
GPU Virtualization on VMware’s Hosted I/O Architecture
Micah Dowty, Jeremy Sugerman

VMware, Inc.
3401 Hillview Ave, Palo Alto, CA 94304
micah@vmware.com, yoel@vmware.com

Abstract
Modern graphics co-processors (GPUs) can produce
high fidelity images several orders of magnitude faster
than general purpose CPUs, and this performance expec-
tation is rapidly becoming ubiquitous in personal com-
puters. Despite this, GPU virtualization is a nascent field
of research. This paper introduces a taxonomy of strate-
gies for GPU virtualization and describes in detail the
specific GPU virtualization architecture developed for
VMware’s hosted products (VMware Workstation and
VMware Fusion).

We analyze the performance of our GPU virtualiza-
tion with a combination of applications and microbench-
marks. We also compare against software rendering, the
GPU virtualization in Parallels Desktop 3.0, and the na-
tive GPU. We find that taking advantage of hardware
acceleration significantly closes the gap between pure
emulation and native, but that different implementations
and host graphics stacks show distinct variation. The mi-
crobenchmarks show that our architecture amplifies the
overheads in the traditional graphics API bottlenecks:
draw calls, downloading buffers, and batch sizes.

Our virtual GPU architecture runs modern graphics-
intensive games and applications at interactive frame
rates while preserving virtual machine portability. The
applications we tested achieve from 86% to 12% of na-
tive rates and 43 to 18 frames per second with VMware
Fusion 2.0.

1 Introduction
Over the past decade, virtual machines (VMs) have be-
come increasingly popular as a technology for multi-
plexing both desktop and server commodity x86 com-
puters. Over that time, several critical challenges in
CPU virtualization were solved and there are now both
software and hardware techniques for virtualizing CPUs
with very low overheads [1]. I/O virtualization, how-
ever, is still very much an open problem and a wide
variety of strategies are used. Graphics co-processors
(GPUs) in particular present a challenging mixture of
broad complexity, high performance, rapid change, and
limited documentation.

Modern high-end GPUs have more transistors, draw
more power, and offer at least an order of magnitude

more computational performance than CPUs. At the
same time, GPU acceleration has extended beyond en-
tertainment (e.g., games and video) into the basic win-
dowing systems of recent operating systems and is start-
ing to be applied to non-graphical high-performance ap-
plications including protein folding, financial modeling,
and medical image processing. The rise in applications
that exploit, or even assume, GPU acceleration makes
it increasingly important to expose the physical graph-
ics hardware in virtualized environments. Additionally,
virtual desktop infrastructure (VDI) initiatives have led
many enterprises to try to simplify their desktop man-
agement by delivering VMs to their users. Graphics vir-
tualization is extremely important to a user whose pri-
mary desktop runs inside a VM.

GPUs pose a unique challenge in the field of virtu-
alization. Machine virtualization multiplexes physical
hardware by presenting each VM with a virtual device
and combining their respective operations in the hyper-
visor platform in a way that utilizes native hardware
while preserving the illusion that each guest has a com-
plete stand-alone device. Graphics processors are ex-
tremely complicated devices. In addition, unlike CPUs,
chipsets, and popular storage and network controllers,
GPU designers are highly secretive about the specifi-
cations for their hardware. Finally, GPU architectures
change dramatically across generations and their gener-
ational cycle is short compared to CPUs and other de-
vices. Thus, it is nearly intractable to provide a virtual
device corresponding to a real modern GPU. Even start-
ing with a complete implementation, updating it for each
new GPU generation would be prohibitively laborious.
Thus, rather than modeling a complete modern GPU,
our primary approach paravirtualizes: it delivers an ide-
alized software-only GPU and our own custom graphics
driver for interfacing with the guest operating system.

The main technical contributions of this paper are (1)
a taxonomy of GPU virtualization strategies—both emu-
lated and passthrough-based, (2) an overview of the vir-
tual graphics stack in VMware’s hosted architecture, and
(3) an evaluation and comparison of VMware Fusion’s
3D acceleration with other approaches. We find that a
hosted model [2] is a good fit for handling complicated,
rapidly changing GPUs while the largely asynchronous

Published in the USENIX Workshop on I/O Virtualization 2008 1



graphics programming model is still able efficiently to
utilize GPU hardware acceleration.

The rest of this paper is organized as follows. Sec-
tion 2 provides background and some terminology. Sec-
tion 3 describes a taxonomy of strategies for exposing
GPU acceleration to VMs. Section 4 describes the de-
vice emulation and rendering thread of the graphics vir-
tualization in VMware products. Section 5 evaluates the
3D acceleration in VMware Fusion. Section 6 summa-
rizes our findings and describes potential future work.

2 Background
While CPU virtualization has a rich research and com-
mercial history, graphics hardware virtualization is a rel-
atively new area. VMware’s virtual hardware has al-
ways included a display adapter, but it initially included
only basic 2D support [3]. Experimental 3D support
did not appear until VMware Workstation 5.0 (April
2005). Both Blink [4] and VMGL [5] used a user-level
Chromium-like approach [6] to accelerate fixed function
OpenGL in Linux and other UNIX-like guests. Parallels
Desktop 3.0 [7] accelerates some OpenGL and Direct3D
guest applications with a combination of Wine and pro-
prietary code [8], but loses its interposition while those
applications are running. Finally, at the most recent Intel
Developer Forum, Parallels presented a demo that ded-
icates an entire native GPU to a single virtual machine
using Intel’s VT-d [9, 10].

The most immediate application for GPU virtualiza-
tion is to desktop virtualization. While server workloads
still form the core use case for virtualization, desktop
virtualization is now the strongest growth market [11].
Desktop users run a diverse array of applications, in-
cluding entertainment, CAD, and visualization software.
Windows Vista, Mac OS X, and recent Linux distribu-
tions all include GPU-accelerated windowing systems.
Furthermore, an increasing number of ubiquitous appli-
cations are adopting GPU acceleration. Adobe Flash
Player 10, the next version of a product which currently
reaches 99.0% of Internet viewers [12], will include
GPU acceleration. There is a user expectation that vir-
tualized applications will “just work”, and this increas-
ingly includes having access to their graphics card.

2.1 GPU Hardware
This section will briefly introduce GPU hardware. It is
not within the scope of this paper to provide a full dis-
cussion of GPU architecture and programming models.

Graphics hardware has experienced a continual evo-
lution from mere CRT controllers to powerful pro-
grammable stream processors. Early graphics acceler-
ators could draw rectangles or bitmaps. Later graphics
accelerators could rasterize triangles and transform and
light them in hardware. With current PC graphics hard-

ware, formerly fixed-function transformation and shad-
ing has become generally programmable. Graphics ap-
plications use high-level Application Programming In-
terfaces (APIs) to configure the pipeline, and provide
shader programs which perform application specific
per-vertex and per-pixel processing on the GPU [13].

Future GPUs are expected to continue providing in-
creased programmability. Intel recently announced its
Larrabee [14] architecture, a potentially disruptive tech-
nology which follows this trend to its extreme.

With the recent exception of many AMD GPUs, for
which open documentation is now available [15], GPU
hardware is proprietary. NVIDIA’s hardware documen-
tation, for example, is a closely guarded trade secret.
Nearly all graphics applications interact with the GPU
via a standardized API such as Microsoft’s DirectX or
the vendor-independent OpenGL standard.

3 GPU Virtualization Taxonomy
This section explores the GPU virtualization approaches
we have considered at VMware. We use four primary
criteria for judging them: performance, fidelity, multi-
plexing, and interposition. The former two emphasize
minimizing the cost of virtualization: users desire native
performance and full access to the native hardware fea-
tures. The latter two emphasize the added value of virtu-
alization: virtualization is fundamentally about enabling
many virtual instances of one physical entity and then
hopefully using that abstraction to deliver secure isola-
tion, resource management, virtual machine portability,
and many other features enabled by insulating the guest
from physical hardware dependencies.

We observe that different use cases weight the crite-
ria differently—for example a VDI deployment values
high VM-to-GPU consolidation ratios (e.g., multiplex-
ing) while a consumer running a VM to access a game or
CAD application unavailable on his host values perfor-
mance and likely fidelity. A tech support person main-
taining a library of different configurations and an IT ad-
ministrator running server VMs are both likely to value
portability and secure isolation (interposition).

Since these criteria are often in opposition (e.g., per-
formance at the expense of interposition), we describe
several possible designs. Rather than give an exhaustive
list, we describe points in the design space which high-
light interesting trade-offs and capabilities. At a high
level, we group them into two categories: front-end (ap-
plication facing) and back-end (hardware facing).

3.1 Front-end Virtualization
Front-end virtualization introduces a virtualization
boundary at a relatively high level in the stack, and runs
the graphics driver in the host/hypervisor. This approach
does not rely on any GPU vendor- or model-specific de-

Published in the USENIX Workshop on I/O Virtualization 2008 2



tails. Access to the GPU is entirely mediated through the
vendor provided APIs and drivers on the host while the
guest only interacts with software. Current GPUs allow
applications many independent “contexts” so multiplex-
ing is easy. Interposition is not a given—unabstracted
details of the GPU’s capabilities may be exposed to the
virtual machine for fidelity’s sake—but it is straightfor-
ward to achieve if desired. However, there is a perfor-
mance risk if too much abstraction occurs in pursuit of
interposition.

Front-end techniques exist on a continuum between
two extremes: API remoting, in which graphics API
calls are blindly forwarded from the guest to the external
graphics stack via remote procedure call, and device em-
ulation, in which a virtual GPU is emulated and the em-
ulation synthesizes host graphics operations in response
to actions by the guest device drivers. These extremes
have serious disadvantages that can be overcome by in-
termediate solutions. Pure API remoting is simple to
implement, but completely sacrifices interposition and
involves wrapping and forwarding an extremely broad
collection of entry points. Pure emulation of a modern
GPU delivers excellent interposition and implements a
narrower interface, but a highly complicated and under-
documented one.

Our hosted GPU acceleration employs front-end vir-
tualization and is described in Section 4. Parallels Desk-
top 3.0, Blink, and VMGL are other examples of front-
end virtualization. Parallels appears to be closest to
pure API remoting, as VM execution state cannot be
saved to disk while OpenGL or Direct3D applications
are running. VMGL uses Chromium to augment its re-
moting with OpenGL state tracking and Blink imple-
ments something similar. This allows them suspend-to-
disk functionality and reduces the amount of data which
needs to be copied across the virtualization boundary.

3.2 Back-end Virtualization
Back-end techniques run the graphics driver stack in-
side the virtual machine with the virtualization boundary
between the stack and physical GPU hardware. These
techniques have the potential for high performance and
fidelity, but multiplexing and especially interposition
can be serious challenges. Since a VM interacts directly
with proprietary hardware resources, its execution state
is bound to the specific GPU vendor and possibly the ex-
act GPU model in use. However, exposure to the native
GPU is excellent for fidelity: a guest can likely exploit
the full range of hardware abilities.

The most obvious back-end virtualization technique
is fixed pass-through: the permanent association of a
virtual machine with full exclusive access to a physi-
cal GPU. Recent chipset features, such as Intel’s VT-d,
make fixed pass-through practical without requiring any

special knowledge of a GPU’s programming interfaces.
However, fixed pass-through is not a general solution.
It completely forgoes any multiplexing and packing ma-
chines with one GPU per virtual machine (plus one for
the host) is not feasible.

One extension of fixed pass-through is mediated pass-
through. As mentioned, GPUs already support multiple
independent contexts and mediated pass-through pro-
poses dedicating just a context, or set of contexts, to a
virtual machine rather than an entire GPU. This allows
multiplexing, but incurs two additional costs: the GPU
hardware must implement contexts in a way that they
can be mapped to different virtual machines with low
overheads and the host/hypervisor must have enough of
a hardware driver to allocate and manage GPU contexts.
Potentially third, if each context does not appear as a full
(logical) device, the guest device drivers must be able to
handle it.

Mediated pass-through is still missing any interposi-
tion features beyond (perhaps) basic isolation. A num-
ber of tactics using paravirtualization or standardization
of a subset of hardware interfaces can potentially unlock
these additional interposition features. Analogous tech-
niques for networking hardware were presented at VM-
world 2008 [16].

4 VMware’s Virtual GPU
All of VMware’s products include a virtual display
adapter that supports VGA and basic high resolution
2D graphics modes. On VMware’s hosted products,
this adapter also provides accelerated GPU virtualiza-
tion using a front-end virtualization strategy. To sat-
isfy our design goals, we chose a flavor of front-end
virtualization which provides good portability and per-
formance, and which integrates well with existing op-
erating system driver models. Our approach is most
similar to the device emulation approach above, but it
includes characteristics similar to those of API remot-
ing. The in-guest driver and emulated device communi-
cate asynchronously with VMware’s Mouse-Keyboard-
Screen (MKS) abstraction. The MKS runs as a separate
thread and owns all of our access to the host GPU (and
windowing system in general).

4.1 SVGA Device Emulation
Our virtual GPU takes the form of an emulated PCI de-
vice, the VMware SVGA II card. No physical instances
of this card exist, but our virtual implementation acts like
a physical graphics card in most respects. The architec-
ture of our PCI device is outlined by Figure 1. Inside
the VM, it interfaces with a device driver we supply for
common guest operating systems. Currently only the
Windows XP driver has 3D acceleration support. Out-
side the VM, a user-level device emulation process is re-

Published in the USENIX Workshop on I/O Virtualization 2008 3



sponsible for handling accesses to the PCI configuration
and I/O space of the SVGA device.

FIFO Memory

FIFO Pointers 

Async. regs

3D Caps

Sync. Registers

Video Mode 

Device caps

GMR Config
...

IRQ Config

Virtual VRAM

2D Framebuffer 

General Purpose
DMA memory
...

GMR Page Tables

GMR 0
...

VRAM GMR

PCI Device

BAR 0

BAR 1

BAR 2

IRQ

Virtual
DMA Engine

Physical
VRAM

Command
FIFO Buffer

MKS
HostOps

I/O Space

Index

Value

IRQ Status

System Memory

User-defined
GMR

Figure 1: VMware SVGA II device architecture

GPU API / Driver

GPU

H
os

t
G

ue
st

SVGA FIFO / Registers

VMware SVGA Driver

DMA 
Engine

MKS / HostOps Dispatch

SVGA Device

Guest Mem

Shader
Program
Translator

Guest VRAM

SVGA GMR

App

Surface
Abstraction 

State
Translator

3D Drawing Path

2D 3D

Video

2
D

 C
o
m

p
o
si

ti
n
g

3
D

 R
e
n
d
e
ri

n
g

Figure 2: The virtual graphics stack. The MKS/HostOps
Dispatch and rendering occur asynchronously in their
own thread.

Our virtual graphics device provides three fundamen-
tal kinds of virtual hardware resources: registers, Guest
Memory Regions (GMRs), and a FIFO command queue.

Registers may be located in I/O space, for infrequent
operations that must be emulated synchronously, or in
the faster “FIFO Memory” region, which is backed by
plain system memory on the host. I/O space registers
are used for mode switching, GMR setup, IRQ acknowl-
edgement, versioning, and for legacy purposes. FIFO
registers include large data structures, such as the host’s
3D rendering capabilities, and fast-moving values such
as the mouse cursor location—this is effectively a shared

memory region between the guest driver and the MKS.
GMRs are an abstraction for guest owned memory

which the virtual GPU is allowed to read or write. GMRs
can be defined by the guest’s video driver using arbitrary
discontiguous regions of guest system memory. Addi-
tionally, there always exists one default GMR: the de-
vice’s “virtual VRAM.” This VRAM is actually host
system memory, up to 128 MB, mapped into PCI mem-
ory space via BAR1. The beginning of this region is
reserved as a 2D framebuffer.

In our virtual GPU, physical VRAM is not directly
visible to the guest. This is important for portability, and
it is one of the primary trade-offs made by our front-
end virtualization model. To access physical VRAM
surfaces like textures, vertex buffers, and render targets,
the guest driver schedules an asynchronous DMA op-
eration which transfers data between a surface and a
GMR. In every surface transfer, this DMA mechanism
adds at least one copy beyond the normal overhead that
would be experienced in a non-virtualized environment
or with back-end virtualization. Often only this single
copy is necessary, because the MKS can provide the
host’s OpenGL or Direct3D implementation with direct
pointers into mapped GMR memory. This virtual DMA
model has the potential to far outperform a pure API re-
moting approach like VMGL or Chromium, not only be-
cause so few copies are necessary, but because the guest
driver may cache lockable Direct3D buffers directly in
GMR memory.

Like a physical graphics accelerator, the SVGA de-
vice processes commands asynchronously via a lockless
FIFO queue. This queue, several megabytes in size,
occupies the bulk of the FIFO Memory region refer-
enced by BAR2. During unaccelerated 2D rendering,
FIFO commands are used to mark changed regions in the
framebuffer, informing the MKS to copy from the guest
framebuffer to the physical display. During 3D render-
ing, the FIFO acts as transport layer for our architecture-
independent SVGA3D rendering protocol. FIFO com-
mands also initiate all DMA operations, perform hard-
ware accelerated blits, and control accelerated video and
mouse cursor overlays.

We deliver host to guest notifications via a virtual in-
terrupt. Our virtual GPU has multiple interrupt sources
which may be programmed via FIFO registers. To mea-
sure the host’s command execution progress, the guest
may insert FIFO fence commands, each with a unique
32-bit ID. Upon executing a fence, the host stores its
value in a FIFO register and optionally delivers an inter-
rupt. This mechanism allows the guest to very efficiently
check whether a specific command has completed yet,
and to optionally wait for it by sleeping until a FIFO
goal interrupt is received.

The SVGA3D protocol is a simplified and idealized

Published in the USENIX Workshop on I/O Virtualization 2008 4



adaptation of the Direct3D API. It has a minimal number
of distinct commands. Drawing operations are expressed
using a single flexible vertex/index array notation. All
host VRAM resources, including 2D textures, 3D tex-
tures, cube environment maps, render targets, and ver-
tex/index buffers are represented using a homogeneous
surface abstraction. Shaders are written in a variant
of Direct3D’s bytecode format, and most fixed-function
render states are based on Direct3D render state.

This protocol acts as a common interchange format
for GPU commands and state. The guest contains API
implementations which produce SVGA3D commands
rather than commands for a specific GPU. This provides
an opportunity to actively trade capability for portability.
The host can control which of the physical GPU’s fea-
tures are exposed to the guest. As a result, VMs using
SVGA3D are widely portable between different physical
GPUs. It is possible to suspend a live application to disk,
move it to a different host with a different GPU or MKS
backend, and resume it. Even if the destination GPU ex-
poses fewer capabilities via SVGA3D, in some cases our
architecture can use its layer of interposition as an op-
portunity to emulate missing features in software. This
portability assurance is critical for preventing GPU vir-
tualization from compromising the core value proposi-
tions of machine virtualization.

4.2 Rendering
This FIFO design is inherently asynchronous. All host-
side rendering happens in the MKS thread, while the
guest’s virtual CPUs execute concurrently. As illustrated
in Figure 2, access to the physical GPU is mediated first
through the GPU vendor’s driver running in the host OS,
and secondly via the Host Operations (HostOps) back-
ends in the MKS. The MKS has multiple HostOps back-
end implementations including GDI and X11 backends
to support basic 2D graphics on all Windows and Linux
hosts, a VNC server for remote display, and 3D acceler-
ated backends written for both Direct3D and OpenGL.
In theory we need only an OpenGL backend to support
Windows, Linux, and Mac OS hosts; however we have
found Direct3D drivers to be of generally better qual-
ity, so we use them when possible. Additional backends
could be written to access GPU hardware directly.

The guest video driver writes commands into FIFO
memory, and the MKS processes them continuously on
a dedicated rendering thread. This design choice is crit-
ical for performance, however it introduces several new
challenges in synchronization. In part, this is a clas-
sic producer-consumer problem. The FIFO requires no
host-guest synchronization as long as it is never empty
nor full, but the host must sleep any time the FIFO is
empty, and the guest must sleep when it is full. The
guest may also need to sleep for other reasons. The guest

video driver must implement some form of flow con-
trol, so that video latency is not unbounded if the guest
submits FIFO commands faster than the host completes
them. The driver may also need to wait for DMA com-
pletion, either to recycle DMA memory or to read back
results from the GPU. To implement this synchroniza-
tion efficiently, the FIFO requires both guest to host and
host to guest notifications.

The MKS will normally poll the command FIFO at a
fixed rate, between 25 and 100 Hz. This is effectively the
virtual vertical refresh rate of the device during unaccel-
erated 2D rendering. During synchronization-intensive
3D rendering, we need a lower latency guest to host no-
tification. The guest can write to the doorbell, a register
in I/O space, to explicitly ask the host to poll the com-
mand FIFO immediately.

5 Evaluation
We conducted two categories of tests: application
benchmarks, and microbenchmarks. All tests were con-
ducted on the same physical machine: a 2nd generation
Apple Mac Pro, with a total of eight 2.8 GHz Intel Xeon
cores and an ATI Radeon HD2600 graphics card. All
VMs used a single virtual CPU. With one exception, we
found that all non-virtualized tests were unaffected by
the number of CPU cores enabled.

5.1 Application Benchmarks

Application Resolution FPS
RTHDRIBL 1280× 1024 22
RTHDRIBL 640× 480 27.5
Half Life 2: Episode 2 1600× 1200 22.2
Half Life 2: Episode 2 1024× 768 32.2
Civilization 4 1600× 1200 18
Max Payne 2 1600× 1200 42

Table 1: Absolute frame rates with VMware Fusion 2.0.
All applications run at interactive speeds (18–42 FPS).

The purpose of graphics acceleration hardware is
to provide higher performance than would be possible
using software alone. Therefore, in this section we
will measure both the performance impact of virtual-
ized graphics relative to non-virtualized GPU hardware,
and the amount of performance improvement relative to
TransGaming’s SwiftShader [17] software renderer, run-
ning in a VMware Fusion virtual machine.

In addition to VMware Fusion 2.0, which uses the ar-
chitecture described above, we measured Parallels Desk-
top 3.0 where possible (three of our configurations do
not run). Both versions are the most recent public release
at time of writing. To demonstrate the effects that can
be caused by API translation and by the host graphics
stacks, we also ran our applications on VMware Work-
station 6.5. These used our Direct3D rendering backend

Published in the USENIX Workshop on I/O Virtualization 2008 5



1 10 100

% of Host Performance

RTHDRIBL (1280x1024)

RTHDRIBL (640x480)

Half Life 2: Episode 2 (1600x1200)

Half Life 2: Episode 2 (1024x768)

Civilization 4 (1600x1200)

3Dmark2001 (1024x768)

Max Payne 2 (1600x1200)

Fusion 2.0
Workstation 6.5
Parallels 3.0
SwiftShader

Figure 3: Relative performance of software rendering (SwiftShader) and three hardware accelerated virtualization
techniques. The log scale highlights the huge gap between software and hardware acceleration versus the gap between
virtualized and native hardware.

on the same hardware, but running Windows XP using
Boot Camp.

It is quite challenging to measure the performance of
graphics virtualization implementations accurately and
fairly. The system under test has many variables, and
they are often difficult or impossible to isolate. The vir-
tualized operating system, host operating system, CPU
virtualization overhead, GPU hardware, GPU drivers,
and application under test may each have a profound ef-
fect on the overall system performance. Any one of these
components may have opaque fast and slow paths—
small differences in the application under test may cause
wide gaps in performance, due to subtle and often hid-
den details of each component’s implementation. For
example, each physical GPU driver may have differ-
ent undocumented criteria for transferring vertex data at
maximum speed.

Additionally, the matrix of possible tests is limited
by incompatible graphics APIs. Most applications and
benchmarks are written for a single API, either OpenGL
or Direct3D. Each available GPU virtualization imple-
mentation has a different level of API support. Parallels
Desktop supports both OpenGL and Direct3D, VMware
Fusion supports only Direct3D applications, and VMGL
supports only OpenGL.

Figure 3 summarizes the application benchmark re-
sults. All three virtualization products performed sub-
stantially better than the fastest available software ren-
derer, which obtained less than 3% of native perfor-
mance in all tests. Applications which are mostly GPU
limited, RTHDRIBL [18] and Half Life 2: Episode 2,
ran at closer to native speeds. Max Payne exhibits low
performance relative to native, but that reflects the low
ratio of GPU load to API calls. As a result, virtualiza-
tion overhead occupies a higher proportion of the whole

execution time. In absolute terms, though, Max Payne
has the highest frame rate of our applications.

Table 1 reports the actual frame rates exhibited with
these applications under VMware Fusion. While our vir-
tualized 3D acceleration still lags native performance,
we make two observations: it still achieves interactive
frame rates and it closes the lion’s share of the gulf be-
tween software rendering and native performance. For
example, at 1600× 1200, VMware Fusion renders Half-
Life 2 at 22 frames per second, which is 23.35x faster
than software rendering and only 2.4x slower than na-
tive.

5.2 Microbenchmarks
To better understand the nature of front-end virtualiza-
tion’s performance impact, we performed a suite of mi-
crobenchmarks based on triangle rendering speed under
various conditions. For all microbenchmarks, we ren-
dered unlit untextured triangles using Vertex Shader 1.1
and the fixed-function pixel pipeline. This minimizes
our dependency on shader translation and GPU driver
implementation.

Each test renders a fixed number of frames, each con-
taining a variable number of draw calls with a variable
length vertex buffer. For security against jitter or drift
caused by timer virtualization, all tests measured elapsed
time via a TCP/IP server running on an idle physical
machine. Parameters for each test were chosen to op-
timize frame duration, so as to minimize the effects of
noise from time quantization, network latency, and ver-
tical sync latency.

The static vertex test, Figure 4(a), tests performance
scalability when rendering vertex buffers which do not
change contents. In Direct3D terms, this tests the man-
aged buffer pool. Very little data must be exchanged

Published in the USENIX Workshop on I/O Virtualization 2008 6



between host and guest in this test, so an ideal front-
end virtualization implementation would do quite well.
VMware Workstation manages to get just over 80% of
the host’s performance in this test. Parallels Desktop and
VMware Fusion get around 30%. In our experience, this
is due to inefficiency in the Vertex Buffer Object support
within Mac OS’s OpenGL stack.

The dynamic vertex test, Figure 4(b), switches from
the managed buffer pool back to the default Direct3D
buffer pool, and uploads new vertex data prior to each
of the 100 draws per frame. It tests the driver stack’s
ability to stream data to the GPU, and manage the re-use
of buffer memory.

The next test, Figure 4(c), is intended to test virtual-
ization overhead while performing a GPU-intensive op-
eration. While triangles in previous tests had zero pixel
coverage, this tests renders triangles covering half the
viewport. Ideally, this test would show nearly identical
results for any front-end virtualization implementation.
The actual results are relatively close, but on VMware’s
platform there is a substantial amount of noise in the
results. This appears to be due to the irregular com-
pletion of asynchronous commands when the physical
GPU is under heavy load. Also worth noting is the fact
that VMware Fusion, on average, performed better than
the host machine. It’s possible that this test is exercis-
ing a particular drawing state which is more optimized
in ATI’s Mac OS OpenGL driver than in their Windows
Direct3D driver.

The final test, Figure 4(d), measures the overhead
added to every separate draw. This was the only test
where we saw variation in host performance based on
the number of enabled CPU cores. This microbench-
mark illustrates why the number of draw calls per frame
is, in our experience, a relatively good predictor of over-
all application performance with front-end GPU virtual-
ization.

6 Conclusion
In VMware’s hosted architecture, we have implemented
front-end GPU virtualization using a virtual device
model with a high level rendering protocol. We have
shown it to run modern graphics-intensive games and
applications at interactive frame rates while preserving
virtual machine interposition.

There is much future work in developing reliable
benchmarks which specifically stress the performance
weaknesses of a virtualization layer. Our tests show API
overheads of about 2 to 120 times that of a native GPU.
As a result, the performance of a virtualized GPU can
be highly dependent on subtle implementation details of
the application under test.

Back-end virtualization holds much promise for per-
formance, breadth of GPU feature support, and ease of

driver maintenance. While fixed pass-through is easy,
none of the more advanced techniques have been demon-
strated. This is a substantial opportunity for work by
GPU and virtualization vendors.

Front-end virtualization currently shows a substantial
degradation in performance and GPU feature set rela-
tive to native hardware. Nevertheless, it is already en-
abling virtualized applications to run interactively that
could never have been virtualized before, and is a foun-
dation for virtualization of tomorrow’s GPU-intensive
software. Even as back-end virtualization gains popu-
larity, front-end virtualization can fill an important role
for VMs which must be portable among diverse GPUs.

7 Acknowledgements
Many people have contributed to the SVGA and 3D
code over the years. We would specifically like to thank
Tony Cannon and Ramesh Dharan for their work on the
foundations of our display emulation. Aaditya Chan-
drasekhar pioneered our shader translation architecture
and continues to advance our Direct3D virtualization.
Shelley Gong, Alex Corscadden, Mark Sheldon, and
Stephen Johnson all actively contribute to our 3D em-
ulation.

References
[1] Keith Adams and Ole Agesen. A Comparison of

Software and Hardware Techniques for x86 Virtu-
alization. In Proceedings of ASPLOS ’06, October
2006.

[2] Jeremy Sugerman, Ganesh Venkitachalam, and
Beng-Hong Lim. Virtualizing I/O Devices on
VMware Workstation’s Hosted Virtual Machine
Monitor. In Proceedings of the 2001 USENIX An-
nual Technical Conference, June 2001.

[3] VMware SVGA Device Interface and Pro-
gramming Model. In X.org source repository,
xf86-video-vmware driver README.

[4] Jacob Gorm Hansen, Blink: Advanced Display
Multiplexing for Virtualized Applications. In Pro-
ceedings of NOSSDAV 2007, June 2007.

[5] H. Andrés Lagar-Cavilla et al., VMM-Independent
Graphics Acceleration. In Proceedings of VEE ’07.

[6] Greg Humphreys et al., Chromium: A Stream-
Processing Framework for Interactive Rendering
on Clusters. In Proceedings of the 29th Annual
Conference on Computer Graphics and Interactive
Techniques, pages 693-702 (2002).

[7] Parallels Desktop, http://www.parallels.
com/en/desktop/

[8] Parallels on the Wine project wiki, http://
wiki.winehq.org/Parallels

Published in the USENIX Workshop on I/O Virtualization 2008 7



0 20000 40000 60000 80000 100000

Batch Size (triangles)

1

2

3

4

5

6

7

Ti
m

e
 (

se
co

n
d

s)
Parallels Desktop 3.0
Vmware Fusion 2.0
Vmware Workstation 6.5
Host

(a) Static vertex rendering performance

0 20000 40000 60000 80000 100000

Batch Size (triangles)

0.5

1

1.5

2

Ti
m

e
 (

se
co

n
d

s)

Parallels Desktop 3.0
Vmware Fusion 2.0
Vmware Workstation 6.5
Host

(b) Dynamic vertex rendering performance

0 200 400 600 800 1000

Batch Size (triangles)

2

4

6

8

10

Ti
m

e
 (

se
co

n
d

s)

Vmware Workstation 6.5
Parallels Desktop 3.0
Host
Vmware Fusion 2.0

(c) Filled triangle rendering performance

0 10000 20000 30000 40000 50000

Draw Calls

0

1

2

3

4

5

Ti
m

e
 (

se
co

n
d

s)

Parallels Desktop 3.0
Vmware Fusion 2.0
Vmware Workstation 6.5
Host (1 CPU)
Host (8 CPU)

(d) Draw call overhead

Figure 4: Microbenchmark results

[9] IDF SF08: Parallels and Intel Virtualization for
Directed I/O, http://www.youtube.com/
watch?v=EiqMR5Wx_r4

[10] D. Abramson et al., Intel Virtualization Technol-
ogy for Directed I/O. In Intel Technology Journal,
http://www.intel.com/technology/
itj/2006/v10i3/ (August 2006).

[11] Andi Mann, Virtualization and Management:
Trends, Forecasts, and Recommendations, Enter-
prise Management Associates. (2008).

[12] Flash Player Penetration, http://www.
adobe.com/products/player_census/
flashplayer/

[13] John Owens, GPU architecture overview. In
SIGGRAPH ’07: ACM SIGGRAPH 2007
courses, http://doi.acm.org/10.1145/
1281500.1281643

[14] Larry Seiler et al., Larrabee: A Many-Core x86 Ar-
chitecture for Visual Computing. In ACM Transac-
tions on Graphics Vol. 27, No. 3, Article 18 (Au-
gust 2008).

[15] AMD Developer Guides and Manuals, http://
developer.amd.com/documentation/
guides/Pages/default.aspx

[16] Howie Xu et al., TA2644: Networking I/O Virtual-
ization, VMworld 2008.

[17] SwiftShader, http://www.transgaming.
com/products/swiftshader/

[18] Real-Time High Dynamic Range Image-Based
Lighting demo, http://www.daionet.gr.
jp/˜masa/rthdribl/

Published in the USENIX Workshop on I/O Virtualization 2008 8


