USENIX Association

Proceedings of the
FREENIX Track:
2001 USENIX Annual
Technical Conference

Boston, M assachusetts, USA
June 25-30, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.




N Citrusproject: _
true multilingual support for BSD operating systems

Jun-ichiro itojun Hagino <itojun@iijlab.net>

Research Laboratory, Internet Initiative Japan Inc.
http://citrus.bsdclub.org/index.html

Abstract

Citrus project aims to implement a com-
plete multilingual programming environment for

BSD-based operating systems. The goals include:

* ISO C/SUS V2-compatible multilingual pro-
gramming environment (locale support),

» multi-script framework, which decouples C
API and actual external/internal encoding,

» gettext and POSIX NLS catalog,

All of our source code is, and will be dis-
tributed under a BSD-like license.

The paper concentrates onto the multi-
script framework, which is unique and central to
our approach. Most other free software imple-
mentations support only Unicode in their multi-
lingual library, or converts external representation
into Unicode internal representation and loses sig-
nificant information on the external representa-
tion. We believe a Unicode-only approach is not
future-proven, and is not the right way to handle
multilingual text. We support multiple different
encodings in ISO C/SUS V2 compatible library,
and made our library code (as well as user pro-
grams) future-proven.

1. Motivation, and multi-script frame-
work

Compared to vendor UN*X operating sys-
tems and GNU libc, BSD-based operating sys-
tems has been a bit behind in multilingual pro-
gramming support. This may be because of lack
of manpower, difference in interest, or whatever.
Anyway, because of the lack of multilingual sup-
port, we are seeing increasing pain in porting
applications from/to BSD-based operating sys-
tems. For example, GNOME, GTK+ and other
window manager software relies heavily upon the
presence of multilingual libraries. We definitely
need a multilingual support library for BSD-based
operating systems that is based on ISO C/SUS V2
standards.

The ISO C/SUS V2 standard uses two dif-
ferent encodings for multilingual support: an
internal and an external encoding. We use the
term "internal encoding” to mean a multilingual
encoding system used inside C programs (like
inside variables for manipulation), normally
declared as an array of wchar_t. On other papers
the term "process code" is also used. "External
encoding" means a multilingual encoding system
used outside of programs (like files or screen out-
put stream). It is also called as "file code". The
ISO C/SUS V2 libraries will supply conversion
functions between external and internal encoding.
Here we call the functions "encoding engine".

Many of existing ISO C/SUS V2 libraries,
especially freely available ones like GNU libc,
assume that the internal encoding is Unicode-
based. More specifically, they assume UCS4 as
the internal encoding. They also advocate UTF-8
[Yergeau, 1998] as the external encoding. The
encoding engine is hardcoded for internal UCS4
encoding. External encodings other than UTF-8
are supported by conversion functions in encod-
ing engine, which convers external encodings to
UCS4, and vice versa. To implement a correct
multilingual support, we believe it is very impor-
tant to not hardcode any encoding, including Uni-
code. The Citrus project library does not hard-
code any existing encoding. In the next section
we discuss more fully why Unicode is not
enough.

In order to be able to make less assump-
tions about multilingual encodings, we have
designed our libraries to support multiple external
encodings, and multiple encoding engines and
internal encodings. In other words, each internal
encoding has its own encoding engine. We call
this concept a "multi-script framework." To sup-
port multiple encodings, we simply need to sup-
ply the appropriate encoding engines. We also
use dynamic loading to load encoding engines, so
that we can add more engines on the fly.



inside programs

User programs

)

Y

ISO C/SUS V2 functions

)

Y

Files/char devices
(external encoding)

encoding engine

wchar_t stream
(internal encoding)

2. Why Unicodeisnot enough

You may be still wondering why we need to
support a multi-script framework, instead of hard-
coded Unicode support. Below we discuss why
Unicode is not sufficient, and why hardcoding of
encodings is not preferable.

We specifically have chosen NOT to hard-
code Unicode in our library suite. Since we
started using computers for text processing, we
have experienced many transitions in character set
encodings. Here we list our history in chronolog-
ical order:

 First, we had a total chaos of vendor-defined
character set encodings, with 6bit, 7bit or 8bit
encodings.

» ASCII-only 7bit encodings (and EBCDIC in
some places).

» Hardcoded 8bit encodings. For example, in
many of the european countries, ASCII +
ISO-8859-1 (so-called Latin-1) has been used.
In Japan, JIS X0201, which gives us ASCII
variant and Katakana, was widely used.

 Stateful 1ISO2022 character encodings, with
explicit character set designations.

ISO-2022 character encodings allow us to
encode multiple language text into a single

plaintext stream, and is a good foundation for tru-
ely internationalized plaintext handling. For
example, by using X11 ctext encoding (which is a
subset of ISO-2022 encoding), we can mix
Korean, Chinese, Taiwanese, and Japanese text
into a single plaintext stream.

Separately from the albedirection, there
were a couple of regional encodings (encodings
that support single language only within a single
plaintext stream), including EUC (like euc-kr),
MS-Kaniji (Shift JIS), or Unicode. Here we list
Unicode under "regional encodings”, as we can-
not mix Chinese/Taiwanese/Japanese text in a
plaintext - we need to annotate plaintext with font
designation to do it.

Unicode cannot handle multiple Asian
characters in a plaintext at the same time, due to
"han unification”. Unicode maps multiple charac-
ters from different Asian regions, into the same
Unicode codepoint - this is called "han unifica-
tion". It was introduced to reduce the amount of
codepoint used in Unicode (to fit characters into
UCS2 16bit region). While some of the unified
chararcters are indeed same across Asian regions,
others have totally different glyphs and meanings
in different Asian regions [KUBOTA] . Suppose
that we have assigned the same codepoint for O,
and O with umlaut. Some people cannot notice



the difference, however, this will become a signif-
icant problem for people who uses O with umlaut
in their language (like for German language).
Also note that, if we convert Asian multilingual
text into Unicode and then convert it back to other
multilingual encoding, the conversion will not be
able to preserve the information contained in the
original multilingual text, due to the han unifica-
tion. When we convert the multilingual text into
Unicode, we will lose the information encoded in
the source due to the han unification.

NOTE: there are proposals to perform lan-
guage tagging [Whistler, 1999] in Unicode, how-
ever, the language tagging jeopardizes one of the
very important aspects of Unicode, uniform 32bit
wide-char representation, and we do not consider
it to be useful.

Every time we change from one encoding
system to another, the transition is very painful.
In fact, there still are applications that are not
8bit-clean. Even for Unicode, there are imple-
mentations assume 16bit UCS2, and they need to
migrate to 32bit UCS4. From our experience, it
makes no sense any more to pick a single encod-
ing to rely on. We do not advocate the use of
ISO-2022, either. We believe that no encodings
should be hardcoded, since to do so means that
we will have to bear painful transitions over and
over again.

Here is another reason for us to avoid hard-
coded encoding, and avoid hardcoded Unicode
support. There has been widely deployed user-
base which uses non-Unicode multilingual text,
including big5, euc-kr, KOI8-R, MS-Kanji and
some other encodings. If someone says "all peo-
ple just need to transition to Unicode", that is
wrong. Unicode imposes no pain to Latin-1 user-
base, while imposing huge pain to Asian and
other non-Latin-1 people. And, even if we transi-
tion to Unicode, we are unsure if it is going to be
enough. So we conclude that we should hardcode
no encodings.

What we should do is very similar to the
approach with MIME [Freed, 1996] . We will
have a way to identify encoding in a plaintext
stream, and have support for multiple different
encodings. We will switch encoding engines
according to the encoding identification. In C
library case, we identify encoding by locale set-
tings made by setlocale(3).

3. Gory details

Under our implementation based on multi-
script framework, we can switch external encod-
ing, internal encoding and encoding engine as we
wish, and we support multiple encodings/engines.

External encoding is normally a stateful, or
stateless multibyte encoding, like ISO-2022-JP
[Murai, 1993] or UTF-8. An octet stream will be
used for multilingual representation inside files.
Many of the existing external encodings use vari-
able-length encodings; one letter will be pre-
sented as a octet, two octets, or more octets.
When we read in external encoding representation
into C program, we normally use array of char to
hold it. Internal encoding is a stateless, fixed-
bitwidth encoding. It is defined internally by the
library, depending on the current encoding engine
we are using. We use a type called "wchar_t" to
hold it. At this moment wchar_t is a 32bit integer
(int32_t).

When the external encoding is 8bit (like
Latin-1), we can just typecast external encoding
(char) into internal encoding (wchar_t). When
the external encoding is UTF-8, the natural choice
for internal encoding is UCS4. RFC2279
[Yergeau, 1998] defines starndard conversion
between them. When the external encoding is
ISO-2022, we use a compressed representation of
ISO-2022 stream as the internal encoding.

With setlocale(3), we pick a pair of internal
and external encoding, and encoding engine. A
programmer can convert internal encoding and
external encoding, using ISO C/SUS V2-compati-
ble library calls, like mbstowcs(3).

User programs should manipulate wchar_t
stream only, and should not manipulate text
encoded with external encoding. The details of
internal and external encoding are embedded into
the library API. Programs should not, and need
not to care about internal nor external encoding at
all. If a programmer hardcodes some assumption
about internal/external encoding to their pro-
grams, the programs will not be future-proven.
We will also supply wchar_t-ready curses, regex
and other libraries, to keep external encoding out-
side of user programs.

From our strategy, we have two major bene-
fits. First, our library is future-proven, as long as
internal encoding fits into the bitwidth of wchar_t
(currently 32bit). Next benefit is that we can sim-
plify encoding engine as we wish. Suppose we
need to support JIS X0201 or Latin 1 as inter-
nal/external encodings. In this case, the encoding



engine can be a simple memory copy logic. We
do not need to visit a slow encoding engine for
simple encodings.

Our strategy avoids problem with Unicode
and han unification. Since we can use specific
encoding engine that matches the external and
internal encodings, we can preserve information
supplied by the external data representation, into
internal data representation. Therefore, we can
have no data lossage during conversion from
external to internal encoding, or vice versa.

If we use Unicode as internal and external
encoding, we would not be able to enjoy the
abovementioned benefits. With UCS4 as the
internal encoding, it is very hard to support exter-
nal encodings other than UTF8. To support them,
we would need a huge conversion table to convert
the external encoding into the internal encoding,
and vice versa. Also, it will not be possible to
simplify the econding engine, even if inter-
nal/external encodings are simple enough.

4. Multiple encodings

ISO C/SUS V2 multilingual programming
API assumes that a single program uses single
encoding throughout the program. External and
internal encodings are picked when setlocale(3) is
called, and the function usually gets called on
program startup time. Normally, we cannot deter-
mine which encoding should be used, from a
wchar_t data stream.

There are various applications that would
need a library support for multiple encodings dur-
ing their runtime session. Examples would be
web clients, text editors and email readers. For
these applications, we would need to pick internal
and external encodings based on input data
stream. So, ISO C/SUS V2 API is not sufficient
for these type of applications.

We have a temporary workaround to pro-
vide a better multiple encodings support. 1SO
C/SUS V2 API has a data type, mbstate _t, to hold
the intermediate state for encoding engine. Our
implementation includes a hidden reference to
encoding engine inside mbstate_t. By holding an
mbstate_t variable with a wchar_t array, we can
identify the encoding engine used to encode the
wchar_t stream. When we convert wchar_t (inter-
nal encoding) back to external encoding, we can
automatically use the appropriate encoding
engine.

We still are investigating a better API to
abstract the manupulation of multiple encodings
in a single program. We would like to make a
proposal when we are done.

5. Status of implementation

The Citrus project implementation is based
on 4.4BSD runelocale implementation [Borman, ]
. The project expanded it significantly to support
multi-script framework, iconv(3), BSD-licensed
gettext library, more locale supports like
LC_TIME, and expansions for simultaneous mul-
tiple locale handling (as presented above). We
still are missing multilingual support for stdio
routines, like fgetwc function, as it require us to
modify FILE structure on each of the BSD sys-
tem. Depending on the details in standard I/O
function implementation, the change to FILE
structure may need a libc shared library major
number bump. The current implementation sup-
ports NetBSD, OpenBSD and FreeBSD. We are
trying to finalize our implementation and integrate
it into BSDs. NetBSD integration is ahead of
other BSDs at this moment. LC_CTYPE locale
support and BSD-licensed gettext library were
integrated into NetBSD development tree and will
be available in NetBSD 1.6. The source code is
available via anonymous CVS. The project is
definitely an ongoing effort.

At this moment, we are using a tool called
mklocale(1) for converting LC_CTYPE locale
definition files into binary representation. The
mklocale(1) tool and the locale definition file for-
mat are derived from runelocale implementation.
We should migrate to more standard tool like
localedef(1), and the standard file format for
locale definition files.

There still are couple of issues to be
resolved. We picked 32bit wchar_t for now, just
like many of other UNIX operating systems do. It
is good enough for future? It is a good question.
We believe 32bit is a good compromise. A good
thing is that we actually are future-proven. As
long as people do not hardcode the current
assumption that wchar_t is of 32bit quantity, we
will be able to expand widechar representation to
64bit, or something larger. It requires full recom-
pilation of operating system and userland pro-
grams, but the transition will impose no change in
code. The transition will be just like transitioning
from 32bit time_t to 64bit.

For full locale support (including
LC_TIME and LC_COLLATE), we will need a



large database for localized character tables, time
format and others. For voluntary free software
effort it can be way too hard to manitain. The
maintenance cost for the LC_CTYPE locale
databases is also high. We are wondering if we
can integrate database from ICU [IBM, ], and
reuse it in our multi-script framework.

6. Conclusion

We at Citrus project aim to implement a
complete multilingual programming environment
for BSD-based operating system. The most
important aspect of the effort is multi-script
framework. We try to avoid any hardcoded
encoding in our library, and embed conversions
and encodings into ISO C/SUS V2 API.

DEC/Compag Tru64Unix uses a similar
technology as we have used [Compaq, ], includ-
ing multiple switchable internal encoding,
dynamic library support for additional encodings
support, and the use of 32bit wchar_t. As men-
tioned in the abstract, vendor UNIX implementa-
tions are very ahead of free software implementa-
tions, regarding to multilingual support. We wish
to see more of vendor technologies to be made
available to public consumption, under BSD or
GNU license.

The author would like to thank Freenix
reviewers including Wendy Rannenberg, and Cit-
rus project members including Henry Nelson, for
the time they gave me imprethe paper.

References

Yergeau, 1998.
F. Yergeau, “UTF-8, a transformation for-
mat of ISO 10646” irRFC2279 (January
1998). ftp://ftp.isi.edu/in-notes/rfc2279.txt.

KUBOTA, .
Tomohiro KUBOTA,Most Important 1006
| deographs for Japanese.
http://www.debian.or.jp/"kubota/unicode/.

Whistler, 1999.
K. Whistler and G. Adams, “Language Tag-
ging in Unicode Plain Text” ilRFC2482
(January 1999). ftp://ftp.isi.edu/in-
notes/rfc2482.txt.

Freed, 1996.
N. Freed and N. Borenstein, “Multipurpose
Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies” in
RFC2045 (November 1996.).
ftp://ftp.isi.edu/in-notes/rfc2045.txt.

Murai, 1993.
J. Murai, M. Crispin, and E. van der Poel,
“Japanese Character Encoding for Internet
Messages” ifrRFC1468 (June 1993).
ftp://ftp.isi.edu/in-notes/rfc1468.txt.

Borman, .
Paul Borman4.4BSD rune(3) implementa-
tion.

IBM, .
IBM, ICU: International Components for
Unicode. http://oss.soft-
ware.ibm.com/developerworks/open-
sourcel/icu/project/.

Compagq, .
Compagq, “Writing software for the Interna-
tional Market” inTru64 UNIX Version 5.1
programming online documentation.
http://tru64unix.compag.com/fags/publica-
tions/base_doc/DOCUMENTA-
TION/V51_HTML/ARHOYBTE/TITLE.HTM.

Author’s address
Jun-ichiro itojun HAGINO

Research Laboratory, Internet Initiative Japan Inc.

Takebashi Yasuda Bldg.,

3-13 Kanda Nishiki-cho,

Chiyoda-ku, Tokyo 101-0054, JAPAN
Tel: +81-3-5259-6350

Fax: +81-3-5259-6351

Email: itojun@iijlab.net



