
Fragmentation Considered Vulnerable:
Blindly Intercepting and Discarding Fragments

Yossi Gilad† and Amir Herzberg‡

Dept. of Computer Science, Bar Ilan University
†mail@yossigilad.com, ‡amir.herzberg@gmail.com

Abstract
We show that fragmented IPv4 and IPv6 traffic is vul-
nerable to DoS, interception and modification attacks
by a blind (spoofing-only) attacker. We demonstrated a
weak attacker causing over 94% loss rate and intercept-
ing more than 80% of data between peers. All attacks
are practical, and validated experimentally on popular in-
dustrial and open-source products, with realistic network
setups (involving NAT or tunneling). The interception
attack requires a zombie behind the same NAT or tunnel-
gateway as the victim destination; the other attacks only
require a puppet (adversarial applet/script in sandbox).

The complexity of our attacks depends on the pre-
dictability of the IP Identifier (ID) field and are simpler
for implementations, e.g. Windows, which use globally-
incrementing IP IDs. Most of our effort went into extend-
ing the attacks for implementations, e.g. Linux, which
use per-destination-incrementing IP IDs.

1 Introduction

The Internet Protocol (IP) is the primary protocol that es-
tablishes the Internet. It is one of the most basic, widely
deployed and used protocols, as well as one of the old-
est (dated back to 1974), simplest and most well known
and studied. There are many implementations of IP, in-
cluding many embedded and other systems still using
ancient implementations, and new implementations are
developed constantly, esp. with the advance of mobile,
ubiquitous internetworking. Naturally, over the years
there were many abuses of vulnerabilities in the IP spec-
ifications (IPv4 [15] and IPv6 [6]). There was also an
impressive effort to identify and fix such vulnerabilities;
see [8].

It is therefore rather disturbing that in this paper we
present significant, exploitable vulnerabilities in both
IPv4 and IPv6. The vulnerabilities result from problems
in the specifications; the severity of the exploits we found

depends on implementation details, e.g., we found Win-
dows platforms to be more vulnerable than Linux sys-
tems; however, Linux systems are also vulnerable, in
practical scenarios, with a more sophisticated attack.

Our adversary model is a blind (i.e., non eavesdrop-
ping) attacker who is capable of spoofing. The vul-
nerabilities we present allow such attackers to perform
devastating Denial of Service attacks on legitimate IP
traffic in standard network settings, as well as to inter-
cept (expose) and hijack (modify) traffic in common net-
work topologies, where Network Address port Transla-
tors (NAT) devices are used.

Like many or most previous attacks on IP [8], our
attacks exploit weaknesses in IP’s fragmentation mech-
anisms. While conceptually simple, fragmentation in-
volves some subtle issues and several related vulnera-
bilities. Probably the most significant vulnerabilities so
far were implementation bugs, which were exploited for
very effective DoS attacks: Teardrop [1], Rose [2], and
Ping of Death [13] (see survey in [3]). However, these
critical implementation bugs were long ago fixed and
may still exist only in few relic systems. Furthermore,
our work exploits specification vulnerabilities, not an im-
plementation bug.

We are aware of only three known specification vul-
nerabilities related to fragmentation. The first uses
specially-crafted fragments to bypass filtering by fire-
walls and intrusion-detection systems; this is discussed
and addressed in [19, 14]. The two others are DoS vul-
nerabilities: fragment cache overflow [10] and fragment
mis-association [9]; however, both of these have a very
small impact - the maximal loss rate we were able to
cause (or found reported) was less than 0.1%.

In contrast, we present highly-effective attacks against
fragmented traffic. Like previous attacks, the attacks do
not assume MitM capabilities, and can be launched by
a mere spoofing (blind) adversary; and like [10, 9], they
exploit a specification problem and not (just) an imple-
mentation bug.

1

Our attacks are based on predicting the IP-ID value
used in packets between the victim source and destina-
tion, and then exploiting the predicted IP-ID to cause
packet loss, interception or modification (for fragmented
packets); Zalewski’s note [18] provided an early hint of
this attack vector. Indeed, once we can predict the IP-ID,
it is easy to cause fragment loss: the attacker sends one
tiny spoofed fragment with the expected IP-ID (and the
victim source and destination addresses). Once the legiti-
mate fragments arrive, the attacker’s fragment will match
some of them, resulting in wrong reassembly and packet
loss. Modification (of only part of the packet) works sim-
ilarly, except that the attacker has to carefully construct
his fragment so that its content will replace the desired
parts of the original payload. In certain (common) sce-
narios, interception is also easy: when the attacker con-
trols a zombie machine behind the same Network Ad-
dress Translator (NAT) as the destination, as illustrated
in Figure 1, he can intercept a packet by changing the
destination port specified in the first fragment. Details of
these attacks are in Section 2.

Bob

Alice
Internet LAN

Zombie

Mal

NAT

id = i id = i

id = i + 1 id = i + 1

Figure 1: One scenario where obtaining the IP-ID is
‘easy’. Alice uses one (per destination) identifier for all
hosts behind the NAT. Zombie observes a packet he re-
ceives from Alice and obtains the current per-destination
identifier that Alice also uses for Bob. Mal is a blind
adversary that controls Zombie.

The main remaining challenge is prediction of the IP-
ID value. In the popular family of Windows R© operating
systems, this is not much of a challenge. These systems
use a single, global IP-ID counter for all destinations,
so the attacker can simply predict the IP-ID of a sender
by receiving any packet from him (including common
responses such as ICMP echo/error or TCP RST/SYN-
ACK). Hence, these systems are vulnerable to loss, inter-
ception and modification attacks as outlined above (and
described in Section 2).

Most of our effort went to efficiently predict the IP-
ID for other operating systems, e.g. Linux, which use
per-destination IP-ID counters. In the (common) NAT
scenario of Figure 1, the prediction is still easy (and de-
scribed in Section 2): since Alice uses the same destina-
tion IP address (of the NAT) to send packets to both Zom-
bie and Bob, then Zombie receives the current value of
the relevant IP-ID counter whenever he receives a packet

from Alice. The harder challenge is to predict the IP-
ID when the victim (Bob) is not behind a NAT at all, or
when the attacker does not control a zombie behind such
NAT. This is what we do in the rest of the paper.

In Section 3 we show how to expose the IP-ID using
only a puppet PuZo, i.e., code restricted within sandbox
(e.g., applet, script), rather than a ‘real zombie’. Further-
more, these attacks work not only when Bob is ‘behind’
a NAT, but also in two other common scenarios: when
PuZo runs on Bob’s machine, and when Alice and Bob
are connected by a tunnel and PuZo is also connected via
the tunnel (with Alice), as illustrated in Figure 2.

BobAlice

GWBGWA

Internet

S

LANA LANB

PuZo

Mal

Tunnel

Figure 2: A Tunnel Topology, one of the three topologies
for the ID-Exposing Attack (see text). An IP in IP tunnel
exists from LANA to LANB, GWA uses a per-destination
IP identifier counter and PuZo is an end host running ad-
versarial code (possibly a puppet restricted to sandbox -
see Subsection 3.3). S is some network server that PuZo
may receive data from, and Alice and Bob are honest
hosts in LANA and LANB respectively.

Note that in the tunnel scenario, since Alice uses per-
destination IP-ID counters, then packets sent to PuZo
will use a separate counter than the one used for pack-
ets to Bob. However, we show that PuZo can help the
attacker expose the IP-ID used by GWA to send packets
to GWB, hence communication over the tunnel is vulner-
able to the loss, interception and modification attacks as
outlined above (and described in Section 2). Of course, if
the communication is cryptographically-protected (e.g.,
IPsec tunneling), then interception and modification may
be meaningless.

In Section 3 we assume that there is no legitimate traf-
fic during the ID-exposing process. In Section 4, we
present an attack that requires initial knowledge of the
IP-ID (e.g., by applying previous attack during period of
no traffic), and then ‘maintains’ this knowledge, while
also discarding most of the legitimate traffic. This is a
very efficient attack, but since most legitimate traffic is
lost, it is mainly useful for DoS. In the full version of
this paper [7] we present two improvements to the ID-
exposing attack (presented in Section 3) to handle con-
current legitimate traffic; this attack has higher overhead
and complexity.

Our attacks apply only to fragmented traffic. Is there
(still) lots of fragmented traffic? There is significant ef-
fort to avoid fragmentation; in particular, IPv6 supports

2

only source fragmentation (and avoids fragmentation by
routers as in IPv4). This follows the seminal work of
Kent and Mogul [11] which mainly presented perfor-
mance and reliability concerns. However, avoiding frag-
mentation is not trivial. Indeed, fragmentation is still a
widely used, esp. for UDP and tunneled traffic; e.g., see
[16]. In fact, source fragmentation is used even in IPv6
(and is vulnerable to our attacks).

CONTRIBUTIONS. We identify critical DoS and
exposure vulnerabilities which result from specific flaws
in the IPv4 and IPv6 specifications. Specifically, with
high probability, we can intercept or block fragmented
packets, provided the destination is connected via a NAT
device or a tunnel, or when the source uses globally-
incrementing IP-ID field (e.g., running any Windows
OS). These vulnerabilities are very practical, and were
validated on widely-deployed systems in realistic envi-
ronments, e.g., with concurrent legitimate communica-
tion. Vendors were informed.

Our work exploits packet losses and delays as a side-
channel, allowing powerful attacks on confidentiality,
integrity and availability. So far, side-channels were
mostly used in cryptographic attacks; we show they can
be used for critical network security attacks. We believe
that there is a significant potential for other vulnerabili-
ties using such side channels.

ORGANIZATION. Section 2 describes different ap-
proaches for choosing IP identifiers, considers practical
scenarios where an IP identifier can be easily obtained
by non eavesdropping adversaries and presents new re-
lated attacks. Most notably, we show a scenario of a NAT
connected network that allows a spoofing-only adversary
to intercept fragments of a packet. Section 3 presents a
technique to obtain the IP identifier between two tunnel
gateways and Section 4 presents a complementary de-
nial of service attack as well as presents empirical impact
measurements on popular IPsec tunnels. Lastly, Section
5 presents our conclusions.

2 Easy Blind Predictable IP-ID Attacks

The IP identifier field (IP-ID) is used to uniquely identify
the set of fragments belonging to a specific packet. The
IPv4 standard [15] does not specify how to choose the
(16-bit) identifier; two methods appear most common1,
per-destination IP-ID counter, where the identifier i(d)
of destination d is initialized randomly and incremented
whenever sending packet to d (e.g., in Linux), or a global
IP-ID counter, incremented whenever sending packet to
any destination (e.g., in Windows). The IPv6 standard

1The trivial, intuitively-appealing use of a randomly-chosen iden-
tifier, is not recommended, at least for IPv4; by the birthday paradox,
in roughly

⌈
1.2 · 28

⌉
= 307 packets there will be a repetition, which

would cripple performance.

[6] uses a (32-bit) identifier field and specifically recom-
mends using a counter to update it, explicitly allowing
either a per-destination or a global IP-ID counter.

An attacker can usually learn the value of a global IP-
ID counter simply by receiving some packet from the
sender. Receiving such packet is often possible, e.g., as a
response to a packet sent by attacker (e.g., SYN to public
web server), or by causing the client to open a connec-
tion to the attacker (e.g., by image embedded in some
web page).

It is sometimes also easy to learn the value of a per-
destination IP-ID counter; specifically, when the attacker
can receive packets sent to the same IP as the destination,
e.g., in scenarios as in Figure 1. Here, the recipient, Bob,
and another host who is controlled by the attacker, Zom-
bie, are behind a typical many-to-one Network Address
Translator (NAT) device [17] and therefore, have the
same Internet IP address. If Alice uses per-destination
IP-ID counters, then she uses the same counter for pack-
ets sent to Zombie and to Bob. Although the NAT device
makes some modifications to the IP header, it normally
does not change the IP-ID field. Thus, any destination
behind the NAT would receive the IP-ID field exactly as
sent by Alice. This allows Zombie to obtain the current
value of the identifier and report to the attacker, Mal.

In this section we show how to exploit such ‘known
IP-ID’ scenarios for fragment interception and DoS at-
tacks. The next section deals with the more challenging
case of per-destination incrementing IP-ID counter, and
avoids the zombie requirement.

We next discuss how Mal can use the exposed identi-
fier. One obvious and trivial use is to dramatically im-
prove the (quite weak) results of the mis-association at-
tack of [9], namely send fragments with the expected
identifier and some (‘random’) data, resulting in failure
in the defragmentation process. In the next subsection,
we show that the exposed identifier also allows the at-
tacker to intercept (expose) information sent to others.

2.1 Fragment Injection and Interception
with Known-Identifier

Consider the network topology illustrated in Figure 1,
and assume that Mal obtains the identifier of the next
(fragmented) packet that Alice would send Bob, and the
IP addresses of the NAT and of Alice. The knowledge
of the identifier allows Mal to inject his own data into
the reassembled packet. Specifically, Mal sends a forged
fragment that overwrites the transport header of a frag-
mented packet (in reassembly). In case of a NAT des-
tination, the packet is forwarded to a host according to
the destination port of the transport layer header. Thus,
modifying the port would result in a different destination
(behind the NAT). Specifically, by changing the destina-

3

tion port to one the NAT assigns Zombie, Mal is able to
obtain Alice’s fragments. We now explain how this is
done.

Replacing Alice’s first fragment entirely, thereby
rewriting the transport layer header and changing the
destination of following fragments, is relatively easy: say
that the size of the IP data in Alice’s packet fragments is
l bytes except the last fragment which may be shorter.

In the initial step of the attack Mal sends to the NAT
a forged fragment that matches Alice’s packet four re-
assembly parameters (source address, destination ad-
dress, transport protocol, IP-ID); we assume he does this
step before Alice sends the corresponding packet. The
fragment specifies offset = l + 1 and MF = 0, i.e.,
it appears as the second and last fragment of a packet;
lower offsets are also suitable as long as the forged frag-
ment does not entirely overlap the first fragment of Al-
ice’s packet.

Next, Mal waits for Alice’s packet fragments to ar-
rive; we present the usual case where they arrive in or-
der (when they arrive in reverse order, the attack is even
simpler!). When Alice’s first fragment arrives at the
cache, then it is immediately reassembled with the ex-
isting forged fragment that Mal had sent and they both
are removed from the cache. As a result, the rest of the
fragments of the packet will be cached. When Mal as-
sumes that all of Alice’s fragments arrived at the NAT, he
sends a forged ‘first’ fragment (i.e., offset = 0, MF = 1)
that specifies a new transport layer header, and in it, a
new destination port. This fragment is then reassembled
with all other fragments of the packet; thereby, changing
the destination of the reassembled packet to another host
behind the NAT, e.g., to Zombie.

The first fragment (which Mal will not obtain) often
includes critical information, e.g., cookies, user name or
other credentials. In the full version [7] we present a
simple variant of the attack, that allows to capture the
first fragment as well.

2.1.1 Empirical Validation

We implemented the fragment interception attack, and
tested it on two scenarios using the popular IP tables
NAT; the scenarios differed in the number of forged frag-
ments cached at the NAT at the same time (in Linux,
depending whether ipfrag max dist enforces such limita-
tion, see [12]). The network topology for the experiment
was as in Figure 1, the LAN consisted of one switch and
Mal was connected directly to the ‘Internet’ interface of
the NAT. Our results, illustrated in Figure 3, show that
Mal is able to intercept a significant amount of traffic,
even with relatively low bandwidth. Furthermore, some
traffic not intercepted was denied; only less than 5% of
Alice’s packets actually reached Bob’s application layer

in most measurements.

80.00%

82.00%

84.00%

86.00%

88.00%

90.00%

92.00%

0 20 40 60 80 100

Attacker's bandwidth Mbit/sec

1024 fragments are
in the cache

64 fragments are in
the cache

Fr
ag

m
en

t i
nt

er
ce

pt
io

n
ra

te

Figure 3: Percent of packets sent to Bob whose first
fragment reached Zombie as a function of Mal’s band-
width. All bandwidths except Mal’s are 100Mbit/sec, Al-
ice sends to Bob one packet every 5 milliseconds. More
than 95% of the traffic did not reach Bob (not shown).

3 IP-ID Exposing Attack

In this section we present an attack that exposes the
IP-ID, when the simple techniques mentioned in the
previous section fail, i.e., where the sender uses per-
destination incrementing identifiers, e.g., using Linux,
and where the attacker cannot receive the identifier di-
rectly (no Zombie behind NAT). We design a more elab-
orate attack, that exposes the identifier, for common net-
work scenarios, even in this case.

Our attack requires that the attacker, Mal, would re-
ceive some feedback on lost packets which allows him to
efficiently learn the identifier. To provide this feedback,
the attack requires an adversarial agent PuZo; in contrast
to the previous section which required a zombie, PuZo
can be merely a puppet [4], i.e., malicious code running
in sandbox (e.g., script, applet). Furthermore, while the
attack works in the NAT scenario as in Figure 1, like the
attack in the previous section, the new attack also works
in two additional common scenarios: when the puppet
runs on Bob’s machine, and when Alice and Bob are con-
nected via a tunnel as in Figure 2.

For simplicity, we now describe only the tunneling
scenario, and furthermore assume that PuZo is a zom-
bie (not a puppet), and that there is no legitimate traf-
fic during the attack, and no (benign) packet losses. In
Subsection 3.3 below, we show how to modify the attack
such that PuZo may be just puppet; and in Section 4 we
show a simple, effective method to continually expose
the ID and drop most packets (once we have the initial
IP-ID using attack in this section). In the full version [7]
we present further extensions to allow traffic also during
ID-exposing, and to deal with benign packet loss.

4

We note that the attack presented in Section 2 for net-
works behind a NAT (see Figure 1) will not succeed in
the tunnel scenario: PuZo in Figure 2 may be able to
obtain a packet from Alice, but, even if he is a zombie,
he will not be able to observe the identifier of encap-
sulated (i.e., Internet) traffic between the two gateways
since such traffic carries a different IP header.

We present two versions of the ID-Exposing attack. In
Subsection 3.1, we show a naive and rather inefficient
attack that requires a total of O(n) packets, where n is
the number of possible identifiers (n = 216 for IPv4).
In Subsection 3.2, we refine the ID-exposing attack us-
ing a meet in the middle technique, sending only O(

√
n)

packets; this also makes ID-exposing feasible for IPv6,
where the identifier field is 32 bits long.

The ID-exposing attack is based on the following ob-
servation: if Mal sends to GWB (see Figure 2) a forged
fragment with source IP of GWA and IP-ID i, then PuZo
will not receive legitimate (fragmented) packets sent via
the tunnel (i.e., from GWA to GWB), if they use the same
IP-ID i. This happens since Mal’s fragment will be mis-
associated with the legitimate fragments and produce a
corrupted packet, which will be discarded at the gateway
(GWB) upon decapsulation.

We assume that PuZo is able to send requests and re-
ceive responses from a server, S, at the other side of the
tunnel. We assume that S’s response packets are long,
and fragmented after encapsulation, i.e., between GWA

and GWB. Furthermore, we assume that PuZo is able to
identify the order by which the packets that he receives
were sent (by S), and a packet loss (when it occurs).
There are a number of methods for PuZo to conduct the
these tasks: sequential IP identifiers, TCP sequence num-
bers and possibly application layer data. For simplicity,
in following discussions we assume that PuZo uses per-
destination sequential IP identifiers for this purpose; in
Subsection 3.3 we present a more elaborate technique for
the case that PuZo is merely a puppet (and therefore, can
only use application layer data).

3.1 Naive, inefficient ID-Exposing Attack

Let n be the number of possible identifiers (i.e., 216 for
IPv4, 232 for IPv6). The basic technique we present ob-
tains the identifier by the following attack, illustrated
in Figure 4, where the adversary, Mal, caches-in one
forged fragment at GWB that PuZo ‘looks for’ by receiv-
ingO(n) packets from the other end of the network (e.g.,
from S), until he identifies that one of them was lost (mis-
associated with Mal’s forged fragment).

The attack begins by an initialization phase (step 1 in
Figure 4) where Mal clears existing fragments from the
victim gateway (GWB) fragment cache. During the ini-
tiation phase, Mal sends large spoofed fragments, that

specify a source different than GWA. These suppress the
current fragments in the table. Under default Linux con-
figuration (kernel version 2.6.39) the initiation phase re-
quires Mal to send 256KB of data. This technique is
similar to the fragment cache overflow attack presented
in [10]. We denote this step by Clean-Frag-Cache and
will also use it later in Subsection 3.2.

When the initiation phase completes, Mal sends one
small forged fragment of an encapsulated packet to
PuZo’s gateway, GWB in Figure 2, where it is cached un-
til reassembly (or timeout which is 30 seconds by default
for Linux machines). The fragment specifies GWA as
source (i.e., is spoofed), offset = MTU,MF = 0,DF =
0 with an arbitrary IP-ID value, i (in step 2 of Figure 4,
i = 2222).

Thereafter, Mal orders PuZo to send a request to a
server, S, at other end of the tunnel, for some data, e.g.,
a large file (step 3 in Figure 4), persuading S to send at
least n packets. S’s packets, before encapsulation, have
sequential IP identifiers (since they are all sent to the
same entity, Zombie), 1111, 1112, 1113, . . . in Figure 2.
The server’s packets reach its gateway, GWA, where they
are encapsulated. Upon encapsulation, the gateway at-
taches a new IP header that specifies GWA and GWB as
source and destination (i.e., gateway to gateway tunnel),
and includes a new IP identifier. Since all the encap-
sulated packets are sent from GWA to GWB (i.e., same
source and destination), they too have sequential identi-
fiers, 2221, 2222, 2223, We assume that the encap-
sulated packets sent to PuZo exceed the tunnel MTU and
are fragmented after encapsulation (see Figure 4).

Under the assumption that no other traffic takes place,
and no loss on network channels, exactly one packet of
the first n packets that were sent to PuZo will be lost,
since it will be mis-associated with Mal’s (forged) frag-
ment. PuZo receives all other packets, which specify se-
quential IP identifiers (that differ from the identifiers of
encapsulated packets). Thus, PuZo is able to detect x,
the IP identifier of the packet that was lost.

Let x̃ be the IP identifier of the last packet that PuZo
had received. PuZo computes ĩ = x̃ − x (mod n), the
total number of packets that where sent from the server
to PuZo after the lost packet. PuZo then sends ĩ back
to Mal (step 4 in Figure 4) who concludes that the next
identifier is i+ ĩ+ 1 (mod n).

3.2 Meet in the Middle, ID-Exposing At-
tack

We now revise the attack presented in the previous Sub-
section to generate only O(

√
n) packets. The revised

version of the ID-exposing attack is composed of two
phases: first, a meet in the middle attack that narrows
down the number of possible IP identifiers to

√
n. Sec-

5

Step S GWA Mal GWB PuZo

1
Clean Table: {MF = 1, Src 6= GWA, IP-Data-Len = MTU, ID = i}

⌈
Cache Size

MTU

⌉
i=1//

2
SRC = GWA , Offset = MTU, MF = 0, DF = 0, ESP, ID=2222//

3
Begin //

Get Fileoo

TCP, ID=1111// MF = 1, DF = 0, ESP, ID=2221

MF = 0, DF = 0, ESP, ID=2221
// TCP, ID=1111 //

TCP, ID=1112// MF = 1, DF = 0, ESP, ID=2222

MF = 0, DF = 0, ESP, ID=2222
//

TCP, ID=1113// MF = 1, DF = 0, ESP, ID=2223

MF = 0, DF = 0, ESP, ID=2223
// TCP, ID=1113 //

.

TCP, ID=1110// MF = 1, DF = 0, ESP, ID=2220

MF = 0, DF = 0, ESP, ID=2220
// TCP, ID=1110 //

4
ĩ=1110−1112=−2 (mod n)oo

Figure 4: ID-exposing attack in O(n) packets. No-
tice that since S sends n packets to PuZo, the identi-
fier (counter) wraps around. Assume no traffic is sent
between other entities and no network loss/corruption
while the attack takes place (see our technical report [7]
for extensions to handle these issues). MTU marks the
maximal packet length that Mal can send to GWB in a
single packet. ESP is an example of a tunneling protocol
(i.e., IPsec).

ond, an exhaustive search over the remaining possible
identifiers to discover the correct one.

In the meet in the middle phase, illustrated in Figure
5, Mal sends

√
n fragments. Each fragment specifies an

identifier that is
√
n apart from the previous one 2. For

simplicity, we start at identifier 0, i.e., send identifiers
0,
√
n, . . . , (

√
n − 1)

√
n. In this version of the attack,

the server S only sends PuZo
√
n packets. As in the pre-

vious version, one of these packets would specify an IP
identifier that was also sent by Mal and therefore, will
not reach PuZo. PuZo will then compute ĩ and send it
to Mal. Since Mal had sent

√
n forged fragments (i.e.,√

n ‘traps’), at the end of the meet in the middle phase

2In recent IPv4 Linux stacks, Mal may only be able to cache in up to
ip frag max dist different forged fragments at a time (see [12]), under
default settings this value is 64. In this case the difference between two
sequential identifiers that Mal sends is 216

64
= 1024, which is also the

number of packets S sends to PuZo. No such limitation exists for IPv6.

he obtains a list of
√
n possible identifiers. Algorithm 1

(in Appendix A) summarizes Mal’s logic above.

. . . .0 n 2n 3n 4 n

. . .

3nk 4 n 4 nk−1

. . .

Figure 5: Meet in the Middle ID-Exposing Attack. Mal
sends

√
n forged fragments that are

√
n apart; thereby,

laying
√
n ‘traps’. In this example, when the attack be-

gins the current identifier value GWA uses for packets to
GWB is 3

√
n+ k for some k <

√
n. During the meet in

the middle phase the identifier is incremented
√
n times,

once for every packet sent to PuZo. When GWA encapsu-
lates a packet for PuZo with an identifier 4

√
n, a multiple

of
√
n, it will be lost and PuZo will detect this event.

Next begins the exhaustive search phase, where Mal
searches for the correct identifier in a divide and conquer
methodology. Namely, at round r, Mal sends

√
n

2r forged
fragments that match

√
n

2r possible identifiers. These
fragments are saved at the recipient’s fragments cache
(GWB in Figure 2). Thereafter, PuZo sends a request to
S who sends (at least) one packet in response, which is
fragmented after encapsulation. If the packet does not
reach PuZo, then the current identifier is one of those
sent by Mal at this round of the search. Otherwise, it is
one of the other identifiers. Mal continues this process,
that eliminates half the possible identifiers in each round,
until he obtains the current identifier. Algorithm 2 sum-
marizes the exhaustive search phase.

Before the meet in the middle phase and any round of
the exhaustive search phase, Mal cleans the victim gate-
way’s (GWB) cache, as described in the initiation phase
of the previous version of the attack (see Section 3.1).

3.2.1 Empirical Validation

We tested the meet in the middle ID-exposing technique
on two widely used Linux IPsec gateways that use frag-
mentation to cope with oversized encapsulated packets.
See discussion of the implementations and setup in Sec-
tion 4.2. We conducted 100 iterations of the ID-exposing
attack for IPv4, and obtained the current identifier in each
iteration within less than 20 seconds.

3.3 IP-ID Exposing using Puppet
We now briefly outline how the attack can be modified,
s.t. PuZo may be a puppet, i.e., code running within
sandbox [4]. The challenge is that a puppet PuZo needs
to identify the offset of a lost packet, but can only use

6

TCP socket services, and in particular PuZo cannot read
data from TCP and IP headers.

The solution is quite simple: first, Mal sends his
forged fragment or fragments to GWA, S’s gateway (cf.
to PuZo’s gateway). Second, PuZo opens multiple sepa-
rate connections to S, and on each of these connections
he sends a long request, such that the request itself will
be fragmented after encapsulation. A request that has
the same IP-ID as of Mal’s fragments will be discarded
and therefore, PuZo will not receive a response in that
connection. Say that the requests that PuZo sends are
numbered 1, . . . , x, and x̃ is the index of the lost request,
PuZo’s feedback to Mal is ĩ = x − x̃, and the attack
continues as before.

4 Continual Deny and Expose Attack

Section 3 introduced a method to obtain the current iden-
tifier attached to encapsulated traffic by a (Linux) tunnel
gateway, GWA (see Figure 2). Trivially, given the iden-
tifier, it is possible to execute a fragment mis-association
attack (see [9]) to deny fragmented traffic from GWA

to GWB, the two tunnel gateways. Most notably, this
includes fragmented encapsulated traffic from LANA to
LANB. However, it is difficult for Mal to maintain long
term synchronization with the current value of the iden-
tifier since it is incremented for every packet sent from
GWA to GWB.

In this section we present an attack that causes GWB

to discard fragmented traffic sent from GWA given an
initial value for the corresponding IP identifier; we as-
sume that GWA uses a per destination counter, e.g., a
Linux machine. We also assume the topology in Fig-
ure 2, and the existence of a zombie/puppet PuZo behind
GWB; for simplicity, our description will assume zom-
bie. We present empirical measurements of our attack on
two extensively deployed (commercial and open source)
Linux based IPsec implementations that fragment encap-
sulated traffic.

4.1 Attack Process
Mal begins the continual deny and expose attack after the
ID-exposing process (see Section 3) where he obtained i,
the IP identifier of the next packet sent by GWA to PuZo’s
gateway, GWB. We use the identifier’s counter property
to maintain a small interval of possible IP-ID values at
any given time.

During the attack, Mal always keeps two sequences
of consecutive identifiers cached at GWB, between these
sequences a small gap of identifiers that Mal did not
send, see Figure 6. Packets sent from Alice to Bob, two
hosts in Figure 2, that arrive fragmented at GWB for de-
capsulation would reach Bob only if they specify an IP

identifier not within one of Mal’s sequences. The small
gap between the two sequences allows PuZo to monitor
the progress of the identifier value by testing whether he
can receive (fragmented) packets via the tunnel. Further-
more, the devision into two sequences provides Mal early
notifications to update his cached fragments. Namely,
Mal has time to send a new sequence of fragments until
the second sequence, already cached at GWB, becomes
obsolete. These two characteristics allow even attackers
with relatively small bandwidths to cause high loss rates
for fragmented traffic, as we validate by experiments de-
scribed in the next subsection.

im /2−1i imc−1im /2c

Current id

Figure 6: Abstract view of GWB’s cache during the at-
tack. Mal keeps two sequences of forged fragments
cached in. A fragmented packet with IP-ID j may only
arrive at its destination if: (1) j is within the gap; or (2)
j < i∨ j ≥ i+m+ c. In the former case Mal sends the
next sequence (which replaces the first one), in the latter
case, synchronization with the current identifier is lost.

The attack includes an initialization phase, where Mal
sends PuZo’s gateway, GWB, the first two sequences of
forged fragments. Letm be the maximal number of frag-
mented packets from a single source address that may be
cached simultaneously at GWB. m is usually either 64,
in case a specific limitation exists (via ipfrag max dist,
see [12]) or several thousand fragments otherwise.

Each of the two sequences that Mal sends is composed
of m

2 (spoofed) fragments with consecutive identifiers.
The fragments in the first and second sequences spec-
ify the identifiers within the intervals [i, i + m

2 − 1],
[i + m

2 + c, i + m + c − 1] respectively, where c is
some small positive integer. Namely, between the two
sequences there is a small gap of c identifiers that were
not sent by Mal, see Figure 6. Thereafter, Mal updates:
i← i+m+2c, and orders PuZo to begin his role in the
attack. This completes the initiation phase and begins the
attack itself.

When PuZo receives Mal’s message, he begins send-
ing requests to a server, S, at the other end of the tunnel
(see Figure 2), who sends in response a single or few
long packets which will be fragmented after encapsula-
tion. This process is similar to the one described in the
ID-exposing attack in Section 3. PuZo sends such re-
quests periodically every τ seconds (see Algorithm 3).
The length of the gap, c, must be sufficiently large to al-
low PuZo to receive a packet given the request interval τ .
However, c should be small such that only few legitimate

7

packets will pass through during the ‘in-gap’ period.
When one of S’s packets reaches PuZo, he concludes

that the current identifier is within the gap between the
two sequences, and notifies Mal, who then sends the next
sequence of identifiers (see Algorithm 3); i.e., identifiers
in the interval [i, i + m

2 − 1], and updates the current
index: i ← i + m

2 + c. The new sequence of fragments
that Mal sends supersedes the first of the two sequences
that he had previously sent and are currently cached at
GWB since the LRU cache management paradigm (see
[5]).

When the identifier is within the gap, legitimate traf-
fic is not disrupted. Thus, PuZo makes frequent requests
and generates response traffic from S to himself (with-
out waiting between requests). Each response packet
advances the identifier counter until eventually it is af-
ter the gap. At this time the identifier within the tun-
nel equals to that of a forged fragment within the second
sequence cached by Mal in GWB. PuZo identifies this
event when a response packet is lost, i.e., assumes that
mis-association had occurred and goes back to sending
a request every τ seconds 3. Algorithms 3, 4 summarize
Mal and PuZo’s logic above.

4.2 Empirical Evaluation

We tested the continual deny and expose attack on two
of the most popular, well-known IPsec implementations:
an open-source implementation and a commercial imple-
mentation 4. Both implementations cope with oversize
encapsulated packets by IP fragmentation, and are vul-
nerable to our attacks.

We performed the continual deny and expose attack on
both implementations and measured its impact on TCP
and UDP traffic as a function of Mal’s bandwidth. Fig-
ure 7 illustrates the loss rate of packets sent from Alice
to Bob (see network topology in Figure 2). For most at-
tacker bandwidths, TCP data communication was com-
pletely blocked; thus, Figure 7 omits these results. The
figure shows that with reasonable bandwidths, Mal is
able to cause significant packet loss. Not surprisingly,
the lesser the number of forged fragments that Mal can
cache in, the more (legitimate) packets that reach Bob
and the greater the bandwidth Mal needs in order to per-
form the attack (compare consecutive and dashed lines).
The dashed lines in Figure 7 also indicate that for particu-
larly low bandwidths Mal cannot keep the attack ‘alive’,
and quickly looses synchronization with the current IP
identifier value within the tunnel.

3PuZo also quits the ‘frequent request’ mode when he assumes
that he had caused S to send c or more packets since sending the ‘re-
sponded’ request.

4Product names are hidden to allow vendors time to patch, these
details are available from authors.

90.00%

91.00%

92.00%

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

0 20 40 60 80 100
Attacker's bandwidth Mbit/sec

Open source, 256
Open source, 64
Commercial, 256
Commercial, 64

Lo
ss

 ra
te

Figure 7: The loss rate of packets sent from Alice to Bob
as a function of Mal’s bandwidth. All bandwidths ex-
cept Mal’s are 100Mbit/sec. Each measurement is the
average of 5 iterations of a 5 minute attack. Consecutive
lines mark a scenario where Mal is able to cache in (at
GWB) 256 forged fragments at once, while the dashed
lines mark a scenario where Mal is only able to cache
in 64 such fragments (the default Linux limitation). The
length of the gap between two consecutive sequences that
Mal sends (i.e., c), is 4. PuZo receives a packet from S
every 10 milliseconds, and Alice sends Bob a packet ev-
ery 5 milliseconds.

5 Conclusions

We presented critical attacks against both IPv4 and IPv6.
The attacks can be deployed by a blind (spoofing) at-
tacker, and result in packet interception, modification and
loss. Our main conclusion is the need to improve
the specifications and validation of common network-
ing protocols such as IP, following (and motivating) [8].
As a more immediate conclusion, we believe implemen-
tations of IPv4, IPv6, IPsec and other tunnels, should
be carefully tested against the vulnerabilities described
within and in particular modify their ‘IP-ID choosing’
paradigm. Furthermore, it is advisable that erratas be
issued for the relevant specifications, esp. considering
that recently, with the adoption of mobile TCP/IP de-
vices, there may be many new implementations. Finally,
since many implementations may be impractical to fix in
timely fashion, appropriate defenses should be added to
firewalls and IDS/IPS devices.

Acknowledgments
This work is based on preliminary research by Roman
Yakirevich, who identified (other) problems in handling
of fragmentation in TCP and IPsec implementations;
many thanks to Roman for his assistance, also in help-
ing to test our attacks. Amit Klein and Charlie Kaufman
gave us invaluable comments and encouragement; many
thanks! Thanks also to the anonymous referees for their
comments and suggestions.

8

References

[1] Teardrop DoS Attack, CERT advisory.
http://www.cert.org/advisories/
CA-1997-28.html, 1997.

[2] The Rose Attack Explained.
http://digital.net/˜egandalf/Rose_
Frag_Attack_Explained.htm, 1997.

[3] Jason Anderson. An analysis of fragmenta-
tion attacks. Unpublished manuscript, available
at http://www.ouah.org/fragma.html,
March 2001.

[4] Spyros Antonatos, Periklis Akritidis, Vinh the Lam,
and Kostas G. Anagnostakis. Puppetnets: Misusing
web browsers as a distributed attack infrastructure.
ACM Trans. Inf. Syst. Secur, 12(2), 2008.

[5] Christian Benvenuti. Understanding Linux Net-
work Internals. O’Reilly & Associates, Inc., 2006.

[6] S. Deering and R. Hinden. Internet Protocol, Ver-
sion 6 (IPv6) Specification. RFC 2460 (Draft Stan-
dard), December 1998.

[7] Yossi Gilad and Amir Herzberg. Fragmenta-
tion Considered Vulnerable - Technical Report.
http://www.cs.biu.ac.il/˜herzbea/
security/TR/11_1.pdf, 2011.

[8] Fernando Gont. Security Assessment of the Inter-
net Protocol version 4. Internet draft, April 2011.

[9] J. Heffner, M. Mathis, and B. Chandler. IPv4 Re-
assembly Errors at High Data Rates. RFC 4963
(Informational), July 2007.

[10] Charlie Kaufman, Radia Perlman, and Bill Som-
merfeld. DoS protection for UDP-based proto-
cols. In Vijay Atluri and Peng Liu, editors, Pro-
ceedings of the 10th ACM Conference on Computer
and Communication Security (CCS-03), pages 2–7,
New York, October 27–30 2003. ACM Press.

[11] Christopher A. Kent and Jeffrey C. Mogul. Frag-
mentation considered harmful. Research Report
87/3, Western Research Lab, December 1987. An
abbreviated version was published in the proceed-
ings of the ACM SIGCOMM, 390–401, 1987.

[12] Kernel.org. Linux Kernel Documentation.
http://www.kernel.org/doc/
Documentation/networking/
ip-sysctl.txt, 2011.

[13] Ed M. Kenney. Ping o’ death.
http://www.insecure.org/sploits/
ping-o-death.html, 1996.

[14] I. Miller. Protection Against a Variant of the Tiny
Fragment Attack (RFC 1858). RFC 3128 (Informa-
tional), June 2001.

[15] J. Postel. Internet Protocol. RFC 791 (Standard),
September 1981.

[16] Colleen Shannon, David Moore, and K. C. Claffy.
Beyond folklore: observations on fragmented traf-
fic. IEEE/ACM Transactions on Networking,
10(6):709–720, December 2002.

[17] P. Srisuresh and K. Egevang. Traditional IP Net-
work Address Translator (Traditional NAT). RFC
3022 (Informational), January 2001.

[18] Michal Zalewski. A new TCP/IP blind data injec-
tion technique? BugTraq mailing list post, http:
//lcamtuf.coredump.cx/ipfrag.txt,
2003.

[19] G. Ziemba, D. Reed, and P. Traina. Security Con-
siderations for IP Fragment Filtering. RFC 1858
(Informational), October 1995.

9

A Attack Algorithms

Input: n - the number of possible IP identifiers.
Output: A - an array of

√
n possible values of the

current identifier.
Clean-Frag-Cache();
for i = 0 to

√
n− 1 do

Send-Forged-Fragment(i
√
n);

end
/* PuZo requests

√
n packets from S

and identifies the number of
packets sent after a loss (ĩ) */

Order-PuZo(‘ID-Exposing, meet in the middle’);
ĩ← Get-PuZo-Response();
for i = 0 to

√
n− 1 do

A[i]← i
√
n+ ĩ+ 1 (mod n);

end
return A;

Algorithm 1: Meet in the Middle Phase of the ID-
exposing Attack (Section 3.2): send O(

√
n) fragments,

obtain a list of
√
n possible current identifiers of encap-

sulated packets sent from S’s network (LANA in Figure
2) to PuZo’s network (LANB in Figure 2).

Input: A - an array of
√
n possible values of the

current identifier.
Output: the next identifier.
b← 0, e←

√
n− 1;

while b 6= e do
Clean-Victim-Frag-Cache();
for i = b to

⌊
e
2

⌋
do

Send-Forged-Fragment(A[i]);
end
Order-PuZo(‘ID-Exposing, exhaustive search’);
packetReceived← Get-PuZo-Response();
if packetReceived = True then

e←
⌊
e
2

⌋
;

end
else

b←
⌊
e
2

⌋
;

end
/* Account for the packet S sent

PuZo. */
Inc(A);

end
return id← A[b];

Algorithm 2: Exhaustive Search Phase of ID-exposing
Attack (Section 3.2): given a list of possible identifiers
conducts an exhaustive search to obtain the correct one.
The function ‘Inc’ increases by 1 every element of its
array parameter.

Input: i - next identifier specified in a packet sent
from GWA to GWB. m - maximal number of
IP fragments that specify GWA’s source
address and can be kept simultaneously in
GWB’s cache. c - small integer that
represents the identifier gap size between
sequences that Mal sends.

for j = 1 to 2 do
Send-Forged-Sequence(i, m2);
i← i+ m

2 + c;
end
Order-PuZo(‘DoS’);
while True do

Wait-For-PuZo-Notification();
Send-Forged-Sequence(i, m2);
i← i+ m

2 + c;
end

Algorithm 3: Mal’s attack logic for ‘continual deny and
expose’ as presented in Section 4.1. Denies fragmented
encapsulated traffic from reaching its destination, a host
behind PuZo’s gateway.

Input: τ - time in seconds between requests.
Wait-For-DoS-Request();
while True do

repeat
Send-Request();
Sleep(τ);

until Response-Arrives;
Notify-Mal();
repeat

Send-Request();
until Response-Does-Not-Arrive;

end

Algorithm 4: PuZo’s attack logic for ‘continual deny
and expose’ as presented in Section 4.1. PuZo requests
for packets and notifies Mal when a packet (response)
is received after each series of packet loss.

10

