
USENIX Association

Proceedings of the
2001 USENIX Annual
Technical Conference

Boston, Massachusetts, USA
June 25–30, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Scalability of Linux Event-Dispatch Mechanisms

Abhishek Chandra
Department of Computer Science,

University of Massachusetts, Amherst
abhishek@cs.umass.edu

David Mosberger
Hewlett Packard Laboratories,

Palo Alto, CA
davidm@hpl.hp.com

Abstract

Many Internet servers these days have to handle not
just heavy request loads, but also increasingly face large
numbers of concurrent connections. In this paper, we
discuss some of the event-dispatch mechanisms used by
Internet servers to handle the network I/O generated
by these request loads. We focus on the mechanisms
supported by the Linux kernel, and measure their per-
formance in terms of their dispatch overhead and dis-
patch throughput. Our comparative studies show that
POSIX.4 Real Time signals (RT signals) are a highly ef-
ficient mechanism in terms of the overhead and also pro-
vide good throughput compared to mechanisms like se-
lect() and /dev/poll. We also look at some limi-
tations of RT signals and propose an enhancement to the
default RT signal implementation which we call signal-
per-fd. This enhancement has the advantage of signif-
icantly reducing the complexity of a server implemen-
tation, increasing its robustness under high load, and
also potentially increasing its throughput. In addition,
our results also show that, contrary to conventional wis-
dom, even a select() based server can provide high
throughput, even though it has high overhead, if its over-
head is amortized by performing more useful work per
select() call.

1 Introduction

The fast growth of the Web and e-commerce has led
to a large increase in Internet traffic. Most network ap-
plications such as Web servers and proxies have to han-
dle heavy loads from clients spread all across the globe.
In addition to high request rates, servers also have to
handle a large number of concurrent connections, many
of which are idle most of the time. This is because the
connection times are large due to (i) the “last-mile prob-
lem” [3], which has the effect that most clients connect
to the Internet through slow modems, and (ii) due to the
geographically distributed nature of the Internet, which
causes much of the traffic to travel across many hops, in-

creasing both latency and the probability of packet drops
due to congestion. For Web servers, the problem of
long connections is exacerbated by the HTTP/1.1 proto-
col [5], which provides for persistent TCP connections
that can be reused to handle multiple interactions with
the server. These persistent connections further add to
the length of the connection times. The bottom line is
that servers need to service the high incoming request
load, while simultaneously handling a large number of
concurrent connections efficiently.

To handle these demands, many high-performance
Web servers are structured as event-handling applica-
tions [9, 16, 18]. These servers employ event-dispatch
mechanisms provided by the underlying operating sys-
tem to handle the network I/O on multiple concurrent
connections. Some studies have looked at the scalabil-
ity issues of such mechanisms and found that traditional
dispatch mechanisms are not very scalable [1]. While
the performance of Web servers clearly is important,
we should not forget that there are many other Inter-
net services, such as ftp servers, proxy caches, and mail
servers, that have to deal with similar scalability con-
cerns. For example, poor scalability is one of the pri-
mary reasons the number of concurrent connections on
many ftp servers is limited to a small number (around
30-50) 1.

Another approach to building Internet servers that
can handle high request loads and large number of
concurrent connections is to move the entire applica-
tion into kernel space. Recent efforts in this direction
have produced dramatic results for Web servers (e.g.,
TUX [17]). However, this does not obviate the need for
efficient event-dispatch mechanisms. In fact, it is our
contention that due to security and robustness concerns,
many server sites are likely to prefer running Internet
servers in user space, provided that they can achieve per-
formance that is comparable to a kernel space solution.
Efficient event dispatch mechanisms are also essential

1The scalability problems of the most popular ftp servers is par-
tially due to the fact that they are using a process-per-connection
model. This could be fixed by using an event-oriented model, though
security considerations may not always permit adopting such a model.



for those applications that may be important for some
sites (e.g., ftp), but perhaps not quite important enough
to warrant the effort of developing an OS-specific kernel
solution.

In this paper, we look at the different Linux event-
dispatch mechanisms used by servers for doing network
I/O. We try to identify the potential bottlenecks in each
case, with an emphasis on the scalability of each mech-
anism and its performance under high load. We use two
metrics to determine the efficiency of each mechanism,
namely, the event-dispatch overhead and the dispatch
throughput. The mechanisms we study in particular are
the select() system call, /dev/poll interface and
POSIX.4 Real Time signals (RT signals), each of which
is described in more detail in the following sections.
Our studies show that RT signals are an efficient and
scalable mechanism for handling high loads, but have
some potential limitations. We propose an enhancement
to the kernel implementation of RT signals that over-
comes some of these drawbacks, and allows for robust
performance even under high load. We also measure
the performance of a variant of the select() based
server which amortizes the cost of each select() call,
and show that it is more scalable in terms of the server
throughput.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the primary event-dispatch mecha-
nisms supported by the Linux kernel, and discuss some
of the previous work in this regard. In Section 3,
we compare some of these mechanisms for their dis-
patch overhead. We discuss RT signals in more detail,
identifying their limitations and propose an enhance-
ment to the default implementation of RT signals in the
Linux kernel. In Section 4, we present a comparative
study of some of the mechanisms from the perspective
of throughput achieved under high loads. Finally, we
present our conclusions in Section 5.

2 Event-Dispatch Mechanisms

In this section, we first discuss the two main schemes
employed by servers for handling multiple connections.
Next, we look at the various event-dispatch mechanisms
supported by the Linux kernel that can be employed by
Web servers for doing network I/O. We follow this up
with a discussion of previous work that has focussed on
the scalability of some of these mechanisms, including
other mechanisms that have been proposed to overcome
some of their drawbacks.

2.1 Handling Multiple Connections

There are two main methodologies that could be
adopted by servers for performing network I/O on mul-
tiple concurrent connections.

� Thread-based: One way to handle multiple con-
nections is to have a master thread accepting new
connections, that hands off the work for each con-
nection to a separate service thread. Each of these
service threads is then responsible for performing
the network I/O on its connection. These service
threads can be spawned in two ways:

– On-demand: Each service thread is forked
whenever a new connection is accepted, and it
then handles the requests for the connection.
This can lead to large forking overhead under
high load when there are large number of new
connections being established.

– Pre-forked: The server could have a pool
of pre-forked service threads. Whenever the
master thread receives a new connection, it
can hand over the connection to one of the
threads from the pool. This method prevents
the forking overhead, but may require high
memory usage even under low loads.

� Event-based: In an event-based application, a sin-
gle thread of execution uses non-blocking I/O to
multiplex its service across multiple connections.
The OS uses some form of event notification to
inform the application when one or more connec-
tions require service. For this to work, the applica-
tion has to specify to the OS the set of connections
(or, more accurately, the set of file-descriptors) in
which it is interested (interest set). The OS then
watches over the interest set and whenever there’s
activity on any of these connections, it notifies the
application by dispatching an event to it. Depend-
ing on the exact event-dispatch mechanism in use,
the OS could group multiple notifications together
or send individual notifications. On receiving the
events, the server thread can then handle the I/O on
the relevant connections.

In general, thread-per-connection servers have the
drawback of large forking and context-switching over-
head. In addition, the memory usage due to threads’ in-
dividual stack space can become huge for handling large
number of concurrent connections. The problem is even
more pronounced if the operating system does not sup-
port kernel-level threads, and the application has to use
processes or user-level threads. It has been shown that
thread-based servers do not scale well at high loads [7].



Hence, many servers are structured as event-based ap-
plications, whose performance is determined by the ef-
ficiency of event notification mechanisms they employ.
Pure event-based servers do not scale to multiproces-
sor machines, and hence, on SMP machines, hybrid
schemes need to be employed, where we have a multi-
threaded server with each thread using event-handling
as a mechanism for servicing concurrent connections.
Even with a hybrid server, the performance of event-
based mechanisms is an important issue. Since efficient
event dispatching is at the core of both event-based and
hybrid servers, we will focus on the former here.

2.2 Linux Kernel Mechanisms

As described above, event-based servers employ
event-dispatch mechanisms provided by the underlying
operating system to perform network I/O. In this section,
we describe the mechanisms supported by the Linux ker-
nel for event notification to such applications. Following
are the mechanisms supported by the Linux kernel.

� select() system call: select() [15] allows
a single thread or process to multiplex its time be-
tween a number of concurrently open connections.
The server provides a set of file-descriptors to the
select() call in the form of an fdset, that de-
scribes the interest set of the server. The call re-
turns the set of file-descriptors that are ready to be
serviced (for read/write, etc.). This ready set is also
returned by the kernel in the form of an fdset.

The main attributes of the select() based ap-
proach are:

– The application has to specify the interest set
repeatedly to the kernel.

– The interest set specification could be sparse
depending on the descriptors in the set, and
could lead to excess user-kernel space copy-
ing. The same applies when returning the
ready set.

– The kernel has to do a potentially expensive
scan of the interest set to identify the ready
file descriptors.

– If the kernel wakes up multiple threads inter-
ested in the same file descriptor, there could
be a thundering herd problem, as multiple
threads could vie for I/O on the same descrip-
tor. This, however, is not a problem with
Linux 2.4.0 kernel, as it supports single thread
wake-up.

� poll() system call: poll() [15] is a system call
identical to select() in its functionality, but uses

// Accept a new connection
int sd = accept(...);

// Associate an RT signal
// with the new socket
fcntl(sd, F_SETOWN, getpid());
fcntl(sd, F_SETSIG, SIGRTMIN);

// Make the socket non-
// blocking and asynchronous
fcntl(sd, F_SETFL, O_NONBLOCK|O_ASYNC);

Figure 1: Associating a new connection with an RT sig-
nal

a slightly different interface. Instead of using an
fdset to describe the interest set, the server uses a
list of pollfd structures. The kernel then returns
the set of ready descriptors also as a list of pollfd
structures. In general, poll() has a smaller over-
head than select() if the interest set or ready set
is sparse. But if these sets are dense, then the over-
head is usually higher because pollfd structures
are bigger than a bit (they are a few bytes typically).
Other than that, poll() has the same problems as
select().

� POSIX.4 Real Time Signals: POSIX.4 Real Time
signals (RT signals) [6] are a class of signals sup-
ported by the Linux kernel which overcome some
of the limitations of traditional UNIX signals. First
of all, RT signals can be queued to a process by the
kernel, instead of setting bits in a signal mask as is
done for the traditional UNIX signals. This allows
multiple signals of the same type to be delivered to
a process. In addition, each signal carries a siginfo
payload which provides the process with the con-
text in which the signal was raised.

A server application can employ RT signals as an
event notification mechanism in the following man-
ner. As shown in figure 1, the server application can
associate an RT signal with the socket descriptors
corresponding to client connections using a series
of fcntl() system calls. This enables the kernel
to enqueue signals for events like connections be-
coming readable/writable, new connection arrivals,
connection closures, etc. Figure 2 illustrates how
the application can use these signal notifications
from the kernel to perform network I/O. The ap-
plication can block the RT signal associated with
these events (SIGRTMIN in figure 2) and use sig-
waitinfo() system call to synchronously de-
queue the signals at its convenience. Using sig-
waitinfo() obviates the need for asynchronous



sigset_t signals;
siginfo_t siginfo;
int signum, sd;

// Block the RT signal
sigemptyset(&signals);
sigaddset(&signals, SIGRTMIN);
sigprocmask(SIG_BLOCK, &signals, 0);

while (1) {
// Dequeue a signal from the signal queue
signum = sigwaitinfo(&signals, &siginfo);

// Check if the signal is an RT signal
if (signum == SIGRTMIN) {

// Identify the socket associated with the signal
sd = siginfo.si_fd;
handle(sd);

}
}

Figure 2: Using RT signals for doing network I/O

signal delivery and saves the overhead of invoking
a signal handler. Once it fetches a signal, the sig-
info signal payload enables the application to iden-
tify the socket descriptor for which the signal was
queued. The application can then perform the ap-
propriate action on the socket.

One problem with RT signals is that the signal
queue is finite, and hence, once the signal queue
overflows, a server using RT signals has to fall back
on a different dispatch mechanism (such as se-
lect() or poll()). Also, sigwaitinfo()
allows the application to dequeue only one signal
at a time. We’ll talk more about these problems in
section 3.3.

Event-dispatching mechanisms also exist in operat-
ing systems other than Linux. For instance, Windows
NT provides I/O completion ports [12], which are pri-
marily used for thread-based servers. With I/O comple-
tion ports, there is a single event queue and a fixed num-
ber of pre-forked threads which are used to process the
events. There is a throttling mechanism to ensure that
at most N threads are running at any given time. This
makes it possible to pre-fork a relatively large number
of threads while avoiding excessive context switching
during busy periods. Even though primarily intended
for thread-based servers, it should be possible to use
I/O ports in conjunction with asynchronous I/O to im-
plement hybrid servers.

2.3 Previous Work

Banga et al. [1] have studied the limitations of a
select() based server on DEC UNIX, and shown
the problems with its scalability, some of which we
have discussed above. They have proposed a new
API in [2], which allows an application to specify its
interest set incrementally to the kernel and supports
event notifications on descriptors instead of state noti-
fications (as in the case of select() and poll()).
The system calls proposed as part of this API are
declare interest(), which allows an application
to declare its interest in a particular descriptor, and
get next event(), which is used to get the next
pending event(s) from the kernel.

Another event-dispatch mechanism is the
/dev/poll interface, which is supported by the
Solaris 8 kernel [14]. This interface is an optimization
for the poll() system call. Recently, Provos et al. [10]
have implemented the /dev/poll interface in the
Linux kernel. This interface works as follows. The
application first does an open() on the /dev/poll
device, which creates a new interest set for the ap-
plication. From this point onwards, the application
can add a new socket to this interest set incrementally
by creating a pollfd struct and writing it to the
/dev/poll device. Finally, the polling is done by
using an ioctl() call, which returns a list of pollfd
structs corresponding to the set of ready descriptors.
Further, the overhead of user-kernel copies can be
reduced by using mmap() to map the array of pollfd
structs onto the /dev/poll device. In [10], the



/dev/poll interface is shown to be an improvement
on the traditional poll() implementation, especially
as it reduces the cost of specifying the interest set to
the kernel. Hence, in our experiments, we have used
/dev/poll instead of poll() for comparison to
other dispatch mechanisms.

RT signals have been used for network I/O in the ph-
httpd [4] Web server. Provos et al. have discussed its
implementation and some of its shortcomings, such as
the potential of signal queue overflow and the ability of
sigwaitinfo() system call to fetch only one signal
at a time. They have proposed a new system call sig-
timedwait4() which allows the server to dequeue
multiple signals from the signal queue [11].

3 Dispatch Overhead

In this section, we look at the first scalability parame-
ter for event-dispatch mechanisms, namely the overhead
involved in handling requests as a function of the num-
ber of concurrent connections. This parameter becomes
important in the context of large number of idle or slow
connections, irrespective of the actual active load on the
server. In what follows, we first present an experimental
study of some of the Linux dispatch mechanisms, and
then discuss some of the insights from this study. We
follow this up with a detailed discussion of RT signal
behavior, including their limitations. We then propose
an enhancement to the implementation of RT signals in
the Linux kernel to overcome some of these limitations.

3.1 Comparative Study

In this section, we present the results of our com-
parative study of some of the kernel mechanisms dis-
cussed above. The main goal of this study is to look at
the behavior of Web servers under high load in terms of
their CPU usage as the number of concurrent connec-
tions (most of them idle) increases.

3.1.1 Experimental Testbed

To conduct the experimental study, we implemented a
set of micro Web servers (�servers), each employing
a different event-dispatch mechanism. Most of the re-
quest handling and administrative code in these �servers
is identical to avoid differences in performance arising
due to other factors. This ensures that the different ver-
sions are as similar as possible. Also, using the �servers
instead of widely-used, full-fledged Web servers allows
us to focus on the performance impact of the dispatch
mechanisms by reducing all other overheads to the abso-
lute minimum. Moreover, existing Web servers have an

underlying event-handling architecture (such as process-
per-connection for Apache), which may not be suitable
for the purpose of our study. Thus, the �servers do
very simple HTTP protocol processing, and the various
�servers differ only in their use of the event-dispatch
mechanism. Specifically, we compared �servers em-
ploying select(), /dev/poll and RT signals as
their event-dispatch mechanisms. While this approach
of using the �servers does not answer the question of
how important the event-dispatch costs are as part of the
overall server overhead for commercial Web servers, it
does help in determining the limit on the scalability of
such servers. This is because, even if the dispatch over-
head is tiny with a small number of connections, non-
linear scaling behavior could magnify this overhead with
increasing number of connections until it eventually be-
comes the first order bottleneck.

Each of these �servers was run on a 400 MHz
Pentium-III based dual-processor HP NetServer LPr ma-
chine running Linux 2.4.0-test7 in uniprocessor mode.
The client load was generated by running httperf [8] on
ten B180 PA-RISC machines running HP-UX 11.0. The
clients and the server were connected via a 100 Mbps
Fast Ethernet switch. To simulate large number of con-
current and idle connections, each httperf was used to
establish a set of persistent connections, each of which
generated periodic requests to the �server. The effect
was that at all times, some of the connections were active
while the rest were idle, and these active and idle con-
nection sets kept changing with time. Thus, in these ex-
periments, the connection rate was different from the re-
quest rate (with each connection generating multiple re-
quests). The server’s reply size was 92 bytes. In each ex-
periment, the total request rate was kept constant, while
the number of concurrent connections was varied to see
the effect of large number of idle connections on server
performance.

To measure the CPU usage of the �server, we in-
serted an idle counter in the kernel running the
�server. This idle counter counted the idle cycles
on the CPU. We computed the CPU load imposed by the
�server by comparing the idle cycles for the system with
and without the �server running on it. The server reply
rate and response times were measured by the httperf
clients.

3.1.2 Experimental Results

As part of our comparative study, we ran experiments
to measure the performance of three �servers based on
select(), /dev/poll and RT signals respectively.
In each experiment, the clients were used to generate a
fixed request rate, and the number of concurrent connec-
tions was increased from 250 to 3000. Figure 3 shows



0

100

200

300

400

500

0 500 1000 1500 2000 2500 3000

R
ep

ly
 r

at
e 

(r
ep

ly
/s

ec
)

Number of connections

Reply Rate

RT signals
select

devpoll
0

200

400

600

800

1000

0 500 1000 1500 2000 2500 3000

R
ep

ly
 r

at
e 

(r
ep

ly
/s

ec
)

Number of connections

Reply Rate

RT signals
select

devpoll

(a) 500 req/s (b) 1000 req/s

Figure 3: Reply rate with varying number of concurrent connections

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000

S
er

ve
r 

C
P

U
 u

sa
ge

 (
%

)

Number of connections

CPU Usage

RT signals
select

devpoll

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000

S
er

ve
r 

C
P

U
 u

sa
ge

 (
%

)

Number of connections

CPU Usage

RT signals
select

devpoll

(a) 500 req/s (b) 1000 req/s

Figure 4: CPU usage with varying number of concurrent connections

0

2

4

6

8

10

12

14

16

18

0 500 1000 1500 2000 2500 3000

R
es

po
ns

e 
tim

e 
(m

se
c)

Number of connections

Response Time

RT signals
select

devpoll

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500 3000

R
es

po
ns

e 
tim

e 
(m

se
c)

Number of connections

Response Time

RT signals
select

devpoll

(a) 500 req/s (b) 1000 req/s

Figure 5: Response time with varying number of concurrent connections



the reply rates achieved by the servers for request rates
of 500 req/s and 1000 req/s respectively. As can be seen
from the figure, the reply rate matches the request rate
for the RT signal and select() based servers at all
points. On the other hand, the reply rate starts drop-
ping off for the /dev/poll based server after a point.
This is because the server becomes overloaded and starts
dropping connections beyond a certain load. We cannot
explain why the overload behavior of /dev/poll is so
bad.

The more interesting figures are figures 4 and 5,
which show the CPU usage and the average response
time respectively for each of the �servers, as the number
of concurrent connections is increased. As can be seen
from figure 4, the CPU usage for both select() and
/dev/poll increases with the number of concurrent
connections and they become saturated after a certain
point. On the other hand, the CPU usage for RT signals
is insensitive to the number of idle connections. The RT
signal based server’s CPU usage is about 6.67% on av-
erage for the 500 req/s case, while it is about 13.25%
for the 1000 req/s case. Thus, the CPU overhead of RT
signals seems to be dependent only on the request rate.
Also, the RT signal CPU usage is dramatically lower
than either select() or /dev/poll based servers.
A similar behavior is seen for the response time in fig-
ure 5. Once again, the response time increases for both
the select() and /dev/poll based servers with the
number of connections. On the other hand, the RT signal
based server shows a very small response time for each
of the request rates (about 0.3 ms in each case). Fur-
ther, this response time is independent of the number of
concurrent connections. Note that, even though the ab-
solute value of the response times in the graphs may not
seem significant from the perspective of an end user, it
is the shape of these graphs which is significant, as these
curves reflect the scalability of the dispatch mechanisms.

Thus, the results in this section show that RT sig-
nals have very small dispatch overhead and also that this
overhead does not depend on the number of concurrent
or idle connections being handled by the server. Rather,
it is determined only by the active work being done by
the server.

3.2 RT Signals: Reasons for Efficiency

From our comparative study, we observe that RT sig-
nals have a relatively low overhead compared to se-
lect() and /dev/poll event-dispatch mechanisms.
Further, this overhead seems to be independent of the
number of idle connections, and depends only on the ac-
tive request rate. In other words, RT signals show es-
sentially ideal behavior. In this section, we discuss the
reasons for the better performance of RT signals in more

detail.
RT signals are more efficient due to the following rea-

sons:

� First, the server only needs to specify its interest
set to the kernel incrementally. This is because the
server application associates an RT signal with each
socket file descriptor at the time of its creation (just
after the accept() system call). From this point
onwards, the kernel automatically generates sig-
nals corresponding to events on the descriptor, and
thus obviates the need for the application to specify
its interest in the descriptor again and again (as is
the case with select() system call). This func-
tionality is similar to the declare interest()
API proposed in [2].

� Unlike select(), poll() and /dev/poll, in
the case of RT signals, the kernel does not know
about the interest set explicitly. Rather, whenever
there’s an event on one of the descriptors, the kernel
enqueues a signal corresponding to the event with-
out having to worry about the interest set. Thus,
the interest set is totally transparent to the kernel
and this gets rid of the overhead of scanning each
descriptor in the interest set for activity on every
polling request from the application.

� Based on the fd field in the signal payload, the ap-
plication can identify the active descriptor immedi-
ately without having to potentially check each de-
scriptor in the interest set (as in the case of se-
lect()).

� By blocking the relevant RT signal and using sig-
waitinfo() for dequeuing signals from the sig-
nal queue, the overhead of calling a signal handler
is avoided.

3.3 Limitations of RT signals

In spite of their efficiency, RT signals, as currently
implemented in Linux, have some potential limitations.
These limitations arise from the fact that the signal
queue is a limited resource. Since each event results in
a signal being appended to the signal queue, a few ac-
tive connections could dominate the signal queue usage
or even trigger an overflow. The former could result in
unfair service and the latter could cause a deadlock-like
situation in which the server can no longer make any
progress, and appears to be suspended or hung.

To understand how a signal queue overflow can lead
to a “hung” server, note that once the queue is full, no
further signals can be enqueued and hence all future
events are dropped. Of course, eventually the server
would drain the queue and new events would start to



come in again. However, those events that got dropped
are lost forever. Further, notice that the signal queue is
delinked from the TCP buffers and there is no feedback
mechanism between the two. Thus, even after the sig-
nal queue fills up and starts losing signals, there is noth-
ing to throttle the TCP traffic. Thus, even though events
are occurring on the open connections and the listen-
ing socket, the server loses notifications corresponding
to these events. In other words, there is a “notification
leak” at the server. If one of the lost events happened to
indicate, for example, that the listen queue has pending
connections, the server may never realize that it ought
to call accept() to service those connections. Simi-
larly, if an event got dropped that indicated that a par-
ticular connection is now readable, the server may never
realize that it should call read() on that connection.
Over time, the more events are dropped, the more likely
it becomes that either some connections end up in a sus-
pended state or that the listening socket is no longer ser-
viced. In either case, throughput will suffer and eventu-
ally drop to zero.

To avoid this kind of suspended state, the Linux ker-
nel sends a SIGIO signal to the application when the
signal queue overflows. At this point, the application
can recover from the overflow by falling back onto some
other event dispatch mechanism. For example, the ap-
plication could use select() or poll() to detect
any events that may have been dropped from the sig-
nal queue. Unfortunately, using a fallback mechanism
comes with its own set of problems. Specifically, there
are two issues:

� First, having to handle signal queue overflows by
switching onto another mechanism makes the ap-
plication complex. It may require translating the
interest set from the (implicit) form used by the RT
signal mechanism into the explicit form used by the
other mechanism (e.g.: setting up the fdsets for
select() or pollfd lists for poll(), etc.).
Furthermore, the application has to receive and ser-
vice the kernel notifications in a different manner.
Also, this transition needs to be done very carefully,
as losing even a single event could potentially cre-
ate the suspended state situation mentioned above.

� Second, switching over to a non-scalable mecha-
nism also has the potential to make the applica-
tion sluggish. Since the application is already under
overload (which led to the signal queue overflow in
the first place), using a high-overhead mechanism
for recovery could overload the server even further,
potentially sending it into a tailspin.

Another drawback with RT signals is that each call
to sigwaitinfo() dequeues exactly one signal from

the queue. It cannot return multiple events simultane-
ously, leading to high number of system calls to retrieve
multiple events, which might be a problem under high
load.

Thus, using RT signals as implemented in the kernel
has some potential drawbacks even if they are used in
conjunction with another mechanism.

3.4 Signal-per-fd: RT Signal Enhancement

As discussed above, having to handle a signal queue
overflow could be potentially costly as well as complex
for an application. It would be desirable, therefore, if
signal queue overflows could be avoided altogether. To
understand why signal queue overflows are happening
in the first place, note that there’s a potential of mul-
tiple events being generated for each connection, and
hence multiple signals being enqueued for each descrip-
tor. But, most of the time, the application does not need
to receive multiple events for the same descriptor. This is
because even when an application picks up a signal cor-
responding to an event, it still needs to check the status
of the descriptor for its current state, as the signal might
have been enqueued much before the application picks it
up. In the meantime, it is possible that there might have
been other events and the status of the descriptor might
have changed. For instance, the application might pick
up a signal corresponding to a read event on a descriptor
after the descriptor was closed, so that the application
would have to decide what to do with the event in this
case. Thus, it might be more efficient and useful if the
kernel could coalesce multiple events and present them
as a single notification to the application. The applica-
tion could then check the status of the descriptor and
figure out what needs to be done accordingly.

To understand what kind of events can be coalesced
together, we have to understand what kind of informa-
tion the events are supplying to the application. In gen-
eral, events are coalescable under two scenarios:

� If information from multiple events can be com-
bined to provide consistent information to the ap-
plication, then such events can be coalesced. This
scenario occurs in many GUI systems, such as the
X window system [13]. In such systems, typi-
cal implementations try to compact motion events
in order to minimize system overhead and mem-
ory usage in device drivers. For instance, if we
receive an event indicating that the mouse moved
by (x1; y1), followed by an event that it moved by
(x2; y2), then the two events can be merged into
a single one indicating that the mouse moved by
(x1 + x2; y1 + y2).

� If events are used only as hints which the appli-



cation might pick up at its leisure (or ignore) and
are used only as feedback to guide it in its actions,
then such events may be coalesced. This is the sce-
nario in our RT signal-based server, where the sig-
nals are being used as hints to notify the server of
connection-related events, but the onus is still on
the server to verify the connection status and act
accordingly.

We propose an enhancement to achieve this coalesc-
ing, which we call signal-per-fd. The basic idea here
is to enqueue a single signal for each descriptor. Thus,
whenever there’s a new event on a connection, the kernel
first checks if there’s already a signal enqueued for the
corresponding file descriptor, and if so, it does not add
a new signal to the queue. A new signal is added for a
descriptor only if it does not already have an enqueued
signal.

To efficiently check for the existence of a signal cor-
responding to a descriptor, we maintain a bitmap per
process. In this bitmap, each bit corresponds to a file-
descriptor and the bit is set whenever there is an en-
queued signal for the corresponding descriptor. Note
that checking the bit corresponding to a descriptor ob-
viates the need to scan the signal queue for a signal cor-
responding to the descriptor, and hence, this check can
be done in constant time. This bit is set whenever the
kernel enqueues a new signal for the descriptor and it is
cleared whenever the application dequeues the signal.

By ensuring that one signal is delivered to the appli-
cation for each descriptor, the kernel coalesces multiple
events for a connection into a single notification, and the
application then checks the status of the corresponding
descriptor for the action to be taken. Thus, if the size of
the signal queue (and hence the bitmap) is as large as the
file descriptor set size, we can ensure that there would
never be a signal queue overflow.

This enhancement has the following advantages:

� Signal-per-fd reduces the complexity of the appli-
cation by obviating the need to fall back on an al-
ternative mechanism to recover from signal queue
overflows. This means that the application does not
have to re-initialize the state information for the in-
terest set, etc. that may be required by the second
mechanism. In addition, the application does not
have to deal with the complexity associated with
ensuring that no event is lost on signal queue over-
flow. Finally, the server would not have to pay the
penalty of potentially costly dispatch mechanisms.

� Signal-per-fd also ensures fair allocation of the sig-
nal queue resource. It prevents overloaded and
misbehaving connections from monopolizing the
signal queue, and thus achieves a solution for the
proper resource management of the signal queue.

� By coalescing multiple events into a single noti-
fication, this mechanism prevents the kernel from
providing too fine-grained event notifications to
the application, especially as the application might
not pick up the notifications immediately after the
events. This enhancement thus notifies the applica-
tion that there were events on a descriptor, instead
of how many events there were. The latter informa-
tion is often useless to the application as it has to
anyway figure out what the events were and what
the status of the descriptor is.

There are some similarities between the signal-per-
fd mechanism and the API proposed in [2] in terms of
their functionality. In particular, signal-per-fd allows the
kernel to coalesce multiple events corresponding to a
descriptor just like the implementation described there.
But, signal-per-fd differs from this API in some impor-
tant ways. First of all, signal-per-fd does not require any
change in the system call interface or the kernel API, and
is totally transparent to the application. Secondly, the
goal of the signal-per-fd mechanism is not only to po-
tentially improve the performance of an RT signal-based
server, but also to reduce its complexity, by obviating the
need for employing fallback mechanisms.

On the whole, signal-per-fd is a simple enhancement
to the implementation of RT signals that can overcome
some of their limitations in the context of using them as
an event-dispatch mechanism for doing network I/O.

4 Dispatch Throughput

In this section, we look at another parameter associ-
ated with the efficiency of event-dispatch mechanisms,
namely, the throughput that can be achieved as a func-
tion of the active load on the server. This metric is or-
thogonal to the overhead discussed in the previous sec-
tion, as this refers to the actual amount of useful work
being performed by the server. In what follows, we first
provide a comparative experimental study of some of the
Linux dispatch mechanisms, including the signal-per-fd
optimization proposed in the previous section. In addi-
tion, we also look at the throughput achieved by a se-
lect() based server with a minor modification which
allows the server to do multiple accept()s each time
the listening socket becomes ready. Then, we discuss
the results of this study and provide some insights into
the behavior of the various mechanisms.

4.1 Experimental Study

Here, we experimentally evaluate the throughput
achieved by various event-dispatch mechanisms under
high load. Our experimental setup is the same as



0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
ep

ly
 r

at
e 

(r
ep

ly
/s

ec
)

Request Rate (req/sec)

Server Throughput

RT signals
select

devpoll
signal-per-fd
multi-accept

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
er

ve
r 

C
P

U
 u

sa
ge

 (
%

)

Request Rate (req/s)

CPU Usage

RT signals
select

devpoll
signal-per-fd
multi-accept

(a) Reply rate (b) CPU usage

Figure 6: Server performance with 252 idle connections (1B reply size)

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
ep

ly
 r

at
e 

(r
ep

ly
/s

ec
)

Request Rate (req/sec)

Server Throughput

RT signals
select

devpoll
signal-per-fd
multi-accept

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

S
er

ve
r 

C
P

U
 u

sa
ge

 (
%

)

Request Rate (req/s)

CPU Usage

RT signals
select

devpoll
signal-per-fd
multi-accept

(a) Reply rate (b) CPU usage

Figure 7: Server performance with 6000 idle connections (1B reply size)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500 3000

R
ep

ly
 r

at
e 

(r
ep

ly
/s

ec
)

Request Rate (req/sec)

Server Throughput

RT signals
select

devpoll
signal-per-fd
multi-accept

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000

S
er

ve
r 

C
P

U
 u

sa
ge

 (
%

)

Request Rate (req/s)

CPU Usage

RT signals
select

devpoll
signal-per-fd
multi-accept

(a) Reply rate (b) CPU usage

Figure 8: Server performance with 6000 idle connections (6K reply size)



0.1

1

10

100

1000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
es

po
ns

e 
tim

e 
(m

se
c)

Request Rate (req/sec)

Response Time

RTsigs
select

devpoll
signal-per-fd
multi-accept

0.1

1

10

100

1000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
es

po
ns

e 
tim

e 
(m

se
c)

Request Rate (req/sec)

Response Time

RTsigs
select

devpoll
signal-per-fd
multi-accept

(a) 252 idle connections (1B reply size) (b) 6000 idle connections (1B reply size)

1

10

100

1000

0 500 1000 1500 2000 2500 3000

R
es

po
ns

e 
tim

e 
(m

se
c)

Request Rate (req/sec)

Response Time

RTsigs
select

devpoll
signal-per-fd
multi-accept

(c) 6000 idle connections (6K reply size)

Figure 9: Response time with increasing load

that used in Section 3.1 for comparative study of se-
lect(), /dev/poll and RT signals. In this study, we
evaluate two new mechanisms/enhancements as well:

(i) The signal-per-fd enhancement to RT signals. We
have implemented this enhancement in the Linux
2.4.0-test7 kernel, and we ran the RT signal based
�server on the modified kernel for measuring the
effect of signal-per-fd.

(ii) A select() based �server which does multi-
ple accept()s each time the listening socket
becomes ready, as opposed to the standard se-
lect() based �server which does only one ac-
cept() for such a case. We’ll refer to this modifi-
cation as multi-accept select. The idea here is to
enable the server to identify more connections and
perform more useful work per select() call.

In order to measure the throughput of these various
mechanisms under varying loads, we used a set of idle
connections along with a set of httperf clients generating
requests at high rates. In these experiments, we kept the

number of idle connections fixed for each experiment
and varied the request rate.

Figure 6 shows the performance of the servers with
252 idle connections and 1 byte server reply sizes, while
figures 7 and 8 plot the same information for 6000 idle
connections with server reply sizes of 1 byte and 6KB
respectively. As can be seen from figures 6(a), 7(a) and
8(a), the throughput with select() plateaus out much
before it does for the RT signals (both the default and the
signal-per-fd implementations). The fall in reply rate of
/dev/poll is much more dramatic and again, it seems
to perform very poorly under overload. The interesting
observation is that multi-accept select is able to sus-
tain a high throughput, similar to the RT signals, and
even manages to achieve a slightly higher peak through-
put in the first two cases. Figures 6(b), 7(b) and 8(b)
show the CPU usage for the �servers. Again, as can
be seen from these figures, the CPU usage for RT sig-
nals is much less than that for select(), multi-accept
select and /dev/poll in all cases, and RT signals
reach saturation at a much higher load. In fact, for 6000



idle connections (figures 7(b) and 8(b)), CPU usage is
100% for the select(), multi-accept select and
/dev/poll based �servers right from the beginning,
which can be attributed to their high overhead in han-
dling large number of concurrent connections. On the
other hand, the CPU overhead for the RT signals based
server (for both the default and signal-per-fd cases) in-
creases linearly with the load in either case. An interest-
ing point to be noted from these figures is that, for the
1 byte reply sizes, the server with the default RT signal
implementation reaches saturation at a slightly smaller
load than signal-per-fd, and this is more pronounced for
the 6000 idle connections. We will discuss this point in
more detail below.

Figures 9(a), (b) and (c) plot the average response
times of the various servers with increasing load for 252
and 6000 idle connections (1B and 6KB reply sizes) re-
spectively. Figure 9(a) shows that select() reaches
overload at a relatively low load, while the other mech-
anisms get overloaded at much higher loads. In fig-
ures 9(b) and (c), select() shows high response times
for all loads and is thus overloaded for all the points in
the graph. These plots complement figures 6(a), 7(a) and
8(a), which show the throughput for these cases. The fig-
ures further show that the /dev/poll server achieves
small response times at low loads, but under overload, it
offers much higher response times compared to the other
mechanisms. Thus, its overload behavior is again seen
to be very poor. The interesting point in figure 9(a) is
that multi-accept select is able to provide a low re-
sponse time upto very high loads. Figure 9(b) shows
an even more interesting behavior of multi-accept se-
lect — its response time actually decreases with in-
creasing load until it hits overload. This behavior clearly
shows the load amortization occurring for multi-accept
select, so that more useful work being extracted for
the same select() call overhead translates to lower
average response times. In figure 9(c), multi-acceptse-
lect shows higher response times, but these increase
only gradually with load, which again shows that the
select() cost is being amortized. Finally, the two RT
signal implementations have the lowest response times
until they get overloaded, which is expected as they have
the lowest overhead. Once again, these graphs show
that the default RT signal based server reaches overload
slightly earlier than the signal-per-fd server for the 1 byte
reply size cases.

Next, we will try to understand these results, and in
particular, we will focus on the behavior of multi-accept
select and the two implementations of RT signals.

4.2 Discussion

From the results of our comparative study, we get the
following insights into the behavior of the various mech-
anisms:

� Using multi-accept select increases the through-
put of the select() based server substantially.
This is because select() is basically a state no-
tification mechanism. Thus, when it returns the
listening socket as ready, it means there are new
connections queued up on the listen queue. Us-
ing multiple accept() calls at this point drains
the listen queue without having to call select()
multiple times. This helps prevent the high cost
of using multiple select() calls for identifying
new connections. Once new connections are effi-
ciently identified and added to the interest set, un-
der high load, select() would have large num-
ber of active connections to report each time it is
called. Thus, its cost would be amortized as the
server could perform more useful work per se-
lect() call. This has to do with the fact that the
ready set returned by select() would be denser
and hence, the scanning cost of select() is uti-
lized better. Also, the more useful work the server
does on each call to select(), the less often it
needs to be called. Hence, the server is able to
identify more connections and extract more useful
work, and thus achieves a higher throughput. Note
that the overhead is still high — only the overhead
is being better utilized now. This amortization is es-
pecially visible from figure 8 and figure 9(c), where
the reply sizes are large, and hence, there is more
work per connection.

The high throughput achieved by the multi-accept
select server is contrary to conventional wis-
dom, according to which select() based servers
should perform poorly under high loads in terms of
their throughput as well. While this is true for a
simple select() based server, our results show
that implementing the server more carefully can
help us achieve better performance.

� The behavior of the servers running on the de-
fault RT signal implementation and the signal-per-
fd implementation are very similar until saturation.
This is understandable as there are very few signal
queue overflows under low loads, and hence, the
two schemes work essentially the same. To verify
that this is indeed the case, in table 1, we have tab-
ulated the number of SIGIOs and the number of
sigwaitinfo() calls for the default RT signal
based server. These numbers correspond to some



252 idle connections 6000 idle connections
Request Rate No. of No. of No. of No. of

(req/s) sigwaitinfos SIGIOs sigwaitinfos SIGIOs
2800 504728 0 504474 0
3000 540576 0 540792 0
3200 10538 1526 19 19
3400 40 40 16 16
3600 40 40 14 14
3800 39 39 13 13
4000 39 39 13 13

Table 1: Signal queue overflows under high loads

of the loads for 252 and 6000 idle connections re-
spectively, with reply size of 1 byte. The number of
sigwaitinfo()s denotes the number of times
the server dequeued a signal from the signal queue,
and the number of SIGIOs represents the number
of signal queue overflows. As can be seen from
the table, under low loads, there are no SIGIOs
and hence, no signal queue overflows. On the other
hand, at high loads, all the sigwaitinfo() calls
result in SIGIOs. This indicates that the signal
queue is overflowing all the time, and hence, the
server has to fall back on an alternative mechanism
to perform its network I/O under high loads. The
fallback mechanism used in our server was multi-
accept select2. Hence, under high loads, the de-
fault RT signal server behavior is identical to that of
the multi-accept select server, as was seen from
the throughput and the response time plots.

� As noted earlier, for the 1 byte reply sizes, the
signal-per-fd server reached overload at slightly
higher load compared to the default RT signal
server. In particular, the default RT signal based
server saturated at about 3200 req/s, which corre-
sponds to the high number of sigwaitinfo()s
resulting in SIGIOs at this load, as can be seen
from table 1. Thus, preventing signal queue over-
flows seems to make the server sustain slightly
higher loads before getting saturated. Once the
signal-per-fd server becomes saturated, its through-
put is bounded by the amount of useful work it
can amortize over each signal notification, even
though it does not suffer from signal queue over-
flows. Recall that similar to select(), signal-
per-fd is also a state-notification mechanism —
hence the server can extract more work per signal
compared to the default event-notification mecha-
nism. Thus, its throughput is comparable to that of

2We cannot simply use select() with single accept() in this
situation because, to prevent any potential deadlocks, we have to en-
sure that no event is lost, and hence, we need to clear the listen queue
completely.

multi-accept select under overload, even though
its peak throughput is slightly smaller, as sig-
waitinfo() still returns only one signal per call.

To summarize, we find that RT signals are an efficient
mechanism in terms of overhead, and under saturation,
their throughput is determined by the fallback mecha-
nism being used to handle signal queue overflows. We
find that select() system call can give high through-
put if we use multiple accept()s to identify more new
connections per select() call. This is in spite of the
fact that select() based servers have high CPU over-
head. Finally, signal-per-fd has a behavior almost iden-
tical to that of the default RT signal implementation in
terms of overhead and throughput, but it is able to sus-
tain slightly higher load before becoming overloaded.
Further, it helps reduce the complexity of the server to
a large extent. This is because we do not have to worry
about using alternative event-dispatch mechanisms, and
state maintenance also becomes much easier.

5 Conclusion

In this paper, we first discussed some of the com-
mon event-dispatch mechanisms employed by Internet
servers. We focussed on the mechanisms available in the
Linux kernel, and measured their performance in terms
of the overhead and throughput of a minimal Web server.
Our comparative studies showed that RT signals are a
highly efficient mechanism in terms of their dispatch
overhead and also provide good throughput compared
to mechanisms like select() and /dev/poll. In
particular, the overhead of RT signals is independent of
the number of connections being handled by the server,
and depends only on the active I/O being performed by
it. But, an RT signal based server can suffer from signal
queue overflows. Handling such overflows leads to com-
plexity in the server implementation and also potential
performance penalties under high loads. To overcome
these drawbacks, we proposed a scheme called signal-
per-fd, which is an enhancement to the default RT signal



implementation in the Linux kernel. This enhancement
was shown to significantly reduce the complexity of a
server implementation, increasing its robustness under
high load, and also potentially increasing its through-
put. Overall, we conclude that RT signals are a highly
scalable event-dispatch mechanism and servers based on
these signals can also be substantially simplified when
coupled with the signal-per-fd enhancement.

Another interesting result of our study was the perfor-
mance of select() based servers under high loads.
According to conventional wisdom, select() based
servers have high overhead and thus, perform very
poorly under high loads in terms of the server through-
put as well. Our experiments with the multi-accept vari-
ant of a select() based server show that though se-
lect() does have high dispatch overhead, this over-
head can be amortized better by performing more useful
work per select() call, resulting in a high through-
put even under heavy load conditions. Thus, we con-
clude that even a select() based server can be made
to scale substantially if its overhead is better utilized to
perform more useful work.

Acknowledgements

We would like to thank Martin Arlitt for providing
us with large number of client machines and helping us
set up the test-bed for our experiments. We would also
like to thank the anonymous reviewers and our shepherd
Greg Ganger whose invaluable comments and sugges-
tions helped us improve this paper immensely.

References

[1] Gaurav Banga and Jeffrey C. Mogul. Scalable ker-
nel performace for Internet servers under realistic
loads. In Proceedings of the USENIX Annual Tech-
nical Conference, June 1998.

[2] Gaurav Banga, Jeffrey C. Mogul, and Peter Dr-
uschel. A scalable and explicit event delivery
mechanism for UNIX. In Proceedings of the
USENIX Annual Technical Conference, June 1999.

[3] Gordon Bell and Jim Gemmell. On-ramp prospects
for the Information Superhighway Dream. Com-
munications of the ACM, 39(7):55–61, July 1996.

[4] Z. Brown. phhttpd. http://www.zabbo.net/phhttpd,
November 1999.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and
T. Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1. RFC 2068, January 1997.

[6] Bill O. Gallmeister. POSIX.4: Programming for
the Real World. O’Reilly, 1995.

[7] James C. Hu, Irfan Pyarali, and Douglas C.
Schmidt. Measuring the Impact of Event Dispatch-
ing and Concurrency Models on Web Server Per-
formance Over High-speed Networks. In Proceed-
ings of the Second IEEE Global Internet Confer-
ence, November 1997.

[8] David Mosberger and Tai Jin. httperf – A Tool
for Measuring Web Server Performance. In Pro-
ceedings of the SIGMETRICS Workshop on Inter-
net Server Performance, June 1998.

[9] Vivek S. Pai, Peter Druschel, and Willy
Zwaenepoel. Flash: An efficient and portable web
server. In Proceedings of the USENIX Annual
Technical Conference, June 1999.

[10] Niels Provos and Chuck Lever. Scalable Network
I/O in Linux. In Proceedings of the USENIX An-
nual Technical Conference, FREENIX Track, June
2000.

[11] Niels Provos, Chuck Lever, and Stephen Tweedie.
Analyzing the Overload Behavior of a Simple Web
Server. In Proceedings of the Fourth Annual Linux
Showcase and Conference, October 2000.

[12] Jeffrey Richter. Advanced Windows. Microsoft
Press, third edition, 1997.

[13] Robert W. Scheifler and Jim Gettys. The X window
system. ACM Transactions on Graphics, 5(2):79–
109, 1986.

[14] Solaris 8 man pages for poll(7d).
http://docs.sun.com:80/ab2/coll.40.6/REFMAN7/
@Ab2PageView/55123?Ab2Lang=C&Ab2Enc=iso-
8859-1.

[15] W. Richard Stevens. UNIX Network Programming.
Prentice Hall, 1990.

[16] thttpd – tiny/turbo/throttling HTTP server.
http://www.acme.com/software/thttpd.

[17] Answers from Planet TUX: Ingo Molnar Re-
sponds (interview). http://slashdot.org/interviews/
00/07/20/1440204.shtml.

[18] Zeus Web Server. http://www.zeustech.net/ prod-
ucts/ws.


