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Abstract 

 
This report explores the possible effects of a "thundering herd" problem associated with the Linux implementation 
of the POSIX accept() system call. We discuss the nature of the problem and how it may affect the scalability of the 
Linux kernel. In addition, we identify candidate solutions and considerations to keep in mind. Finally, we present a 
solution and benchmark it, giving a description of the benchmark methodology and the results of the benchmark. 

 
1. Introduction 

Offered loads on network servers that use TCP/IP to 
communicate with their clients are rapidly increasing. 
A service may elect to create multiple threads or proc-
esses to wait for increasing numbers of concurrent in-
coming connections. By pre-creating these multiple 
threads, a network server can handle new connections 
and requests at a faster rate than with a single thread. 

In recent years, the term scalability has been used to 
describe a number of different characteristics, so it may 
be useful to present our use now. Traditionally, scal-
ability has meant that system performance changes in 
direct proportion to system resources. For this to be the 
case, all operations would have to be executed in con-
stant time. Of course, it’s impossible to have a system 
which achieves perfect scalability, but we can certainly 
try. For our purposes, we will use this interpretation of 
scalability. We feel that regardless of how many threads 
are waiting on a socket’s wait queue, an accept() sys-
tem call should execute in near-constant time. 

In Linux, when multiple threads call accept() on the 
same TCP socket to wait for incoming TCP connec-
tions, they are placed into a structure called a wait 
queue. Wait queues are a linked list of threads that wait 
for some event. In the Linux 2.2 series kernel, when an 
incoming TCP connection is accepted, the 
wake_up_interruptible() function is invoked to 
awaken waiting threads. This function walks the 
socket’s wait queue and awakens everybody. All but 
one of the threads, however, will put themselves back 
on the wait queue to wait for the next connection. This 
unnecessary awakening is commonly referred to as a 
“thundering herd” problem and creates scalability prob-
lems for network server applications. 

This report explores the effects of the “thundering 
herd” problem associated with the accept() system 
call as implemented in the Linux kernel. In the rest of 
this paper, we discuss the nature of the problem and 
how it affects the scalability of network server applica-
tions running on Linux. We will investigate how other 
operating systems have dealt with the problem and fi-
nally, we will benchmark our solutions. All bench-
marks and patches are against the Linux 2.2.14 kernel. 
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2. Background 
 
This section is intended to give a detailed view of the 
current implementation of accept() and its problems. 
It will describe what we found in our initial research 
and explain the implications of each discovery. For the 
sake of comparison we will do the same for another 
widely used operating system, OpenBSD. At the end of 
the section we will layout the guidelines we used when 
formulating solutions to the problem. 

 
2.1 Investigation 
 
When a thread wants to listen for an incoming TCP 
connection, it creates a TCP socket and invokes the 
accept() system call. The system call uses the proto-
col specific tcp_accept() function to do all the work. 
The relevant sections of this procedure are the manipu-
lations of the thread’s state and socket’s wait queue. In 
Linux, a thread’s context is represented by a structure 
(struct task_struct) which maintains several vari-
ables pertaining to memory allocation and runtime sta-
tistics. One of these variables is named state. The 
state variable is used as a bitmask to indicate whether 
a thread is running, sleeping, waiting for an interrupt or 
yielding to an interrupt. Currently, when a thread calls 
accept() on a TCP socket the thread's state is 
changed from TASK_RUNNING to 
TASK_INTERRUPTIBLE and the thread is placed at the 
end of the wait queue associated with the socket. At this 
point, the thread puts itself to sleep and the system re-
sumes normal operation. Every thread accepting on a 
socket follows this procedure, thus lengthening the wait 
queue whenever multiple threads accept() on the 
same socket. 

The second part of this routine occurs each time an-
other process (local or remote) initiates a TCP connec-
tion with the accepting socket. When the connection 
comes in, the network interface pulls the packet into 
kernel memory and passes it to the function 
tcp_v4_rcv(). This function parses the TCP packet 
header and identifies it as an attempt to connect with a 
listening socket. The TCP stack then calls 
wake_up_interruptible() on the corresponding 
socket’s wait queue to wake and signal a thread to han-
dle the new connection. 

To completely understand how the Linux TCP stack 
awakens threads on a socket’s wait queue requires a bit 
more detail. The socket structure in Linux contains a 
virtual operations vector that lists six methods (referred 
to as call-backs in some kernel comments). These 

methods initially point to a set of generic functions for 
all sockets when each socket is created. Each socket 
protocol family (e.g., TCP) has the option to override 
these default functions and point the method to a func-
tion specific to the protocol family. TCP overrides just 
one of these methods for TCP sockets. The four most 
commonly-used socket methods for TCP sockets are: 

 sock->state_change   
  (pointer to sock_def_wakeup) 
 sock->data_ready   
  (pointer to sock_def_readable) 
 sock->write_space   
  (pointer to tcp_write_space) 
 sock->error_report   
  (pointer to sock_def_error_report) 

The code for each one of these methods invokes the 
wake_up_interruptible() function. This means 
that every time one of these methods is called, tasks 
could  be  unnecessarily  awakened.  In  fact, in the 
accept() routine alone, Linux invokes three of these 
methods, essentially tripling impact of the “thundering 
herd” problem. The three methods invoked to wake 
tasks on a socket's wait queue are 
tcp_write_space(), sock_def_readable() and 
sock_def_wakeup(), in that order. 

Because the most frequently used socket methods all 
call wake_up_interruptible(), the thundering herd 
problem potentially extends beyond the accept() 
system call and into the rest of the TCP code. In fact, it 
is rarely necessary for these methods to wake up the 
entire wait queue. Thus, almost any TCP socket opera-
tion could unnecessarily awaken tasks and return them 
to sleep. This inefficient practice robs valuable CPU 
cycles from server applications. 

 
2.2 Comparison 
 
In investigating the characteristics of thundering herd 
issues in Linux, we thought it might be a good idea to 
see how other systems deal with the issue. In particular, 
we examined the OpenBSD system to see how it be-
haves in the accept() system call. In OpenBSD 2.6, 
when a thread calls accept() on a socket, the thread 
puts itself to sleep with a socket specific identifier. 
When a connection is made to a socket, the kernel 
wakes up all threads sleeping on that socket's identifier. 
So it would appear that OpenBSD has the same thun-
dering herd issues as Linux, but this is not the case. The 
OpenBSD kernel serializes all calls to accept(), so 
only one thread is waiting for a particular socket at any 



time. Although this approach prevents the thundering 
herd condition, it also limits performance, as we will 
see in section 5. 

 
2.3 Guidelines 
 
When developing solutions to any problem, it its im-
portant to establish a few rules to warrant acceptability 
and quality. While investigating the Linux TCP code, 
we set forth this particular set of guidelines to ensure 
the correctness and quality of our solution: 

• Don’t break any existing system calls - If the 
changes affect the behavior of any other sys-
tem calls in an unexpected way, then the solu-
tion is unacceptable.  

• Preserve “wake everybody” behavior for 
calls that rely on it - Some calls may rely on 
the “wake everybody” behavior of 
wake_up_interruptible(). Without this behav-
ior, they may not conform to POSIX specifica-
tions. 

• Make solution as simple as possible – The 
more complicated the solution, the more likely 
it is to break something or have bugs. Also, we 
want to try to keep the changes as local to the 
TCP code as possible so other parts of the ker-
nel don't have to worry about tripping over the 
changed behavior. 

• Try not to change any familiar/expected in-
terfaces unless absolutely necessary - It would 
not be a good idea to require an extra flag to 
an existing function call. Not only would 
every use of that function have to be changed, 
but programmers who are used to its interface 
would have to learn to supply extra arguments.  

• Make the solution general, so it can be used 
by the entire kernel - If any other parts of the 
kernel are experiencing a similar “thundering 
herd” problem, it may be easily fixed with this 
same solution instead of having to create a 
custom solution in other sections of the kernel. 

 
 
 
 
 
 

3. Implementation 
 
The fundamental idea behind solving the “thundering 
herd” problem is to somehow prevent all sleeping 
threads from waking up. This section will outline the 
implementation of a couple proposed solutions, includ-
ing one that was incorporated into the 2.3 development 
series of the Linux kernel. 

 
3.1 Task Exclusive 
 
One proposed solution to this problem was suggested 
by the Linux community and incorporated into the 2.3 
development kernel series. The idea is to add a flag to 
the threads state variable, change the handling of wait 
queues in wake_up_interruptible() and imple-
ment a new wait queue maintenance method called 
add_wait_queue_exclusive(). To use this solu-
tion, the soon to be sleeping thread would set the new 
TASK_EXCLUSIVE flag in the thread structure's state 
variable, then add itself to the wait queue using 
add_wait_queue_exclusive().  In  the  case of 
accept(), the protocol specific accept function 
(tcp_accept()) would be responsible for doing this 
work. 

In handling the wait queue, __wake_up() (called by 
wake_up_interruptible()) will traverse the wait 
queue, waking threads as it goes until it runs into its 
first thread with the TASK_EXCLUSIVE flag set. It will 
wake this thread and then exit, leaving the rest of the 
queue waiting. To ensure that all threads that are not 
marked exclusive were awakened, 
add_wait_queue() will add threads to the front of a 
wait queue, while add_wait_queue_exclusive() 
will add exclusive threads to the end of a wait queue, 
after all non-exclusive waiters. Programmers are re-
sponsible for making sure that all exclusive threads are 
added to the wait queue with 
add_wait_queue_exclusive(). Special handling is 
required to wake all exclusive waiters in abnormal 
situations (like listening sockets being closed unexpect-
edly). 

 



3.2 Wake One 
 
Another solution, stemming from the idea that the deci-
sion point for waking one or many threads should not 
be made until wake time, was developed here at CITI. 
Processes or interrupts that awaken threads on a wait 
queue are generally better able to determine whether 
they want to awaken one thread or many. This solution 
does not use a flag in the task structure* and doesn't use 
any special handling in add_wait_queue() or 
add_wait_queue_exclusive(). With respect to the 
guidelines above, we felt that the easiest way to imple-
ment a solution is to add new calls to complement 
wake_up() and wake_up_interruptible(). These 
new calls are wake_one() and 
wake_one_interruptible(). They are #defined 
macros, just like wake_up() and 
wake_up_interruptible() and take exactly the 
same arguments. The only difference is that an extra 
flag is sent to __wake_up() by these macros, telling 
the system to wake only one thread instead of all of 
them. This way it’s up to the waking thread whether it 
wants to wake one (e.g., to accept a connection) or 
wake all (e.g., to tell everyone the socket is closed). 

For this “wake one” solution we examined the four 
most commonly used TCP socket methods and decided 
which should call wake_up_interruptible() and 
which should call wake_one_interruptible(). 
Where we elected to use 
wake_one_interruptible(), and the method was 
the default method for all socket protocols, we created a 
duplicate function just for TCP to be used instead of the 
default. We did this so the changes would affect only 
the TCP code, and not affect any other working socket 
protocols. If at some point later it is decided that 
wake_one_interruptible() should be the generic 
socket default, then the new TCP specific methods can 
be eliminated. Based on our interpretation of how each 
socket method is used, here's what we came up with: 

 

 

 

 

 

 

 

sock->state_change - (tcp_wakeup) 
  wake_one_interruptible() 

sock->data_ready - (tcp_data_ready) 
  wake_one_interruptible() 

sock->write_space - (tcp_write_space) 
  wake_one_interruptible() 

sock->error_report (sock_def_error_report)
  wake_one_interruptible() 

Notice that all three of the methods used in accept() 
call wake_one_interruptible() instead of 
wake_up_interruptible() when this solution is 
applied. The main obstacle with this approach is that 
system calls like select() depend on being awoken 
every time, even if there are threads ahead of them on 
the wait queue. 

 
3.3 Always Wake 
 
A third solution, which has not yet been implemented, 
combines the most desirable characteristics of the two 
previous solutions. The decision to wake one or many 
threads would still be deferred until the time of awak-
ening by using wake_one() and 
wake_one_interruptible(). However, for the rare 
case where a thread would always need to wake up 
(like select()), a bit in the threads state could be set 
to indicate this. These threads would reside at the front 
of the wait queue and always be awoken on calls to 
__wake_up(). This solution is still easy for program-
mers to use, and only requires special care for the spe-
cial cases. It gives the power to decide between awak-
ening one or many threads to the more informed wak-
ing thread, while still providing a mechanism for the 
sleeper to make the decision if it knows better. 

 
4. Performance Evaluation 
 
Our focus is on improving system throughput. In this 
case, we hope to accomplish our goal by eliminating 
unnecessary kernel state CPU activity. To measure the 
performance of each solution we consider two ques-
tions. First, how long does it take for all threads to re-
turn to the wait queue after a TCP connection is initi-
ated? Second, how does a network service perform un-
der high load/stress situations with the new solutions? 
We took two different approaches to benchmarking the 
performance  impact of the  “wake one”  and  “task  

* Although, there is a set of flags passed to __wake_up() 
that resemble the state variable in the task structure, i.e., the 
flags are set with the same bit masks as those used for the 
task structure. TASK_EXCLUSIVE is still #defined and 
passed as a bit to __wake_up() even though it is not used in 
the task structure. 



Table I:  The results of the microbenchmark (in usecs) are 
very rough estimates.  But even at such a level of granularity, 
they still show significant improvement in settle time for the 
patched kernels over the stock kernel 

exclusive” patches. The first is a simple micro-
benchmark that is easy to set up and quick to run. We 
ran this to  

get a rough idea of what sort of improvement we can 
expect with each patch. The other is a large-scale 
macro-benchmark on the patched kernels, to see if the 
patch improves performance under high loads as well. 

 
4.1 Small Scale Performance 
 
To measure how much time it takes for all unused 
threads to return to the wait queue after a connection is 
made, we wrote a small server program that spins X 
number of threads and has each of them accept on the 
same port. We also wrote a small client program that 
creates a socket and connects to the port on the server 
Y (in this case 1) times. We issue a printk() from the 
kernel every time a task is put on or removed from the 
wait queue. After the client has “tapped” the server, we 
examine the output of the printk()’s and identify the 
points where the connection was first acknowledged (in 
terms of wait queue activity) and where all threads have 
returned to the wait queue. 

 

 

 

 

 

 

 

 
Figure I:  This graph shows the difference in the time com-
plexity between the stock kernel and the ones patched with 
thundering herd solutions. 
 

The results are reported as an estimated elapsed time 
for the wait queue to settle down after an accept() 
call is processed. The measurements are not exact, as 
we were using printk()s and only ran the tests once. 
These two points can result in a slight skew of the re-
sults in three ways. First, printk()’s are not free op-
erations and add to the execution time each time they 
are used. Second, to provide less room for statistical 
error, many samples should be taken, but these tests 
were only run once and could produce slightly different 
results on subsequent runs. However, even with these 
degrees of inaccuracy, this micro-benchmark is still 
able to give us a rough estimation of the time complex-
ity involved with each scenario. Table I gives the set-
tling time for stock and patched kernels with various 
numbers of threads on the wait queue. The server was 
running Linux 2.2.9 on a Dell PowerEdge 6300 with 
four 450 MHz Pentium II Xeon processors, a 100 Mbps 
Ethernet card and 512M of RAM (lent to the Linux 
Scalability Project by Intel). 

The key observation to be made when looking at these 
rough estimates is the difference in time complexity. 
While the stock kernel settles in O(n) time, both of the 
patched kernels settle in nearly constant time. Figure I 
illustrates these differences. 

 
 
 
 
 
 
 

Threads Stock TaskEx WakeOne 

100 4708 649 945 

200 11283 630 1138 

300 21185 891 813 

400 41210 776 1126 

500 52144 567 1275 

600 75787 1044 599 

700 96134 1235 707 

800 118339 1368 784 

900 149998 1567 1181 

1000 177274 1775 843 



4.2 Large Scale Performance 
 
To set up the test harness for this benchmark, the Linux 
Scalability Project purchased new machines for use as 
clients against a web server. Four client machines are 
equipped with AMD K6-2's running at 400 MHz and 
100 Mbps Ethernet cards. The server is a four processor 
Dell PowerEdge 6300 running with 400 MHz Pentium 
II Xeon processors, 512M of RAM and a 100 Mbps 
Ethernet card. The clients are all connected to the 
server through a 100 Mbps Ethernet switch. All ma-
chines used in the test are running a 2.2.14 Linux ker-
nel. The server runs Red Hat Linux 6.0 with a stock 
2.2.14 kernel as well as the "task exclusive" and "wake 
one" patched 2.2.14 kernels. 

We elected to use the Apache web server as our net-
work service because it’s a widely used application and 
is easily modified to make this test more useful. Stock 
Apache 1.3.6 uses a locking system on Linux to prevent 
multiple httpd processes from calling accept() on 
the same port at the same time, which is intended to 
reduce errors and improve performance in production 
web servers. For our purposes, we want to see how the 
web serving machine will react when multiple httpd 
processes all call accept() at once. We modified 
Apache so that it doesn’t wait to obtain a lock before 
calling accept(). This non-locking behavior is the 
default on systems where multiple accept()s are safe. 
The patch for this modification can be found on our 
web page at:  
www.citi.umich.edu/projects/linux-scalability 

To stress-test our web server, we used a pre-release 
version of SPEC’s SpecWeb99 benchmark, courtesy of 
Netscape's web server development team. Because the 
benchmark is pre-release, SPEC rules constrain us from 
publishing detailed throughput results. However, we 
can still make general quantitative statements about the 
performance improvements. 

Running the benchmark maintains between 300 and 
1000 simultaneous connections to the web server from 
the client machines and measures throughput by re-
questing as many web pages as possible. Each connec-
tion requests a web page and then dies off while a new 
connection is generated to take its place. The Apache 
web server is configured to use 200 httpd daemons 
and does not support keep-alive connections (so idle 
connections do not linger). All httpd daemons accept 
on the same port. The throughput is measured by Spec-
Web99 in terms of how many requests per second each 
of the 300 to 1000 simultaneous connections can make. 

The results of the SpecWeb99 runs are very encourag-
ing. While running with moderate to sizable loads of 
300 to 1000 simultaneous connections to the web 
server, the number of requests serviced per second in-
creased dramatically with both the “wake one” and 
“task exclusive” patches. While the performance impact 
is not as powerful as that evidenced by our micro-
benchmark, a considerable gain is evident in the testing. 
The performance increase due to either patch remains 
steady at just over 50% for all connection rates. There 
is no discernable difference between the “wake one” 
and “task exclusive” patches. 

 
5. Application 
 
Up to this point, the evaluation of the elimination of 
thundering herd problems seems overwhelmingly posi-
tive. However, there is one issue that seems unresolved. 
In the performance testing, SpecWeb99 was run against 
a modified Apache web server. Why did we put forth 
the effort to modify our web server and why would 
anybody want to do so in practice? To answer these 
questions, we performed a short evaluation of the stock 
Apache 1.3.9 web server and our patched version. 

The stock Apache web server uses various locking 
schemes to prevent the servers threads from all calling 
accept() at the same time. This is done to prevent 
internal errors when the server receives connections on 
many different IP addresses or ports. When running an 
Apache web server on one IP address and one port, 
locking around accept() is not necessary. 

If  Apache  server  threads  were  all allowed to call 
accept() at the same time, then each thread could 
process a good portion of the accept() system call 
before a connection is even received. This in turn 
would reduce the effective overhead of accepting each 
incoming connection, since half the work is already 
done. To test this idea, we set up another test against a 
uniprocessor machine which would show the usefulness 
of these thundering-herd solutions on more common 
hardware. 

This evaluation used a single processor AMD K6-2 
machine running at 400 MHz equipped with a 100 
Mbps ethernet card and the same four processor ma-
chine described in the macro-benchmark section. The 
quad-processor was used as a client machine running 
httperf to ensure that the web serving host (and not 
the client) would be under a significant load. The client 
was tested using two different configurations: a stock 
2.2.14 Linux kernel with a stock locking Apache 1.3.9  



 

 

 

 

 

 

 

Figure II:  This graph shows the rate at which the web server 
replied (y axis) for each level of client request-rates (x axis).  
Notice the point at which each server started to lose perform-
ance. 
 

web server and the same kernel with the modified non-
locking Apache 1.3.9 web server. The Apache web 
servers were configured to run a modest 20 serving 
threads (httpd’s) and to not support keep-alive con-
nections. 

The results of this test are plotted in Figure II. This 
graph demonstrates how Apache can increase the 
threshold rate at which it begins to fail by having all 20 
httpd’s accept at the same time, rather than deferring 
the accept overhead until later. You can imagine that if 
more httpd’s are started the difference in thresholds 
would decline, because on a stock 2.2.14 Linux kernel 
the system would begin to feel the effects of the thun-
dering herd problem. It is not uncommon though, for 
medium to high traffic sites run more than 100 httpd 
processes. 

 
6. Conclusion 
 
By thoroughly studying this “thundering herd” prob-
lem, we have shown that it is indeed a bottleneck in 
high-load server performance, and that fixing it signifi-
cantly improves the performance of a high-load server 
regardless of the method used. This performance in-
crease is due to the fact that less time is spent in the 
kernel needlessly scheduling tasks which are not yet 
ready to run. All solutions presented resolve the issue 
by awakening as few tasks as necessary, thus reducing 
kernel overhead. 

 

At first look, the “task exclusive” solution appears to be 
fairly complex. Upon closer examination though, it 
seems to fit in well with the new structure of Linux wait 
queues (doubly linked in 2.3 to make end-of-queue 
additions fast). Extra demands are placed on the pro-
grammer to get this solution to work, but the fix is ex-
tensible to all parts of the kernel and appears not to 
break any existing system calls. The “wake one” solu-
tion, on the other hand, is cleaner, easier for program-
mers to implement and is also extensible to all parts of 
the kernel. This fix is easily used by programmers since 
it requires just one line of code. 

As previously mentioned, the process that awakens 
tasks is usually better able to determine if it wants to 
awaken  one or more tasks. However, in the case of 
select(), the selecting process will want to be awak-
ened regardless of whether or not it will continue on to 
handle the connection (perhaps it is monitoring the 
socket and collecting some statistics). For this case, the 
“task exclusive” model is a better fit. Conversely, if an 
application error occurs, a program may like to inform 
all of its associated tasks which are waiting on a socket. 
For this case, the “wake one” model is the better fit. 
Perhaps the  most sound and elegant solution is the 
“always wake” hybrid of these two solutions which was 
presented in section 3.3. 

 
6.1 Availability 
 
All work and patches presented and used in this paper 
were written and performed at CITI and are available 
on the Linux Scalability Project’s home page at 
http://www.citi.umich.edu/projects/linux-scalabilty/ 
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