscalls with suffixes in [brackets] include variants with/without the suffix: e.g., open[at] means open and openat.

Mutate filesystem: After each call that mutates the
filesystem, cde repeats the same action on the corre-
sponding copies of files in the package. For example,
if a program renames a file from foo to bar, then cde

also renames the copy of foo in the package to bar.

Updating current working directory: At the comple-
tion of getcwd, chdir, and fchdir, cde updates its
record of the monitored process’s current working direc-
tory, which is necessary for resolving relative paths.

Tracking sub-processes and threads: If the target pro-
gram spawns sub-processes, cde also attaches onto those
children with ptrace (it attaches onto spawned threads
in the same way). cde keeps track of each monitored
process’s current working directory and shared memory
segment address (needed for §3.2). cde remains single-
threaded and responds to events queued by ptrace.

3.2 Executing a package with cde-exec

Primary action: The main job of cde-exec is to use
ptrace to redirect file paths that the target program re-
quests into the package. Before the kernel executes most
syscalls listed in Table 1, cde-exec rewrites their path
argument(s) to refer to the corresponding path within
cde-package/cde-root/. By doing so, cde-exec
creates a chroot-like sandbox that fools the program into
‘believing’ that it is executing on the original machine.

To reliably rewrite syscall arguments, cde-exec redi-
rects the pointer to the argument’s buffer. When a target
process first makes a syscall, cde-exec forces it to make

another syscall to attach a 16KB shared memory segment
(a trick from [16]). Prior to every file path access syscall,
cde-exec computes and writes the redirected path into
shared memory and uses ptrace to mutate the syscall’s
argument, stored in a register, to point to the start of the
shared memory segment in the target’s address space.

Spoofing current working directory: At the comple-
tion of the getcwd syscall, cde-exec mutates (trun-
cates) its return value string to eliminate all absolute path
components up to and including cde-root/.

execve: When the target program executes a
dynamically-linked binary, cde-exec rewrites the
execve syscall arguments to execute the dynamic linker
stored in the package rather than directly executing the
binary. The dynamic linker on one distro might not be
compatible with binaries created on another distro due
to minor differences in ELF binary formats. Therefore,
to maximize portability across machines, cde copies
the dynamic linker into the package, and cde-exec

executes the dynamic linker from the package rather
than having Linux execute the system’s version. Without
this hack, even a trivial “hello world” binary compiled
on one distro (e.g., Ubuntu with Linux 2.6.35) will not
run on an older one (e.g., Knoppix with Linux 2.6.17).

Ignoring files and environment vars: By convention,
Linux directories like /dev, /proc, and /sys contain
pseudo-files that do not make sense to include in a CDE
package. To improve package portability, we have man-
ually created a user-customizable blacklist of a dozen di-
rectories, files, and environment variables for CDE to ig-

nore. cde will not copy ignored files (or vars) into a
package, and cde-exec will not redirect their paths and
instead access the real versions on the target machine.

4 Limitations

Executing a command within a CDE package will fail if:

• the arguments or input change to make the program
load a new file (e.g., library, config file) that the
original execution did not load. In general, no au-
tomatic tool (static or dynamic) can find all the de-
pendencies required to execute all possible program
paths, since that problem is undecidable. However,
since a CDE package is just an ordinary directory
tree, it is easy for users to directly add more files
into the package if necessary. Also, if the user runs
multiple commands in the same directory, cde will
add additional files into the same cde-package/.

• the Linux kernel or hardware architecture on the tar-
get machine is incompatible with the binaries in the
package. Mainstream distros contain libraries that
are forwards- and backwards-compatible over sev-
eral years. For example, the standard libs on 2010-
era Ubuntu work on distros from as old as 2006
(≥ 2.6.15 kernel), and the libs on 2007-era Fedora
work on 2004-era distros (≥ 2.6.9). Also, our in-
tuition is that packages created today will run fine
on Linux 2.6 distros from several years in the fu-
ture, since kernel developers place high priority on
maintaining backwards compatibility in the kernel-
to-user ABI. Users who desire greater portability or
‘future-proofing’ can embed CDE packages within
virtual machine or processor emulator images.

In addition, CDE is limited by the limitations of
ptrace and of executing binaries by explicitly invok-
ing the dynamic linker. ptrace can cause subtle differ-
ences in the semantics of traced processes, most notably
that a process being monitored by ptrace cannot itself
ptrace another process, which precludes the use of CDE
alongside applications like symbolic debuggers. Also,
there is a known bug on certain Ubuntu distros where the
bash shell non-deterministically crashes when invoked
explicitly with a dynamic linker; a workaround is to have
CDE use the machine’s native bash shell on those distros.

5 Real-world use cases

Since we released the first version of the CDE executable
online on Nov 9, 2010, it has been downloaded at least
2,000 times (as of April 2011) [1]. We have exchanged
hundreds of emails with CDE users and discovered six
salient use cases as a result of our discussions. For our

experiments (see Table 2), we used representative pack-
ages from each use case category (names in bold).

Distributing research software: The creators of two re-
search tools — the arachni web app. security scanner
[5] and the graph-tool math library [6] — used CDE
to create portable binary packages that they uploaded to
their project websites, so that their users do not have to
go through the anguish of compiling them from source.

In addition, we used CDE to create portable binary
packages for two of our Stanford colleagues’ research
tools, which were originally distributed as hard-to-
compile source code tarballs: pads [11] and saturn [8].

Running software on incompatible distros: Even
production-quality software might be hard to install on
Linux distros with older kernel or library versions. For
example, a Cisco engineer wanted to run some new open-
source tools on his work machines, but the IT department
mandated that those machines run an older, more secure
enterprise Linux distro. He could not install the tools
on those machines because that older distro did not have
up-to-date libraries, and he was not allowed to upgrade.
Therefore, he installed a modern distro at home, ran CDE
on there to create packages for the tools he wanted to
port (e.g., the meld visual text diff tool), and then ran the
tools from within the packages on his work machines.

Hobbyists applied CDE in a similar way: A game en-
thusiast could only run a classic game (bio-menace)
within a DOS emulator on one of his Linux machines,
so he used CDE to create a package and can now play the
game on his other machines. We also helped a user create
a portable package for the Google Earth 3D map applica-
tion (google-earth), so he can now run it on older dis-
tros whose libraries are incompatible with Google Earth.

Reproducible computational experiments: A funda-
mental tenet of science is that colleagues should be able
to reproduce the results of one’s experiments. Recently,
some science journals and CS conferences are starting to
encourage authors of published papers to put their code
and datasets online, so that others can independently re-
run, verify, and build upon their experiments. However,
it can be hard to set up all of the (often-undocumented)
dependencies required to re-run experiments.

Scientists can run the experiment once on their ma-
chine with CDE to create a package, and colleagues can
run that package on any contemporary Linux machine to
repeat the experiment. A robotics researcher used CDE
to make the experiments for his motion planning paper
(kpiece) [17] fully-reproducible. Similarly, we helped a
social networking researcher create a reproducible pack-
age for his genetic algorithm paper (gadm) [15].

Deploying computations to cluster or cloud: Our col-
league Peter wanted to use a department-administered

100-CPU cluster to run a parallel image processing job
on topological maps (ztopo). However, since he did not
have root access on those older machines, it was nearly
impossible for him to install all of the dependencies re-
quired to run his computation, especially the image pro-
cessing libraries. Peter used CDE to create a package by
running his job on a small dataset on his desktop, trans-
ferred the package and the complete dataset to the cluster,
and then ran 100 instances of it in parallel there.

Similarly, we worked with lab-mates to use CDE to de-
ploy the CPU-intensive klee [10] bug finding tool from
the desktop to Amazon’s EC2 cloud computing service
without needing to compile Klee on the cloud machines.

Submitting executable bug reports: Bug reporting is a
tedious manual process. Users submit reports by writing
down the steps for reproduction, exact versions of exe-
cutables and dependent libraries, and maybe attaching an
input that triggers the bug. Developers often have trouble
reproducing bugs based on these hand-written descrip-
tions and end up closing reports as “not reproducible.”

CDE offers an easier solution: The reporter can simply
run the command that triggers the bug under CDE super-
vision to create a CDE package, send that package to the
developer, and the developer can re-run that same com-
mand on their machine to reproduce the bug. Three bug
reporters sent us CDE packages, and we were able to re-
produce all of their bugs: one that causes the Coq proof
assistant to produce incorrect output (coq-bug) [2], one
that segfaults the GCC compiler (gcc-bug) [3], and one
that makes the LLVM compiler allocate an enormous
amount of memory and crash (llvm-bug) [4].

Collaborating on class projects: Rahul, a Stanford
grad student, was using the NLTK natural language pro-
cessing module to build a semantic email search engine
(email-search) for a machine learning class. Despite
much struggle, Rahul’s two teammates were unable to
install NLTK on their machines due to conflicting li-
brary versions and dependency hell, so they only had one
runnable copy. Rahul used CDE to create a package for
their project and was able to run it on his two teammates’
machines, so that all three of them could test and debug
in parallel. Similarly, an undergrad used CDE to collabo-
rate on and demo his virtual reality project (vr-osg).

6 Summary of experimental results

Due to space constraints, we summarize our main exper-
imental results. Full details are in our tech report [12].

Package portability: To demonstrate that CDE packages
can successfully execute on a range of Linux variants, we
tested our benchmark packages on six popular distros,
listed with the versions and release dates of their kernels:

Package name Origin Num libs Slowdown

Distribute research software
arachni [5] 2.6.35 48 (6)
graph-tool [6] 2.6.26 149 (9)
pads [11] 2.6.24? 9 (5) 28%
saturn [8] 2.6.18? 16 (8) 18%

Run production software on incompatible distros
meld 2.6.35 93 (8)
bio-menace 2.6.33 27 (26)
google-earth 2.6.24 ? 82 (3) 19%

Create reproducible computational experiments
kpiece [17] 2.6.35 30 (30)
gadm [15] 2.6.18 ? 18 (4) 5%

Deploy computations to cluster or cloud
ztopo 2.6.35 59 (35)
klee [10] 2.6.32? 6 (6) 2%

Submit executable bug reports
coq-bug [2] 2.6.32 3 (3)
gcc-bug [3] 2.6.36 13 (2)
llvm-bug [4] 2.6.35 8 (8)

Collaborate on class programming projects
email-search 2.6.32 138 (28)
vr-osg 2.6.35 39 (28)

Table 2: CDE packages by category. The ‘Origin’ col-
umn shows the kernel version where a package was cre-
ated, and a star? means it was created by the first author.
The ‘Num libs’ column shows number of shared libraries
(and number of statically-discoverable libs in parens).

1. CentOS 5.5 (Linux 2.6.18, Sep 2006)

2. Fedora Core 8 (Linux 2.6.23, Oct 2007)

3. openSUSE 11.1 (Linux 2.6.27, Oct 2008)

4. Ubuntu 9.10 (Linux 2.6.31, Sep 2009)

5. Mandriva Free Spring (Linux 2.6.33, Feb 2010)

6. Linux Mint 10 (Linux 2.6.35, Aug 2010)

Out of the 108 configurations we tested (18 CDE pack-
ages1 each run on 6 Linux distros), all executions suc-
ceeded except for one (vr-osg failed on Fedora Core 8
with a known graphics-related error). By ‘succeeded’ we
mean that the programs appeared to run correctly: Batch
programs generated identical outputs across distros, and
we could interact normally with GUI programs.

Necessity of dynamic tracking: We compared CDE
against a static analysis that recursively runs the Linux
ldd and strings utilities on executables files and li-
braries to find all string constants representing dependent

1Two of our benchmarks had both 32-bit and 64-bit versions.

libraries. Although this technique is simple, it represents
what people actually do in practice, since it automates
the tedious manual process of “chasing down and copy-
ing over dependent libraries” that folk wisdom suggests
as the way to transport programs across machines.

The ‘Num libs’ column in Table 2 shows that in all
but four benchmarks, the static technique found fewer
libraries than CDE (the number of statically-discoverable
libraries shown in parentheses). Thus, it cannot be used
to create a portable package since the program will fail
if even one library is missing. For similar reasons, static
linking when compiling will not work either. This is why
CDE’s static+dynamic dependency tracking is necessary.

Run-time slowdown: We informally evaluated slow-
downs on the five CDE packages we created (those
marked with ? in Table 2). Executing those programs
within CDE packages were 2% − 28% slower than exe-
cuting natively. The more system calls a program issues
per second, the more CDE causes it to slow down, since
the kernel must context switch to the CDE process during
every syscall. We have heard that ptrace interposition
can cause slowdowns of 10X or more, but we have not
yet performed a rigorous performance stress test.

7 Related work

We know of no published system that automatically cre-
ates portable software packages in situ from a live run-
ning machine like CDE does. Existing tools for creating
self-contained applications all require the user to man-
ually specify dependencies. For example, Mac OS X
programmers can create self-contained application bun-
dles using Apple’s developer tools. PDS is a prototype
tool for creating self-contained Windows apps, which re-
quires the user to manually specify a dependency list [9].

VMware ThinApp is a commercial tool that automat-
ically creates self-contained portable Windows applica-
tions. However, a user can only create a package by hav-
ing ThinApp monitor the installation of new software [7].
Unlike CDE, ThinApp cannot be used to create packages
from existing software already installed on a live ma-
chine, which is our most common use case.

Virtual machine snapshots achieve CDE’s main goal
of capturing all dependencies required to execute a set of
programs on another machine. However, they require the
user to always be working within a VM from the start of
a project (or else re-install all of their software within a
new VM). Also, VM snapshot disk images are (by defi-
nition) larger than the corresponding CDE packages since
they must also contain the OS kernel and other extrane-
ous applications. CDE is a more lightweight solution be-
cause it enables users to create and run packages natively
on their own machines rather than through a VM.

Finally, system call interposition using ptrace is a
well-known technique that has been used for implement-
ing tools such as secure sandboxes [13], record-replay
systems [14], and user-level filesystems [16].

Acknowledgments: Thanks to Fernando Perez for the
serendipitous discussion of reproducible research that
planted the seeds of the idea for CDE, to Richard Spillane
for sharing his Goanna code [16], to Imran Haque for the
Slashdot publicity, to our users for their bug reports and
feedback, and to {ridddlr, paboonst, cbird, TomZ,
ewencp, ihaque, daramos} for editorial help. This re-
search was supported by the NSF Graduate Research Fel-
lowship and the United States Air Force Research Labo-
ratory (AFRL) through Contract FA8650-10-C-7024.

References
[1] CDE project home page, http://www.pgbovine.net/

cde.html.
[2] Coq proof assistant: Bug 2443, http://coq.inria.fr/

bugs/show_bug.cgi?id=2443.
[3] GCC compiler: Bug 46651, http://gcc.gnu.org/

bugzilla/show_bug.cgi?id=46651.
[4] LLVM compiler: Bug 8679, http://llvm.org/bugs/

show_bug.cgi?id=8679.
[5] arachni project home page, https://github.com/

Zapotek/arachni.
[6] graph-tool project home page, http://projects.

skewed.de/graph-tool/.
[7] VMware ThinApp User’s Guide, http://www.vmware.

com/pdf/thinapp46_manual.pdf.
[8] AIKEN, A., BUGRARA, S., DILLIG, I., DILLIG, T., HACK-

ETT, B., AND HAWKINS, P. An overview of the Saturn project.
PASTE ’07, ACM, pp. 43–48.

[9] ALPERN, B., AUERBACH, J., BALA, V., FRAUENHOFER, T.,
MUMMERT, T., AND PIGOTT, M. PDS: a virtual execution envi-
ronment for software deployment. VEE ’05, ACM, pp. 175–185.

[10] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: unassisted
and automatic generation of high-coverage tests for complex sys-
tems programs. OSDI ’08, USENIX Association, pp. 209–224.

[11] FISHER, K., AND GRUBER, R. PADS: a domain-specific lan-
guage for processing ad hoc data. PLDI ’05, ACM, pp. 295–304.

[12] GUO, P. J., AND ENGLER, D. CDE: Using system call interposi-
tion to automatically create portable software packages. Stanford
University Computer Science Technical Report 2011-01.

[13] JAIN, K., AND SEKAR, R. User-level infrastructure for system
call interposition: A platform for intrusion detection and confine-
ment. NDSS ’00.

[14] LAADAN, O., VIENNOT, N., AND NIEH, J. Transparent,
lightweight application execution replay on commodity multipro-
cessor operating systems. SIGMETRICS ’10, pp. 155–166.

[15] LAHIRI, M., AND CEBRIAN, M. The genetic algorithm as a
general diffusion model for social networks. In Proc. of the 24th
AAAI Conference on Artificial Intelligence (2010), AAAI Press.

[16] SPILLANE, R. P., WRIGHT, C. P., SIVATHANU, G., AND
ZADOK, E. Rapid file system development using ptrace. In Ex-
perimental Computer Science (2007), USENIX Association.

[17] SUCAN, I. A., AND KAVRAKI, L. E. Kinodynamic motion plan-
ning by interior-exterior cell exploration. In Int’l Workshop on the
Algorithmic Foundations of Robotics (2008), pp. 449–464.

