SVC: Selector-based View Composition for Web Frameworks

William P. Zeller and Edward W. Felten

{wzeller, felten}@cs.princeton.edu
Princeton University

Abstract

We present Selector-based View Composition (SVC), a
new programming style for web application develop-
ment. Using SVC, a developer defines a web page as
a series of transformations on an initial state. Each trans-
formation consists of a selector (used to select parts of
the page) and an action (used to modify content matched
by the selector). SVC applies these transformations on
either the client or the server to generate the complete
web page.

Developers gain two advantages by programming in
this style. First, SVC can automatically add Ajax support
to sites, allowing a developer to write interactive web ap-
plications without writing any JavaScript. Second, the
developer can reason about the structure of the page and
write code to exploit that structure, increasing the power
and reducing the complexity of code that manipulates the
page’s content.

We introduce SVC as a stateless, framework-agnostic
development style. We also describe the design, imple-
mentation and evaluation of a prototype, consisting of
a PHP extension using the WebKit browser engine [37]
and a plugin to the popular PHP MVC framework Code
Igniter [8]. To illustrate the general usefulness of SVC,
we describe the implementation of three example appli-
cations consisting of common Ajax patterns. Finally, we
describe the implementation of three post-processing fil-
ters and compare them to currently existing solutions.

1 Introduction

The growth of Ajax has resulted in increased interac-
tivity on the web but imposes additional developmental
costs on web developers. Many browsers do not support
JavaScript (and therefore Ajax), including search engine
crawlers, older browsers, browsers with JavaScript (JS)

disabled, and screen readers. These browsers will not be
compatible with portions of a site which exclusively use
Ajax.

The standard “best practice” when creating a site that
supports both JS and non-JS browsers is to use a tech-
nique called progressive enhancement [5]. A developer
first creates a site that works in non-JS browsers and then
uses JavaScript to add interactivity. For example, a page
might include a link titled “Click here for more” which
loads a new page when clicked. Progressive enhance-
ment might involve modifying that link to load and insert
additional content in-line using Ajax, without navigat-
ing to a new page. Progressively enhanced sites work in
both JS and non-JS browsers, but require the developer to
duplicate much of the site’s functionality in order to re-
spond appropriately to both Ajax and non-Ajax requests.
(We use the term non-Ajax request to refer to a request
that loads an entirely new page and Ajax request to refer
to a request made by an existing page which completes
without leaving the current page).

Alternatively, a developer may choose to only sup-
port JS browsers. With this approach, a developer di-
rectly implements functionality using JavaScript or uses
a framework such as Google Web Toolkit (GWT) [20],
which provides server-side support for generating client-
side JavaScript, but provides no easy way of supporting
non-JS browsers.

Currently, developers face a choice. They can ei-
ther support both JS and non-JS browsers by duplicating
much of a site’s functionality or risk preventing certain
users and search engines from accessing and indexing
their sites.

We believe this tradeoff is unnecessary. We present a
new programming style, SVC, which allows a site to be
constructed in a way that can support Ajax and non-Ajax
requests automatically, providing both interactivity and
backwards compatibility.

mailto:wzeller@cs.princeton.edu
mailto:felten@cs.princeton.edu

1.1 Background: MVC

The model/view/controller (MVC) architectural pattern
is commonly used in web frameworks (e.g., Django,
Ruby on Rails, Code Igniter, Struts, etc. [11, 29, 8, 34]).
In web MVC (which differs somewhat from traditional
MVC), a model encapsulates application data in a way
that is independent of how that data is rendered by the
application. The view accepts some number of models
as input and transforms them into appropriate output that
will be sent to the browser. The controller connects the
models and views, typically by bundling up model data
and sending it to the view for rendering.

The view accepts data as input and produces a string
as output. This output may include information about
its type (e.g., HTML, XML, or JSON [23]), but is other-
wise treated as an opaque string by the framework. After
being manipulated by some number of post-processing
filters, the string is sent directly to the browser. Because
the view’s output is treated as an opaque string, it is dif-
ficult for the framework to reason about the structure of
the content. These views are complicated by the need to
provide both Ajax and non-Ajax versions of a site.

1.2 Our Approach: SVC

SVC is a programming style that changes how views
construct their output. Instead of returning an opaque
string, a view describes the output as a sequence of
transformations. Each transformation consists of a se-
lector, used to query the document, and an action, used
to modify the DOM [2] nodes matched by the selector.
The framework, which previously operated on an opaque
string, now has knowledge of both the structure of the
page as well as how the page was composed. SVC ex-
presses page content in a manner that is succinct, power-
ful, and portable.

A key benefit of SVC is that the framework can choose
whether to apply the transformations on the server or on
the client (where possible). When called on to respond
to an Ajax request, it returns a list of transformations
needed to convert the current page into the new page, us-
ing client-side JS. The use of selectors allows both client-
and server-side code to convert the list of transformations
into the same complete document, allowing SVC to pro-
vide automatic Ajax support and automatic progressive
enhancement to pages written in this style. This benefit
relies on the portability (from server to client) of SVC’s
transformation rules.

SVC does not attempt to replace existing template
systems. Instead, a developer composes different views
(which may be the output of a template). The devel-
oper describes where the composition should occur us-
ing selectors (described in Section 3.1.1). Developers

may continue to use any template language with SVC.

Additionally, SVC does not interfere with existing
code. Both JavaScript and existing controllers not using
SVC will continue to work without modification. This
allows SVC to be added to an existing site and used only
when necessary (without the need to immediately refac-
tor legacy code).

Finally, SVC is able to use its knowledge of a page’s
structure to provide developers with a succinct and famil-
iar post-processing mechanism. This allows developers
to write code to filter a page based on its content without
forcing them to parse the page themselves.

1.3 Contributions and Organization

This paper makes the following contributions:

82 We describe the architecture of SVC and discuss
how it differs from the traditional MVC model.

83 We describe the server-side and client-side compo-
nents that make up SVC and discuss our design de-
cisions.

84 We describe the implementation of an SVC proto-
type. The prototype consists of a PHP extension
written in C++ using the WebKit engine [37], a PHP
plugin for the MVC framework Code Igniter [8],
and a client-side JavaScript plugin that handles Ajax
responses.

85 We present a complete minimal example of a site
implemented with and without SVC to show how
our approach differs. We also briefly describe a
number of example sites and filters we implemented
using SVC.

We evaluate the performance of our implementation in
Section 6, before discussing related work and conclud-
ing.

2 Architecture

SVC extends the model/view/controller (MVC) pattern
to manage responsibilities currently handled by the de-
veloper. Fig. 1(a) shows how a request travels through
a traditional MV C application which supports both Ajax
and non-Ajax requests. (The “model” in MVC is irrele-
vant to this discussion and omitted.)

The request is sent to a controller which calls the
appropriate view depending on the type of request. If
the request is a non-Ajax request, the non-Ajax view is
called. This view outputs the HTML document which is
rendered by the browser.

In the case of an Ajax request, the controller calls the
Ajax view which outputs data in a format that can be read

Traditional Model

Request —»|| Controller

Y

No ; Yes
Ajax?

SVC

XML/JSON

Complete HTML

Server-sidle ——»

[Cnon-Ajax View]| Ajax View svC
View output
(unmodified) Apply

Transformations
on Server

Transformations
(JSON)

]

Complete HTML

3

3 v

= Code to handle Apply

% Browser XML/JSON data Browser SVC JS | 1ransformations
on Client

i (a) (b)

Figure 1: Architecture of SVC. Boxes surrounded by a double line represent components that are the developer’s responsibility.
Fig. 1(a) shows the traditional MVC architecture (with models omitted) for sites supporting both Ajax and non-Ajax requests. A
request is sent to the controller which loads either an Ajax or non-Ajax view. The developer must write both views, as well as
client-side code which handles the output of her Ajax view. Fig. 1(b) shows the SVC model. A request is sent to a single view,
which can decide to use SVC or not use SVC. The view uses SVC by sending it a transformation list. SVC responds to a non-Ajax
request by applying the transformations on the server and returning a complete HTML page. SVC responds to an Ajax request
by simply returning the transformation list as JSON. The transformation list is applied by the client-side SVC JS to the current
document in the browser. In Fig. 1(b), SVC allows the developer to write only one view and no client-side code.

by client-side code (typically XML or JSON). While this
output may contain HTML snippets, custom client-side
JS is required to insert the snippets in the page at the ap-
propriate positions. Both views must be created by the
developer, who must duplicate functionality to provide
both Ajax and non-Ajax output. In addition, the devel-
oper needs to write client-side code to handle the output
created by her Ajax view. Because the framework knows
nothing about the view’s structure, it cannot assist in this
process.

SVC’s extension to MVC is shown in Fig. 1(b). The
request is sent to a controller which now calls only one
view regardless of the type of request. Instead of out-
putting HTML for a non-Ajax request and XML/JSON
for an Ajax request, the developer describes the page as
a series of transformation rules as well as any items on
which the transformations depend. The transformation
list is sent to the SVC, which decides how to act based

on the type of request.

In the case of a non-Ajax request, SVC applies the
transformation list on the server-side, creating a com-
plete HTML document on the server. This document is
then sent to the browser.

In the case of an Ajax request, SVC converts the trans-
formation list to a form readable by client-side code.
This serialized list is sent to the client where the trans-
formations are applied directly to the current document
in the browser. As SVC includes all the client-side code
necessary to apply the transformations to the document,
the developer does not need to write any client-side JS
when creating an Ajax-compatible site.

Using the architecture in Fig. 1, SVC is able to auto-
matically generate both Ajax and non-Ajax versions of
a site. In addition, SVC needs to progressively enhance
the site and inject a script into all pages to handle client-
side actions. Specifically, SVC adds a CLASS attribute

to each element needing to be enhanced and inserts a
SCRIPT tag into the head of the document which points
to the client-side SVC JS. This script adds a click event
handler to each element with the above class and also
manages requesting and applying the transformation list.
Progressive enhancement and script injection are made
possible by a post-processing filtering system that SVC
uses internally and exposes to developers.

SVC is stateless—it operates only on the transformation
list provided by the view. It does not store HTML or
output from previous requests, nor does it depend on the
state of the browser (i.e., which requests have previously
occurred).

SVC consists of a server-side API, server-side code
to handle both Ajax and non-Ajax requests, client-side
code to handle the output of Ajax requests, and a filter-
ing module, both used internally and made available to
developers.

3 Design

3.1 Server-side Components

Developers use the SVC server-side API to describe how
a page should be constructed.

3.1.1 Selectors and Actions

SVC asks a developer to construct a page by defining a
list of transformation rules. These rules consist of a se-
lector, used to locate one or more nodes in the DOM,
and an action, used to modify nodes matched by the se-
lector. By defining a page as a series of transformation
rules, SVC is able to respond to both Ajax and non-Ajax
requests appropriately. SVC is able to decide whether
to send the list of transformations to the client for con-
version using JS or to convert the list on the server (by
applying each transformation, in order) and return a full
HTML document to the browser.

We consider next how a transformation rule is ex-
pressed: how the web programmer specifies the selection
of portions of a page, and how the programmer expresses
which action to take on the selected portions.

Selectors Selectors provide a way to query HTML doc-
uments. Selectors were introduced as part of the CSS1
Specification [24], where they were used to identify the
DOM nodes to which styling rules would be applied. Ta-
ble 1 shows a few examples of selectors.

The selector syntax is simple and includes shortcuts
that make HTML queries more succinct. Additionally,
developers have grown accustomed to selectors due to
their ubiquity in CSS. These benefits resulted in a num-
ber of JS libraries adopting selectors as a query language,

Selector Examples

Selector Description

* All elements

#foo Elements with id foo

.bar Elements with class bar

div All div elements

div[f="b"] div elements with
attribute £ = b

div > a a elements that are

children of div
elements

Table 1: A few examples of selectors. The complete selector
syntax can be found in the W3C Selectors Level 3 Recommen-
dation [4].

including Closure, Dojo, jQuery, MooTools, Prototype,
and YUI [7, 13, 22, 25, 26, 39]. Initially, JS libraries
were forced to re-implement much of the selector syn-
tax due to a lack of browser support, but recent proposals
(i.e, the Selectors API [36]) have led to increased support
in browsers.

We chose selectors because they are expressive, suc-
cinct, familiar to developers, designed with HTML in
mind, and supported by a growing number of browsers.

An alternative choice for a querying mechanism might
be XPath [10] or a custom template language. XPath is
more expressive than selectors but is more verbose and
designed for XML, not HTML, so HTML shortcuts do
not exist. Also, developers are less familiar with XPath,
because it is not as widely used as selectors in front-end
web development.

Another option might be to offer a custom template
language. A custom template language would force de-
velopers to annotate their code with template instruc-
tions, which could conflict with existing template sys-
tems in use. A template language would also need to
be implemented on both the client and server-side and
would require developers to learn a new layout language.
We chose not to take this approach, as selectors already
meet our needs.

Actions The second part of a rule is an action. Actions
define the set of operations a developer can perform on a
document during composition. We modeled our API af-
ter the jQuery manipulation functions. We consider the
jQuery manipulation functions a reasonable approxima-
tion of the actions needed by developers. Table 2 shows
the actions our SVC implementation makes available.
SVC allows developers to define additional actions.
These actions only need to be written once and could
be distributed with SVC or as a set of plugins. Creat-

Examples of Actions

Result

Add class c

Append el inside

Set attribute a to b

Set css property a to b
Set inner HTML to e1
Prepend el inside
Remove from DOM
Remove class ¢

Set inner text value to t

Action

addClass (s, c)
append (s, el)
attr(s,a,b)
css(s,a,b)

html (s,el)
prepend(s,el)
remove (s)
removeClass (s, c)
text (s, t)

Table 2: Actions supported by our SVC prototype. Each action
is passed a selector s as the first argument. The result of each
action is performed on all nodes matching the selector. More
actions could be added to an SVC implementation, with the
only requirement that they be implemented in both server and
client-side code.

ing a new action consists of writing client- and server-
side code that implements the action on the client and
server, respectively. Since the only requirement for
an action is that it can be executed on the server and
client, actions could manipulate the DOM or provide un-
related functionality. For example, a location ac-
tion could be written to redirect a page, which would
set an HTTP Location header on the server and use
window.location to redirect on the client.

3.1.2 Example

To illustrate how a developer would use selectors and ac-
tions to modify a page, we show a few example transfor-
mations in Table 3. Our implementation of SVC provides
a class called SVCList which represents a list of transfor-
mations. Each command consists of an action, which is a
method that accepts a selector as the first argument along
with any additional arguments needed by the action.

We now describe how SVC responds to a request us-
ing commands 1-5 from Table 3 (for brevity, we ignore
commands 6-10).

If SVC receives a non-Ajax request, it needs to con-
struct the entire page and send it to the browser. SVC
does this by taking the initial page (here, simply the
string “<a>") and applying each transformation to
it, in order. The result of applying the transformations
can be seen in in the “Output” column of Table 3.

If SVC receives an Ajax request, it sends only the
transformation list to the client. This list is encoded as
JSON [23], so the actual data sent to the client is:

// action, selector, arguments

[["text", ["a", "x"11,

["append", ["a", "y"]1,
["html", ["b", "t <s>u</s> u"ll],
["prepend", ["b", "<i>z</i>"]]]

This JSON list of transformations is applied to the cur-
rent document in the browser by the SVC client-side JS.

3.1.3 Initial Content

SVC responds to an Ajax request with a list of transfor-
mations that operate on an existing document (residing
in the browser). However, when a non-Ajax request is
made, SVC must respond with a complete page. One
option would be to always generate a complete page and
discard the unnecessary portion when responding to Ajax
requests. This would require generating the complete
initial page for each request. Instead, we provide the
method initial, which allows a developer to define
the initial page on which to apply transformations. If the
argument to this method is the name of a controller, that
controller is called. If the argument is a text string, that
text is used as the initial page.

function page () {
Sthis->svc->initial ('base’);
Sthis->svc->text ('title’, ’Page title’);
Sthis->svc—->html (' body’, ’The body’);
}

When an Ajax request is made to page, the controller
base does not run and only the list of transformations
(text and html) is returned to the client. When a non-
Ajax request is made, SVC (on the server side) applies
the transformation list to the output of the base con-
troller.

The separation of the initial page from the transforma-
tion list allows SVC to only run the necessary code in
response to an Ajax request.

3.1.4 Progressive Enhancement

Once the developer has specified a list of dependencies
and transformations, SVC is able to respond to both Ajax
and non-Ajax requests correctly. Remember, however,
that the developer has written the site without Ajax in
mind, so no links on the site cause an Ajax request to
occur. SVC needs to progressively enhance pages to use
Ajax where appropriate. The developer is in no position
to do this herself, since she does not know (and should
not need to know) the internals of our client-side library.

Links should only be enhanced to use Ajax if an Ajax
request makes sense in the context of the current page.
If no selector in the transformation list matches an el-
ement on the page, the transformation list will have no

Using Selectors and Actions to Modify HTML

Command Output of $s—>toHTML ()
$s = new SVCList ('<a>"); <a>

Ss—>text ("a’, 'x"); <a>x
S$s—>append ("a’, y"); <a>xy

Ss—>html ('b’, 't <s>u</s> u’);
$s—>prepend ('b’, ’'<i>z</i>");
Ss—>remove ("1, s’);
Ss->css('a’, 'color’, ’'red’);
Ss—>attr (' [style]l’, ’style’, '');
$s—->addClass('b’, ’'cl’);

0 S$s—->remove(’.cl’);

— O 00 1O\ LN W=

<a>xt <s>u</s> u
<a>x<i>z</i>t <s>u</s> u
<a>xt u

xt u
xt u

x<b class="cl">t u
x

Table 3: Each command is run in order, from top to bottom. The output (on the right) shows the HTML output if the SVCList were

converted to a complete HTML document at each step.

effect. However, a developer may define transformations
that may happen (if the selector matches) but do not need
to happen. These will effectively be ignored when the
transformations are applied on the client.

Our SVC implementation provides the method
rewrite (foo,bar) which specifies that all links
pointing to controller foo should be rewritten to use
Ajax if the current controller or any dependencies of the
current controller is bar. Providing bar is necessary
because Ajax requests may only be appropriate in the
context of a specific page. For example, loading a new
tab using Ajax would only work if the element contain-
ing the tab exists in the current page.

3.1.5 Filters

SVC also provides filters, which allow the modification
of the output of a view. Filters exist in other frameworks
(e.g., Django Middleware [12]) and are used to rewrite
pages in a variety of ways (see Sec. 5.2.2 for examples
of filters). Our implementation of SVC provides the class
SVCFilter to manage filter registration.

SVC uses filters internally to rewrite links on a page
and to automatically inject the SVC client-side JS into
the page. To illustrate the use of filters, we show how
SVC injects its client-side code into the page.

function insert_svc_Jjs ($head) {
Ssvc_js = ’'<script src="SVC.]js"></script>’;
Shead->append ($svc_Js) ;

}

// converts ...<head></head>... to:
// <head><script src="SVC.Jjs"></script></head>
$svcfilter->register (‘head’, ’insert_svc_js’);

SVCFilter also supports action shortcuts, allowing this
to be written more succinctly:

Ssvc_js = ’<script src="SVC.js"></script>';
S$svcfilter—->append ('’ head’, $svc_7Js);

Filters are similar to view transformations with two
important differences. First, filters are always applied on
the server-side and never on the client. This is necessary
in certain situations, such as in the above script example.
It is also necessary if the developer wants to prevent data
from ever appearing on the client site. For example, a
transformation list would not be the appropriate place to
sanitize user input, because the user input would be sent
to the client as part of the transformation list. Writing
code as a filter ensures that conversion happens on the
server.

The second difference between filters and view trans-
formations is that filters can run on pieces of a docu-
ment before the pieces are converted into the full doc-
ument. For example, take commands 3-5 from Table 3.
In an Ajax request, the server returns a list of transfor-
mations. This list contains three snippets of HTML with
may match a selector (i.e., “y”, “<s>u</s>
u”, and “<i>z</1i>”). Filters are run on each snip-
pet independently, allowing post-processing to occur on
Ajax output. In a non-Ajax request, filters are run on the
complete document before being sent to the browser.

To allow filters to run on pieces of a document be-
fore they are converted to a full document, we permit
only a limited subset of selectors to be used in filters.
Specifically, we only allow simple selectors, which are
defined by the W3C Selectors spec [4]. Simple se-
lectors may only refer to specific nodes and not their
position in a document. For example, “title” and
“alhref$=7Jpg]” are examples of simple selectors,
while “div > a”isnot. Simple selectors are necessary
because filters run on pieces of the document in response

to an Ajax request, independent of where they may later
reside in the DOM. SVC is unable to determine where
those pieces will exist in the complete document after
they are composed on the client-side.

3.2 Client-side Components

The client-side component of SVC consists of a JS script.
This script has two responsibilities. The first is to pro-
gressively enhance the page to make Ajax calls. The
second is to load a transformation list from the server
using Ajax and apply that transformation list to the cur-
rent document in the browser. The client-side script must
apply this transformation list in the same way it would
be applied on the server. This ensures that the resulting
document is the same, regardless of where the conversion
occurred.

4 Implementation

The server-side API consists of four classes that are
needed by compatible implementations.

SVCList SVCList represents a transformation list. This
class provides action methods (append, addClass, etc),
each of which pushes a new transformation to the end of
the list. SVCList provides the method t oHTML which
applies each transformation in order and then returns the
HTML representation of the final document. Also pro-
vided is t oJSON, which serializes the transformation list
as JSON.

SVCManager SVCManager provides two methods to
developers. The first is initial, which accepts one
or more controller names as arguments. The second is
rewrite (foo, bar), which rewrites all links to the
controller foo when the controller bar has been exe-
cuted.

SVCFilter SVCFilter allows the developer to register
post-processing actions. These actions will run regard-
less of the controller (or view) called. SVCFilter pro-
vides the method register (simple_selector,
callback), which runs the callback function
callback with an argument of each node matched by
simple_selector. SVCFilter also provides action
methods as a convenience, allowing simple filters to be
easily created.

Snippet The Snippet class represents a parsed HTML
fragment. Snippet objects are used internally by SVCList
to actually perform transformations. Note that the site
will only output the result of the parser used by Snippet,
which means the developer is constrained to the HTML

supported by the parser. Implementations of SVC should
use liberal parsers. The Snippet class is typically hidden
from developers by accepting strings as input to most ac-
tion methods. For example, the following two function
calls are equivalent:

$sveclist->html (‘body’, ’foo bar");
Ssvclist->html (' body’,
new Snippet (' foo bar’));

The Snippet class supports all action methods. These
methods can accept a selector as the first argument, in
which case the selector runs on the nodes in the snippet
matched by the selector. Snippet action methods can also
be called on the snippet itself, which runs the actions on
all top-level nodes.

In addition to these classes, the implementation has the
following responsibilities:

Script Injection Our SVC implementation injects its
client-side JS into the current page using a filter which
appends a script tag to the head element of the page.

Progressive Enhancement Progressive enhancement in-
volves a step on the server and the client. On the server,
each link that should be rewritten (checked by comparing
rewrite calls to the current controller and dependency
list) is annotated with a special CLASS attribute using a
filter.

When the page loads, the SVC JS searches for any
element having this special class and adds a click or
submit event to this element. When this event occurs,
the script uses Ajax to load a transformation list from the
server.

Client-side Code The client-side component of SVC
consists of a single JS script. This script progressively
enhances the site, loads a transformation list from the
server, and applies this list to the current document.

4.1 Implementation Details

We implemented a prototype of SVC as a plugin for
the PHP MVC framework Code Igniter (1.7.2). We im-
plemented the Snippet class as a PHP extension writ-
ten in C++. We used the WebKit engine (used by the
Safari [30] and Chrome [6] browsers) to parse HTML
and WebKit’s querySelectorAll function (defined
as part of the Selectors API [36]) to perform selector
matching. Specifically, we used WebCore (which is a
component of WebKit), from the WebKitGTK+ 1.1.15.3
distribution [38]. WebKitGTK+ was chosen due to its
compatibility with Ubuntu (no GUI code was used). SV-
CList, SVCFilter and SVCManager were written in PHP.
We implemented Snippet actions in C++.

The client-side code consists of a 4.3/1.7KB (un-
compressed/compressed with YUI Compressor [40]) JS
file. This code uses jQuery (1.3.2) to handle actions
and selectors. We chose jQuery because it supports
the same CSS 3 Selector syntax supported by WebKit’s
querySelectorAll, and because many of our ac-
tions exist as functions in jQuery. The file size above
does not include the size of jQuery, which is 19KB (com-
pressed and Gzipped).

The client-side SVC library has been successfully
tested in Internet Explorer (6,7,8), Safari (4), Chrome
(3.0) and Firefox (3.5).

5 Examples

5.1 Complete Minimal Example

To make SVC more complete, we give a full example
of a minimal site implemented with and without SVC in
Figure 3.

This site consists of a page containing the text “A brief
overview” and a link, titled “Show more”, which loads
more content when clicked. This link should load more
content inline using Ajax when available but continue to
work in non-JS browsers. Figure 3 (a)-(d) shows this
site implemented without SVC. A controller contains the
methods index and more which are executed when /
and /more are called, respectively.

Both controllers pass an array consisting of a title, a
boolean (whether to show more content) and an optional
content string to the template (b). This template replaces
the title with the passed value and either outputs a link
pointing to additional content or the content itself. The
more method responds to an Ajax request with a JSON
version of the data array.

On the client, custom JS is required to interpret the
JSON (c). Note that this JavaScript performs much the
same function as the template (setting the title, inserting
content, etc).

An SVC version of this site can be seen in Figure 3 (e)-
(g). The template (f) consists of the initial page, which
is loaded by the index method in (e). The method
more defines three transformations which are either re-
turned as JSON (in response to an Ajax request) or ap-
plied to the output of index method (in response to a
non-Ajax request). Note that no custom JS is necessary
because SVC JS will apply the transformations on the
client-side automatically. Figure 3 (h) shows how SVC
transforms the index page (the more page is omitted
for brevity) by inserting its client-side script and added
the class svc_rewrite to the appropriate links.

5.2 Additional Examples
5.2.1 Sites

We implemented three sites to illustrate the usefulness of
SVC. We briefly describe these sites below.

Tabs We created a site consisting of a number of tabbed
pages. The transformation list of each page changes the
title of the document, sets the correct tab header (by set-
ting a class), and sets the content of the page. The tab
content is positioned inside of a tab-specific div, which
allows us to rewrite links to use Ajax if that tab-specific
div exists.

Status Feed We implemented a site to allow users of
a fictional social network to update their status, which
is combined on a single page. The transformation list
consists of new status updates. These status updates are
prepended to the current list of updates in response to
an Ajax request or set as the current list of updates in
response to a non-Ajax request.

Form Validation We implemented an example of form
validation using SVC. Form validation is an Ajax pattern
which must also be implemented in server-side code to
prevent a malicious user from inserting invalid data into
the application.

Each input element is given an associated span el-
ement to hold errors (e.g., Fig. 2(a)).

<input type="text" name="name"/>

<input type="text" name="email"/>

(a) Two inputs with associated error spans

Ssvclist->text (’/ spanfemail_error’,
"Email error’);

(b) Setting email error text

Figure 2: Setting an error message with SVC.

The form controller depends on a method which gen-
erates the form. The controller then sets the appropriate
error message (e.g., Fig. 2(b)). If the form is submitted
using Ajax, the error message will be updated in place.
If it is submitted without Ajax, the error message will be
properly set when the page reloads.

5.2.2 Filter Examples

We implemented three filters to illustrate the ease with
which they allow developers to post-process pages. An
example of filter code can be found in Appendix A.

Example not using SVC

(a) Controller

Example using SVC

(e) Controller

<?php
class Article extends Controller {

function index () {
Sdata = array(’'title’ => ’'Brief Overview’,
’showing_more’ => FALSE);
echo view(’index.php’, $data);

function more () {
Sdata = array(’'title’ => ’'More Content’,
"content’ => view (’morecontent.php’),
’showing_more’ => TRUE);

if (is_ajax()) |
echo Jjson_encode ($data);
} else {
echo view(’index.php’, $data);

(b) index.php
<html>
<head><title><?=$title?></title>

<script src="/js/jquery.js"></script>
<script src="/js/morecontent.js"></script>
</head><body>

A brief overview.
<? 1if (!$showing_more) { 2>
Show More
<div id="more_content"></div>
<? } else {?>
<div id="more_content"><?=Scontent?></div>
<?)} 7>

</body></html>

(c) morecontent.js
function more_content_clk (json) {
$ (" a#show_more’) .remove () ;
document.title = json.title;
S (" #more_content’) .html (json.content) ;

S (function () {
S (" #show_more’) .click (function () {
$.getJSON (’ /more’, more_content_clk);
return false;

1)

}) i

(d) morecontent.php

Some more content

<?php
class Article extends Controller {

function ___construct () {
Sthis->svc—>rewrite ('more’, ’index’);

function index () {
Sthis->svc—->initial (view (' index_svc.php’));

function more () {
Sthis->svc—->initial (’ index’);
Sthis->svc—->text ('title’, ’'More Content’);
Sthis->svc—->remove (’ afshow_more’) ;
Sthis->svc—->html (' #more_content’,
view ('morecontent.php’));

(f) index_svc.php

<html>

<head><title>Brief Overview</title></head>
<body>

A brief overview.

Show More

<div id="more_content"></div>

</body></html>

(g) morecontent.php

Some more content

SVC Output Example

(h) SVC generated index

<html>

<head>

<title>Brief Overview</title>
<script src="svc.]js"></script>
</head>

<body>

A brief overview.

<a href="/more" id="show_more"
class="svc_rewrite">Show More

<div id="more_content"></div>

</body></html>

Figure 3: Two implementations of a web page containing the link “Show More”. When clicked, additional content is loaded. Both
Ajax and non-Ajax calls are supported. The left column ((a)-(d)) shows this page implemented without SVC. The right column
((e)-(g)) implements the page using SVC. The SVC output of the index page can be seen in (h). SVC has inserted its client-side

script and added the class svc_rewrite to the appropriate links.

CoralCDN Filter CoralCDN [18] is a free peer-to-peer
content distribution network. It provides an elegant URL
structure that allows a resource to be turned into a “cor-
alized” resource by simply appending .nyud.net to
the hostname. Fig. 6 shows a complete SVC filter which
rewrites all links and images in a page having the class
“coralize”. Fig. 7 shows the regular expressions used by
a WordPress plugin [9] to perform the same search.

CSRF Form Filter Cross-Site Request Forgery vulner-
abilities allows an adversary to perform actions on be-
half of a user by maliciously submitting data to a trusted
site [31]. A complete description of CSRF vulnerabil-
ities is outside the scope of this paper, but a common
defense against CSRF attacks is to insert a CSRF token
into all form elements which will be submitted to the
current site using the POST method. This token can be
used by the server to verify that requests were sent by the
user and not a malicious site. We wrote a filter that uses
SVC to insert a token as a child of the appropriate form
elements.

Script Coalescing Filter JavaScript can be compressed
to reduce its size. A web service, called Reducisaurus
[27], accepts URL arguments consisting of one or more
JS files or JS code. Reducisaurus combines all scripts
into a single, compressed file. We wrote a filter to convert
all script tags to the appropriate URL arguments. The
filter removes these scripts from the page and appends a
link to the compressed JS file to the document’s head
element.

6 Performance Evaluation

Three aspects of SVC impose performance costs on the
application. SVC needs to parse each snippet, run selec-
tors, and perform actions. We evaluate these costs below
and show the total performance cost of an example site.
All tests were run on an desktop Dell XPS Dimension
9150 (Pentium D 2.8Ghz) machine with 2GB of RAM
running Ubuntu 9.10 (Linux Kernel 2.6.31-16-generic).
We used PHP 5.2.10 and Apache/2.2.12 (where applica-
ble).

Parsing time To evaluate the parsing speed of our SVC
implementation, we parsed the content of 10,000 popu-
lar websites according to Alexa [1]. The Alexa list of the
most popular million sites was downloaded on 21-Nov-
2009 and the first page of each site was downloaded on
Nov 24, 2009. We parsed the content of the first 10,000
sites, skipping any site that did not return an HTTP 200
status. We compare our parsing speed to the speed of
DOMDocument [14], which is an HTML parser built

10

N

o
N
——
e,

% of Sites Parsed

DOMDocument ——

O ! ! ! !
10 20 30 40

Parse Time (ms)

Figure 4: Parse time of 10,000 popular sites. SVC is compared
to DOMDocument, an HTML parser that comes with PHP. This
graph shows that, e.g., 80% of sites were parsed in 15ms.

50
45
+40
E35
o 30
£ o5
20
15
=10

html ——— ~

/

T

([@Né|

200 400 600 800 1000 1200

Content Size (KB)

Figure 5: Mean DOM manipulation time as a function of con-
tent size. Each action (html, attr, and text) was called
100 times on each content size, which varied from 0 to 1 MB
(incrementing by 64 KB).

into PHP (we did not use DOMDocument for our imple-
mentation because it does not support selectors). DOM-
Document does not parse JavaScript or CSS, while We-
bKit (used by our implementation) does. See Fig. 4 for
the results of our parsing tests. The cost to parse a page
is a cost not imposed on traditional PHP sites, which can
output their content directly.

Selector query time The cost of running a selector on
a document depends on the complexity of the selector
and complexity of the document. We test selector per-
formance by implementing MooTool’s SlickSpeed test
suite [32] in SVC. The SlickSpeed test suite runs 40 se-
lectors of varying complexity against a standard 108KB
web page.

We ran the test suite 1000 times and calculated the to-
tal time spent running each test. The result was a mean

time of 59.180ms (std.dev = 2.906), giving a mean of
1.498ms per selector.

Actions In our implementation of SVC, actions are
mapped to manipulations of WebKit’s internal DOM
tree. The cost of DOM manipulation is dependent on
the type of action performed, which largely depends on
WebKit’s internal performance. We measured the perfor-
mance of three actions (html, attr, and text) in Fig-
ure 5. Each action was called with a varying amount of
random data, from 0 to 1024KB. Content was escaped to
ensure that additional HTML tags were not introduced.

These costs are only imposed on non-Ajax requests.
For the cost of client-side DOM manipulation, see Dro-
maeo [28, 16].

7 Related Work

We are aware of no tool that allows for automatic pro-
gressive enhancement of non-JS sites, which SVC al-
lows. Various frameworks allow Ajax code to be auto-
matically created (e.g., Cappuccino, GWT, RJS (a Ruby
on Rails feature) and SproutCore [3, 20, 21, 33]). Al-
though these frameworks provide a convenient means
of generating JavaScript, they do not generate code that
supports both JS and non-JS browsers. In fact, these
frameworks make it difficult or impossible to support
non-JS browsers when using their Ajax capabilities.

Various server-side frameworks allow DOM manipu-
lation (e.g., Genshi, DOMTemplate, GWT [19, 15, 20]).
We are not aware of any framework that allows manipu-
lation to happen on either the client or server depending
on the type of request, or any framework that uses DOM
manipulation as a means to allow for automatic Ajax in-
strumentation.

FlyingTemplates [35] proposes a system where tem-
plates are sent to the client along with data to replace
variables in the template. The key idea of FlyingTem-
plates is to allow templates to be static and to send the
data that will be substituted in the template separately. If
templates are static, they can be cached by the browser
and served statically by the website. SVC differs signif-
icantly from FlyingTemplates. FlyingTemplates requires
a template parser to exist on the client. Additionally, it
has no notion of conditional template replacement (all re-
placement happens on the client). FlyingTemplates also
only runs on an initial template. Once it has performed
replacement on a template, it cannot operate on that re-
placed data. This makes it unable to assist in automatic
Ajax instrumentation. Also, FlyingTemplate only works
in JS browsers because it relies on the client to do tem-
plate substitution.

Post-processing filters exist in a number of frame-
works. The main advantages of SVC over filters in other

11

frameworks is the ability to register a filter using selec-
tors and the ability to run filters on pieces of the doc-
ument. The most similar filtering mechanism found is
Genshi’s [19], which allows XPath expressions to be
used in filters.

8 Conclusions

The paper presents SVC as a novel programming style
that can reduce development costs related to web pro-
gramming. SVC allows developers to create both Ajax
and non-Ajax versions of a site by composing different
pieces of a page together using selectors. Developers can
create Ajax sites without writing JavaScript, while also
supporting non-JS browsers. SVC can be integrated with
existing sites and does not interfere with previously writ-
ten controllers, JavaScript, or template systems.

SVC also provides a succinct filtering mechanism that
allows post-processing to be expressed more clearly than
existing solutions.

We implemented a prototype of SVC for PHP and
the Code Igniter framework, but it could easily be ex-
tended to other languages and frameworks. The only re-
quirement is an HTML parser and selector support. In
Python, for example, the Ixml library could be used di-
rectly, without the need to compile a separate HTML
parser (also, Ixml supports selectors directly) [17].

Since SVC manages Ajax calls, client-side JS plug-
ins could be written which implement common Ajax pat-
terns. For example, supporting the “back” button (which
can be tricky in Ajax applications) could be handled au-
tomatically.

Acknowledgements

We would like to thank Joe Calandrino, Will Clarkson,
Thorsten von Eicken, Ari Feldman, J. Alex Halderman,
Jon Howell, Tim Lee, and the anonymous referees for
their helpful comments and suggestions.

References

[1] Alexa Top 1,000,000 Sites (Updated Daily). http://www.alexa.
com/topsites.

BYRNE, S., HORS, A. L., HEGARET, P. L., CHAMPION, M.,
NicoL, G., ROBIE, J., AND WooOD, L. Document object
model (DOM) level 3 core specification. W3C recommenda-
tion, W3C, Apr. 2004. http://www.w3.org/TR/2004/REC-DOM-
Level-3-Core-20040407.

(2]

(3]
[4]

Cappuccino. http://cappuccino.org.

CELIK, T., ETEMAD, E. J., GLAZMAN, D., HICKSON,
I., LINSS, P., AND WILLIAMS, J. Selectors Level
3. W3C proposed recommendation, W3C, Dec. 2009.
3http://www.w3.org/TR/2009/PR-css3-selectors-20091215/3.

http://www.alexa.com/topsites
http://www.alexa.com/topsites
http://cappuccino.org

[5]

—
2

[7
[8
[9

—_ S

[10]

[11
(12

[13]
[14]

[15]
[16]
(17]
(18]

[19]
[20]
[21]

[22]
[23]
[24]

[36]

[37]
[38]
[39]
[40]

CHAMPEON, S., AND FINCK, N. Inclusive Web Design For
the Future. http://www.hesketh.com/publications/inclusive_web_
design_for_the_future/, Mar. 2003.

Chrome. http://google.com/chrome.
Closure. http://code.google.com/closure/library/.
Code Igniter. http://codeigniter.com.

Coralize for wordpress (v.08b). http://theblogthatnoonereads.
davegrijalva.com/2006/02/12/coralize/.

DEROSE, S., AND CLARK, J. XML path language (XPath)
version 1.0. W3C recommendation, W3C, Nov. 1999. http:
/Iwww.w3.0rg/TR/1999/REC-xpath-19991116.

Django. http://www.djangoproject.com.

Django Middleware. http://docs.djangoproject.com/en/1.1/
topics/http/middleware/.

Dojo. http://dojotoolkit.org.

DOMDocument. http://php.net/manual/en/class.domdocument.
php.

DOMTemplate. http://www.domtemplate.com.

Dromaeo. http://dromaeo.com.

FAASSEN, M. Ixml. http://codespeak.net/lxml/.

FREEDMAN, M. J., FREUDENTHAL, E., AND MAZIERES, D.
Democratizing content publication with coral. In NSDI'04: Pro-
ceedings of the 1st conference on Symposium on Networked Sys-
tems Design and Implementation (Berkeley, CA, USA, 2004),
USENIX Association, pp. 18—18.

Genshi. http://genshi.edgewall.org.
Google Web Toolkit. http://code.google.com/webtoolkit/.

HANSSON, D. H. RIJS. http://wiki.rubyonrails.org/howtos/
rjs-templates.

jQuery. http://jquery.com.
JSON (JavaScript Object Notation). http://www.json.org.

LIE, H. W., AND Bos, B. Cascading style sheets, level 1 recom-
mendation. first edition of a recommendation, W3C, Dec. 1996.
http://www.w3.org/TR/REC-CSS1-961217.

MooTools. http://mootools.net.
Prototype. http://prototypejs.org.
Reducisaurus. http://code.google.com/p/reducisaurus/.

RESIG, J. JavaScript Performance Rundow. http://ejohn.org/
blog/javascript-performance-rundown/.

Ruby on Rails. http://rubyonrails.org.
Safari. http://apple.com/safari/.

SHIFLETT, C. Security Corner: Cross-Site Request Forgeries.
http://shiflett.org/articles/cross-site-request-forgeries.

SlickSpeed (MooTools). http://mootools.net/slickspeed/.
SproutCore. http://sproutcore.com.
Struts. http://struts.apache.org.

TATSUBORI, M., AND SUZUMURA, T. Html templates that fly: a
template engine approach to automated offloading from server to
client. In WWW °09: Proceedings of the 18th international con-
ference on World wide web (New York, NY, USA, 2009), ACM,
pp- 951-960.

VAN KESTEREN, A., AND HUNT, L. Selectors api level
1. Tech. rep., W3C, Dec. 2009. http://www.w3.org/TR/2009/
CR-selectors-api-20091222/.

The WebKit Open Source Project. http://webkit.org.
WebKitGTK+. http://webkitgtk.org.

The YUI Library. http://developer.yahoo.com/yui.

YUI Compressor. http://developer.yahoo.com/yui/compressor/.

A Filter Examples

Below is an example filter, described in Section 5.2.2.

<?php
// point URL to CoralCDN
function coralize (Surl) {
Shost = parse_url (Surl, PHP_URL_HOST) ;
$s = '://'.Shost;
// append ’ .nyud.net:8080’ to host
return str_replace($s, $s.’.nyud.net:8080',
Surl);
}

function c_img($s) {
Surl = coralize($s—>attr(’src’));
Ss—->attr ("src’, Surl);

}

function c_a($s) {
Surl = coralize ($s—>attr (’href’));
Ss—->attr ("href’, Surl);

}

// Coralize all elements with class ’coralize’
Ssvcfilter—->register (' img.coralize’, ’c_img’);
Ssvcfilter->register (‘a.coralize’, 'c_a’);

Figure 6: A filter which rewrites all links and images (having
the class “coralize”) to use the Coral CDN web service.

Scontent = preg_replace (’/(\<(imgla)\s+.x?cla
ss\=["\"].x2coralize.*x?["\’].x?(src|lhref)\=
["\"Thttp\:\/\/.x2) (\/.x2["\"].%2\>) /1", ’$
1.nyud.net:8080%$4’, Scontent);

Scontent = preg_replace (’/ (\<(imgla)\s+.x?(sr
clhref) \=["\"Thttp\:\/\/.*2) (\/.*2["\'].*2cC
lass\=["\"].x2coralize.x?2["\’].%x2\>)/i", 'S
1.nyud.net:8080%$4’, Scontent);

Scontent = preg_replace (’/ (\<(imgla)\s+.x?cla
ss\=["\"].x2coralize.x2["\’].x?2 (src|href)\=
["\7 1) (\/.*2["\"].%2\>) /1", "$lhttp://’.S_S
ERVER[/HTTP_HOST’].’ .nyud.net:8080%4",
Scontent) ;

Scontent = preg_replace (' / (\<(imgla)\s+.x?(sr
clhref)\=["\"1) (\/.x2["\"].x2class\=["\"].*
?coralize.«?2["\"]1.%2\>)/i’, "S$lhttp://’.$_S
ERVER[/HTTP_HOST’].’ .nyud.net:8080%4",
Scontent) ;

Figure 7: Taken verbatim from the Coralize for Wordpress plu-
gin [9]. In addition to being difficult to read, these regular ex-
pressions would incorrectly match an img element with the
class “donotcoralize” and would not match elements with ir-
regular spacing.

http://www.hesketh.com/publications/inclusive_web_design_for_the_future/
http://www.hesketh.com/publications/inclusive_web_design_for_the_future/
http://google.com/chrome
http://code.google.com/closure/library/
http://codeigniter.com
http://theblogthatnoonereads.davegrijalva.com/2006/02/12/coralize/
http://theblogthatnoonereads.davegrijalva.com/2006/02/12/coralize/
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.djangoproject.com
http://docs.djangoproject.com/en/1.1/topics/http/middleware/
http://docs.djangoproject.com/en/1.1/topics/http/middleware/
http://dojotoolkit.org
http://php.net/manual/en/class.domdocument.php
http://php.net/manual/en/class.domdocument.php
http://www.domtemplate.com
http://dromaeo.com
http://codespeak.net/lxml/
http://genshi.edgewall.org
http://code.google.com/webtoolkit/
http://wiki.rubyonrails.org/howtos/rjs-templates
http://wiki.rubyonrails.org/howtos/rjs-templates
http://jquery.com
http://www.json.org
http://www.w3.org/TR/REC-CSS1-961217
http://mootools.net
http://prototypejs.org
http://code.google.com/p/reducisaurus/
http://ejohn.org/blog/javascript-performance-rundown/
http://ejohn.org/blog/javascript-performance-rundown/
http://rubyonrails.org
http://apple.com/safari/
http://shiflett.org/articles/cross-site-request-forgeries
http://mootools.net/slickspeed/
http://sproutcore.com
http://struts.apache.org
http://www.w3.org/TR/2009/CR-selectors-api-20091222/
http://www.w3.org/TR/2009/CR-selectors-api-20091222/
http://webkit.org
http://webkitgtk.org
http://developer.yahoo.com/yui
http://developer.yahoo.com/yui/compressor/

	Introduction
	Background: MVC
	Our Approach: SVC
	Contributions and Organization

	Architecture
	Design
	Server-side Components
	Selectors and Actions
	Example
	Initial Content
	Progressive Enhancement
	Filters

	Client-side Components

	Implementation
	Implementation Details

	Examples
	Complete Minimal Example
	Additional Examples
	Sites
	Filter Examples

	Performance Evaluation
	Related Work
	Conclusions
	Filter Examples

