
Proceedings of 2000 USENIX Annual Technical Conference
San Diego, California, USA, June 18–23, 2000

T O WA R D S AVA I L A B I L I T Y B E N C H M A R K S :
A C A S E S T U D Y O F S O F T WA R E R A I D S Y S T E M S

Aaron Brown and David A. Patterson

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Towards Availability Benchmarks: A Case Study of Software RAID Systems

Aaron Brown and David A. Patterson
Computer Science Division, University of California at Berkeley

387 Soda Hall #1776, Berkeley, CA 94720-1776
{abrown,patterson}@cs.berkeley.edu

Abstract
Benchmarks have historically played a key role in guiding the progress of computer science systems
research and development, but have traditionally neglected the areas of availability, maintainability,
and evolutionary growth, areas that have recently become critically important in high-end system
design. As a first step in addressing this deficiency, we introduce a general methodology for bench-
marking the availability of computer systems. Our methodology uses fault injection to provoke situa-
tions where availability may be compromised, leverages existing performance benchmarks for
workload generation and data collection, and can produce results in both detail-rich graphical pre-
sentations or in distilled numerical summaries. We apply the methodology to measure the availability
of the software RAID systems shipped with Linux, Solaris 7 Server, and Windows 2000 Server, and
find that the methodology is powerful enough not only to quantify the impact of various failure condi-
tions on the availability of these systems, but also to unearth their design philosophies with respect to
transient errors and recovery policy.

1 Introduction
There is a consensus emerging in parts of the systems
community that the traditional focus on performance
has become misdirected in today’s world, a world in
which the problems of availability, maintenance, and
growth have become at least as important as peak per-
formance, if not more so. One need only open up a
recent issue of the New York Times or Wall Street Jour-
nal to see evidence of this fact—the number of stories
focusing on recent outages of big e-commerce providers
and the major business impact of those outages is stag-
gering; furthermore, several of those outages have been
reported as resulting from errors made by systems man-
agement staff [19]. Even from a financial standpoint,
availability and manageability are important: the man-
agement costs for servers providing 24x7 service are
typically reported as being several times that of the
hardware itself [9][11][12].

The research community is beginning to recognize
the importance of focusing on maintainability, availabil-
ity, and growth as well. The attendees of the 7th HotOS
workshop concluded that achieving “No-Futz Comput-
ing” (incorporating ideas of manageability, reliability,
and availability, amongst others) is one of the most
pressing challenges facing systems researchers today
[20]. And, in his keynote at the 1999 FCRC conference,
John Hennessy argued the same point, insisting that
“performance should be less of an emphasis. Instead,
other qualities will become crucial: availability [...],
maintainability, [... and] scalability. [...] For servers—if
access to services on servers is the killer app—availabil-

ity is the key metric” [13]. Furthermore, the traditional
“scalability problem,” of creating and efficiently using
large massively-parallel systems, is giving way to what
we call the “evolutionary growth problem”: constructing
large-scale servers that can be incrementally expanded
using newer, heterogeneous components.

Benchmarks have historically helped shape com-
puter systems research and development, and we believe
it is time for them to do so again. It is time for bench-
marks to expand past the space of performance mea-
surement and into the realm of quantifying availability,
manageability, and growth; once such benchmarks exist,
research into these areas will become significantly more
tractable and research progress will naturally follow.
Thus, as part of the Berkeley ISTORE project [4], we
are investigating techniques for building reproducible,
cross-platform “AME” benchmarks for Availability,
Maintainability, and Evolutionary Growth, the three
challenge areas laid out by Hennessy [13].

In this paper, we present our first steps toward that
goal. We have chosen to focus initially on availability,
and to begin by developing a general benchmarking
methodology for measuring availability. As an initial
proof of concept, we have applied this methodology to
measure the availability of the software RAID-5 imple-
mentations that ship with three popular PC server oper-
ating systems: Linux, Solaris 7 Server, and Windows
2000 Server. RAID-5 is just the first example, and we
hope our approach will inspire others to benchmark
availability of other subsystems.

We chose software RAID as a case study for several
reasons. First, software RAID implementations are
included with many commercial OS releases (such as
the server editions of Solaris 7 and Windows 2000) and
with all of the major free UNIX-like operating systems,
including Linux, which is being increasingly deployed
for Internet service applications. More importantly,
RAID has well-defined availability goals, making it an
ideal candidate application for benchmarking availabil-
ity. Also, it is not unusual to find software RAID under-
lying many Internet service applications that demand
24x7 availability, and thus the availability of the RAID
implementation plays an important role in that of the
service application itself. Finally, although there is
agreement on general features of a RAID-5 system,
availability benchmarking can highlight RAID imple-
mentation decisions that are important to applications
but that are not measured or even mentioned today, for
example how a RAID system distinguishes between a
disk failure and a temporary glitch.

In studying the availability of the software RAID
systems, we found significant differences in implemen-
tation philosophy between the various OS implementa-
tions. The major differences in philosophy between the
systems can be classified along two axes: the first mea-
sures the system’s paranoia with respect to transient
errors, while the second measures the relative priorities
placed on preserving application performance versus
quickly rebuilding redundancy after a failure. On these
axes, the Linux software RAID implementation is para-
noid about transients but values application I/O perfor-
mance more than fast post-failure reconstruction.
Solaris falls at the opposite end of both spectrums, dem-
onstrating a near-complete tolerance for transient errors
and emphasizing fast reconstruction despite its potential
impact on application performance. Windows 2000 falls
between Linux and Solaris, although it lies closest to the
Solaris end of the spectrum: it tolerates a set of transient
errors that is only slightly less robust than Solaris’s, and
demonstrates a reconstruction philosophy that is simi-
larly aggressive but more workload-aware than
Solaris’s. The fact that our benchmarks could reveal
these philosophies despite treating the implementations
as black boxes highlights the power of the methodology.

The remainder of this paper is organized as follows.
First, we describe our generic methodology for avail-
ability benchmarking in Section 2. In Section 3, we
show how that methodology was specialized for the
case of measuring software RAID availability, and
describe our experimental approach. We present our
availability results and describe our experience with the
benchmarks and RAID systems in Section 4. Section 5
discusses related work, Section 6 presents our future
plans for this work, and we conclude in Section 7.

2 A General Methodology for Availability
Benchmarking
In this section, we describe a general methodology that
can be used to measure and study the availability of
arbitrary computer systems. We begin by establishing a
standard definition of availability and the metrics that
can be used to report it, then consider how to construct
benchmarks that produce those metrics, and finally
describe how the results of those benchmarks can be
reported and analyzed.

2.1 Availability: definitions and metrics
The term “availability” carries with it many possible
connotations. Traditionally, availability has been
defined as a binary metric that describes whether a sys-
tem is “up” or “down” at a single point of time. A tradi-
tional extension of this definition is to compute the
percentage of time, on average, that a system is available
(“up”) or not (“down”)—this is how availability is
defined when a system is described as having 99.999%
availability, for example.

We take a different perspective on availability. First,
we see availability as a spectrum, and not a binary met-
ric. Systems can exist in a large number of degraded, but
operational, states between “down” and “up.” In fact,
systems running in degraded states are probably more
common than “perfect” systems [2], especially in the
fast-growing world of online service provision where
economic pressures encourage deployment of less-well-
tested commodity SMP- and cluster-based servers rather
than expensive fault-tolerant machines. An availability
metric must therefore capture these degraded states,
measuring not only whether a system is up or down, but
also its efficacy, or the quality of service that it is pro-
viding.

Second, availability must not be defined at a single
point in time or as a simple average over all time. It must
instead be examined as a function of the system’s qual-
ity of service over time. To motivate this, consider that
from a user’s perspective, there is a big difference
between a system that refuses requests for two seconds
out of every minute and one that is down for one whole
day every month, even though the two systems have
approximately the same average uptime. Any bench-
mark of availability must be able to capture the differ-
ence between those two systems.

Combining these two requirements, we propose that
availability be measured by examining the variations in
system quality of service metrics over time. The particu-
lar choice of quality of service metrics depends on the
type of system being studied. Two obvious metrics that
apply to most server systems are performance and
degree of fault-tolerance. For a web server, these met-
rics would map to requests satisfied per second (or per-

haps latency of request service) and the number of
failures that can be tolerated by the storage subsystem,
network connection topology, and so forth. Other possi-
ble metrics might include:

• completeness: consider a system like the Inktomi
search engine that tolerates failures by returning
search results that cover only the remaining avail-
able parts of its database [10];

• accuracy: a system that must perform a large com-
putation in a fixed amount of time (e.g., decoding
real-time media) might sacrifice accuracy in the
computation when running in degraded mode; and

• capacity: to maintain other metrics while in a
degraded state, a system might limit the number of
clients or jobs it will accept, or might discontinue
less-essential services.

We discuss how these time-dependent availability mea-
surements might be concretely represented as graphs
and numerical summary statistics in Section 2.3, below.

2.2 Towards an availability benchmarking
methodology
Having selected the availability and quality-of-service
metrics for a given type of system, our next challenge is
to accurately and reproducibly measure them in a con-
trolled benchmarking environment. Doing so is compli-
cated by the fact that typical benchmark environments
are explicitly designed to prevent the kinds of excep-
tional behavior that would cause availability to be
affected in real-world systems.

Thus, in order to perform availability benchmarks, it
is necessary to have a benchmark environment that pro-
vides a means of generating fault-provoking stimuli and
“maintenance events” and applying them to the system
under test. (A maintenance event is any action taken by
a human administrator to maintain, repair, or upgrade
the system.) The primary technique that enables such an
environment to be constructed is direct fault injection
into the system under test [1][5]. For example, disk fail-
ures in a storage array can be simulated, memory can be
artificially corrupted, processes can be killed, power
glitches can be simulated, network links can be broken,
and so forth. Fault injection need not be limited to hard-
ware faults, however: stimuli such as load spikes, invalid
client/user requests, and other workload-driven ways of
triggering boundary conditions are also reasonable
events to simulate.

To build an availability benchmark, we also need a
way to generate a realistic workload and to measure the
appropriate quality of service metrics. Our task is sim-
plified by leveraging the extensive efforts at fair work-
loads from the performance benchmarking community.
We simply use existing performance benchmarks to

generate a representative workload for the type of sys-
tem under test, and to measure the desired metrics at a
single point in time. These workload-generating perfor-
mance benchmarks should be adapted to run continu-
ously, repeatedly measuring the desired metric. The
system under test may also need to be modified to mea-
sure certain metrics (such as accuracy or completeness).

Given a benchmark environment supporting fault
injection and a performance benchmark configured as
both a continuous workload generator and a quality of
service data collector, running an availability bench-
mark consists of two steps. First, the workload generator
is run without injecting faults and several traces of the
values of the desired metrics are recorded. This step
establishes a baseline measurement for a non-faulty sys-
tem. Second, the workload generator is run while simul-
taneously injecting a fault workload, and again a trace of
the values of the desired metrics is recorded. This sec-
ond step is key, since it produces a trace of the behavior
of the system’s quality of service over time in response
to various faults, which is exactly the time-dependent
availability metric that is desired.

The only part of the methodology we have not yet
discussed is the content of a “fault workload”. As its
name suggests, a fault workload is a collection of faults
and maintenance events designed to mimic a real-world
failure situation.

We see the need for two different kinds of fault
workloads, described in the following two sections,
roughly corresponding to traditional micro- and macro-
benchmarks:

Single-fault workloads. The first kind of fault work-
load is the availability analogue of a performance micro-
benchmark. A single-fault workload, as its name
implies, consists of just a single fault: once the system
under test has reached steady-state, a single fault is
injected—such as a disk sector write error—and the sys-
tem’s behavior (as reflected in the quality of service
metrics) is recorded. Intervention of a human adminis-
trator in response to the fault is not allowed. Like perfor-
mance microbenchmarks, single-fault availability
benchmarks are most useful for studying isolated pieces
of a system and for uncovering design decisions, design
flaws, and bugs. Their scope is broader than perfor-
mance microbenchmarks, however, since a single fault
can often have a ripple effect and affect a system as
much as a multi-fault workload.

Multi-fault workloads. The second kind of fault work-
load is the availability equivalent of a performance mac-
robenchmark. Multi-fault workloads consist of a series
of faults and maintenance events designed to mimic
real-world fault scenarios, for example, a disk failure in
a RAID system followed by replacement of the failed

disk followed by a write failure while reconstructing the
array. Like traditional application performance mac-
robenchmarks, multi-fault workloads are useful for
building availability benchmarks designed to help select
or evaluate new systems, and to identify potential weak-
nesses in existing systems that need to be addressed.
They are also very useful for studying the behavior of
the system under pathological failure conditions (as in
the RAID example above).

A challenging problem in developing benchmarks
based on multi-fault workloads lies in how to realisti-
cally and reproducibly simulate the behavior of a human
administrator in maintaining the system and in respond-
ing to failures originating from fault injection. Such
“maintenance events” cannot be ignored, as very few
modern systems are truly self-maintaining and most will
require human intervention to complete the scenarios.
We believe that the solution is to use logs of administra-
tor activity to develop a stochastic model of the system
maintenance process and of how administrators typi-
cally behave in response to various system failures and
stimuli. For example, one might characterize the distri-
bution of response time between a reported disk failure
and the replacement of that disk. Such a model can then
be used to direct the human intervention in the system
during the benchmark run. There is a parallel here to
performance benchmarks designed for systems that
require human interaction; often in these benchmarks, a
script plays back what a person would type in response
to prompts. We are currently pursuing this approach.

Note that disk improvements over the years mean
that disks no longer fail fast: the classic head crash of
operating systems lore almost never happens today, as
disks have become physically smaller and their mean
time between failures has increased from 50,000 to
1,000,000 hours. Observations of the Tertiary Disk (TD)
system at UC Berkeley, a large disk and web server
farm, suggest that modern components start acting errat-
ically rather than failing fast, and so a system adminis-
trator is much more likely to “fire” and replace an erratic
component than to wait for it to fail completely [23]. We
feel it is important to capture this type of activity in any
model of administrator behavior.

2.3 Analyzing and reporting availability
benchmark results
The raw data produced from either a single-fault- or
multi-fault-workload availability benchmark is rather
unwieldy, and therefore some standard techniques for
analyzing and reporting it are required.

The simplest way to handle the data from the runs
with fault injection is to plot it graphically, with the
quality of service metrics on the vertical axis and time
on the horizontal axis. The graph is then overlaid with

confidence intervals calculated from the runs in which
no faults were injected; these intervals indicate the
range of quality of service values that are statistically
“normal.” Finally, the times at which faults were
injected are marked on the graph. An example of this
type of graph is shown in Figure 1.

These graphs provide a good means by which the
experimenter or system designer can study and under-
stand the availability behavior of the system, and they
are what we will use later in this paper to report our
results for software RAID. In particular, the experi-
menter can use these graphs to focus on the points at
which the measured values of the quality of service met-
rics fall outside the statistically normal range; these are
the points where the system’s availability has been com-
promised.

However, the graphs remain somewhat difficult to
quantify and compare, especially if the benchmarks are
to be used by end-users or customers. Several SPEC
benchmarks do report graphs, and some customers do
compare the graphs side-by-side. But the salient features
of the graphs can also be distilled numerically. The most
direct approach here is to identify all deviations from
the statistically normal range, and to characterize—via
mean, standard deviation, and possibly a distribution
function—the distributions of the frequency of those
deviations, the length of those deviations, and the sever-
ity (height) of those deviations. By characterizing the
distribution rather than just averaging, this approach
may preserve, for example, the distinction between the
system that is down 2 seconds every hour and the one
that is down one day every month. Of course, these
characterizations can be distilled further, for example by
simply reporting the product of the average length and
average severity of the deviations, although at this point
the benchmark result begins to lose much of its descrip-
tive power.

Time

Q
u

al
it

y
o

f
S

er
vi

ce
 M

et
ri

c

0

}normal behavior
(99% conf)

Injected Fault Workload

Figure 1: Example availability graph, showing the variation
in an application quality of service metric (on the vertical
axis) over time (on the horizontal axis), as faults are injected
into the system (the faults are represented by heavy arrows).
The dashed lines define a 99% confidence interval around the
system’s normal (non-faulty) behavior.

3 Implementing the Methodology for
Software RAID
In the previous section, we presented a general method-
ology for benchmarking system availability. In this sec-
tion, we describe how we implemented that
methodology for measuring the availability of the soft-
ware RAID implementations provided by Linux, Solaris
7 Server, and Windows 2000 Server.

The availability guarantees of RAID-5 are straight-
forward [7]. A RAID-5 volume can tolerate a single disk
failure without loss of data. After that first failure, the
volume can continue to service requests in “degraded”
mode, although I/Os tend to be more expensive due to
the need to reconstruct data on-the-fly. A second disk
failure renders the data on the volume inaccessible.
Some RAID-5 implementations support spare disks, and
can restore redundancy by rebuilding onto the spare
after the first failure; during this reconstruction period,
the volume will still be destroyed if a non-spare disk
fails, although failure of the spare disk can be tolerated.

3.1 Fault injection environment
For the experiments in this paper, we chose to limit the
fault injection to faults affecting the disks comprising
the software RAID volume, as those are the primary
hardware failure points in a software RAID system.
Since we wanted to generate a range of different disk
faults in a controlled manner, we rejected the simplistic
fault-injection technique of pulling disks out of a live
system. Instead, we replaced one of the SCSI disks in
the software RAID volume with an emulated disk, a PC
running special software with a special SCSI controller
that makes the combination of PC+controller+software
appear to other devices on the SCSI bus as a disk drive
(i.e., a SCSI target rather than a SCSI controller). Thus
our systems under test saw the PC emulating the disk as
a real disk drive.

Our emulated disk consisted of an AMD-K6-2-350
PC with an ASC ASC-U2W SCSI adaptor, running
Windows NT with the ASC VirtualSCSI Target Mode
Emulation library installed [3]. We adapted the library
to emulate one or two SCSI disk drives by converting
I/O requests to the emulated disk into reads and writes
to two large backing files on a dedicated local disk on
the emulation machine. The files holding the contents of
the emulated disks were the only files on the local disk,
only one file/emulated disk was active at once in any
given experiment, and all accesses to the backing files
passed through the NTFS file system layer but bypassed
the buffer cache. The emulation layer added a constant
overhead of approximately 510 microseconds to each
disk I/O. Compared to a Linux file system on one of the
real disks used in our RAIDs, this emulation overhead
translates to 10% fewer seeks per second, 41% less

write bandwidth, and 16% less read bandwidth, as mea-
sured by the 100MB Bonnie benchmark.

More importantly, we modified the disk emulator to
allow the injection of faults into the emulated disk. To
make our benchmarks as realistic as possible, it was
essential that our set of injected disk faults closely
match the types of disk faults seen in practice. To that
end, we turned to a study performed as part of the afore-
mentioned Tertiary Disk project at UC Berkeley. Using
the 368 disks in the TD array, Talagala recorded the
types of faults that occurred over an 18-month period
[23]. She found that the most common errors and fail-
ures affecting disks included recovered (media) errors,
write failures, hardware errors (such as device diagnos-
tic failures), SCSI timeouts, and SCSI bus-level parity
errors.

Using this set of errors as a guide, we selected sev-
eral categories of faults to include in our emulator:

• correctable media errors on reads and writes, to
simulate disk sectors starting to go bad;

• uncorrectable media errors on reads and writes, to
simulate unrecoverably-damaged disk sectors;

• hardware errors on any SCSI command, to simu-
late firmware or mechanical errors;

• parity errors at the SCSI command level, to simu-
late SCSI bus problems;

• power failures that simulated a disk being discon-
nected, both during and between SCSI commands;

• disk hangs that simulated disk firmware bugs/fail-
ures both during and between SCSI commands
(these appear as SCSI timeouts to the controller).

All of the faults (except for the fatal ones, like simulat-
ing disk power down or infinite timeout) could be
inserted either in transient mode, in which case they
appeared once then disappeared, or in sticky mode, in
which case they continued to manifest themselves once
injected. We were particularly interested in the behavior
of the software RAID systems in response to the tran-
sient faults, as results from Talagala’s TD study indicate
that disks rarely fail fast, but rather tend to die slowly
with an ever-increasing number of transient and correct-
able faults [23]. Most availability guarantees made by
RAID systems speak only of discrete failures, not of
such “fail-slow” failures.

As desired, our set of injectable faults closely
matches the set of error conditions seen in the TD array.
Note that we were unable to inject one of these types of
error condition with our fault-injection harness: the
SCSI parity errors at the level of the SCSI electrical pro-
tocol. Simulating this type of fault requires either direct
access to the wires of the SCSI bus or to low-level regis-
ters within the controller, neither of which were avail-
able to us.

3.2 Configuration of systems under test
We examined three software RAID implementations in
our experiments, those shipped with Linux, Solaris 7
Server with Solstice DiskSuite, and Windows 2000
Server. In all cases, the OS and RAID system were
installed on a PC with an AMD-K6-2-333 CPU, 64MB
of 66MHz ECC DRAM, and a Seagate 5400RPM IDE
system disk. Three physical SCSI disks were attached to
the machine. Each disk was an IBM DMVS18D 18GB
10000RPM Ultra2-LVD SCSI low-profile drive. Each
drive was connected to its own dedicated Fast/Wide (20
MB/s) SCSI bus. Each of the three busses was termi-
nated by either an Adaptec 2940UW controller (set to
Fast mode) or one channel of an Adaptec 3940W con-
troller. Note that each drive had a private SCSI bus that
was not shared with any other device. A 1GB partition
was created at the beginning of each drive for use in the
experiments; the remainder of the space on each drive
was unused.

The emulated disk (i.e., the PC running the emula-
tion software) was connected to a fourth dedicated SCSI
bus on the machine under test using an Adaptec
2940UW controller. Two 1GB emulated disks were cre-
ated; one was used in the RAID and the other was left as
a spare (thus the two were never simultaneously part of
the active RAID volume). The backing files for the emu-
lated disks were placed on a dedicated NTFS file system
at the beginning of a dedicated IBM DMVS18D 18GB
10000RPM Ultra2-LVD SCSI low-profile drive.

In all cases, unless otherwise noted, the software
RAID volume was a 3GB-capacity RAID-5 volume
encompassing the three physical disks and one emulated
disk. When supported by the implementation, the sec-
ond emulated disk was used as a spare.

For Linux, we used the Redhat 6.0 distribution with
version 0.90-3 of the RAID tools. The RAID volume
was configured as 4 active disks plus one spare, left-
symmetric parity, and a chunk size of 32. An ext2 file
system was used with a 4KB block size and a stripe
width of 8.

The Solaris system ran the 3/99 release of Solaris 7
for Intel architectures. We installed version 4.2 of Sun’s
Solstice DiskSuite and used it to create a RAID-5
“metadevice” with 4 active disks and one spare. The
RAID volume was formatted with a Solaris UFS file
system with default parameters.

The Windows 2000 Server system was running
release candidate build 2128 of the operating system.
We used the supplied volume manager to create the
RAID-5 logical volume out of 4 active disks. Windows
2000 does not support automatic spares, as far as we
could determine, so the spare disks were left as separate
dynamic disks in the volume manager. An NTFS file
system was used on the array with default parameters.

The three systems were configured as web servers
with the documents served from the RAID volume and
the logs written to the RAID volume. The Linux and
Solaris systems used Apache 1.3.9 as the server, while
Windows 2000 Server used the included version of
Microsoft’s IIS as the server.1 Other than relocating the
logs and document directories to the RAID volume, the
servers were left in their default configurations. IIS’s
performance configuration knob was set to “more than
100,000” hits per day.

3.3 Workload generator and data collector
In order to complete our experimental testbed, we
needed a source of workload for the web servers run-
ning on each OS, and a means of continuously measur-
ing the quality of service delivered by the web servers
over time. We chose to use SPECWeb99 [22], a standard
web performance benchmark, for both of these tasks.
SPECWeb99 uses one or more clients to generate a real-
istic, statistically reproducible web workload; its work-
load models what might be seen on a busy major server,
and includes static and dynamic content, form submis-
sions, and server-side banner-ad rotation. In each itera-
tion, the benchmark applies a load designed to elicit a
certain aggregate bandwidth from the server, then mea-
sures the percentage of that bandwidth that was actually
achieved. It also measures the number of hits per second
delivered by the server and the average response time;
we chose to use the number of hits per second (a
throughput-oriented performance metric) as the quality
of service metric as it was the most tractable and
because the other metrics tracked it relatively closely.

We modified the workload generator slightly so that
it would fit our model of continuous performance mea-
surement over time: we removed all warm-up and cool-
down periods other than the initial warm-up period,
adjusted the per-iteration time to 2 minutes, and set the
number of iterations to a very large number (manually
stopping the generator when the benchmark was com-
plete). This allowed us to obtain performance measure-
ments every two minutes, with each number reflecting
the average performance over the previous two-minute
period.

We also adjusted the workload generator to reduce
the amount of dynamic content from 30% to 1% to keep
the disks busy and to avoid saturating the CPU. This
restriction was necessary because we used the default
high-overhead perl-cgi implementation for dynamic

1. We chose to use IIS for Windows 2000 rather than Apache
as we wanted to select the web server that would be typi-
cally used with each OS. Since IIS ships with Windows
2000 Server, we believed that it would be the appropriate
choice.

content and the CPU on our server testbed was not able
to keep up with the higher level of dynamic content.

We configured the applied workload to be just short
of the saturation point on each of the three systems by
increasing the number of active connections per second
(the SPECWeb99 load unit) until a knee was observed in
the performance curve, then backing off the load by 5
connections per second. The three systems each satu-
rated at different points, and thus we applied a different
level of load to each system in our tests; this accounts
for the differences in absolute performance that show up
in Figures 2 and 3, below. We chose this load profile
instead of applying a consistent load to all three
machines in order to isolate the worst-case availability
impact on each system. This profile also ensures that we
were making fair comparisons between the systems, as
some availability behavior (such as RAID reconstruc-
tion speed) can be affected by the amount of free system
resources. Where pertinent, we also discuss results from
experiments in which the applied load was reduced to
below the saturation point on each system.

Finally, note that we observed heavy disk activity
during the benchmark runs on all three systems, indicat-
ing that server-side caching effects were not significant.

4 Results
In this section, we present the results of applying our
availability benchmarking methodology to the software
RAID implementations provided by Linux, Solaris, and
Windows 2000. We first look at the single-fault avail-
ability microbenchmarks, then move on to study more
complex multi-fault availability macrobenchmarks.

4.1 Single-fault microbenchmarks
Recall that single-fault microbenchmarks involve inject-
ing a single fault into a running system and observing
the resulting behavior of that system without any human
intervention. To perform these microbenchmarks for the
software RAID systems, we first configured the RAID
volume to its nominal state: all disks working, and all
spares available. We then started the SPECWeb99 work-
load generator and allowed it to reach steady state. We
next injected a single fault, and allowed the system to
continue running (collecting performance data) until the
system recovered (performance returned to its steady-
state level), stabilized at a different performance level
than its steady-state level, or failed. We define failure as
not providing service for at least 10 iterations (20 min-
utes) with no apparent signs of ever returning to service.

In all cases, the faults that we injected were chosen
to affect active disk blocks, guaranteeing that the system
would be aware of them. By doing so, we avoid inject-
ing so-called latent faults, faults that cannot cause fail-
ures since they affect only unused data or control paths.

We feel this is a reasonable policy for an availability
microbenchmark, as the goal of such benchmarks is to
characterize the system’s response to specific faults, and
not to measure susceptibility to randomly-placed faults.

We injected a total of 15 types of faults, listed in
Table 1. Each fault-injection experiment was repeated at
least twice, and in all cases, similar behavior was
observed in each iteration. In our experiments, we found
no evidence of silent corruption from any injected fault.
All faults that could potentially result in corrupted data
were either detected by the OS’s disk driver or RAID
layer. What differentiates the systems is not their detec-
tion abilities, but their behavior in response to the
detected faults.

Surprisingly, these response behaviors across the
three systems and the 15 types of injected faults can be
classified into only five distinct categories, also listed in
Table 1. Representative availability graphs for each of
these categories are plotted in Figure 2. We classify two
of the behaviors (C-1 and C-2) as subcategories of the
same major behavior category, as they represent the
same response behavior (automatic reconstruction) but
differ in their performance characteristics. Note that
each graph in Figure 2 plots the change in two metrics
with respect to time. The first metric, represented by a
solid line, is the same performance metric discussed
above: the number of hits per second delivered by the
web server running on the system under test, averaged
over two-minute intervals. The second metric, repre-
sented by a broken line, represents the minimum num-
ber of disk failures the system is theoretically able to
tolerate; it is effectively a measure of the system’s data
redundancy. Note that the graphs also show 99% confi-
dence intervals that were computed from the traces of
the systems’ normal no-fault performance.2

Of the four major categories of observed behavior,
the first, A in Figure 2, represents the behavior pattern
that occurs when an injected fault has no effect on the
RAID system. This graph plots the behavior of the
Solaris system in response to a transient, correctable
read fault. Notice that the performance curve remains
within the confidence intervals despite the injection of
the fault; the redundancy measure remains unchanged as
well. Effectively, the Solaris system ignores this fault, as
it is essentially benign; the disk correctly satisfied the
read request, but needed to use ECC bits or multiple
reads to obtain the data. Both the Solaris and Windows
2000 systems displayed behavior of this type. Solaris
responded this way to all non-fatal faults that we
injected, including transient uncorrectable faults (such

2. Analysis showed that the no-fault performance data was
normally distributed; thus, the 99% confidence intervals
were computed as 2.576 sample standard deviations on
either side of the sample mean.

as a transient, non-repeatable write failure). Windows
2000 behaved similarly, although it was slightly less tol-
erant of write errors (it did not exhibit this behavior pat-
tern for transient uncorrectable write faults). In no cases
did Linux exhibit pattern A—it never transparently tol-
erated a non-fatal fault.

The second category, B in Figure 2, is more compli-
cated. In this case, the fault is severe enough that the
RAID system stops using the affected disk, but is not so
severe that the RAID system cannot tolerate it. The per-
formance is slightly affected only during the interval in
which the fault was injected, as the system detects and
recovers from the fault. The redundancy curve indicates
that the faulty disk is no longer used: in this case, the
system does not automatically rebuild onto a spare disk,
and thus the system cannot tolerate any more disk fail-
ures. The particular data plotted in Figure 2(B) is the
behavior of Windows 2000 in response to a simulated
power failure on one disk of the array (equivalent to
physically pulling an active drive from a hot-swap
array). This pattern also characterizes Windows’s
response to other severe faults, including sticky uncor-
rectable read faults and all uncorrectable write faults.

The magnitude of the performance drop during the
fault-injection iteration depended on the type of fault;
for uncorrectable writes, it was about 4% of the mean
performance, and for power failures, it was about 13%
of the mean. Note that the performance drop during the

Type of Fault
Behavior

Linux Solaris Win2k

Correctable read, transient C-1 A A

Correctable read, sticky C-1 A A

Uncorrectable read, transient C-1 A A

Uncorrectable read, sticky C-1 C-2 B

Correctable write, transient C-1 A A

Correctable write, sticky C-1 A A

Uncorrectable write, transient C-1 A B

Uncorrectable write, sticky C-1 C-2 B

Hardware error, transient C-1 A A

Illegal command, transient C-1 C-2 A

Disk hang on read D D D

Disk hang on write D D D

Disk hang, not on a command D D D

Power failure during command C-1 C-2 B

Physical removal of active disk C-1 C-2 B

Table 1: Classification of system behavior for each of the
injected faults. The letters in the rightmost three columns cor-
respond to the pattern of behavior observed after the specified
fault is injected, as shown in Figure 2.

Time (minutes)
0 10 20 30 40 50 60 70 80 90 100 110

80

100

120

140

160

0

1

2

Hits/sec
failures tolerated

0 10 20 30 40 50 60 70 80 90 100 110

H
it

s
p

er
 s

ec
o

n
d

190

195

200

205

210

215

220

#f
ai

lu
re

s
to

le
ra

te
d

0

1

2

Reconstruction

Reconstruction

Time (minutes)
0 5 10 15 20 25 30 35 40 45

H
it

s
p

er
 s

ec
o

n
d

0

5

10

130

140

150

160

#f
ai

lu
re

s
to

le
ra

te
d

0

1

2

Hits/sec
failures tolerated

(C)
Figure 2: Representative availability graphs displaying the five different patterns of behavior observed after injecting faults into
the three software RAID systems. Each graph plots two metrics: on the left vertical axis, and represented by a solid line, is the
number of hits per second sustained by the web server on the system under test, reported as a single average value over each two-
minute interval. On the right vertical axis, and represented by a broken line, is the theoretical minimum number of disk failures the
system should be able to tolerate without losing data. Fault injection points are represented by heavy arrows, and 99% confidence
intervals for the normal (non-faulty) behavior of the systems are defined by the thin horizontal lines. Table 1 maps each type of
injected fault into one of these five behaviors (A, B, C-1, C-2, D) for Linux, Solaris, and Windows 2000.

(D)

Time (minutes)
0 5 10 15 20 25 30 35 40 45

H
it

s
p

er
 s

ec
o

n
d

130

135

140

145

150

155

160

#f
ai

lu
re

s
to

le
ra

te
d

0

1

2

Hits/sec
failures tolerated

(A)
Time (minutes)

0 5 10 15 20 25 30 35 40 45

H
it

s
p

er
 s

ec
o

n
d

150

160

170

180

190

200

#f
ai

lu
re

s
to

le
ra

te
d

0

1

2

Hits/sec
failures tolerated

(B)

(C-1)

(C-2)

fault-injection iteration occurs because the server is near
saturation. If we reduce the applied load by just over
20%, the observed performance drops become statisti-
cally insignificant. This indicates that Windows is able
to trade spare resources for reduced availability impact
in certain failure scenarios.

Neither Solaris nor Linux exhibited pattern B, as
they both support automatic recovery onto a spare disk:
when the Solaris or Linux software RAID driver detects
a fault severe enough to stop using a disk, it immediately
begins reconstructing the data from the failed disk onto
the available hot spare. This pattern is illustrated in the
graphs labeled C-1 and C-2 in Figure 2. C-1 plots
Linux’s response to a transient correctable read fault,
and C-2 plots Solaris’s response to a sticky uncorrect-
able write error.

In the Solaris case, we see that the performance
curve drops significantly below the lower bound of the
confidence interval during the reconstruction period. In
contrast, Linux’s performance during its entire recon-
struction period is statistically indistinguishable from its
unperturbed performance. However, Solaris completes
reconstruction significantly faster than Linux. The sig-
nificance of these behavioral differences will be dis-
cussed further when we compare the reconstruction
behavior of Solaris and Linux with Windows’s non-
automatic reconstruction in Section 4.2.

Note that during reconstruction, the redundancy
curve is not well-defined; the system cannot tolerate a
fault to any of the data disks, but it can tolerate a fault to
the spare (the destination of the reconstruction).

While Solaris exhibited its version of pattern C only
for three of the 15 faults (two of which were unquestion-
ably fatal faults), Linux exhibited pattern C-1 for every
injected fault but those falling into pattern D even if the
fault was transient and non-fatal (like a correctable
read).

Finally, the last category, D, represents what happens
when the RAID system is unable to tolerate the injected
fault. As can be seen, the performance drops to zero
when the fault is injected; this is usually a result of the
RAID driver or operating system hanging. The redun-
dancy curve is not well-defined in this case, since the
system is not operational. We observed this type of fault
in Solaris, Linux, and Windows when we injected par-
ticularly pathological disk hangs in the middle of SCSI
command execution.

Table 1 summarizes how the 15 types of injected
faults map to the five categories of behavior for each of
the operating systems.

Analysis. Although limited to a single fault each, these
microbenchmark results reveal very interesting facts
about the availability guarantees of Linux, Solaris, and

Windows 2000; none of these facts were stated in the
documentation supplied with the three systems. Most
illuminating are the conclusions that can be drawn about
how the three systems treat transient faults. If we
exclude the pathological disk hangs and power-failure
faults, 8 of the remaining 10 injected fault types simu-
late transient or recoverable errors that in isolation do
not indicate immediate disk failure. Four of these 8 do
not even require that the corresponding I/O’s be retried.
The remaining two faults (sticky, uncorrectable reads
and writes) are the only faults in the set of 10 that indi-
cate that the disk is in an unrecoverable state.

Yet for every fault in this set of 10 non-pathological
faults, the Linux system exhibited behavior of type C, in
which the faulty disk is immediately removed from ser-
vice. In contrast, both Solaris and Windows kept the
faulty disk in service on 7 of the 10 non-pathological
faults (i.e., 7 of the 8 recoverable errors). Solaris dis-
abled the faulty disk (pattern C-2) upon the two unre-
coverable faults (sticky uncorrectable reads/writes) as
well as on a transient illegal command fault. This behav-
ior is arguably slightly more robust than that of Win-
dows, which disabled the faulty disk (pattern B) upon
the two unrecoverable errors and a transient uncorrect-
able write, since an illegal command error typically
implies a coding error in the driver or a serious disk
firmware error, rather than a potentially transient mag-
netics glitch.

From these observations, we can conclude that
Linux’s software RAID implementation takes a totally
opposite approach to the management of transient faults
than do the RAID implementations in Solaris and Win-
dows. The Linux implementation is paranoid—it would
rather shut down a disk in a controlled manner at the
first error, rather than wait to see if the error is transient.
In contrast, Solaris and Windows are more forgiving—
they ignore most transient faults with the expectation
that they will not recur. Thus these systems are substan-
tially more robust to transients than the Linux system.
Note that both Windows and Solaris do log the transient
errors to varying extents, ensuring that the errors are
reported even if not acted upon. Windows is more
explicit with its reporting, for example visually flagging
a disk as “at risk” in the RAID management GUI upon a
correctable write error, whereas Solaris relies on the sys-
tem log for its error recording.

We cannot draw conclusions about a RAID system’s
overall robustness based solely on its transient-error-
handling policy, however. There is another factor that
interacts with a system’s error handling, and that is its
policy for reconstruction. The microbenchmarks dem-
onstrate that both Linux and Solaris initiate automatic
reconstruction of the RAID volume onto a hot spare
when an active disk is taken out of service due to a fail-

ure. Although Windows supports RAID reconstruction,
the reconstruction must be initiated manually, as dis-
cussed further in Section 4.2, below. Thus without
human intervention, a Windows system will not rebuild
redundancy after a first failure, and will remain suscepti-
ble to a second failure indefinitely.

The policy choice of automatically or manually-ini-
tiated reconstruction interacts strongly with the transient
error-handling policy in affecting system robustness. A
paranoid RAID implementation without hot spares is
very fragile, as it takes only two transient errors to cor-
rupt the RAID volume; likewise, an indifferent RAID
implementation has less of a need for hot spares as it
will only stop using a disk upon a serious fault. Thus in
our case, the non-robustness of the Linux implementa-
tion’s paranoid approach to transients is mitigated some-
what by its automatic reconstruction, and similarly
Windows’s lack of automatic reconstruction is partially
mitigated by its robustness to transients. Solaris seems
to combine the best of both: robustness to transients plus
automatic reconstruction upon a fatal error.

Returning to the three systems’ transient error poli-
cies, if we consider these policies in the context of real
failure data, such as that gathered by the Tertiary Disk
project, it is clear that none of the observed policies is
particularly good, regardless of reconstruction behavior.
Talagala reports that transient SCSI errors are frequent
in a large system such as the 368-disk Tertiary Disk
farm, yet rarely do they indicate that a disk has truly
failed [23]. Tertiary Disk logs covering 368 disks for 11
months indicate that 13 disks reported transient hard-
ware errors, yet only two actually required replacement.
Those two did not “fail-fast” with head crashes, either:
both were replaced due to an excessively large number
of transient errors. Additionally, due to the effect of
shared SCSI busses and at-times flaky SCSI cabling, at
some point over that period every disk in the system was
involved in some sort of SCSI error (such as a parity
error or timeout) [24]. Even if we ignore these SCSI
errors and focus only on the transient hardware errors,
Linux’s policy would have incorrectly wasted 11 real
disks (3% of the array) and potentially 11 spares
(another 3% of the array) due to its over-zealous reac-
tion to transient errors. Even worse, if the array did not
have enough spares to keep up with the disk turnover,
data could have been lost despite the fact that no disk
truly failed. Equally poor would have been the response
of Solaris or Windows 2000, as these systems most
likely would have ignored the stream of intermittent
transient errors from the two truly defective disks,
requiring administrator intervention to take them offline.

A better RAID implementation would have a more
balanced policy for dealing with transient errors. For
example, it might be less paranoid initially, tolerating

transient faults until they reached a certain frequency or
absolute count, at which point the system would declare
a disk dead and stop using it (note that our macrobench-
mark experiments showed that neither Windows nor
Solaris did this). This kind of policy balances the need
for long-term availability (which favors a more relaxed
policy) with the fact that disks tend to fail with a stream
of transient errors rather than failing fast.

Although none of the RAID implementations we
examined is ideal, we can conclude from the
microbenchmarks that either Solaris’s or Windows
2000’s RAID is more suitable for applications requiring
high long-term data availability, as both are less likely to
fall prey to multiple transient errors (especially in sys-
tems that are not closely monitored or conscientiously
administered). However, for applications where spare
disks are plentiful and short-term availability is most
important (i.e., when the performance impact of many
transient errors cannot be tolerated, when the system is
closely monitored, and when repairs are made quickly),
the Linux implementation may be a better choice.

Our results and analysis also argue strongly for the
importance of exposing the policy decisions that affect
availability in systems like these software RAID imple-
mentations. Ideally, the policies would be made config-
urable, for example by allowing the administrator to
select a point on the spectrum between Linux’s paranoid
response to transients and Solaris’s tolerance of them.
Doing so would make the policies explicit, and may
even simplify maintenance of the system by increasing
its predictability, thereby eliminating the need for the
administrator to guess at how the system will behave
under various conditions.

At the very least, availability policies such as those
governing the system’s response to transient errors
should be documented so that administrators and buyers
can evaluate the potential robustness of their systems in
their particular environment. Until such documentation
is commonplace, availability benchmarks such as those
described here may well remain the only way to identify
and evaluate these important but well-concealed poli-
cies.

4.2 Multiple-fault macrobenchmarks
After measuring the effects of single failures on the
availability of the Linux, Solaris, and Windows software
RAID implementations, we next constructed two “fault
workloads” designed to mimic real-world scenarios and
applied them to the three systems.

Scenario 1: Reconstruction. The first scenario
includes five events, and models a situation in which a
nominally-configured RAID-5 volume with one spare
(1) experiences a failure on one of its active disks, (2) is

reconstructed (automatically or manually) using the
spare, and (3) later experiences a failure on the then-
active spare. The scenario is finished by (4) the adminis-
trator replacing the two failed disks and (5) reconstruct-
ing the volume’s redundant data onto one of the new
disks. The behaviors of Linux, Windows 2000, and
Solaris on this macrobenchmark are plotted in Figure 3.
Note that for Windows, we inserted a 6-minute delay to
simulate sysadmin response time between detecting the
first failure and manually starting the reconstruction.
The process of “replacing” the broken (simulated) disks
was performed manually, and took approximately 90
seconds in each case.

One obvious difference between the behaviors of the
three systems on this benchmark is that Linux and
Solaris automatically reconstruct whereas Windows
requires human intervention. Most interesting is the dif-
ference in reconstruction time between the three sys-
tems, and in the performance impact of reconstruction in
each case. Linux is the slowest to reconstruct, taking
well over an hour each time. However, there is no signif-
icant effect on application performance during recon-
struction; other than during the time that the disks were
being replaced, the performance curve does not fall out-
side of the confidence interval for normal behavior
while reconstruction is taking place.

Solaris defines the opposite extreme. Its reconstruc-
tion is over 7 times faster than Linux’s, lasting just over
10 minutes. But this speedy reconstruction comes at a
performance cost: the web server performance on
Solaris is below the lower bound of its normal behavior
for the entire reconstruction interval, with a maximum
deviation of 34% from its mean no-fault performance.

Windows’s behavior is similar to Solaris although
not as extreme. Its reconstruction lasts approximately 23

minutes, over twice as slow as Solaris but still more than
three times faster than Linux. Windows too shows a per-
formance drop during reconstruction, but it is less sig-
nificant than Solaris’s: the worst-case performance
observed was only about 18% below the no-fault mean.

From these observations we can conclude that
Solaris and Windows are dedicating more disk band-
width to reconstruction than is Linux. This again reveals
a design tradeoff in the three systems that would be dif-
ficult to detect without benchmarks such as these: Linux
chooses to emphasize preserving application perfor-
mance over speedy reconstruction, even though it sacri-
fices short-term availability. In contrast, Solaris puts a
high priority on restoring redundancy despite the perfor-
mance impact. Windows makes the same tradeoff
toward prioritizing reconstruction, but does so less
aggressively than Solaris.

Another interesting characteristic of reconstruction
is how this behavior changes as the load on the system is
reduced. While space constraints prevent us from pro-
viding a full analysis in this paper, we did find that at
lower loads (such that the systems were unsaturated),
Linux and Solaris each exhibited the same reconstruc-
tion behavior as in the saturated case in terms of recon-
struction time and performance impact. In contrast,
Windows was able to decrease both its reconstruction
time and the impact of reconstruction on application
performance. Our hypothesis is that these behaviors are
a function of the scheduling discipline in each of the
OSs as well as the priority each system assigns to the
reconstruction task. The implication of these behaviors
is again significant for availability: Windows seems to
be the only system of the three that is able to use the
excess resources resulting from lower imposed load to
mitigate the availability impact of reconstruction. In

Time (minutes)
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

H
it

s
p

er
 s

ec
o

n
d

100

120

140

160

180

200

220

(2) Reconstruction (5) Reconstruction

(1) (3)
(4) : 86 hits/sec

Time (minutes)
0 20 40 60 80 100 120 140

H
it

s
p

er
 s

ec
o

n
d

100

120

140

160

180

200

220

Recon-
struction

(1) (3)

(4)

(2) Recon-
struction

(5)

(Solaris)
Time (minutes)

0 20 40 60 80 100 120 140 160

H
it

s
p

er
 s

ec
o

n
d

100

120

140

160

180

200

220

Reconstruction

(5) Reconstruction

(1) (3)

(4)(2)

Figure 3: Availability graphs for an availability macrobenchmark with a multiple-fault workload. On the vertical axis, and repre-
sented by a solid line, is the number of hits per second sustained by the web server on the system under test. The change in this
metric is plotted versus time on the horizontal axis. The thin horizontal lines represent the 99% confidence interval defining the
system’s normal (no-fault) behavior. The two injected faults are indicated by heavy arrows. The numbers in parentheses on each
graph indicate the corresponding part of the fault scenario, as described in Section 4.2. The absolute performance differences
between the three systems are due to different applied loads, as described in Section 3.3.

(Linux) (Windows 2000)

practice, this means that Windows is the only system of
the three that can take advantage of hardware with a
higher saturation point to improve its availability char-
acteristics as well as its performance potential.

The differences in reconstruction philosophy
revealed by this benchmark once again argue for the
importance of exposing policies that affect availability.
The three RAID systems examined here offer very dif-
ferent robustness guarantees because of their undocu-
mented reconstruction policies. We saw this above in
how Windows compared to the other systems under
reduced load. Another example is that Linux, with its
slow, low-priority reconstruction, has a much larger
window of vulnerability to double failures, a weakness
exacerbated by its susceptibility to transient errors. This
policy is unsuitable if data integrity is most important,
and in that case a policy like Solaris’s is a better choice.
On the other hand, if delivering consistent application
performance is more important than preserving the data
at all costs, then Linux’s policy is reasonable and
Solaris’s unacceptable. An ideal system would offer the
administrator a spectrum of choices between these two
extreme policies, but we feel that every system should at
least document its chosen policy. Benchmarks such as
these offer a convenient tool for doing so.

Scenario 2: Double failure. The second scenario mim-
ics a catastrophic failure in RAID systems reported
anecdotally by multiple sources. The scenario begins
when a nominally-configured RAID volume (1) experi-
ences a disk failure that causes the faulty disk to be
removed from service and (2) begins reconstruction
(automatically or manually). At that point, (3) the well-
meaning system administrator attempts to replace the
failed disk, but accidentally pulls out the wrong disk—
one of the remaining live disks rather than the dead one;
(4) he or she then tries to restore the system to a working
state. Removing the live disk should result in a cata-
strophic failure of the RAID volume, although it did not
do so in all cases, as we discuss below. The graphs up to
this point are relatively uninteresting, confirming the
expected behavior, and are not reproduced here.

What is interesting is the behavior of the systems
after the catastrophic failure, and the difficulty of restor-
ing service on the system. We describe this behavior
only qualitatively, since in order to quantify it, we would
have to find some way of measuring the maintainability
of the system, perhaps by modeling the length and com-
plexity of the repair task, which is beyond the scope of
this paper.

In this scenario, the last, “catastrophic” failure is
actually reversible. According to the RAID availability
semantics, the RAID volume should stop serving
requests upon a double failure. If the RAID implementa-

tion queues writes to the removed disk while it is
unavailable, the administrator could put the disk back in,
and theoretically, the system should be able to recover.
We tested this hypothesis on the three systems in order
to see how close each of them came to this theoretical
possibility.

Windows 2000 actually came remarkably close,
although it does not queue writes to disconnected disks.
After reactivating the accidentally-removed disk (which
required a few GUI operations), Windows allowed the
RAID volume to be accessed despite its possibly corrupt
state, and the web server resumed serving requests to the
SPECWeb99 clients. Running CHKDSK as recom-
mended revealed no file system corruption (probably
due to the journaling nature of NTFS). Since the web
workload was essentially read-only except for the log
writes, the only data lost was logging information.

In contrast, we found it impossible to resurrect the
Linux RAID volume. The tool used to reintegrate a disk
into the volume seemed to only be capable of adding
new disks to the volume as spares, which are then auto-
matically used as the target of a reconstruction. There
was no obvious way to use the existing tools to convince
Linux that the replaced disk contained real data. There-
fore, the only way to resurrect the volume was to recre-
ate and reformat it, then restore data from backup.

Solaris demonstrated radically different behavior
than the other two systems. Unlike the other systems, it
did not disable the RAID volume after the double fail-
ure: it kept the array active with the two still-functioning
disks and the partially-reconstructed spare. This behav-
ior violates the availability semantics of RAID-5, since
at this point a large portion of the data is missing (any
data that had not yet been reconstructed on the spare is
permanently lost). By keeping the RAID array active
and using the nonsensical data on the partially-recon-
structed spare, Solaris allows applications to read gar-
bage data. In our case, this was manifested by the web
server returning garbage to the SPECWeb client and via
numerous UFS file system corruptions as reported by
fsck. Furthermore, when we plugged the accidentally-
removed disk back in, Solaris was happy to automati-
cally switch back to using it to service I/Os, deactivating
the partially-reconstructed spare. However, because
Solaris had continued to use the array while the second
disk was removed, the data on that disk was signifi-
cantly out-of-date and the file system was corrupted as a
result of reinserting it.

We believe that Solaris’s behavior is absolutely
incorrect for a RAID system. A RAID system should
not fabricate data to maintain availability unless explic-
itly requested to do so, i.e., by manually forcing the
reactivation of a reinserted disk, as with Windows. Fur-
thermore, we were not able to find any mention of this

behavior in any of the Solaris documentation, which
again argues for the importance of benchmarks like
these to expose the undocumented availability policies
in systems like these software RAIDs.

Thus in this scenario, Solaris clearly loses due to its
willingness to transparently serve up garbage data. But
Windows 2000 wins on maintainability, as its robust file
system and flexible RAID implementation allows the
opportunity for at least some use of the RAID volume to
continue servicing user requests while the system is
being restored from backup (but only at the explicit
request of the administrator, unlike Solaris). Although
this may not always be the best thing to do, Windows
provides the ability should it be desired.

In this second macrobenchmark, we have the begin-
nings of a framework for a combined availability and
maintainability benchmark—the fault injection work-
load for this scenario brings the system to a state in
which maintenance is required; to complete the bench-
mark, we would use a quantitative maintenance model
to simulate repair of the system, then use that data to
complete the availability graph for this scenario. We are
currently pursuing this as future work.

5 Related Work
The notion of benchmarks to measure system availabil-
ity or “robustness,” although perhaps not familiar to the
systems community, has not been neglected by the fault-
tolerance community. Siewiorek describes “robustness
benchmarks” based on fault injection performed prima-
rily by using an application to feed corrupt input to the
system [21]. Tsai, working on Tandem machines, pro-
poses another set of reliability benchmarks based on
software-implemented fault injection and a synthetic
workload generator. His metrics include an average
measure of performance degradation due to faults, a
primitive version of our time-dependent quality of ser-
vice metrics [25]. Koopman describes benchmarks to
test OS robustness by feeding corrupt data to system
calls [17]. The major difference between these bench-
marks and the ones we propose is in their goals and the
knowledge they assume. Tsai’s and Siewiorek’s bench-
marks are primarily designed to test particular known
fault-tolerance mechanisms deployed in fault-tolerant
hardware and software systems; to this end, their bench-
marks target and evaluate specific components, layers,
or mechanisms in the system under test, and thus
assume knowledge about the error-detection mecha-
nisms and general structure of that system. In contrast,
our benchmarks take a more black-box approach,
assuming little about the system under test (not even
that it is fault tolerant), and applying faults designed to
match real-world failure patterns. Koopman’s bench-
marks do this as well, but are limited to faults generated

by passing corrupt data to system calls; we try to mimic
more general faults, including hardware failures.

An additional key difference is that our benchmarks
measure the system’s availability behavior in terms of
application-specific metrics that reflect quality of ser-
vice visible from the client’s point of view. Finally, our
multi-fault workloads go beyond the isolated faults
examined by Siewiorek, Tsai, and Koopman by relating
the behavior of a system to realistic scenarios that affect
large-scale server systems and by providing a founda-
tion for the expansion of the benchmarks to incorporate
the measurement of maintainability.

The techniques of fault injection that we use are also
not uncommon in the fault-tolerance community, where
fault injection is commonly used in a case-specific man-
ner to verify fault tolerant systems, to generate models
of fault tolerance behavior, and to study fault propaga-
tion [1][5][6][8][16][18]. However, most of this work
uses either very low-level hardware fault injection that
requires expensive and dangerous equipment (such as
heavy-ion bombarders) [5], or software-implemented
fault injection. The former is not tractable for general
use because of the cost and complexity, and the latter is
not particularly portable, as it generally requires modifi-
cations to the OS or driver layer. In contrast, our
approach of hardware fault injection at standard inter-
faces (such as the SCSI-level fault injection used for the
RAID study) is both portable and relatively simple; for
example, we could have easily used the same fault-
injection setup (consisting of off-the-shelf PC hardware
and software) to measure the availability of software
RAID on a SPARC/Solaris machine.

Finally, there have been several studies of RAID
reliability and availability [14][15], but these have
focused on simulation studies of hardware RAID, and
none have examined RAID in the context of a general
availability benchmark.

6 Future Directions
We are currently pursuing several extensions of the
work in this paper. First, we are planning to expand our
experience with the availability benchmarks by applying
them to more complex systems, such as database man-
agement systems. We are also working on a general
framework for maintainability benchmarks, and in par-
ticular are looking into ways to model the behavior of a
human administrator. We are also expanding the fault-
injection capabilities of our testbed to include the capa-
bility of inserting memory faults and OS driver faults.
Finally, under the umbrella of the ISTORE project, we
are building the ISTORE-1 prototype, an 80-node clus-
ter system that incorporates custom fault-injection and
diagnostic hardware that should enable the extension of
this work to distributed systems and applications.

7 Conclusion
In this paper we have laid out the framework for new
kinds of benchmarks in an area left relatively unex-
plored by computer science researchers: availability. We
demonstrated the efficacy of our general availability
benchmarking methodology by specializing it to the
study of software RAID systems, and by then using it to
unearth insights into the behavior of the Linux, Solaris,
and Windows 2000 software RAID implementations. In
particular, we were able to uncover each system’s
(undocumented) policy for mapping transient faults into
failure conditions, and to quantify the impact of these
policies and of the systems’s failure recovery policies on
the quality of service and availability delivered by I/O-
intensive applications running on those systems.

While we believe that the power of our approach is
clearly illustrated in these insights, this paper is only a
first tentative step down what surely must be a long road
to the important goal of comprehensive, portable, and
meaningful benchmarks for availability, maintainability,
and evolutionary growth. We feel that reaching that goal
is crucially important for the field, and we look forward
to companionship on this journey.

Acknowledgments
This work was supported in part by ARPA grant DABT63-96-
C-0056. The first author was supported by a Department of
Defense National Defense Science and Engineering Graduate
Fellowship. The germ for many of the ideas in this paper came
out of discussions with members of the ISTORE group at UC
Berkeley, and in particular with David Oppenheimer. We also
wish to thank IBM for donating the disks used in these experi-
ments, Andataco (and particularly Darryl Keiser) for providing
extra drive enclosures on very short notice, Bill Casey of ASC
for fixing the last bugs in the disk emulation library, and both
the anonymous reviewers and members of the ISTORE group
for their feedback. Finally, the first author thanks Randi Tho-
mas for the encouragement to make this paper a reality.

References
[1] J. Arlat, A. Costes, et al. Fault Injection and Depend-

ability Evaluation of Fault-Tolerant Systems. LAAS-
CNRS Research Report 91260, January 1992.

[2] R. Arpaci-Dusseau. Performance Availability for Net-
works of Workstations. Ph.D. Dissertation, U. C. Ber-
keley. December, 1999.

[3] ASC, Inc. Advanced Storage Concepts VirtualSCSI
library. http://www.advstor.com/vscsi.html.

[4] A. Brown, D. Oppenheimer, et al. “ISTORE: Intro-
spective Storage for Data-Intensive Network Ser-
vices.” Proceedings of the 7th Workshop on Hot
Topics in Operating Systems (HotOS-VII), Rio Rico,
Arizona, March 1999.

[5] J. Carreira, D. Costa, and J. Silva. Fault injection spot-
checks computer system dependability. IEEE Spec-
trum 36(8):50–55, August 1999.

[6] S. Chandra and P. Chen. How Fail-Stop are Faulty

Programs? In Proceedings of the 28th International
Symposium on Fault-Tolerant Computing, June 1998.

[7] P. Chen, E. Lee, et al. RAID: High-Performance, Reli-
able Secondary Storage. ACM Computing Surveys
26(2):145–185, June 1994.

[8] R. Chillarege and N. Bowen. Understanding Large
System Failure—A Fault Injection Experiment. In
Proceedings of the 1989 Fault-Tolerant Computing
Symposium (FTCS), 356–363, 1989.

[9] Forrester. http://www.forrester.com/research/cs/1995-
ao/jan95csp.html.

[10] A. Fox, S. Gribble, et al. Cluster-Based Scalable Net-
work Services. In Proceedings of SOSP '97. October,
1997, St. Malo, France.

[11] Gartner. http://www.gartner.com/hcigdist.htm.
[12] J. Gray. Locally served network computers. Microsoft

Research white paper. February 1995. Available from
http://research.microsoft.com/~gray.

[13] J. Hennessy. The Future of Systems Research. IEEE
Computer 32(8):27–33, August 1999.

[14] Y. Huang, Z. Kalbarczyk, and R. Iyer. Dependability
analysis of a cache-based RAID system via fast dis-
tributed simulation. In Proc. 17th IEEE Symposium on
Reliable Distributed Systems, October 1998.

[15] M. Kaâniche, L. Romano, et al. A Hierarchichal
Approach for Dependability Analysis of a Commer-
cial Cache-Based RAID Storage Architecture. In Pro-
ceedings of 28th International Symposium on Fault
Tolerant Computing, June 1998.

[16] W. Kao, R. Iyer, and D. Tang. FINE: A Fault-Injection
and Monitoring Environment for Tracing the UNIX
System Behavior under Faults. IEEE Trans. Software
Eng., 19(11):1105–1118, November 1993.

[17] P. Koopman, J. Sung, et al. Comparing Operating Sys-
tems Using Robustness Benchmarks. In Proceedings
of the 16th Symposium on Reliable Distributed Sys-
tems, 72–79, October 1997.

[18] W. Ng and P. Chen. The Systematic Improvement of
Fault Tolerance in the Rio File Cache. In Proceedings
of the 1999 Symposium on Fault-Tolerant Computing.

[19] M. Richtel. Keeping E-Commerce On Line; As Inter-
net Traffic Surges, So Do Technical Problems. The
New York Times, 21 June 1999.

[20] M. Satyanarayanan. Digest of Proceedings, Seventh
IEEE Workshop on Hot Topics in Operating Systems
(HotOS-VII). March 29-30, 1999, Rio Rico, AZ.

[21] D. Siewiorek, J. Hudak, et al. Development of a
Benchmark to Measure System Robustness. In Pro-
ceedings of the 1993 International Symposium on
Fault-Tolerant Computing, 88–97, June 1993.

[22] SPEC, Inc. SPECweb99 Benchmark.
http://www.spec.org/osg/web99.

[23] N. Talagala. Characterizing Large Storage Systems:
Error Behavior and Performance Benchmarks. Ph.D.
Dissertation, U. C. Berkeley. September, 1999.

[24] R. Thomas, N. Talagala. What Happens Before a Disk
Fails. Talk at the Winter 1999 IRAM Semi-annual
Research Retreat. January, 1999.

[25] T. Tsai, R. Iyer, and D. Jewett. An Approach towards
Benchmarking of Fault-Tolerant Commercial Sys-
tems. In Proceedings of the 1996 Symposium on
Fault-Tolerant Computing (FTCS), June 1996.

