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Abstract
A modern web page contains many objects, and fetch-
ing these objects requires many network round trips—
establishing each HTTP connection requires a TCP
handshake, and each HTTP request/response pair re-
quires at least one round trip. To decrease a page’s load
time, designers try to minimize the number of HTTP re-
quests needed to fetch the constituent objects. A com-
mon strategy is to inline the page’s JavaScript and CSS
files instead of using external links (and thus separate
HTTP fetches). Unfortunately, browsers only cache ex-
ternally named objects, so inlining trades fewer HTTP
requests now for greater bandwidth consumption later if
a user revisits a page and must refetch uncacheable files.

Our new system, called Silo, leverages JavaScript and
DOM storage to reduce both the number of HTTP re-
quests and the bandwidth required to construct a page.
DOM storage allows a web page to maintain a key-value
database on a client machine. A Silo-enabled page uses
this local storage as an LBFS-style chunkstore. When a
browser requests a Silo-enabled page, the server returns
a small JavaScript shim which sends the ids of locally
available chunks to the server. The server responds with
a list of the chunks in the inlined page, and the raw data
for chunks missing on the client. Like standard inlining,
Silo reduces the number of HTTP requests; however, it
facilitates finer-grained caching, since each chunk corre-
sponds to a small piece of JavaScript or CSS. The client-
side portion of Silo is written in standard JavaScript, so it
runs on unmodified browsers and does not require users
to install special plugins.

1 Introduction

Users avoid slow web sites and flock towards fast ones.
A recent study found that users expect a page to load in
two seconds or less, and 40% of users will wait for no
more than three seconds before leaving a site [1]. Thus,

fast-loading pages result in happier users, longer visit
times, and higher revenues for page owners. For exam-
ple, when the e-commerce site Shopzilla reduced its av-
erage load time from 5 seconds to 1.5 seconds, it boosted
page views by 25% and revenue by 10% [4]. Faster loads
also lead to more advertising impact, since Google’s Ad-
Words system preferentially displays ads whose target
pages load quickly [9]. Search engines also make load-
ing speed a factor in their page rankings [22].

Given all of this, web designers have accumulated a
series of techniques for decreasing load times. Souder’s
influential book High Performance Web Sites lists 14 of
these techniques [23], with the most important one be-
ing to minimize the number of HTTP requests needed
to construct a page. Over 80% of user-perceived load
time is spent downloading HTML, JavaScript, images,
and other objects, and 40–60% of page visitors arrive
with an empty cache [25]. By minimizing the number of
HTTP requests needed to build a page, developers reduce
the number of round-trips needed to fetch the page’s ob-
jects, and they avoid TCP slow starts for now-superfluous
HTTP connections.

1.1 The Costs and Benefits of Inlining
An obvious way to eliminate HTTP requests is to

make pages contain fewer objects. Unfortunately, this
approach results in less interesting pages, so developers
instead use object inlining [23]. Multiple JavaScript files
are concatenated to form a smaller number of JavaScript
files; similarly, multiple style sheets are combined into
a single CSS file. In both cases, the number of HTTP
requests decreases.

The greatest savings occur when all of the JavaScript
and CSS is directly inserted into the page’s HTML. Such
aggressive inlining delivers all of the page’s HTML,
CSS, and JavaScript in a single HTTP fetch. Unfortu-
nately, the significant reduction in load time comes with
a price—since the browser cache can only store URL-
addressable objects, the individual HTML, CSS, and



JavaScript files cannot be cached. Instead, the browser
caches the aggregate inlined HTML, and if any of the
embedded objects change, the browser must refetch the
bytes for all of the objects. Ideally, we would like the
best of both worlds: aggressive inlining which maintains
the cacheability of the constituent objects.

1.2 Our Solution: Silo
Silo is our new framework for deploying fast-loading

web applications. Silo exploits JavaScript to implement
a delta-encoding HTTP protocol between an unmodi-
fied web browser and a Silo-aware web server. A Silo
web server aggressively inlines JavaScript and CSS, and
breaks the inlined HTML into chunks using Rabin finger-
prints [18]. When a browser requests the page, the server
does not return the inlined HTML—instead, it returns a
small JavaScript shim which uses the browser’s DOM
storage [26] as a chunk cache. The shim informs the
server of locally available chunks. The server responds
with a list of chunk ids in the page, as well as the raw
data for any chunks that do not reside on the client.

By aggressively inlining, browsers can fetch the
HTML, CSS, and JavaScript for a Silo-enabled page in
at most two HTTP round trips (§3.1). However, using
chunking, Silo restores the cacheability that was pre-
viously destroyed by aggressive inlining. Indeed, Silo
introduces a finer granularity of caching, since data is
cached at the level of 2 KB chunks instead of entire files.
This reduces bandwidth requirements when updating al-
ready cached HTML, JavaScript, and CSS files that have
changed, but that retain some of their old content. Since
client-side chunk data is associated with an entire do-
main, chunks downloaded from one page in a domain
can be used to reconstruct a sibling. Thus, Silo can ex-
ploit the fact that different pages in the same domain of-
ten share content [5, 21].

1.3 Our Contributions
This paper makes the following contributions:
• We show how unmodified browsers can exploit

JavaScript and DOM storage to implement a delta-
encoding protocol atop standard HTTP.

• We provide new empirical data on the composition
of web pages and how their content changes over
time.

• We demonstrate that for pages with significant
amounts of JavaScript and CSS, Silo’s new protocol
can reduce load times by 20%–80% while provid-
ing finer-grained caching than the standard browser
cache.

We also discuss the fundamental challenge of defining
“load time” in the context of modern web pages which

contain rich interactive content and thousands of lines of
JavaScript, Flash, and other code.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide background information on the HTTP
protocol and describe the basic JavaScript features that
Silo leverages. In Section 3, we describe how Silo uses
these features to layer a custom delta-encoding protocol
atop standard HTTP. Section 4 provides our PlanetLab
evaluation, wherein we serve real web data under real-
istic network conditions to explore Silo’s benefits. We
discuss related work in Section 5 before concluding in
Section 6.

2 Background

In this section, we provide a brief overview of the
HTTP protocol, describing the particular elements that
are relevant to the Silo architecture. We also describe the
JavaScript features that we use to implement the client-
side portion of the Silo protocol. Finally, we explain how
Rabin fingerprints can be used for delta-encoding.

2.1 The HTTP Protocol

A browser uses the HTTP protocol [6] to fetch objects
from a web server. A top-level page like www.cnn.com
is composed of multiple objects. Silo separates these ob-
jects into four classes.
• HTML describes a page’s content.
• Cascading style sheets (CSS) define how that con-

tent is presented.
• JavaScript code allows the page to respond to user

inputs and dynamically update itself.
• Multimedia files like images, movies, and sound

files provide visual and audio data.
The standard browser cache can store each class of ob-
ject. However, the first three object types consist of
structured, text-based data that changes relatively slowly
across object revisions. In contrast, multimedia files
have binary data that rarely changes in-place. Thus,
only HTML, CSS, and JavaScript are amenable to delta-
encoding (§2.3), a technique for describing different ver-
sions of an object with respect to a reference version.
Importantly, the standard browser cache stores whole
objects at the URL-level—HTTP provides no way to
delta-encode arbitrary objects with respect to previously
cached versions.

To increase fetch parallelism, a browser tries to open
multiple connections to a single web server. HTTP is a
TCP-based protocol, and TCP setup and teardown are ex-
pensive in terms of RTTs. Thus, HTTP version 1.1 intro-
duced persistent HTTP connections, which allow a sin-
gle TCP session to be used for multiple HTTP requests
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and responses. On highly loaded web servers or prox-
ies, maintaining too many persistent connections can ex-
haust memory, file descriptors, and other computational
resources, hurting parallelism if many persistent connec-
tions are idle but no more can be created to handle new,
active clients. Mindful of this threat, some proxies and
web servers use stringent timeouts for persistent connec-
tions, or close them after a few objects have been trans-
ferred [2, 11].

Figure 1(a) demonstrates how a browser might down-
load a simple web page consisting of a single HTML file
and four external objects. First, the browser opens a per-
sistent HTTP connection to the web server and fetches
the page’s HTML. As the browser parses the HTML, it
finds references to the page’s external objects. It fetches
a.css and c.css using its preexisting HTTP con-
nection; in parallel, the browser opens a second persis-
tent connection to get b.css and d.js. The browser
constructs the entire page in approximately three HTTP
round trips (one RTT to fetch the HTML, and two RTTs
to fetch the four objects over two persistent HTTP con-
nections) 1.

In popular browsers like Firefox 3.0, IE 7, and Safari
3, a JavaScript fetch prevents the initiation of new par-
allel downloads. This is because the fetched JavaScript
may change the content of the subsequent HTML (and
thus the external objects that need to be fetched). Newer
browsers use speculative parsing techniques to contain
the side effects of erroneously fetched objects. Develop-
ers have also invented various application-level hacks to
trick browsers into doing parallel JavaScript fetches [24].
Regardless, a browser can only open a finite number
of parallel connections, so the fetching of non-inlined
JavaScript generally adds to the load time of a page.

2.2 JavaScript
JavaScript [7] is the most popular language for client-

side scripting in web browsers. With respect to Silo,
JavaScript has three salient features. First, JavaScript
programs can dynamically modify the content of a web
page. Second, JavaScript can associate large amounts
of persistent local data with each web domain. Third,
JavaScript can use AJAX calls [7] to construct new com-
munication protocols atop HTTP.

2.2.1 Manipulating the DOM

JavaScript represents the state of a web page using the
Document Object Model (DOM) [28]. The DOM pro-
vides a standard, browser-neutral API for querying and

1HTTP 1.1 allows clients to pipeline multiple requests over a sin-
gle connection, but many web servers and proxies do not support this
feature or support it buggily. Pipelining is disabled by default in major
browsers.

manipulating the presentation and content of a page. In
the context of Silo, the most important DOM calls are the
ones which allow pages to overwrite their own content.
• When a JavaScript program calls
document.open(), the browser clears any
preexisting presentation-layer data associated with
the page, i.e., the JavaScript state is preserved, but
the page’s old HTML is discarded.

• The application writes new HTML to
the page using one or more calls to
document.write(html str).

• Once the application has written all of the new
HTML, it calls document.close(). This
method instructs the browser to finish parsing the
HTML stream and update the presentation layer.

Using these calls, a web page can completely overwrite
its content. Silo leverages this ability to dynamically
construct pages from locally cached data chunks and new
chunks sent by Silo web servers.

2.2.2 Associating Web Domains With Local Data

JavaScript does not provide an explicit interface to the
browser cache. JavaScript-generated requests for stan-
dard web objects like images may or may not cause the
associated data to lodge in the cache, and JavaScript pro-
grams cannot explicitly write data to the cache. Further-
more, there is no way for a JavaScript program to list the
contents of the cache.

For many years, the only way for JavaScript to store
persistent, programmatically-accessible client-side data
was through cookies [10]. A cookie is a small file asso-
ciated with a particular web domain. When the user vis-
its a page belonging to that domain, the browser sends
the cookie in the HTTP request. The domain can then
read the cookie and send a modified version in the HTTP
response. JavaScript provides a full read/write interface
for cookies. However, browsers restrict the size of each
cookie to a few kilobytes, making cookies unsuitable for
use as a full-fledged data store.

To solve this problem, Google introduced Gears [8],
a browser plugin that (among other things) provides a
SQL interface to a local data store. Although Gears pro-
vides a powerful storage API, it requires users to modify
their browsers. Luckily, modern browsers like IE8 and
Firefox 3.5 support a new abstraction called DOM stor-
age [26]. DOM storage allows a web domain to store
client-side key/value pairs. By default, browsers allo-
cate 5–10 MB of DOM storage to each domain. The
DOM storage API has been accepted by the W3C Web
Apps Working group [26] and will likely appear in the
upcoming HTML5 standard. Given this fact, Google re-
cently announced that it was ramping down active de-
velopment on Gears, and that it expected developers to
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GET www.foo.com

HTML

<html>

<link href=“a.css”/>

<link href=“b.css”/>

<link href=“c.css”/>

<script src=“d.js”/>

<html>

GET a.css
GET b.css

a.css

b.css

GET c.css
GET d.js

c.css
d.js

(a) The standard HTTP protocol.

JavaScript shim + chunk 

ids in page

GET www.foo.com

<script>

pageCids = [`f4fd`, `b21f`, '];

missingCids = nonLocalCids(pageCids);

updateChunkCache(fetch(missingCids));

overwriteHTML(pageCids);

</script>

Non-local chunk ids

Missing chunk data

(b) The basic Silo protocol. See Section 3.2 for optimizations.

Figure 1: Fetching a simple web page.

migrate to the standardized HTML5 storage mechanisms
once HTML5 gained traction [14].

Web applications most commonly use DOM storage
to buffer updates during disconnected operation. Silo
uses DOM storage in a much different fashion, namely,
as an application-level chunk cache that enables delta-
encoding (§2.3) for web pages.

2.2.3 AJAX

A JavaScript program can use the AJAX interface [7]
to explicitly fetch new web data. AJAX data is named
by URL, and a JavaScript application can inspect and set
the headers and the body of the HTTP request and re-
sponse. Thus, an application can use AJAX to layer arbi-
trary client-server protocols atop HTTP. Silo uses AJAX
to implement a custom delta-encoding HTTP protocol
inside unmodified web browsers.

2.3 Delta-encoding
Delta-encoding is a technique for efficiently describ-

ing the evolution of a data object. Each version of the
object is represented as a set of edits or “deltas” applied
to a reference version of the object. Once a client down-
loads the full reference object, it can cheaply reconstruct
a newer version by downloading the deltas instead of the
entire new object.

Many distributed systems employ chunk-based delta-
encoding. Each object is broken into small, contiguous
byte ranges; a single edit modifies one or more of these
chunks. Hosts transmit their edits by sending the posi-
tions of deleted chunks, and the positions and data of
new chunks.

If chunk boundaries are determined by fixed byte off-
sets, an edit which increases or decreases an object’s size
will invalidate all chunks after the edit point. To avoid
this problem, distributed systems typically eschew fixed
length chunks and use content-delimited chunks instead.
In these systems, chunk boundaries are induced by spe-
cial byte sequences in the data. LBFS [16] popularized
a chunking method in which applications push a sliding
window across a data object and declare a chunk bound-
ary if the Rabin hash value [18] of the window has N ze-
roes in the lower-order bits. By varying N , applications
control the expected chunk size. With content-based
hashing, an edit may create or delete several chunks, but
it will not cause an unbounded number of chunk invali-
dations throughout the object.

Distributed systems typically name each chunk by the
SHA1 hash of its content. This allows different hosts to
independently pick the same name for the same chunk.
Hosts can determine whether they store the same version
of an object by exchanging the chunk ids in their copies
of the file. By comparing these lists, a peer can deter-
mine whether it needs to delete content from its local
version or fetch new chunks from the other host. Silo
uses a similar protocol to delta-encode the transmission
of previously viewed web pages.

3 Silo Architecture

Ideally, the Silo protocol would be implemented as
an extension to HTTP, and commodity web servers and
browsers would ship with native Silo support. However,
to ease deployability, our current Silo architecture lever-
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ages JavaScript to execute on unmodified browsers. Web
servers must still be modified, but this is much less oner-
ous than modifying millions of end-user browsers.

Our Silo architecture consists of three components:
a Silo-aware web server, an unmodified client browser,
and a JavaScript shim that is generated by the server and
which implements the client side of the Silo protocol. In
this section, we describe this architecture in more detail.
We also describe several optimizations to the basic Silo
protocol; some of these optimizations mask performance
issues in current JavaScript engines, and others leverage
cookies to reduce the number of RTTs needed to con-
struct a page.

Silo’s goal is to reduce the time needed to assem-
ble a page’s HTML, CSS, and JavaScript. Borrowing
Firefox’s event terminology, we refer to this time as the
page’s DOMContentLoaded time [15]. Fetching a
page’s HTML, CSS, and JavaScript is necessary but of-
ten insufficient to produce a fully functioning page. For
example, pages often contain multimedia files which are
not amenable to Silo-style delta encoding. Silo is orthog-
onal to techniques for improving the load times of these
objects. We return to this topic when we describe our
evaluation methodology (§4.1).

3.1 The Basic Protocol

Figure 1(a) depicts how a web page is constructed us-
ing the standard HTTP 1.1 protocol. The browser first
retrieves the HTML for the page. As it parses the file,
it issues parallel fetches for the externally referenced ob-
jects. In Figure 1(a), we assume that the client cache
is empty, and that the browser can issue two fetches in
parallel. Thus, the browser must use three HTTP round
trips to construct the page (one to send the initial GET,
and two to download the external objects).

Figure 1(b) depicts how a Silo-enabled page is fetched.
The browser issues a standard GET for the page, but the
web server does not respond with the page’s HTML.
Instead, the server sends a small piece of JavaScript
which acts as the client-side participant in the Silo pro-
tocol. The JavaScript shim contains an array called
pageCids; this array lists the ids of the chunks in the
page to construct. The shim inspects the client’s DOM
storage to determine which of these chunks do not re-
side locally. The shim uses a synchronous AJAX POST
to send the missing chunk ids to the server. The server
replies with the raw data for the missing chunks. The
client assembles the relevant chunks and overwrites the
page’s current HTML, reconstructing the original inlined
page. In this fashion, the basic Silo protocol uses two
HTTP round trips to fetch an arbitrary number of HTML,
CSS, and JavaScript files.

<html>
<script>

/*Code for Silo shim*/
</script>
<style type=text/css>

/*Inlined css for a.css*/
</style>
...
<script>

/*Inlined JavaScript for d.js*/
</script>

</html>
<!--- Chunk manifest
cid0, offset0, len0
cid1, offset1, len1
...
--->

Figure 2: When the client chunk cache is empty, the
Silo server responds with inlined HTML which is im-
mediately usable by the browser. The client shim asyn-
chronously parses the chunk manifest at the bottom of
the HTML and updates the local chunk cache.

3.2 Optimizations

Handling Cold Client Caches: At any given moment,
40%–60% of the users who visit a page will have no
cached data for that page [25]. However, as shown in
Figure 1(b), a Silo server does not differentiate between
clients with warm caches and clients with cold caches—
in either case, the server’s second message to the client
is a string containing raw data for N chunks. If the client
has an empty cache, it must synchronously perform N
substring operations before it can extract the N chunks
and recreate the inline page. In current browsers, this
parsing overhead may be hundreds of milliseconds if in-
lined pages contain hundreds of KB of data (and thus
hundreds of chunks).

To improve load times in these situations, Silo sends
a different second message to clients with empty chunk
caches. Instead of sending raw chunk data that the client
must parse before it can reconstruct the page, the server
sends an inlined version of the page annotated with a
special chunk manifest at the end (see Figure 2). The
chunk manifest resides within an HTML comment, so
the client can commit the annotated HTML immediately,
i.e., without synchronously performing substring opera-
tions. Later, the client asynchronously parses the man-
ifest, which describes the chunks in the inlined HTML
using a straightforward offset+length notation. As the
client parses the manifest, it extracts the relevant chunks
and updates the local chunk cache.

5



JavaScript shim + chunk 

ids in page + Missing 

chunk data

GET www.foo.com +
Cookie: Local chunk ids

<script>

pageCids = [`f4fd`, `b21f`, +];

missingChunks = {`f4f2`: `rawData0`,

`4c2d`: `rawData1`,

+};

overwriteHTML(pageCids);

updateChunkCache(missingChunks);

updateCookie(missingChunks);

</script>

Figure 3: Single RTT Silo protocol, warm client cache.

Leveraging HTTP Cookies: Silo uses cookies (§2.2.2)
in two ways to reduce the number of HTTP round trips
needed to construct a page. First, suppose that a client
has an empty chunk cache. Even if the server uses anno-
tated HTML to eliminate synchronous client-side string
operations, the client must expend two HTTP round trips
to construct the page. However, the client shim can set a
“warm cache” variable in the page’s cookie whenever it
stores chunks for that page. If the server does not see this
cookie variable when the client sends the initial HTTP
GET operation, the server knows that the client chunk
cache is cold, either because the client has never visited
the page before (and thus there is no cookie), or the client
has visited the page before, but the local cache is empty
for some other reason (e.g., because previous writes to
DOM storage failed due to a lack of free space). Regard-
less, the server responds to the initial HTTP GET with
annotated HTML. This allows a Silo client with a cold
cache to fetch all of the HTML, CSS, and JavaScript in a
single HTTP round trip.

Clients with warm caches can also use cookies to in-
dicate the contents of their cache. Whenever the client
shim updates the chunk cache for a page, it can add the
new chunk ids to the page’s cookie. The next time that
the browser requests the page, the server can inspect the
cookie in the initial HTTP GET and determine which
page chunks already reside on the client. The server can
then directly respond with the Silo shim and the missing
chunks, eliminating the second HTTP round trip required
by the basic Silo protocol.

Browsers typically restrict cookie sizes to 4 KB, the
minimum cap allowed by RFC 2109 [10]. SHA1 hashes
are 20 bytes, so a cookie could hold a maximum of 204
SHA1 chunk ids. If chunks are 2 KB on average, then

a cookie could reference a maximum of 408 KB of lo-
cal chunk cache data. For many popular web pages, 408
KB is sufficient to delta-encode several versions of the
page (§4.3). However, some pages are so big that even a
single snapshot of their HTML, CSS, and JavaScript will
not fit in 408 KB of chunk-addressable storage. Fortu-
nately, Silo can expand the addressable range by lever-
aging the fact that Silo servers have complete control
over chunk names. Name-by-hash allows different ma-
chines to agree on chunk names without a priori commu-
nication, but Silo clients never assign chunk ids—servers
always determine the mapping between chunk ids and
chunk data. Thus, servers can use ids that are much
shorter than SHA1 hashes. For example, a server could
assign each new, unique chunk a strictly increasing 3
byte id. Since client-side DOM storage is partitioned by
domain, these ids only have to be collision-free within a
domain, not the entire Internet. With 3 byte ids, a domain
could define over 16 million unique chunks before hav-
ing to “reset” the namespace. A 4 KB cookie could store
1365 of these 3 byte ids. With 2 KB chunks, this would
allow clients to name roughly 2.7 MB of local cache data.
As we show in Section 4.3, 2.7 MB of storage should be
more than sufficient to delta-encode multiple versions of
a page’s HTML, CSS, and JavaScript.

Finally, we note that Silo is agnostic to the specific
method in which data is chunked. Indeed, websites are
free to pick the granularity of caching that best suits their
needs. For example, if a web site knows that its HTML
evolves in a structured way, it can define an HTML-
specific chunking function for its pages. Alternatively,
a site could decide to chunk at the whole file level, i.e.,
with each CSS and JavaScript file residing in its own sin-
gleton chunk. Silo is not bound to a specific chunking
mechanism—it merely leverages chunking to provide in-
lining without destroying the cacheability of individual
objects.

The Full Protocol: Given all of these optimizations,
we now describe the full version of the Silo protocol. We
separate our description into two cases: when the client
has a cold chunk cache, and when the client has a warm
cache.
• Cold cache: The client generates an HTTP GET re-

quest for a page, sending a cookie which indicates
a cold cache. The server responds with annotated
HTML as shown in Figure 2. The browser commits
the annotated HTML immediately; asynchronously,
the Silo shim parses the chunk manifest, extracts the
associated chunks, and writes them to DOM stor-
age. In this scenario, Silo needs one HTTP round
trip to assemble all of the page’s HTML, CSS, and
JavaScript.

• Warm client cache: The client generates an HTTP
GET request for a page, sending a cookie which in-
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dicates a warm cache. If the client can fit all of the
local chunk ids within the cookie, it can receive the
Silo shim and the missing chunk data in a single
server response (see Figure 3). Otherwise, it falls
back on the basic, two RTT Silo protocol depicted
in Figure 1(b).

As we show in the evaluation section, Silo’s primary ben-
efit is to reduce load times for clients with cold caches;
client with completely warm caches have no fetch laten-
cies to mask. However, for clients with only partially
warm caches, Silo reduces the fetch penalty since an ar-
bitrary number of stale objects can be updated using at
most two HTTP round trips. Furthermore, if pages use
fine-grained chunking, data can be invalidated at a much
finer level, reducing the fetch bandwidth in addition to
the fetch latency.

3.3 Other Design Decisions
When a client has a partially warm cache, Silo asyn-

chronously writes new chunks to disk. As we show in
Section 4.2, Firefox’s writes to DOM storage can require
more than a hundred milliseconds. Thus, to avoid fore-
ground resource contention during the page load, Silo
synchronously extracts in-memory versions of the new
chunks needed to assemble the page, but it always defers
writes to stable storage for a few seconds (our current
prototype waits 5 seconds).

The regular browser cache stores data belonging to
<script> tags. These tags can store arbitrary data
as JavaScript strings. Thus, Silo could use the standard
browser cache as a chunk store by writing blobs to scripts
whose names were chunk ids. At first glance, this ap-
proach seems attractive since it obviates the need for a
separate chunk cache, and it would work on unmodi-
fied browsers. However, browsers provide no way for
JavaScript applications to explicitly insert data into the
cache. Instead, applications implicitly warm the browser
cache as a side-effect of fetching external data. Even
simple web pages will likely contain at least a few tens of
chunks; thus, a client which wanted to store these chunks
using <script> tags would have to issue a large num-
ber of HTTP requests. This would obviously lead to huge
increases in page load times. Thus, <script> tags are
a poor substitute for DOM storage.

4 Evaluation

In this section, we evaluate Silo by serving real web
content from a Silo deployment on PlanetLab. We
demonstrate that Silo can substantially improve load
times for pages with large amount of CSS and JavaScript.
We also provide an analysis of how content chunks
evolve within the same page and across different pages.

4.1 Methodology

Gathering and Serving Real Web Data: For our Silo-
aware web server, we used a modified version of the
Mugshot replay proxy [13]. Mugshot is a system for
capturing and replaying the behavior of JavaScript-based
web applications. A browser-side Mugshot JavaScript li-
brary records the bulk of the nondeterminism like GUI
activity and calls to the random number generator. A
special Mugshot proxy sits between the real web server
and the browser; this proxy records the binding between
the URLs in client HTTP requests and the data that is re-
turned for those URLs. Later, at replay time, Mugshot
uses the replay proxy as a web server, letting it respond
to data requests from the replaying client code. This en-
sures that the data fetched at replay time is the same data
that was fetched at logging time.

To test the Silo protocol, we first ran the Mugshot
proxy in its standard logging mode, capturing HTTP
headers and data from real websites. We then switched
the proxy into replay mode and had clients use it as their
web proxy. When clients requested a page whose con-
tent we previously logged, the proxy served that page’s
objects directly from its cache. We modified the replay
mode to support the Silo chunking protocol described in
Section 3.2. Thus, we could simulate Silo’s deployment
to an arbitrary web site by logging a client’s visit to that
site, clearing the client-side cache, and then revisiting the
page in Silo-enabled replay mode.

Experimental Setup: Our experimental setup consisted
of a client machine whose browser fetched content from
a Silo-aware web server. The client browser resided on
a Lenovo ThinkPad laptop running Windows 7. The lap-
top had an Intel Core 2 Duo with 2.66 GHz processors
and 4GB of RAM. The server ran on a PlanetLab node
with a 2.33 GHz Intel Core Duo and 4 GB of RAM. The
client communicated with the server over a residential
wireless network. Across all experiments, the RTT was
stable at roughly 150 ms, and the bandwidth varied be-
tween 700–850 Kbps. Thus, network conditions were
similar to those experienced by typical cable modems
or DSL links. In the results presented below, we used
the Firefox 3.5.7 browser, but the results for IE8 were
similar. We present Firefox results because IE8 does not
yet define the DOMContentLoaded event, whose us-
age we describe shortly. Silo using Rabin chunking with
an expected chunk size of 2 KB.

In real life, when a browser loads a page, it opens mul-
tiple simultaneous connections to multiple servers and
proxies. In our experimental setup, the client browser
fetched everything from a single Mugshot proxy. To en-
sure that we did not unduly constrain fetch parallelism,
we configured Firefox to open up to sixteen persistent
connections to a proxy instead of the default of eight.
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Figure 4: Content statistics for several popular web pages. Top-level fractions are the percentage of content that is
potentially inlineable (HTML+CSS+JavaScript).
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Figure 5: Page load times.

In an actual Silo deployment, a web server would al-
ways compress the chunk manifests that it sent to clients.
However, we found that many web servers do not com-
press the HTML and the CSS that they transmit 2. To
provide a fairer comparison, the Silo server only gzip-
ed its chunk manifest if the logged HTML page was also
compressed. Our Silo server also closed persistent con-
nections whenever the logged persistent connection was
closed.

Defining Load Time: One of Silo’s benefits is that it re-
duces page load time. The intuition is straightforward—
by decreasing the number of round trips needed to con-
struct a page, the browser spends less time stalling on the
network and builds pages faster. Unfortunately, provid-
ing a precise definition of load time is difficult.

At the end of the exchanges shown in Figures 1(a) and
(b), the page’s HTML, JavaScript, and CSS have been
fetched and parsed. The browser has calculated the lay-
out and presentation format of the content, but it may not
have fetched some of this content. In particular, multime-
dia objects like images and advertisements may or may
not have been downloaded in parallel with the DOM con-

2JavaScript is rarely sent compressed since several browsers have
buggy decompression routines for scripts.

tent. Thus, the “full” page load may not coincide with the
completion of the DOM load.

To further complicate matters, some sophisticated web
pages use JavaScript code to defer certain fetches. For
example, upon initial load, some sites defer the fetching
of content at the (not yet scrolled-to) bottom of the page.
Some pages also split their fetches into a lightweight
“top-half” which quickly displays visual elements, and a
more heavyweight “bottom-half” which grabs the large
resources that are actually represented by the GUI ele-
ments. Defining load times in these cases is difficult—
the initial page load may seem quick, but if users try to
access the rich data too quickly, they may experience a
second, more painful load time.

Firefox issues the DOMContentLoaded JavaScript
event when it has fetched all of a page’s HTML, CSS,
and JavaScript. It fires the load event when all of
the page’s content has been fetched. Silo definitely re-
duces the time to DOMContentLoaded; in the sim-
ple example of Figure 1, this time is reduced from three
RTTs to two. Silo typically reduces the time to load as
well. However, for any given page, load time is usu-
ally heavy-tailed [17, 19, 27]. This is caused by a vari-
ety of events, such as random network congestion which
slashes throughput for some TCP connections, or heav-
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Figure 6: DOM storage write overheads.

ily loaded servers for widely shared third-party images or
advertisements. Techniques for optimizing load times for
multimedia files, e.g., through image spriting [23], are
complimentary but orthogonal to Silo. However, for the
sake of completeness, our results in Section 4.2 describe
Silo’s impact on both DOMContentLoaded time and
load time.

4.2 Reducing Page Load Times
Figure 4 shows the content statistics for several pop-

ular web pages. It is interesting to note the size of the
JavaScript files; as shown in Figure 4(a), many websites
have hundreds of KB of JavaScript code, and JavaScript
makes up more than 60% of the byte content for the front
pages of Wikipedia, BBC, and CNN. This result is per-
haps counterintuitive, since modern web applications are
popularly characterized as being multimedia-heavy. This
conventional wisdom is certainly true, but it does un-
derestimate the pervasiveness and the size of JavaScript
code.

Whereas Figure 4(a) breaks down content type by byte
size, Figure 4(b) describes content type by object count.
Viewed from this perspective, there are fewer opportu-
nities for inlining. For example, in the popular DavisW
Wordpress blog, 22% of all bytes are HTML, but only
6.7% of distinct objects are HTML. Similarly, in the
BBC front page, 69% of all bytes belong to HTML,
JavaScript, and CSS, but only 27% of the total objects are
inlineable. The number of distinct objects governs the
number of HTTP requests needed to build a page. Thus,
the difference between Figure 4(a) and (b) may seem to
doom any efforts to reduce load times through inlining.
However, web designers typically structure pages such
that the most important objects load first. For example,
code for ad-generation may load asynchronously, and
embedded movie players often do not start to prefetch
data until the rest of the page has loaded. Thus, Silo still
has many opportunities to reduce load times.

Figure 5 shows how quickly Silo-enabled pages load
in comparison to their “standard” versions. Silo’s benefit

is measured as the fraction of the standard load time that
Silo eliminates. The best achievable reduction is 100%,
and negative percentages are possible if a Silo page loads
slower than its standard counterpart. Figure 5(a) depicts
Silo’s performance when client caches are empty, i.e.,
we compare a Silo page load with an empty chunk cache
to a load of the regular page when the standard browser
cache is empty. In five of the eleven websites, Silo re-
duces DOMContentLoaded times by 25% or more.
The other sites have fewer synchronous object fetches
on the critical path for page loading, so Silo-enabled
versions of these pages load no faster, or even slightly
slower due to Silo’s computational overheads. However,
Silo generally does little harm, and often provides non-
trivial benefits.

Unsurprisingly, Figure 5(a) shows that Silo re-
duces DOMContentLoaded times more than it re-
duces load times. However, we emphasize that
the DOMContentLoaded event represents the earliest
point at which a page is ready for human interaction, so
minimizing DOMContentLoaded time is worthwhile.
We also note that for five of the eleven sites, Silo also
reduces load times by 20% or more.

Figure 5(b) shows load times when clients have warm
caches and Silo uses the single RTT protocol described
in Figure 3. In all cases, caches were warmed with data
from 9 AM on May 11, 2010, and browsers were sub-
sequently directed towards replayed page content from
an hour later. Silo generally provides few benefits when
caches are warm—few (if any) new objects must be
fetched, so there are fewer network round trips for Silo
to mask. However, Silo did provide a large benefit to the
Wordpress site, since the small change in HTML content
necessitated the transfer of the entire 1 MB file in the
standard case, but only a few chunks in Silo’s case. In
this scenario, Silo reduced latency not by hiding a round
trip, but by dramatically reducing the amount of data that
had to be shipped across the wide area.

Silo reads from DOM storage to gather locally cached
chunks, and it writes to DOM storage to cache new
blocks sent by the server. In Firefox’s current imple-
mentation of DOM storage, even small reads and writes
are fairly expensive, with writes being two to five times
slower than reads. Figure 6 shows Silo’s write through-
put for committing all of a page’s chunks, showing that
this operation, undertaken when clients have completely
cold caches, generally requires 50–150 ms. The DOM
storage API is a new browser feature that is currently
unused by most sites, but we expect its throughput to im-
prove as the API becomes more popular and browser im-
plementers have a stronger motivation to make it fast.
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Figure 7: Byte turnover: 1 hour.
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Figure 8: Byte turnover: 12 hours.

4.3 Turnover Rates for Inlineable Data
Figures 7, 8, and 9 show how inlineable page con-

tent evolved over a 24 hour period starting at 9:30 AM
on Friday, January 8, 2010. These results show that
byte turnover varies widely across pages. For example,
the Apple website showed no variation at all during this
particular period. The Wordpress blog also showed lit-
tle change, since the bulk of its content consisted of a
large HTML file with minimal deltas and a set of static
CSS. In contrast, the New York Times site had 21% of
its chunks replaced in an hour; after a day, almost half
of the chunks were new. The Wikipedia front page had
a similar level of turnover, since it also rotates top-level
stories frequently. Interestingly, despite it high level of
visual turnover, CNN only generated 2.8% new chunks
in an hour, and 7.6% new chunks over the period of a
day. This is because CNN contained large amounts of
stable JavaScript and CSS (see Figure 4).

During the observation period, most byte turnover re-
sulted from changes to a page’s HTML. However, CNET,
CNN, and the New York Times occasionally added or
deleted JavaScript files which managed advertisements.
CNN also replaced a 522 byte chunk in a CSS file.

Figure 10 depicts the level of byte sharing between
different pages in the same domain. We distinguish be-
tween a top-level front page, e.g., www.cnn.com, and
a second-level page which is directly referenced by the
front page. Figure 10(a) depicts the average similarity
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Figure 9: Byte turnover: 24 hours.

of five random second-level pages to each other, whereas
Figure 10(b) shows the average similarity of these pages
to the front page. These results show that second-level
pages have more in common with each other than with
their front pages. However, the CNN and CNET front
pages offer significant opportunities for clients to warm
their chunk caches for subsequent second-level page
views.

When examining the second-level New York Times
pages, Silo reported a large amount of redundant data.
Upon checking Silo’s log files, we discovered that each
page repeated the same <script> tag four times.
The script was a piece of advertising management code
hosted by a third party. Its multiple inclusions were
apparently harmless in terms of the page’s behavior,
but scripts are obviously not required to be idempotent.
Thus, Silo’s chunking scheme is useful for alerting con-
tent providers to potentially unintended duplication of
scripts.

5 Related Work

Silo’s most direct inspiration was LBFS [16], a net-
work file system layered atop a distributed chunk store.
In LBFS, each file is represented as a set of Rabin-
delimited chunks. Clients and servers maintain an index
of locally stored chunks. Whenever hosts must exchange
files, they transfer chunk manifests indicating the data
involved in local file operations; a host only fetches raw
chunk data if no local copy exists.

Silo uses the advanced programming environment of
modern browsers to implement an LBFS-like protocol
atop HTTP. Value-based Web Caching [20] has a sim-
ilar goal. VBWC introduces two new proxies, one in-
side the network belonging to an ISP, and another on the
client. The browser issues web requests through the local
proxy, and the local proxy engages in an LBFS protocol
with the ISP proxy, which fetches and chunks web con-
tent. Unlike Silo, VBWC requires modification to client
machines, hindering deployability. VBWC also does not
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Figure 10: Intra-domain page similarity. Top-of-bar fractions are the percentages of new content.

exploit object inlining to reduce the volume of HTTP re-
quests issued by the client.

A variety of other projects have explored delta-
encoding for web traffic. For example, Douglis studied
the degree of similarity between different pages on the
same site [5]. Chan described how objects that already
reside in a browser cache can act as reference objects
for delta-encoding new files [3]. Savant extended both
lines of research, showing that delta-encoding of HTML
files from the same site can achieve compression ratios
of greater than 80% [21].

Web developers can reduce user-perceived load times
by deferring the fetches for components which are
not immediately needed. For example, Yahoo Im-
ageLoader [29] provides a JavaScript framework for de-
laying the load of images that the user will not need
within the first few seconds of viewing the page; such
images might be positioned beneath the initially visible
portion of the page, or they might only be needed if the
user performs a certain action. The Doloto [12] tool pro-
vides a similar service for JavaScript code. Doloto ana-
lyzes a pages JavaScript behavior and identifies two sets
of code: code which is invoked immediately, and code
which is used infrequently, or only used a few seconds
after the initial page load. After collecting this work-
load data, Doloto rewrites the application code, loading
the former code set at page initialization time, and lazily
downloading the latter set, only fetching it on demand
if its functionality is actually needed. Silo is orthogo-
nal to projects like ImageLoader since its delta-encoding
does not apply to multimedia files. Silo is complimentary
to projects like Doloto since Silo can reduce the transfer
time of any JavaScript that Doloto labels as “immediately
necessary.”

6 Conclusions

Slow web pages frustrate users and decrease revenues
for content providers. Developers have created various
ways to defer or hide fetch latencies, but perhaps the
most effective technique is the most straightforward: re-
ducing the number of HTTP requests required to build

a page. Unfortunately, this strategy presents content
providers with a quandary. They can reduce the num-
ber of objects in each page, but this can negatively im-
pact the rich content of the page. Alternatively, the con-
tent provider can inline the bodies of previously exter-
nal JavaScript and CSS files. However, this destroys the
cacheability of these files, since standard browser caches
only store objects named via external URL pointers.

In this paper, we introduce Silo, a new framework
for reducing load times while preserving cacheability.
Silo exploits JavaScript and DOM storage to implement
a delta-encoding protocol atop standard HTTP. Using
the Silo protocol, a web server can aggressively inline
JavaScript and CSS without fear of losing cacheabil-
ity. Indeed, since Silo has complete control over its
DOM storage cache, it can provide a finer granularity of
caching than that provided by the browser. Silo’s client-
side component consists of standard JavaScript, meaning
that Silo can be deployed to unmodified browsers. Ex-
periments show that Silo’s inlining and chunking proto-
col can reduce load times by 20%–80% for pages with
large amounts of JavaScript and CSS. Additionally, a
Silo web server’s chunking facilities, in concert with its
ability to record HTTP sessions, provide a useful plat-
form for studying the turnover rate of data in web pages.
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