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Abstract

Modern server operating systems (OS’s) do not address
the issue of interference between competing applica-
tions. This deficiency is a major road-block for Internet
and Application Service Providers who want to multi-
plex server resources among their business clients. To
insulate applications from each other, we introduceVir-
tual Services (VSs). Besides providing per-service re-
source budgets, VSs drastically reduce cross-service in-
terference in the presence of shared backend services,
such as databases and name services.

VSs provide dynamic per-service resource partitioning
and management in a manner completely transparent
to applications. To accomplish this goal, we introduce
a kernel-based work classification mechanism called
gates. Gates track work that propagates from one ser-
vice to another and are configured by the system admin-
istrator via simple rules. They automate the binding of
processes and sockets to VSs, and ensure that any work
done on behalf of a VS, even if it is done by shared
services, is charged to the resource budget of the VS
that requested it. Using our experimental Linux 2.0.36-
based implementation we applied them effectively to co-
hosted Web servers. Thus, nearly eliminating perfor-
mance interference between the co-hosted sites.

1 Introduction

It is becoming increasingly common and desirable for
companies to outsource applications and services to In-
ternet or Application Service Providers (ASPs) to re-
duce hardware and administration costs. ASPs save cost

�The work reported in this paper was supported in part by the IBM
Graduate Fellowship Program and by the NSF under Grant No. EIA-
9806280.

by sharing hardware, software licenses, and personnel
among business clients. To minimize the number of sys-
tem administrators required to run the ASP’s site and
to decrease the rate of system failure, ASPs invest in
highly reliable and powerful servers. Since such server
setups are not cheap, its resources should be highly uti-
lized by sharing them among as many business clients
as possible. In addition to the sharing of hardware re-
sources, software resources may be shared across ser-
vices. For instance, the DNS server will generally be
shared across services and even business clients. While
reducing the ASP’s cost, aggressive sharing makes en-
suring the Quality-of-Service (QoS) for the outsourced
services difficult. Since ASPs must fulfill QoS contracts,
a.k.a. service level agreements [22], they must tackle the
performance interferences that result from the sharing of
resources and services without deploying highly under-
utilized and hence, cost-inefficient servers.

Recently, resource sharing has been addressed by the
virtualization of resources in off-the-shelf OS’s (e.g.,
virtual Web hosting and virtual servers) [2, 4, 6, 7, 8,
14, 21]. The essence of these concepts is that one phys-
ical server is split into several virtual hosts (VHs). Ide-
ally, neither the client nor the server application is aware
of the fact that it is executing on a VH and not on
a real host. Initial implementations of this idea were
content-based VHs. Here, a server would serve dif-
ferent content, depending on the IP address that was
used to contact it, e.g., Apache’sVirtualHost direc-
tive [14]. The performance interference that occurs be-
tween co-located VHs was not considered. To solve this
problem, resource bindings for VHs were introduced
[2, 4, 7, 20, 21]. With resource bindings, demand surges
on one VH will no longer impact the performance of
other co-hosted VHs. A service that is executed on one
VH behaves as if it were executed on its own physical
server. This still does not address the performance inter-
ference between services that may result from accessing
the same backend service.
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Figure 1:Service-sharing destroys insulation

Looking at the services that are hosted on a VH, we
found that they vary between monolithic, which im-
plement all service functionality themselves, and light-
weight, which relay most of their work to other services.
Therefore, the abstraction of a service does not directly
coincide with the process boundaries imposed by the
OS. Nevertheless, we define aservice as the set of pro-
cesses, sockets, and file descriptors that implement the
service interface and share one address space. All other
service activities (henceforth called just activities) that a
service may trigger outside its own address space are re-
ferred to assub-services. Since service providers often
host similar services for different business clients, sub-
services often shared among them.

When services are shared among different business
clients, VH-based insulation approaches fail (see Fig-
ure 1). Shared services like DNS, proxy cache ser-
vices, time services, distributed file systems, and shared
databases, are quite common. With shared services, an
obvious question arises as to which VH should host
these shared services. Since these services work on
behalf of many other services, their resource bindings
should be dynamic to reflect theworks-for relation. The
problem could be fixed by replicating shared services on
each VH. However, in this case the consistency of indi-
vidual shared services becomes a major concern, as does
the inefficiency that results when hosting two identical
services to maximize performance insulation.

To eliminate the performance interference caused by
shared services, we introduce the notion of aVirtual Ser-
vice (VS). VSs are an OS abstraction that provides per-
service resource partitioning and management by dy-
namically binding service activities in a manner that is
completely transparent to applications. Once an activ-
ity is classified as belonging to some VS, this VS asso-
ciation is maintained, regardless of the process context
in which the activity continues. This means that the re-
source bindings for shared services are delayed until it is
known who they work for. This automatic and delayed
resource binding makes insulation between services pos-
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Figure 2:Virtual Service Architecture

sible, in spite of shared sub-services.

In the VS architecture, the dynamic binding of activities
to VSs is inferred by intercepting system calls within the
OS usingclassification gates and analyzing the informa-
tion that is passed to the call (see Figure 2). Gates track
work that propagates from one service to another and are
configured by the system administrator via simple rules.
They automate the binding of resources (e.g., newly-
created processes and sockets) to VSs, and keep track
of any work done on behalf of a VS. Administrators
can specify which system calls should be intercepted.
Furthermore, they set up the rules that specify how the
association between resources (e.g., processes, sockets,
etc.) and VSs is affected by the intercepted calls. For
example, a rule like: “If process P1 accepts a ser-
vice request from VSx, the resulting P1 activity should
be charged to VSx” can be configured easily. Our de-
sign also includes a VS-aware scheduler and packet dis-
patcher that enforce per-VS CPU and network shares.

The combination of VSs and gates permits resource
management for dynamic communicating services with-
out requiring any changes to the hosted services. While
being transparent to the application, the system admin-
istrator must know the mechanisms by which work is
relayed among VSs. Fortunately, this information can
be inferred without application modification by system-
call-tracing utilities or packet sniffers.

Other approaches that permit changing the resource
bindings [2, 4] do not consider the problem of shared
sub-services that do not readjust resource bindings on
their own. Since the applications that the ASP hosts
are usually developed for standard OS’s, they are not
resource-binding-aware. As Figure 2 shows, our trans-
parent VS architecture brings resource management to
such applications.

The following points summarize the key features of our



VS architecture:

� Dynamic resource bindings for shared services

� Application transparent resource management

� Applications may use several OS mechanisms to re-
lay work to each other

� Minimal interference between VSs

� Modular implementation permits trade-off between
the quality of insulation and the overhead incurred
by the VS abstraction

The idea of a VS can be directly applied to distributed
server farms within one administrative domain and
shared VS name space. Even though collaborating ser-
vices may be scattered over several machines, they still
relay service requests to one another via system calls
which the classification gates can intercept.

We summarize related work in Section 2. Section 3 de-
tails the design of VS and the dynamic management of
VS associations. Section 4 describes our Linux-based
implementation. Section 5 presents experimental results
and quantitatively shows that the VS abstraction solves
the problems faced by ASPs that co-host services. Sec-
tion 6 summarizes our findings and future research di-
rections.

2 Related Work

There are two approaches to server management:
resource-oriented and service-oriented. Resource-
oriented approaches like Resource Containers [2],
Eclipse [3, 4], Capacity Reserves [15], and Hierarchi-
cal Scheduler [9] provide necessary low-level support
for the partitioning of resources. Furthermore, they sup-
port relatively static bindings of resource consumers to
these partitions. VS (proposed in this paper) and Work-
load Manager [1] are service-oriented. They charge ser-
vices for their resource usage instead of creating static
resource partition bindings for entities like processes,
users, or sockets. Table 1 characterizes the properties of
related approaches. This figure also highlights the novel
features of VS.

Resource Containers (RC) is the most recent representa-
tive of resource-oriented server management. Any OS or
application activity executes in the context of an RC. The
RC may contain basic CPU and network shares and var-
ious count limits on the number of resource consumers
that can be bound to it. To control application perfor-
mance, processes must explicitly bind to an RC. Sub-
sequent activities are charged to the associated RC, and
resource limits specified therein are enforced. Unlike

VS, the RC abstraction does not automate the binding of
resource consumers to RC’s.

The Solaris Resource Manager [20] is based on a re-
source reservation concept (calledlnodes) which is
equivalent to RC. In addition to the resource-reservation
abstraction,lnodes are tagged with Unix user-group
affiliations so that the resource context can be inferred
from the user-group setting of current application activ-
ity. This mechanism reduces the need for manual re-
source bindings. The idea is to give each user-ID its
own machine. Unfortunately, this concept fails if shared
services do not change their user-ID when they work on
behalf of different users. For example, the system’s DNS
server does not change its user-ID to that of the process
requesting address resolution.

In the context of Eclipse’s hierarchical reservation do-
mains [4] Brunoet al. discuss in a recent paper [3] how
Eclipse tackles the problem of sharing specific OS enti-
ties such as sockets among concurrent applications. In-
terference can be reduced by tagging each request that
utilizes a shared resource with the appropriate reserva-
tion domain, thus delaying the resource binding of the
shared OS abstraction. Request tagging is also used by
VS. Unlike VS, Eclipse does not infer the tag for a re-
quest in the absence of application support and does not
exploit these for the scheduling of an application that
picks up a tagged request. Precursors of this work are the
Hierarchical Scheduler (HS) [9] with configurable CPU
scheduling policies and the Nemesis OS [10]. Nemesis
provides comprehensive inter-application isolation for
memory and file system. Both HS and Nemesis require
applications to manage their own resource bindings.

Workload Manager’s (WLM’s) [1] notion of aservice
class is similar to the notion of a VS. Since WLM man-
ages requests separately according to theirservice class,
service sharing does not necessarily cause interference.
Nevertheless, classifying requests into service classes is
the hard part. For this purpose, IBM modified OS/390’s
services to classify all requests into service classes. This
approach does not work for ASPs since they cannot
modify hosted applications. Therefore, VSs provide a
transparent work classification mechanism.

Scout [18] takes a somewhat different route since it is
primarily designed to be used in embedded multimedia
server designs. Scout’s path abstraction tracks the flow
of work across different OS layers. Resources are re-
served on a per-path basis. Since paths are compiled
into the kernel, resource consumption scenarios cannot
change dynamically. For every new resource consump-
tion scenario (i.e., new applications) the Scout kernel
must be recompiled. In contrast, VSs can be configured
dynamically to handle new scenarios of resource con-
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OS Solaris Eclipse Solaris
Digital 
Unix Solaris Scout Linux OS/390

Focus
VH on 
multi-

processor VH
Mulimedia 
end-host

abstract 
VH

per-user 
VH

Multimedia 
end-host

per-
service 

resources
workload 

mgmt
Single server Y Y Y Y Y Y Y Y

Server farm
Multi-

processor N N N (pot. Y)
Multi-

processor N Y Y

CPU control
Y 

#CPU's/VH Y Y Y Y
program-

mable Y priorities

Net control Y (coarse) Y N indirect N
program-

mable Y N

Disk control Y (coarse) Y N N N
program-

mable N Y

Memory control Y (coarse) N N N Y
program-

mable Not yet Y

Inference of 
resource principal VH N N

some TCP-
based

Unix 
user/group N rule-based app-based

Recognize work 
delegation 

N N N N N
hardwired 
into OS

Y 
intercept 
syscall N

Application changes Y N Y Y Y
OS part of 
application N Y

Table 1: Resource- and service-oriented server management solutions

sumption and service interaction.

Sun’s Dynamic Enterprise 1000 [21], Solaris Resource
Manager [20], and Ensim’s recent VH product ServerX-
change [7] are noteworthy commercial VH implemen-
tations resembling Eclipse. Other popular commer-
cial solutions, such as Cisco’s LocalDirector [6], Hy-
draWeb [11], and F5’s BigIP [8] are geared towards in-
creasing the capacity available to ASPs through load-
sharing in server clusters. These solutions also provide
some coarse insulation between co-hosted services by
shaping request flows. This mechanism applies only to
well-known services (e.g. Web servers) since requests
must be parsed by a load-managing frontend. Hence,
insulation fails when ASPs co-host proprietary services
and when the workload created by individual requests
differs significantly among co-hosted sites.

3 The Virtual Service Abstraction

The VS abstraction treats services that utilize sub-
services as if they were a single application executing
on its own dedicated server. To create this illusion, a VS
is associated with a basic resource context (Figure 3).

The resource context summarizes the resource limits and
statistics for activities that execute on behalf of the VS
(Section 3.2). Figure 3 also shows typical VS members.
Section 3.3 discusses how to track this dynamic mem-
ber set if applications do not manage VS-membership on
their own. In Section 3.4 we discuss the seamless inte-
gration of the tracking of VS-membership and resource
limit enforcement into a gate abstraction. A gate filters
entry and exit of system calls that are relevant with re-
spect to VS-membership changes. Section 3.5 explains
the gate’s response to resource limit violations.

3.1 System Model

Our approach uses tags OS entities, such as processes,
sockets, IPC shared memory segments, etc., with VS in-
formation. All modern OS’s have these entities and al-
ready tag them with other information. We also have
to assume that all requests for service are received via
explicit system calls, such as communication sockets,
IPC shared memory segments, message queues or pipes.
This restriction is due to the fact that automatic tracking
of changes in VS-membership depends on being able to
intercept the interaction between cooperating services.
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This means that VSs cannot manage services that hide
their relaying of work. For example, if two services use
some VS-unaware server as a message relay, it is im-
possible to infer their cooperation. User-level thread li-
braries are another form of hidden communication since
the application’s switching between different requests is
hidden from the OS. Here, the thread library must rebind
the process to the correct VS every time a thread-switch
occurs.

3.2 Setting up a Virtual Service

Each VS is uniquely identified by its descriptor (Fig-
ure 4). To allow the system administrator to manage
VSs, each service has an integer virtual service identi-
fier (VSID). The VSID is guaranteed to be unique on
each machine. For VSs that use resources on multiple
machines, we leave it up to user-space software to guar-
antee the uniqueness of identifiers. When setting up the
distributed service, external administration software can
force a specific VSID onto the newly-created VS. Such
global VSID’s are taken from their own number range
and will never conflict with local VSID’s.

Like RC’s [2] we advocate hierarchically-nested re-
source contexts. Hierarchy is necessary because an
ASP’s clients should be able to decide themselves
whether they want all of their services to share resources
or whether they want to insulate them from each other.

The parent field of the VS structure points to the par-
ent VS. Oftentimes parent VSs will be used to imple-
ment abstract VSs, i.e., placeholder services to which
all services of an ASP’s business client belong. The
highest-level service is the root service with VSID
0, which accounts for all unclassified work.

Hierarchy is again reflected in VS attributes such as re-
source usage statistics and resource limits. By default,
newly-created VSs share the attributes, i.e., resource
control settings and statistics (CPU time used, packets

sent, etc.) of their parents. This means that the fields
in the child refer to its parent’s pendants (Figure 4). To
manage the child service directly, attributes of interest
need to be detached from the parent. For example, to
control the number of processes for a sub-service, one
detaches the sub-service’s process count limit via the
servctl(DETACH PROCESS LIMIT) call.

To instantiate a cluster-wide VS, the administration soft-
ware must create VS descriptors with one global VSID
on all cluster nodes. On each of those nodes, local re-
sources may be reserved using the VS descriptor’s re-
source context. Before reserving VS resources, the ad-
ministration software will monitor the VS’s resource
consumption via the statistical VS attributes. Once
enough statistics are available, resource reservations will
be calculated to stabilize VS performance. This calcula-
tion is difficult and requires a full-fledged monitoring-
feedback algorithm, which is outside the scope of this
paper. We experienced that cluster-wide VS manage-
ment using a unified VSID name space simplifies the
implementation of such an algorithm.

Most of the VS state discussed so far could potentially
be realized using RC’s [2] or Reservation Domains [4].
However, they do not provide configurable classification
rules. Classification rules indicate how VS-membership
is to be updated when certain system calls are invoked
by specific VSs. For instance, if a process member of
the VS in Figure 4 calls fork, the OS knows exactly
that this is a way of relaying work and that the created
process should inherit the parent’s VS affiliation.

3.3 Tracking Service Membership

There are two ways of tracking the members of a service:
either they are announced or the OS infers who they are.
In our VS framework, membership is mostly tracked by
the OS without requiring continuous application or ad-
ministrator intervention. Nevertheless, especially at ser-
vice startup time it can be efficient to create some as-
sociations between VSs and other OS entities explicitly.
For example, if one knows that one specific kind of ser-
vice request (identified by its own VS) always enters the
system through one specific process or socket, a manual
binding of these processes or sockets to the VS should
be used. This avoids having the OS infer repeatedly that
these entities and the VS belong together.

As a VS begins to respond to requests, new sockets, pro-
cesses, and IPC resources may be created. Each of them
must be associated with a VS because they incur sys-
tem load and are used to relay work. Usually these new
members are not added explicitly since the administrator
does not even know of their existence and the applica-
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tion does not cooperate with the VS abstraction. There-
fore, membership for these new entities is implicitly de-
termined by the classification rules in the creator’s VS
descriptor.

Not only do new entities need to be associated with a
VS, but VS-membership may also change over time.
For instance, if some process is observed to be operat-
ing on a particular data set that is characteristic of some
separately-managed VS, the process is added to that VS
and removed from its current VS.

Classification, i.e., associating an OS entity with a VS,
takes place when the OS can infer something about the
application, i.e., at system call time. We can limit VS-
membership inference to those times because we as-
sumed in Section 3.1 that VSs interact with each other
over a limited set of OS mechanisms. This means that
the works-for relation cannot change unless a system call
is invoked. Therefore, there is no need to update VS-
membership at any other time.

The classification rules that the OS examines at system
call interception consist of a conditional clause, which
defines when the classification rule is applicable, and a
classification directive. This is formalized as:

( syscall, S1, : : : , Sm, P1, : : : , Pn)! (S0

1, : : : , S0

m
)

Here Si represents the VS of the i-th affected entity.
For example, the only affected entity in the exec call
would be the calling process. The calling process’s VS
is always identified by S1. Pj represents the j-th inter-
cepted property, for example, the program name passed
to exec or the incoming IP address of an accepted
connection. Properties are not OS entities. A classifi-
cation rule also specifies S 0

i: the resulting VS classifica-
tion of the i-th affected entity. This classification is ap-
plied only if the conditional (left-hand side of the rule)
matches the intercepted system call. Si and Pj may be
wildcards. Our prototype implementation requires S1 to
be specific. The system call is always specific, since the
dimensionality of the condition tuple depends on it. One
way of managing the rules would be to store them in a
system-wide table, which would ease the integration of
VSs into RC’s or Eclipse. Our implementation reduces
lookup times by storing rules solely inside the VS de-
scriptor that matches S1.

Conflicting rules: Rule matching can lead to ambiguity.

Multiple condition tuples may match the current system
call interception. To solve this problem, VSs are priori-
tized. The rule that matches the highest-priority VS ex-
plicitly is used to determine the resulting classification.
Should there be a tie between several rules, the most spe-
cific rule is applied. If this does not resolve ambiguity,
the result is unspecified.

In the remainder of this subsection, we will discuss the
different types of classification triggers. Table 2 casts
common UNIX system calls into these categories.

Creation: If an entity, A, creates another OS entity, B,
B’s future VS affiliation depends solely on A’s VS affil-
iation. Examples are the creation of sockets, IPC shared
memory segments, message queues, pipes, and the like.
The canonical default rule is for the created entity to in-
herit its creator’s VS affiliation.

Communication: Communication is used to relay work
within and beyond machine boundaries. Therefore, in-
tercepting intra-VS communication is essential to VS
maintenance in server farms. If it is possible to deter-
mine the VS affiliation of each request that is picked up
by a service, the resulting activity can be charged to the
correct VS. This does not depend on whether the request
originated locally or remotely.

Communication affects at least three entities: sender, re-
ceiver, and the message itself. To make inter-process
communication more efficient, most OS’s implement
asynchronous communication as opposed to the ren-
dezvous concept. This adds sockets, pipes, and the like
to the set of affected entities, each of which may be re-
classified upon system call interception.

Due to the temporal separation between sending and re-
ceiving a message, pausing to reclassify the affected en-
tities is difficult. Therefore, communication-based VS
tracking is done in two stages. First, when the mes-
sage leaves the sender it is tagged with a VS affiliation,
much like what is done in the case of creation-type calls.
This can be skipped if the communication is a one-to-
one connection. In this case, the connection itself is la-
beled at setup time with a VS affiliation that implicitly
applies to each message that passes through it. The sec-
ond stage is message consumption. At this time, the re-
ceiver’s VS affiliation may change based on its previous



Category System call Proposed classification mechanism Proposed VS error Used by

fork Classify new process based on forker's VS EAGAIN, block Multi-threaded services
open User services, FCGI

socket All network services
pipe

shmctl Tag new shared memory segment based on creator's VS EINVAL, block

accept
Classify caller based on its VS, the VS of the incoming 
connection and incoming source address

EWOULDBLOCK, 
block

User services, FCGI

connect
Classify caller and connecting socket based on the 
destination IP + port

EINPROGRESS, 
block

Frontend services, HTTPD 
with distributed FCGI

send
sendmsg
sendto
recvmsg
recvfrom

recv

shmat Classify caller based on shared memory's VS EACCESS, block Apache (thread synch)
msgsnd Tag message based on caller's VS block
msgrecv Classify caller based on the incoming message's VS ENOMSG, block

synchronization semop Classify caller based on the semaphore's VS block Proprietary services

exec Classify caller based on the executed program's name HTTP-CGI, Inetd, rexec, rsh

listen Classify caller based on its and socket's VS
TCP + Unix Domain socket-

based services (Fast CGI)
bind Classify caller and socket based on the IP + port pair Standard services

write
Tag the message based on caller's VS or inherit file 
descriptor VS

read
Classify caller based on read message's VS or inherit file 
descriptor VS

EAGAIN, block
communication, 
synchronization, 
transformation

creation

All services

User services, FCGI

Frontend

NFS, DNS, RPC, Multimedia

Proprietary services

block

communication

Tag created file descriptors with a service affiliation based 
on creator's VS

Classify caller and sending socket based on destination IP 
+ port

Classify caller and receiving socket based on incoming 
packet's VS and  IP + port

EWOULDBLOCK, 
block

transformation

block

Table 2: System calls that affect VS-membership

VS affiliation and the received message’s VS affiliation.

Synchronization: The set of affected entities in syn-
chronization includes the executing process(es) and all
process(es) in the wait queue for the synchronization
primitive. Activities that are performed under the pro-
tection of a synchronization primitive may be associated
with its VS.

Synchronization can also be used to infer collaboration
among a set of processes. Previously-unclassified pro-
cesses may inherit the VS affiliation of the synchroniza-
tion primitive. This is an effective tool since many multi-
threaded server applications expose their process sets
when they synchronize for thread control purposes.

The process(es) that execute under the protection of
the synchronization primitive must not stall processes
in the wait queue because otherwise, priority inversion
[13] will result. This is also a problem when a single-
threaded sub-service is shared among several VSs. This
will be discussed further in Section 4 (accept).

Transformation: Whenever the kernel intercepts a
characteristic argument to a system call, it is possible to
classify the caller and other affected entities more accu-
rately. For instance, the program name in the exec-call

allows a more accurate VS classification of the active
process if the program is typical of a specific VS. Other
frequently-used system calls that may alter VS classifi-
cations without relaying work are setgid, setpgrp,
and setuid.

3.4 Virtual Service Gates

Whenever a VS receives a new member, resource limits
could potentially be violated. This means that classifi-
cation and resource limit enforcement are inseparable.
Therefore, we introduce gates, a combination of system
call filtering and VS classification. Each system call that
is used to track VS-membership is controlled by a gate.

If the gate’s filtering code indicates a resource limit vio-
lation as a result of the new classification, the system call
will either fail with an administrator specified errno
code, block, or execute in best-effort mode. Otherwise,
VS-membership is updated as specified in the classifica-
tion rules. Figure 5 depicts the basic anatomy of a gate:

1. The prefilter checks whether the caller is (a) clas-
sified and (b) whether its VS affiliation permits the
execution of the gated call.
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2. The classifier applies a matching classification rule.
To execute the classifier for creation-type calls it
executes after the new resource has been created.

3. Finally, the postfilter checks whether the resulting
classification violates any VS resource limits. The
resource limits we considered are: count limits on
the number of processes and sockets. Other re-
source limits, such as CPU and network bandwidth
are enforced silently by the packet and CPU sched-
ulers and need be checked by the gate mechanism.
If a resource limit is violated, the system call fails
or retries as is described in the next section.

3.5 Failing System Calls

Gates may detect resource limit violations. For exam-
ple, during the execution of fork it may become ap-
parent that successful call completion would result in a
violation the VS’s process count limit. The appropriate
remedy is application-dependent. One may decide to:

1. Wait until VS resources become available.

2. Return an error to the caller indicating resource ex-
haustion.

3. Not apply the classification that led to the resource
limit violation and silently reclassify the caller as
best-effort. If the best-effort VS has exhausted its
resource share, there is no other option but to fail
the system call.

In the first case, the OS will add the caller to a FIFO wait
queue for the requested resource. For example, in the
case of fork this means that the forker will sleep until
the VS’s process count drops below the process count
limit. The resulting delay may not be acceptable to the
calling application.

Applications that cannot be delayed, should receive an
error upon resource exhaustion. Unfortunately, exist-
ing applications may not be able to handle arbitrary er-
rors. Therefore, we leave it up to the administrator to
configure the error that will be raised if a VS-level re-
source limit violation is observed at a particular gate.
In this way, only errors that the application is able to
handle will be raised. For example, the administra-
tor may choose to raise the EAGAIN error for some
VS that exceeds its process count limit upon fork.
This behavior is specified at the time of gate configura-
tion [e.g., servctl(SET FORK POLICY, VSIDx,
: : : , EAGAIN, : : : )]. Most server applications are
capable of handling errors that result from resource ex-
haustion gracefully. They simply record the error in a
server log-file to support system tuning. If neither block-
ing nor returning an error is acceptable to the hosted ser-
vice, the execution should continue in best-effort mode.

4 Implementation

We added VSs as loadable modules to the
2.0.36 version of the Linux kernel; located at
http://www.eecs.umich.edu/�reumann/vs.html. Fig-
ure 6 shows dependencies among the VS modules.
To implement the gates, we added only a few lines of
call-back code to the intercepted system calls to trigger
VS classification. The VS structure itself (Figure 8)
contains the previously-described membership informa-
tion, statistics, and resource limits. The VS structure,
VS hierarchy management and most of the gates are
portable since they hardly depend on Linux internals.
The placement of the call-back code in the original
system calls is Linux-specific.

We implemented VS-level fair-shares [12, 15] for CPU
and network to provide strict VS-level resource guaran-
tees. VSs that are neither directly nor indirectly (via a
parent VS) associated with a share are scheduled on a
best-effort basis. Best-effort VSs use all unreserved re-
source slots. Any excess capacity is shared between VSs
that own resource shares in a round-robin fashion (see
also firm Capacity Reserves [16]). The implementation
of VS resource shares is not portable across platforms.
Nevertheless, numerous implementations of capacity re-
serves and fair-shares exist. Therefore, requiring VS-
level fair-shares does not limit the applicability of our
approach.

VS statistics are cumulative aggregates of the VS’s
members’ statistics. The attributes include a wide range
of statistics that Linux keeps for processes and sockets,
such as page faults and virtual time elapsed.

To set up the VS hierarchy and adjust CPU limits,
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VS membership, policies, attribute inheritance, resource
limits, and query VS attributes, the OS offers a new sys-
tem call (servctl). It takes a command, the size of the
argument, and an argument structure as parameters.

Gates are implemented as loadable modules. We cur-
rently support fork, exit, exec, open, accept,
and socket gates. Upon insertion of a gate module,
the call-back stubs that are placed in their correspond-
ing system calls are activated so that the gate’s prefilter,
postfilter, and classifier are executed each time the con-
trol flow of a server application passes through the in-
tercepted system calls. Each gate also registers its own
servctl-handler to enable gate configuration.

The advantage of our modular gate design is that one
only needs to add those gates to the kernel that are abso-
lutely necessary to classify VS membership and insulate
services. This is very important because the insertion of
each gate into a running kernel increases system over-
head (see Section 5 for more detail). The remainder of
this section describes our implemented gates.

Fork: Upon interception of fork the created pro-
cess is classified as a new member of some VS. To
determine the resulting VS affiliation, we check the
fork policy object of the creator’s VS. The map to
attribute of the fork policy specifies the affiliation
of the created process. If the VS specified by map to
has reached its process count limit (set via the servctl
call), the failure behavior that was configured for that
VS is invoked (Section 3.5). Figure 7 shows a high-level
control flow graph for this gated system call.

Exit: If a process exits — including ungraceful
SIGSEGV and other uncaught signal exits — it must be
removed from the VS with which it is associated. This
gate is not configurable.

Exec: Upon calling one of the exec-family system
calls, the caller can be reclassified based on the name
of the program that was invoked. The gate code checks

check memory availability
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set VS for forker if it 
isn't classified yet

set up page tables and 
process context

classify forked process

check process count limit 
for forked process' VS

queue process for 
execution

fork entry prefilter

classifier

postfilter

syscall
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Figure 7: Control-flow of the fork gate

the name of the program against a hashed mapping table,
i.e., the exec policy field in Figure 8.

Open: The open gate acts like the exec gate. The only
difference is that the file descriptor may be tagged with
a VS affiliation at the same time. Moreover, the open
gate uses a prefix-tree to match the file names. Thus,
whole directories — identified by a shared prefix — can
map to one VS. This is important because large numbers
of data files residing in one directory subtree may yield
identical VS classifications.

Socket: The socket gate resembles the fork gate. The
socket policy of a VS specifies the future VS affil-
iation of the created socket. Once messages are relayed
via such a classified socket, they are tagged with the VS
affiliation of the socket in their IP Type-of-Service field
(TOS), thus allowing VS information to propagate over
the network. Since the TOS field may be used by Diff-
Serv to provide differential QoS in a WAN, this field
can only be used inside server clusters. If the TOS field
cannot be used or one needs more than 256 VSID’s (the
TOS is eight bits wide), one may introduce a new IP-
option [17] to hold the VSID. This option should be set
in every fragment of the IP datagram to facilitate VS-
aware routing.

Close: Closed file descriptors’ and sockets’ VS affilia-
tion must be removed.

Accept: The accept gate is quite complex. It first de-



 struct service_struct {
 
             int sid; 
             struct service_struct *parent;
             char name[MAX_SERVICE_NAME_LEN];
             int precedence;
 
             // int_or_ptr is either a value or a
             // pointer to the parent’s int_or_ptr 
             int_or_ptr process_count;
             int_or_ptr socket_count;
             int_or_ptr byte_count;
             int_or_ptr vtime;
             int_or_ptr majflt;
             int_or_ptr minflt;
 
             member_struct *processes; 
             member_struct *sockets;
             member_struct *services;
             fork_policy_struct fork_policy;
             exec_policy_struct exec_policy; ... more ...
             cpu_policy_struct cpu_policy;
             comm_policy_struct comm_policy;
 };

Figure 8: The VS struct

termines the highest-priority VS among the caller, listen-
ing socket, and incoming connection. Then the winning
VS structure is checked for a VS mapping based on the
incoming IP address and the VS affiliation of the listen-
socket, process, and incoming connection. The VS affili-
ation of the incoming connection can only be determined
if it was initiated by another server with our VS support
and its VSID is from the global VSID range. The VSID
is stored in the incoming SYN packet’s IP TOS bits. For
local accepts, the VS of the incoming connection is
the connecting socket’s VS affiliation. Both socket and
receiver may be reclassified.

The difficulty with accept is that it should not block
if the first pending connection on the listen queue leads
to a violation of resource limits. There may be a con-
nection that can be accepted without violating any VS
resource limits. Therefore, our implementation scans the
listen queue for the incoming connection whose VS has
utilized its resource reservation the least.

Concurrent Gate Versions: A powerful feature of our
implementation is to allow multiple versions of a gate
to be loaded at the same time. Hence, VSs may specify
which gate version they want to use when their process
members invoke the corresponding gated system call.
This way it is possible to eliminate unnecessary checks
for specific VSs. For example, if fork-ed off processes
should always inherit their parents’ VS affiliation, it is
unnecessary to check for a (fork, VSIDx) ! VSIDx

mapping as is required for general VS classification.
One can implement one fork gate version that always
applies the parent’s VS affiliation to the forked child.
Another example is the accept gate, which is quite
complex in its general form. In a server-farm setup it
is likely that incoming service requests are already clas-
sified by the frontends and that the applications that
process requests in the backends only need to inherit
these classifications. This reduces the complexity of
the backends’ accept gates. We used such an op-
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Figure 9: VS effect on HTTP throughput

timized version of the accept gate in our experiments.
In our experiments incoming requests were classified as
they were picked up by the HTTP server. Whenever the
HTTP server relayed work to a shared backend Fast-CGI
(FCGI) service, the backend FCGI inherited the classifi-
cation of the requesting HTTP server process.

5 Evaluation

We evaluated the performance of the VS architecture
on a small Web server running on a Dell 450 MHz In-
tel Pentium II PC with 448 MB RAM and one UDMA
HDD. The clients, three 300 MHz Pentium II ma-
chines with 128 MB RAM each, were connected through
100Mbps Ethernet. We measured the performance of
Apache 1.3.6 (HTTP 1.1) on this platform running on the
Linux 2.0.36 kernel. The workload was generated by the
commercial SpecWeb99 benchmark [19]. SpecWeb99
attempts to model a realistic workload including 30%
dynamic requests. The size of the file sets grows linearly
with the number of simultaneous connections offered to
the Web site. Therefore, it generally does not completely
fit into the server’s file cache. Dynamic requests and the
use of Apache explain the low HTTP throughput of the
server (ca. 220 ops/s). Since the VS abstraction is an
application-transparent mechanism, neither applications
nor libraries had to be modified. The management of the
VS hierarchy and gate configuration was done from the
command line using utilities that feed their arguments
into the appropriate servctl call.

5.1 Baseline Performance

Basic performance measurements show that the dynamic
VS classification layer degrades overall system perfor-
mance only minimally. If we intercept a complex sys-
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tem call like fork, the overhead of classifying the new
process is small — only 1.3% — (see Figure 10(b), clas-
sify). Nevertheless, the raw performance of intercepted
system calls can decrease significantly if the intercepted
call is very simple like open. We observed 30% cost
increase for the open/close pair if the VS affiliation
changed with every execution of the loop (reclassify) in
Figure 10(a). Just finding a classification rule (match)
or not finding one (mismatch) is much cheaper. The
high relative overhead for simple calls results from the
almost constant classification overhead. An important
point shown in Figure 10(a) is that binding processes
to VSs from user-space (explicit classification) performs
much worse than kernel-based classification because of
the system call overhead. Explicit classification requires
the executing process to classify itself and the resources
that it uses and creates by calling the servctl system
call. In our measurements we compared the performance
of a sample program using (implicit) classification rules
against a modified version of the program that explic-
itly updated affected VS bindings. The performance
numbers strongly support the use of kernel-based (im-
plicit) classification. For the sake of completeness, Fig-
ure 10(c) summarizes the cost of querying VS attributes
and administering the VS hierarchy.

To estimate the overall performance impact of the ker-
nel modifications including scheduler changes, resource
limit enforcement, and the cost of system call intercep-
tion, we measured how the performance of the Apache
HTTP server [14] is affected by the OS changes. Fig-
ure 9 shows that the VS abstraction affects the system’s
HTTP performance only up to 2.5%, depending on the
number of simultaneous client connections. The bi-
modal shape of the performance loss graph in Figure 9
can be explained as follows. Apache keeps some spare
processes alive to serve incoming connections faster.
Once the number of simultaneous connections offered
to Apache increases to an extent that there are not al-
ways enough of these spares, Apache begins to fork
more connection-handling processes on-demand, which
explains the increase in overhead up to 80 simultaneous

connections. Beyond this point, the file system cache hit
ratio goes down so that the low performance of the file
system begins to dominate overall system performance,
thus decreasing the relative impact of our OS changes.

5.2 Implementing VHs using VSs

Another series of experiments on Apache shows that
the VS abstraction may be used to insulate VHs. Un-
like other applications, Apache itself provides some ba-
sic resource controls (process count limits) to insulate
VHs. We studied the insulation properties that Apache
can provide in comparison with those of VSs. The goal
was to divide the previously-measured server into two
VHs of equal capacity.

In the experiments, two copies of Apache were executed
on the same host, each listening on its own IP address
using IP aliasing for the Ethernet interface. Running
two copies of Apache, each instance can be controlled
by adjusting the MaxClients directive, which limits
the number of concurrent sessions for each site. This is
an effective means of performance insulation if the av-
erage work per HTTP operation is known for each site.
Since both sites have their own copy of similar content,
we could achieve a good division of resources by setting
the MaxClient directive for the Apache servers to the
same value.

To test VS-based insulation, the Apache servers were
launched as if they were run on their own physical hosts
(using very large process limits). We created two VSs,
www1 and www2, for which we specified the fork clas-
sification rules:

(fork, www[1|2])! (www[1|2])

Each site’s initial httpd process was explicitly added to
its corresponding VS via a simple command line utility:

$> svcaddprocess <VSID> <PID>

Each site was given a 50% CPU share.

In the measurements that are discussed here, Site A was
offered a constant load of 40 simultaneous connections
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Figure 11: Performance loss when hosting two sites of equal capacity on one server

while Site B was offered between 10 and 60 simultane-
ous connections. We chose these parameters because the
server saturates — diminishing HTTP throughput gains
— when offered 80 simultaneous connections.

Without insulation between the sites, A’s performance
degrades significantly once the server is offered a to-
tal of 70 simultaneous connections (A=40, B=30) [see
Figure 11(a)]. From this point on, B begins to steal
resources from A, thus contaminating the file cache to
A’s disadvantage. The lack of insulation can be fixed
in Apache itself by restricting the maximal number of
concurrent processes. This comes at the expense of
some loss of aggregated performance under peak load
[Figure 11(b)]. This loss is due to the fact that incom-
ing requests must be rejected when the process limit is
reached. This queuing phenomenon — for M/M/m/c
systems described by the Erlang-loss formulas [23] —
is especially evident when looking at the smaller pro-
cess count limit (20:20). VS CPU shares eliminate this
problem.

Apache’s process limits also fail when background ac-
tivities compete for CPU time, e.g., monitoring. To sim-
ulate the effects of background load, ten background
load generators were invoked. As expected, aggregated
performance and A’s performance drop significantly if
Apache’s process limits are used for site insulation. In
contrast, the VS abstraction keeps A’s performance sta-
ble since only non-dedicated resource slots (beyond A’s
and B’s resource limits) are used to process background
load. Therefore, VS-based insulation performs better
than Apache’s own support for VHs.

One may argue that a modified, CPU-share-aware
Apache could achieve the same quality of insulation.
VSs obviate the need for modifying applications to get a

better handle on performance management.

Since this experiment did not involve access to any
shared services and work is relayed only from a parent
process to its child, Eclipse or RC’s could probably be
tuned to perform just as well as VSs. Beyond establish-
ing the competitiveness of the VS approach, the next set
of experiments focuses on its main contribution.

5.3 Insulation Despite Service Sharing

Instead of letting the sites A and B execute CGI scripts
to serve the advertisement banners (part of the bench-
mark), a shared, single-threaded Fast-CGI server (FCGI)
was used. Queuing theory suggests that the impact of
this shared FCGI will be the worst when (a) it exhibits
highly variant execution times and (b) a high percentage
of requests are forwarded to it. Therefore, we modified
the FCGI to execute a busy wait cycle randomly cho-
sen between 0 and 10 ms (uniformly distributed), before
serving incoming requests for advertisement. Further-
more, the percentage of advertisement banners requests
was raised from 13% to 30% on each site. Other dy-
namic requests were eliminated from the benchmark’s
workload. The Apache sites (A and B) used a TCP con-
nection to retrieve advertisement from the shared FCGI,
which was located on the same machine as the two sites.
Since we used a TCP connection, we could have also
moved the FCGI to a remote server without breaking
the VS paradigm. Nevertheless, the remote server would
have been so underloaded that interference effects would
not have been easy to observe. Moreover, the time re-
quired to invoke a remote FCGI would have severely
limited overall HTTP throughput. The load offered to
Site A was kept at 30 simultaneous connections while
the load offered to Site B increased from 10 to 60 simul-
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Figure 12: A’s performance while increasing load on B

taneous connections — with the changed dynamic mix,
the server became saturated at a total of 60 simultaneous
connections of offered load.

As in the experiments of the last section, two VSs (www1
and www2) were created and each was assigned half
of the machine’s CPU capacity. The first experiment
(Apache insulation only) executes the FCGI outside the
VS context of either site so that it could utilize all unused
server capacity.

In the second round (dynamic FCGI-to-VS binding) we
loaded the additional accept and socket gates to
police access to the FCGI, which received its requests
via TCP. The following classification rules were instan-
tiated:

(accept, www[1|2], req = www[2|1])! (www[2|1])

The accept rules cause the FCGI to change its re-
source binding if it is executing in the VS context
of www1 (www2) and receives a request from www2
(www1) to www2 (www1). Moreover, accept reorders
requests in the order of their VS’s remaining resource
share as explained in Section 4. The default socket
rule associates a new socket with its creator’s VS. This
ensures that requests sent to the shared FCGI will have
appropriate TOS markings. To establish a baseline for
optimal insulation, we replicated the FCGI script in each
VS context (replicated FCGI). This cannot be done in
real setups because many applications are not designed
to be replicated.

As Figure 12 shows, sharing the FCGI without the ac-
cept gate breaks the insulation between sites A and B
(Apache insulation only); the performance of Site A de-
creases rapidly as the load on Site B increases. This ef-
fect can be traced back to the contention for the shared
FCGI. With the accept gate (dynamic FCGI-to-VS
binding), the performance of Site A drops at a much
slower, nearly the pace for replicated FCGI. The bene-
fit of using the accept gate is a performance improve-

ment for the well-behaved site (well-behaved means that
its clients do not overload the site) of approximately 60%
under maximal load. Further experiments show that the
accept gate for dynamic VS bindings performs al-
most as well as if the shared service were replicated for
each VS (replicated FCGI). The ill-behaved Site B suf-
fers from overloading its CPU share. This results in a
10% loss of aggregated performance compared to the
ideal case of a replicated FCGI under peak load. The
reason for this is that the ill-behaved site uses its re-
sources mainly on serving static HTTP requests. Only
when the number of queued-up FCGI requests is large
will its FCGI requests be processed. During those times
Site B operates mostly sequentially.

Without changing Apache this problem could not have
been solved using RC’s or any other approach presented
in Section 2, because the resource binding for the FCGI
must be dynamic, assuming it cannot be replicated.

6 Conclusions

We demonstrated that VSs are an effective, application-
transparent resource management abstraction when sub-
services are shared across business clients. Furthermore,
our implementation showed that VSs can be integrated
into an off-the-shelf OS without incurring much addi-
tional overhead. To manage VSs, a limited understand-
ing of the managed applications suffices. In particular,
one needs to know how services and sub-services inter-
act. On the basis of these knowledge, the VS architecture
transparently and dynamically updates the VS binding
for service activities and thereby their resource bindings.

VSs are shown to be able to emulate the VH abstrac-
tion. Furthermore, we have shown that VSs provide
sound insulation between competing services in spite of
shared sub-services. ASPs who multiplex hardware and
software resources among their business clients, benefit
greatly from the proposed solution. Given the great in-
terest in the outsourcing market, future versions of com-
mercial resource management approaches such as WLM
or Sun Resource Manager, will consider the interfer-
ence caused by shared services between otherwise well-
insulated services. They may use VS tracking to mini-
mize this interference, thus improving resource manage-
ment for multi-tier services significantly.

Since the VS architecture is extensible, one may choose
only a small set of classification mechanisms and lim-
ited configuration options for gates. This allows a staged
integration of VS tracking into off-the-shelf OS’s. VS
can also be integrated easily by putting the classification
rules into a separate look-up table. Then a VS descriptor
reduces to a RC or Reservation Domain. Therefore, it is



possible to augment RC’s or Eclipse to provide VS-like
dynamic resource bindings by introducing a classifica-
tion table and intercepting the VS relevant system calls.

In spite of the overall acceptable performance of our ex-
perimental implementation, there is still sufficient room
for improvement. To speed up classification in a com-
mercial OS, filtering and classification should be tightly
integrated into the intercepted system calls as opposed to
simply placing call-back hooks inside system call code
— calling an empty C function on a 300MHz AMD
K6 already takes 9�s. A tighter integration would also
avoid duplicate lookups of processes, file descriptors,
etc., once to execute the system call and another time
to execute classification.

The primary remaining issue in insulating co-hosted
sites from each other using VSs is file cache man-
agement. To improve insulation, each disk-bound VS
should be equipped with its own file cache [5]. To ac-
complish this goal, the inodes in the file cache must
be tagged with their VS affiliation. Furthermore, one
must limit the total number of inodes in the file cache
for each VS. If an inode is shared by two or more VSs
it should retain the tag of the highest priority VS that
is using it. Otherwise, priority inversion would result.
Although easy to describe, this feature requires substan-
tial changes to the structure of the file cache. Never-
theless, content servers with very large inode working
sets would benefit from such insulation. It is possible
that this eliminates the small performance degradation
of the well-behaved site in Figure 12.
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