
Interpreter Exploitation
Dionysus Blazakis

Independent Security Evaluators
Baltimore, MD 21209

dion@securityevaluators.com

Abstract
As remote exploits further dwindle and perimeter de-
fenses become the standard, remote client-side attacks
are becoming the standard vector for attackers. Mod-
ern operating systems have quelled the explosion of
client-side vulnerabilities using mitigation techniques
such as data execution prevention (DEP) and address
space layout randomization (ASLR). This work illus-
trates two novel techniques to bypass these mitigations.
The two techniques leverage the attack surface exposed
by the script interpreters commonly accessible within
the browser. The first technique, pointer inference, is
used to find the memory address of a string of shellcode
within the Adobe Flash Player’s ActionScript interpreter
despite ASLR. The second technique, JIT spraying, is
used to write shellcode to executable memory, bypassing
DEP protections, by leveraging predictable behaviors of
the ActionScript JIT compiler. Previous attacks are ex-
amined and future research directions are discussed.

1 Introduction
The difficulty in finding and exploiting a remote vulner-
ability has motivated attackers to devote their resources
to finding and exploiting client side vulnerabilities. This
influx of client side attacks has pushed Microsoft to im-
plement mitigation techniques to make exploiting these
vulnerabilities much harder. Sotirov and Dowd [13]
have described in detail each of the mitigation tech-
niques and their default configurations on versions of
Windows through Windows 7 RC. Their work showed
some of the bypass techniques available at the time and
how Microsoft’s design choices have influenced the de-
tails of these bypasses. After reading this work, one
thing that stands out is how ripe a target the browser is
for exploitation — the attacker can use multiple plug-
ins, picking and choosing specific exploitable features,
to set-up a reliable exploit scenario. The main contribu-
tion of this paper is to further prove how much power an
attacker gains through access to an interpreter environ-
ment. Within a programmable environment, the com-
plex interactions between the interpreter and the operat-
ing systems memory subsystem are highly influenced by
the attacker and enable attacks that are difficult to predict
at design time.

It would be difficult to design a more exploit friendly
environment than the classic web browser. Bursting at
the seams with plug-ins, it requires a robust parser to sal-
vage what could be any of 6+ versions of mark-up taking
into account possible legacy work-arounds. With the ad-
vent of “Web 2.0”, a browser must also include a high
performance scripting environment with the ability to
rewrite those parsed pages dynamically. The document
object model exposed to the scripting runtime continues
to grow. Finally, most browsers are now taking advan-
tage of recent JIT and garbage collection techniques to
speed up Javascript execution. All this attack surface
without even discussing the details of common plug-ins.

Rich internet applications (RIAs) are not going away
and Adobe currently maintains a hold over the market
with Flash; the Flash Player is on 99% of hosts with web
browsers installed. Suns Java Runtime Environment is
another interpreter commonly installed. Microsoft Sil-
verlight is an RIA framework based upon the .NET run-
time and tools. Each of these plug-ins require a complex
parser and expose more attack surface through a sur-
plus of attacker reachable features. For example, Adobe
Flash Player implements features including a large GUI
library, a JIT-ing 3D shader language, an RMI system,
an ECMAScript based JIT-ing virtual machine, embed-
dable PDF support, and multiple audio and video em-
bedding or streaming options. All of this is available by
default to the lucky attacker.

Considering this, it is worth putting in time and ef-
fort to develop application specific techniques that will
help exploit vulnerabilities within this browser ecosys-
tem. DEP and ASLR are very real thorns in the side
of an exploit developer. DEP makes locating shellcode
difficult; the attacker must find a page with executable
permission and find a way to write to it when it has
writable permission and figure out the location. Alter-
natively, the attacker could find some code to reuse as in
the return-oriented programming based attacks [7, 11].
ASLR further complicates an attack by obfuscating the
base address of the loaded images. See Sotirov and
Dowd [13] for a detailed explanation on the implemen-
tation of ASLR and DEP in various Windows operating
systems. For this, we will ignore the possibility of an
ASLR design or implementation flaw; we will assume



the attacker cannot guess the location of a loaded image,
the heap, or the stack by leveraging a flaw in the operat-
ing system.

This paper focuses on two general techniques to by-
pass these mitigations: pointer inference and JIT spray-
ing. Pointer inference is the act of recovering the mem-
ory address of an internal object via “normal” (i.e. not
through an exploit) interactions with the target software.
Adobe Flash Player is used as an example. We will
present and walk through a script to determine the ad-
dress of a string object within Flash Player’s Action-
Script interpreter. Next, we will present JIT spraying;
a technique similar to heap spraying. The attacker will
allocate many executable pages of attacker influenced
data. We will show how to construct an ActionScript
script that, when JIT compiled by the ActionScript en-
gine, lays out stage-0 shellcode to load and execute
the next stage of shellcode (located in an ActionScript
string). Next, we discuss the possibility of using the two
techniques together to attack a Windows Vista target. Fi-
nally, future research directions are discussed.

2 Pointer Inference
Getting from a software flaw to control of the instruc-
tion pointer to exploit is much more difficult when
the address space is randomized. Even getting from a
proof-of-concept crash to control of EIP may be dif-
ficult. Proving a vulnerability is sometimes easily ac-
complished using a heap spray to place an attacker con-
structed structure at a known address. Unfortunately for
the exploit developer, heap sprays are not always reli-
able (and are certainly not always possible if the attacker
cannot allocate large heap objects). Additionally, heap
spray mitigation techniques have already appeared in the
academic world [10] and Microsoft has a simple mitiga-
tion (mapping the commonly used heap spray pages at
process start-up) in their EMET tool [8]. Information
leak vulnerbilities will soon be highly prized for their
use in reliable exploitation. The pointer inference tech-
nique we describe below is one example of an informa-
tion leakage flaw. The ability to derive the heap address
of an object at runtime provides the attacker with an ad-
dress upon which to anchor an attack.

Scripting environments are the perfect target for
pointer inference; the objects usually live on the heap
and the runtime language and libraries provide multi-
ple ways to manipulate and inspect objects. Addition-
ally, scripting languages tend to be dynamically typed,
so the built in container objects are heterogeneous ob-
jects stored by reference are often stored in the same
type as those stored by value. The goal is to find a way
to determine the memory address of a script object in the
interpreter/virtual machine. Extracting the location of a
Javascript string containing shellcode, while not the only

use of the technique, would be a good exploit building
block. Target VMs include (ECMA or Java or Action)-
Script, Java, Python, Ruby, PHP, and the .NET CLR.
The Javascript engine in the browser, the Javascript en-
gine in Adobe Reader, and the ActionScript engine in the
Adobe Flash Player are all available from within most
browser installations (if the target has the Adobe plug-
ins installed and don’t have Javascript disabled).

For this paper, we will show how to derive the mem-
ory address of an object in the ActionScript virtual
machine using the ordering of objects when iterating
over an ActionScript Dictionary object. We’ve chosen
to show this proof of concept using the Flash Player
for multiple reasons: we’ve spent more time reversing
it than the others, it is cross platform – regardless of
browser it is the same code base for the plug-in, and, last
but not least, Adobe has released the source to a fork of
their engine [1]. To understand the details of the tech-
nique, we will first describe how the objects are stored
internally by the interpreter and then how the built-in
Dictionary container is implemented by the interpreter.

2.1 ActionScript Objects in Memory
Prior to understanding the technique for disclosing the
address of an ActionScript objects, we must understand
how the objects are stored internally by the interpreter.
When an ActionScript object is instantiated by the exe-
cuting script, the interpreter provides a word sized entry
to contain this object. It fills the entry based upon the
type of the object. If the object is a small primitive ob-
ject, such as an integer or boolean, it is stored by value.
For other Objects, such as doubles, strings, or class in-
stances, the object will be stored by reference; the inter-
preter will allocate a buffer and store the address of the
buffer. The same entry can store either type (a value or
reference).

ActionScript is a dynamically typed language. Dy-
namically typed languages do not assign types to vari-
ables at compile time. Instead of building type annota-
tions into the language and enforcing typing constraints
at compile time, these languages provide runtime func-
tions for examining and comparing object types. The
interpreter then ensures that all operations are valid for
the operands used at the time of the operation. When
the interpreter detects a type mismatch (e.g. an instance
is queried for a method it does not implement), Action-
Script will either throw an exception or perform an im-
plicit coercion. This runtime typing requires the object
heap to store both the type information and the value.

To handle this runtime typing requirement, the Ac-
tionScript interpreter represents internal objects using
tagged pointers; internally, this object is called an
“atom”. Tagged pointers are a common implementation
technique to differentiate between those objects stored



by value and those stored by reference using the same
word sized memory cell. A tagged pointer stores type
information in the least significant bits and stores a type
specific value in the most significant bits. As shown in
Figure 1 and Table 1, the ActionScript atom is 32 bits
wide; it allocates 3 bits to store the type information and
uses 29 bits for the value.

Some examples might help illustrate how this works.
Take the following ActionScript declarations:

var x = 42; // Integer atom
var y = WOOT 2010; // String atom
var z = new Dictionary(); // Object atom
var b = true; // Boolean atom

The variable x is a local variable holding the value 42.
The interpreter will create a mapping between the local
variable within the current scope and the value 42. As
described above, the value will be stored internally as an
atom. An integer atom, which can hold values between
−228 and 228 − 1, is created by shifting the value left
3 bits to make room for the type tag. The integer atom
is tagged with a 6 as shown in Figure 1. This process is
shown in the Python session below:

>>> def atomFromInteger(n):
return (n << 3) | 6

>>> ’0x%08x’ % (atomFromInteger(42), )
’0x00000156’

The String and Object atoms are “reference” atoms.
They store pointers to garbage collected memory on the
interpreter heap. Converting the y and z variables to
atoms requires first allocating a block of memory to store
the value and then creating the atoms using the memory
address of the actual value. Below is an example of do-
ing this for z in Python – the extra calls are mocked up.

>>> def atomFromObject(obj):
return (obj & ˜7) | 1

>>> a = AS.HeapAlloc(size_of_Dictionary)
>>> Dictionary.initialize(a)
>>> ’0x%08x’ % (atomFromObject(a), )
’0x00c8b301’

The goal of illustrating this internal representation is
to be able to explain that both values and references (i.e.
memory addresses or pointers) are used as atoms by the
interpreter. Next, we will explain the use and implemen-
tation of the ActionScript Dictionary class.

2.2 ActionScript Dictionary Objects
The built-in ActionScript Dictionary class exposes an as-
sociative map data structure. When used from within

an ActionScript script, it provides an interface to as-
sociate any ActionScript object with any other Action-
Script object as a key/value relation. The Dictionary ob-
ject can then be queried using square brackets, similar to
a Python dict. Additionally, the user can iterate over
the dictionary to operate on each key/value pair. The or-
der of the iteration is not specified by the definition of
the API and is an implementation detail not to be relied
upon. Example use:

var dict = new Dictionary();

dict[Alpha] = 0x41414141;
dict[true] = 1.5;

var k;
for (k in dict)
{

f(dict[k]);
}

Internally, Flash Player’s Dictionary class is imple-
mented using a hashtable. The hashtable derives the
hash from the key atom and stores the key and value
atom together in the table. When iterating over the Dic-
tionary, the hashtable is walked from lowest to highest
hash value. The hash table is always a power of two in
size; this is maintained for two reasons: the hash func-
tion now becomes a fast masking operation and the con-
stants used by the quadratic probe rely on a power of two
sized table. The hash table grows to the next power of
two when the number of empty cells in the table drops
below 20% of the total size. To grow the hashtable, a
new table is allocated and all entries are rehashed and
inserted into the new table. This hashtable implementa-
tion discloses an ordering between integer (value) atoms
and object (reference) atoms — the object atoms are
compared directly to the integer atoms. The hash func-
tion will remove some of the most significant bits of the
atoms but a large hashtable will use most of the bits.
This ordering is used to disclose memory addresses of
reference atoms (Objects, Strings).

2.3 Integer Sieve
Since integers are placed into the hashtable using their
value as the key (of course, the any top bits will be
masked off), we can determine the atom value of some
ActionScript object by measuring where the new object
is found when iterating over the hashtable. By recording
the integers that fall before and after the newly inserted
object, we can derive a bound on the atom of the new
object. Since Object atoms are just pointers (with the
first 3 bits modified), we can disclose as many bits of a
pointer as we can grow the hashtable.

To avoid the problem of a hash collision, we perform
the test twice: once with all even integers and once with



012331

Type TagValue

Figure 1: An ActionScript Atom

Type Tag Value
Untagged 000 0
Object 001 1 8 byte aligned pointer
String 010 2 8 byte aligned pointer
Namespace 011 3 8 byte aligned pointer
“undefined” 100 4 0
Boolean 101 5 1 for True and 0 for False
Integer 110 6 2’s complement, [−228, 228 − 1]
Double 111 7 8 byte aligned pointer

Table 1: ActionScript atom tag constants

all odd integers (up to some power of two — the larger,
the more bits we discover). After creating the Dictionar-
ies, we insert the victim object into both Dictionaries.
The values associated with the keys stored in the Dictio-
nary do not impact any of this — only the keys and their
ordering are used. Next, search each Dictionary using
the for-in construct, recording the last key visited and
breaking when the current key is the victim object. We
now have two integer values (the last integers before the
victim object for both the even and the odd Dictionaries).

The two integers should differ by 17. This is due
to the linear probe; when a hashtable insert collides, it
uses a quadratic probe to find an empty slot. The first
try is at (hash(victim) + 8) which always collides —
2n+8 = 2(n+4) or (2n+1)+8 = 2(n+4)+1. The next
try is (hash(victim) + 17) which always succeeds —
2n+17 = 2(n+8)+1 or (2n+1)+17 = 2(n+9). The
only way for the two integers to differ by anything other
than 17 is if the probe wrapped. Otherwise, the smaller
integer is the one from the Dictionary that didn’t have
the collision. When the difference isn’t 17 (wrapped
around), the larger value is from the Dictionary that
didn’t have the collision. We now have the integer that,
when turned into an atom is 8 smaller than the victim
atom. Finally, to get the victim atom from the integer, x:
(x << 3 + 8) or more to the point ((x+ 1) << 3).

That is a handful; let’s walk through the execution:

// First, create the Dictionaries
var even = new Dictionary();
var odd = new Dictionary();

// Now, fill the Dictionary objects
// with the integer atoms
var index;
for (index = 0; index < 8; index += 1) {

even[index * 2] = true;
odd[index * 2 + 1] = true;

}

Figure 2 shows what the heap will look like after in-
serting the integer atoms. Next, insert the reference ob-
ject to leak the address of:

var victim = AAAAAAAA;

even[victim] = true;
odd[victim] = true;

In Figure 3, you can see how the insertion of the vic-
tim atom wraps around once (the table is 16 entries long,
so on a collision using these integer sieves, 17 will be
added to the index modulo 16 — just adding 1 to the in-
dex where the collision took place). The last step is to
iterate over both Dictionaries recording the integer just
prior to finding the victim object:

var curr, evenPrev, oddPrev;

for (curr in even)
{

if (curr == victim) { break; }
evenPrev = curr;

}

for (curr in odd)
{

if (curr == obj) { break; }
oddPrev = curr;

}

After executing this snippet, evenPrev will contain
the value 0 (atom: 0x00000006) and oddPrev will



name

address

index

0x00800000
0x00000026

0x00800008

even
0x00810001

odd

0x00800010
0x00820001

Legend

0x00000036

0x00000046

0x00000056

0x00000006

0x00000016

0x00000026

0x00000066

0x00000076

0x0000003E

0x0000004E

0x0000005E

0x0000000E

0x0000001E

0x0000002E

0x0000006E

0x0000007E

0x00810000 0x00820000

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

Figure 2: ActionScript heap after Integer atoms are inserted

name

address

index

0x00800000
0x00000026

0x00800008

even
0x00810001

odd

0x00800010
0x00820001

Legend

0x00000036

0x00000046

0x00000056

0x00000006

0x00000016

0x00000026

0x00000066

0x00000076

0x0000003E

0x0000004E

0x0000005E

0x0000000E

0x0000001E

0x0000002E

0x0000006E

0x0000007E

0x00810000 0x00820000

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

0x0000000D

victim

0x00800018
0x0081000A

0x00810008
AAAAAAAA...

0x0081000A 0x0000000D
0x0081000A 0x0000000D

Figure 3: ActionScript heap after adding the victim atom to the sieves



contain the value 1 (atom: 0x0000000E). Let’s pre-
tend that evenPrev and oddPrev differ by 17 (and
the tables were a more reasonable size — say, 4 mil-
lion). evenPrev is smaller; this means we can de-
rive the lowest bits of the victim address by adding 1
to evenPrev (the value, 0, which is what is exposed
to us in ActionScript) and shifting left 3. This results
in 0x00000008. That matches the lowest bits of the
victim address.

This technique is by no means the only vectors for in-
formation leakage. If we restrict ourselves to data struc-
ture leaks, internal ids (see Python) and hash functions
(as opposed to the ActionScript technique, where the
hash is not available directly to the script; see .NET and
Java). These functions need a unique value per heap ob-
ject and the address is one such value that could be used.

3 JIT Spray
Data Execution Prevention (DEP) makes executing de-
livered shellcode quite difficult — the stack and default
heaps are marked non-executable. Currently, the best
public method to bypass DEP is to find a loaded DLL
that is not ASLR protected or leak the load address of
the module and use the available code to manufacture
return-oriented shellcode [11, 7] that turns off DEP for
the process or allocates executable memory and copies
the next stage of shellcode there.

Most modern interpreters implement a just-in-time
(JIT) compiler to transform the parsed input or byte-
code into machine code for faster execution. JIT
spraying is the process of coercing the JIT en-
gine to write many executable pages with embed-
ded shellcode. This shellcode will entered through
the middle of a normal JIT instruction. For ex-
ample, a Javascript statement such as var x =
0x41414141 + 0x42424242; might be compiled
to contain two 4 byte constants in the executable im-
age (for example, mov eax, 0x41414141; mov
ecx, 0x42424242; add eax, ecx). By start-
ing execution in the middle of these constants, a com-
pletely different instruction stream is revealed.

The rest of this section explains one implementation
of this for the Adobe Flash Player ActionScript bytecode
JIT engine. The end result is a Python script and an Ac-
tionScript script. The Python script generates the Ac-
tionScript. The ActionScript, when loaded and after the
bytecode engine performs a JIT compile, lays out an ex-
ecutable page on the heap. When this executable page is
entered at a known offset (0x6A, for the given example
code below) will execute stage-0 shellcode that marks
the rest of the page RWX and copies the next stage of
shellcode from an ActionScript string that can be modi-
fied before compilation.

The key insight is that the JIT is predictable and must

copy some constants to the executable page. Given a
uniform statement (such as a long sum or any repeating
pattern), those constants can encode small instructions
and then control flow to the next constant’s location.

3.1 Development
By placing a breakpoint on the VirtualProtect calls in
the Flash Player, we can witness the JITed code that is
generated from the ABC bytecode (which is compiled
ActionScript). By experimentation, we are able to deter-
mine that a long XOR expression (a⊗ b⊗ c⊗ d⊗ . . .)
would be compiled down to a very compact set of XOR
instructions. For example, after JIT-ing:

var y = (
0x3c54d0d9 ˆ
0x3c909058 ˆ
0x3c59f46a ˆ
0x3c90c801 ˆ
0x3c9030d9 ˆ
0x3c53535b ˆ
...

is turned into:

03470069 B8 D9D0543C MOV EAX,3C54D0D9
0347006E 35 5890903C XOR EAX,3C909058
03470073 35 6AF4593C XOR EAX,3C59F46A
03470078 35 01C8903C XOR EAX,3C90C801
0347007D 35 D930903C XOR EAX,3C9030D9
03470082 35 5B53533C XOR EAX,3C53535B

Now, note that if execution begins at 0x0347006A:

0347006A D9D0 FNOP
0347006C 54 PUSH ESP
0347006D 3C 35 CMP AL,35
0347006F 58 POP EAX
03470070 90 NOP
03470071 90 NOP
03470072 3C 35 CMP AL,35
03470074 6A F4 PUSH -0C
03470076 59 POP ECX
03470077 3C 35 CMP AL,35
03470079 01C8 ADD EAX,ECX
0347007B 90 NOP
0347007C 3C 35 CMP AL,35
0347007E D930 FSTENV DS:[EAX]

This is a popular GetPC method — using the floating
point state save opcode [5]. In above code, the control
flow from one attacker controlled DWORD operand to
the next only takes up a single byte (the byte of the CMP
opcode). By taking advantage of the single byte XOR
EAX opcode, the CMP AL is a semantic NOP and does
not take up the two bytes a JMP +n would in the at-
tacker controlled operand bytes.

ActionScript allows the dynamic loading (and runtime
generation) of bytecode. Using this type of reflection,



we can force the repeated loading of a given bytecode
file spraying the constructed JIT code on the heap. This
is the JIT spray. With a reasonable guess and luck, the
attacker can execute shellcode despite ASLR and DEP.
In the last section, we will take a look at using a combi-
nation of the two techniques to achieve reliable exploita-
tion.

4 Putting It Together
One thing that was glossed over in the pointer inference
discussion was the value that is pointed to by the leaked
pointer. What does the address leak gain an attacker?
What attacker controllable values are available via the
leaked pointer? For Object atoms, the pointer points to
a C++ instance that doesn’t have any easily controllable
fields. For String atoms, the pointer points to a C++ in-
stance containing a length field and a pointer to the string
buffer. This will certainly be useful in some instances,
but it isn’t a direct pointer to the string buffer. In the
end, it’s really just a pointer into the heap. To try and
find a use for this pointer, we must understand the Flash
heap and some of the details of the Windows memory
subsystem.

Flash objects are allocated using a custom allocator
which boils down to VirtualAlloc. When expand-
ing the heap, the allocator tries to allocate the next chunk
contiguously in 16MB increments. If that first allocation
fails, it tries again without the start address hint (i.e. get-
ting rid of the contiguous constraint Flash asks for any
block of memory to fit the request). The pages for the
JIT engine are allocated directly using VirtualAlloc
by estimating the space needed. This estimate is made
by counting opcodes when loading the bytecode. The
allocation for all methods/functions found in a bytecode
file occurs up front (and will allocate this space on-
demand when the first methods is called and compiled).
VirtualAlloc will map pages at a 64KB granularity
and does so with a linear scan finding the first hole that
matches the size requested. With these details, we can
come up with a use for the heap address primitive.

The plan is to put the two techniques together for a re-
liable bypass of DEP and ASLR. To do this, we must use
the heap address primitive to determine the address of a
JIT block. Here is the current method we’ve developed
in the browser environment:

1. Open a SWF file that contains enough bytecode to
force an allocation of 0x01010000 bytes.

2. Open a SWF file that sprays the heap with many
small ActionScript objects.

3. Open a second SWF forcing an allocation of
0x00FF0000 bytes.

4. Remove the first large SWF file; this will deallo-
cate/unmap the 0x1010000 bytes.

5. Spray more than 16MB of small ActionScript ob-
jects, keeping them in a linked list structure.

6. Load the SWF with the JIT Spray.
7. Iterate over the linked list structure at large inter-

vals (0x00100000) recording the address of the
object.

8. When an unsmooth edge is found in the recorded
addresses, this marks the start of the newly mapped
space. This new space should be the start of the
memory used for the first SWF.

9. A tight bound can be obtained for the start ad-
dress by refining the above search using succes-
sively smaller intervals and updating the bounds.

10. Finally, we know the JIT spray should have reached
this address we’ve found in the previous step +
0x01000000.

This whole process is quite roundabout, but the Adobe
Flash player doesn’t seem to ever unmap memory. By
not unmapping memory used by the object heap, the JIT
engine will never allocate a page that was once used by
the Object heap.

Once the address of a JIT sprayed block is found, the
target EIP can be calculated and the exploit can be trig-
gered. This process is quite reliable, but with the current
speed of the address leak it takes between 5 and 10 min-
utes to trigger. If a different address leak were found
this would be quicker. While testing this on a Windows
Vista target with IE8, a straightforward JIT spray can be
used and a predictable address is not hard to find on a
lightly used browser. In a browser with a lot of memory
activity, the longer method is more reliable.

This attack is not at all straightforward. It involves
multiple flaws to work and requires more time than most
current exploits. This is evidence of the impact current
mitigations have on exploit development; exploits are in-
creasing in complexity and prerequisites.

5 Related Work
We are not the first to take a shot at the current class of
exploit mitigation techniques. Early in the lifetime of
these mitigations, Tyler Durden wrote a Phrack article
[4] describing an attack using printf-based info leaks. He
also describes the details of the PaX ASLR implementa-
tion. In [12], Shacham et al show that the current class of
ASLR implementations are weak to a brute force remote
attack. Fortunately, for a modern client-side exploit, it is
rare to get a large number of trials against the same target
reducing the probability of guessing the base address.
Most recently, Mark Dowd and Alex Sotirov teamed up
to present their research on browser based exploitation
techniques for bypassing DEP and ASLR [13]. Besides
a useful guide to the implementation of DEP and ASLR
on Windows, they propose a few methods for bypassing
the mitigations. The DEP bypasses involve the use of



Java applets or .NET assemblies to introduce large sec-
tions of executable memory into the address space.

The currently most effective exploitation technique
against DEP is known as return-oriented-programming
(ROP). Introduced in the litereature by Shacham [11]
and further developed in industry by Immunity [7],
return-oriented-programming reuses existing code seg-
ments to cobble together shellcode. The found pieces
of code, “gadgets”, are short segments of code ending
in RET-urn opcodes. The ROP program is entered by
pivoting the stack to an attacker controlled buffer (see
[11, 3]).

Lastly, a few researchers have focused on interpreter
based exploitation. Erik Cabetas presented some of
his work at SOURCE Boston [2]. Two talks at BA-
Con in 2008 involved interpreter exploitation; Aaron
Portnoy and Ali Rizvi-Santiago presented their research
on Python [9] and Justin Ferguson spoke about his
JavaScript research [6].

6 Future Research and Conclusions
Through the examination of pointer inference and our
JIT spray techniques, we have shown how the design
and implementation of an interpreter may have surpris-
ing impacts with regard to security. As they become
more valuable, further research is needed to bound in-
formation leaks which divulge information indirectly
(such as the ActionScript Dictionary ordering described
in Section 2). Formal methods for bounding this leakage
would be an interesting research problem.

Interpreters provide a deceptively large amount of
power to the attacker. Developing the JIT spray tech-
nique into a full attack relies on the implementation de-
tails of the memory subsystem (both the OS system and
the application layer existing above that). Modifying
this subsystem is one way to stop the spray technique,
but further research should be devoted to understanding
how much an attacker can influence the memory alloca-
tion subsystem. What attacks are possible given various
allocation strategies and how do these application level
algorithms impact performance?

Despite modern exploit mitigations such as address
space layout randomization (ASLR) and data execution
prevention (DEP), browser-based exploitation is still
within reach of an attacker. Despite the lack of abso-
lute security, current mitigations have a noticable effect
on the reliability and complexity of modern exploits.

7 Acknowledgments
Many people helped out when I was developing these
techniques. Thanks for all the discussion in formal. I’d
also like to thank Dino Dai Zovi for his initial feedback
and Manish Karir and Eric Wustrow for providing qual-
ity discussions on the dictionary attack. Matt Miller at

MSEC and Peleus Uhley at Adobe provided useful dis-
cussions from the vendor point of view. Lastly, thanks to
my reviewers for providing clear and honest feedback.

References
[1] Tamarin project. http://www.mozilla.

org/projects/tamarin/.

[2] Erik Cabetas. Vulnerabilities in application inter-
preters and runtimes. In SOURCE Boston, 2009.

[3] Dino Dai Zovi. Practical return-oriented program-
ming. In SOURCE Boston, 2010.

[4] Tyler Durden. Bypassing PaX ASLR protection.
Phrack, 0x0b(0x3b):0x09, 2002.

[5] Sinan ”noir” Eran. http://www.
securityfocus.com/archive/82/
327100/2009-02-24/1.

[6] Justin Ferguson. Advances in attacking interpreted
languages: Javascript. In BA-Con, 2008.

[7] Immunity. DEPLIB.

[8] Microsoft. EMET. http://blogs.technet.
com/srd/archive/2009/10/27.

[9] Aaron Portnoy and Ali Rizvi-Santiago. Reverse
engineering dynamic languages, a focus on python.
In BA-Con, 2008.

[10] Paruj Ratanaworabhan, Benjamin Livshits, and
Benjamin G. Zorn. Nozzle: A defense against
heap-spraying code injection attacks. Technical
Report MSR-TR-2008-176, Microsoft Research,
2008.

[11] Hovav Shacham. The geometry of innocent flesh
on the bone: Return-into-libc without function
calls (on the x86). In Sabrina De Capitani di
Vimercati and Paul Syverson, editors, Proceedings
of CCS 2007, pages 552–61. ACM Press, October
2007.

[12] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin
Goh, Nagendra Modadugu, and Dan Boneh. On
the effectiveness of address-space randomization.
In Birgit Pfitzmann and Peng Liu, editors, Proceed-
ings of CCS 2004, pages 298–307. ACM Press, Oc-
tober 2004.

[13] Alex Sotirov and Mark Dowd. Bypassing browser
memory protections in Windows Vista. In Black-
hat USA, 2008.

A JIT Spray Exploit Demo
A video of the full JIT spray attack exploiting an
Adobe Reader flaw on Windows Vista running IE8 is
available at http://www.youtube.com/watch?
v=HJuBpciJ3Ao.


