
Efficient Query Computing for

Uncertain Possibilistic Databases with Provenance

Angelos Vasilakopoulos

National Technical University of Athens

Verena Kantere

Cyprus University of Technology

Abstract

We propose an extension of possibilistic databases that

also includes provenance. The introduction of prove-

nance makes our model closed under selection with

equalities, projection and join. In addition the computa-

tion of query computing with possibilities is polynomial,

in contrast with current models that combine provenance

with probabilities and have #P complexity.

1 Introduction

Modeling, representing and manipulating uncertain data

has gained a lot of research attention. There has been a

plethora of models that capture different kinds of uncer-

tainty: i) when an attribute can take a value from a finite

set of alternatives (model of or-sets), ii) when the exis-

tence of a whole tuple is not certain (model of ?-tuples).

The last two kinds can be combined yielding the x-tuple

and x-relation model Ra
? [1, 8]. On top of uncertain mod-

els we can also put “confidence” values. For example in

the model of ?-tuples if we attach on each tuple the prob-

ability of the event that this tuple is indeed present in our

data we yield the model of probabilistic databases [5].

One of the key aspects of an uncertain database frame-

work is how efficient it can compute queries. Consider

a query Q and an uncertain database U . An uncertain

database U represents a set of possible worlds PW (U).
One naive approach in order to compute Q over U would

be to compute first all the possible worlds ofPW (U) and

pose the query over each one of them. This approach

is not efficient since computing the possible worlds of

an uncertain database can be intractable in the size of

the data. For example if we have an uncertain relation

with n x-tuples and each one of which has m different

alternatives then the possible worlds are mn. In contrast

we would like to be able to efficiently compute query

Q posed directly on uncertain database U and the result

Q(U) to be a new uncertain database which can be rep-

resented in our model with the correct semantics, i.e., we

have that PW (Q(U)) = Q(PW (U)) [9]. If this holds

for an uncertainty model and a query language L we say

that this model is closed under L.

Possibilistic databases extend the x-tuple model by at-

taching on each alternative value degrees from a possi-

bility distribution. In [2] it was shown that possibilis-

tic databases are not closed under: i) selection with a

condition that involves different attributes, ii) projection

that performs duplicate elimination in the tuples of the

answer and iii) under the join operator. In addition ex-

isting database models with provenance that attach “be-

lief values” by using probabilities have high complexity

#P [5, 8, 11, 12]. We solve the first problem and for the

second problem we offer a suitable alternative to proba-

bilities by proposing a new model which extends possi-

bilistic databases by adding provenance. The proposed

model has the following benefits:

• Closed under: i) selection involving equalities even

over different attributes, ii) projection even after dupli-

cate elimination and iii) join. This property is a result of

the introduction of provenance in the possibilistic model.

• The possibility values of each tuple alternative in the

answer of a query involving the above three operators

are computed in polynomial time.

Our main contribution is that we define operators for

equality select, projection (wth duplicate elimination)

and join that can be posed directly on a database ex-

pressed in our model of provenance and possibilities

without the need to compute first all the possible worlds.

The result of each operator is a new database of our

model that has the correct semantics: its possible worlds

are the same with the ones we would have if we first com-

puted all the possible worlds and pose queries over them.

Moreover our operators compute data and possibilities

for each alternative of the result in polynomial time.

We think that the employment of possibilities instead

of probabilities in our model offers more suitable mod-

eling of alternative belief values, due to the qualitative

nature of possibilities. For example suppose that we

want to model the fact that a witness Amy is uncertain

of whether she saw a Mazda or a Toyota car but she

believes that more likely it was a Mazda. These kinds

of real-life situations are well-represented though possi-

bilistic theory. In addition even when only probabilities

of alternatives are available, there exists a way to “trans-

late” probability values to possibilities such that the more

probable events will also be more possible, as it is intu-

itively expected [6].

1.1 Related Work

The possibilistic model is not closed for SPJ queries

because it is not powerful enough to pose logical con-

straints on the alternative values that tuples can take of

the answer of a query (e.g., indicate that two alterna-

tives of two different tuples cannot coexist in a possi-

ble world [2]). Recent work [3] efficiently computes

SPJ queries over a limited possibilistic model (specifi-

cally where only one alternative has possibility 1 and all

others have 1 − a) and the answers of the queries in-

clude only tuples appearing in a complete possible world

(a world with possibility 1). In contrast our approach re-

turns all tuples appearing in any possible world and does

not require the initial data to have this limitation in its

possibilities.

Many models have been proposed that are able to han-

dle uncertainty and keep track of the provenance of data

which is usually modeled though semiring annotations

on data [4, 7, 10]. Those models are closed under posi-

tive relational algebra but if probabilistic confidence val-

ues are added on each possible alternative tuple then the

computation of the probabilities of the answer of a query

that involves projection (with duplicate elimination) is

intractable (specificaly #P) [5, 8, 11, 12]. The prove-

nance used in Trio system [1] is one out of many kinds of

provenance that semirings can model [7]. Our proposed

model extends possibilistic databases by adding Trio’s

provenance used in the Uncertain and Lineage ULDB

model [1] (where provenance is called “lineage”). The

reason we choose this model is because it expresses tuple

uncertainty and provenance tracking over the Ra
? (or-set

and ?-tuple) x-tuple model which is also used in possi-

bilistic databases1.

1Note that our proposed model that extends possibilistic databases

with Trio’s provenance can be equivalently regarded as an extension of

the ULDB model with possibilistic confidence values on each alterna-

tive

2 Properties of the Proposed Model

In this section we illustrate the key aspects of possibilis-

tic databases and of the provenance semiring of Trio.

Due to space limitation we refer for more details to [1, 7].

We also investigate how we can combine uncertainty (x-

tuples), provenance (Trio’s lineage semiring) and possi-

bilities. We begin with stating the basic properties of the

Possibility Theory [3].

2.1 Possibility Theory

A possibility distribution is a function π from a domain

X to the interval [0, 1]. Possibility π(a) is a qualitative

measure expressing the degree of “how possible” it is for

the considered variable to take the value a. Each pos-

sibility distribution has a normalization condition pos-

ing the constraint that at least one of the values of X

is completely possible, i.e., has possibility 1. We use a

discrete domain of possible values and we denote with

{a1:π1, . . . , an:πn} the fact that for each i = 1 . . . n
value ai has possibility πi. The axioms of possibil-

ity are the following: i) Π(X) = 1, ii) Π(∅) = 0,

iii) Π(E1 ∪ E2) = max(Π(E1),Π(E2)), iv) Π(E1 ∩
E2) ≤ min(Π(E1),Π(E2)) and when E1 and E2 are

not-interactive: Π(E1 ∩ E2) = min(Π(E1),Π(E2)).
For the events E and Ē (opposite of E) the only valid

relation is: max{Π(E), Π(Ē)} = 1. Apart from pos-

sibility each event has a necessity measure N which

is dual with Π and their relation is expressed through:

N(E) = 1−Π(Ē).

2.2 The Proposed Model: Combining Un-

certainty, Possibilities and Provenance

Possibility theory can be naturally adapted to the model

of x-relations and the semiring of Trio [1]. In x-relations

model we no longer have ordinary tuples. Instead we

have x-tuples which include a bag of possible ordinary

tuples, called alternatives. The semantics are the follow-

ing: on each possible world at most one of the alterna-

tives of an x-tuple can be true. If from an x-tuple we can

select none of its alternatives then this is a maybe-xtuple

annotated with symbol ‘?’. It is then straightforward

that we can combine possibilistic theory and x-tuples in

the following way: Suppose that we have an uncertain

database which contains x-tuples. We attach on each al-

ternative a possibility degree and on each x-tuple at least

one alternative should be assigned with possibility 1 (the

most possible one(s)). Furthermore for each x-tuple with

a ‘?’ symbol we attach to it a necessity degree less than 1
and to all other x-tuples necessity equal to 1 (since an al-

ternative of each one of them is always possible). We do

not have to explicitly attach a possibility degree on each

x-tuple since it is equal to the minimum possibility of

each alternative. So we always begin with an uncertain

database containing x-tuples with possibility degrees on

each alternative and necessity degrees on each x-tuple.

Trio’s provenance (called “lineage” in Trio) semiring

works as follows: If we pose queries over initial data

we want to keep track of the provenance of the answers,

i.e., from which data the answers are derived from. In

order to do this efficiently we attach a unique identi-

fier i over each x-tuple. We also identify the alterna-

tives of each x-tuple: In general the pair (i, j) identifies

the j-th alternative of x-tuple i. If an alternative with

data t is a result from two other alternatives t1 and t2
but can also be the result of our query combining two

other alternatives t3 and t4 then we have for its lineage:

λ(t) = (id(t1)∧id(t2)) ∨ (id(t3)∧id(t4)). We note that

lineage plays a double role: it relates answers of queries

to the data they are coming from and also poses logical

restrictions: an alternative can be true only in a possible

world in which its lineage is true. We note that initial

data have empty lineage. Initial data with empty lineage

is defined as base data. Due to limited space we refer

to [1] for more details about lineage and possible worlds.

We borrow from the same work the general setting of our

following running example.

2.3 Running Example

Consider x-relation Saw(witness, car) having two x-

tuples with two alternatives each. Suppose that wit-

ness Amy saw a car near a crime-scene but she was

not sure if it was a Mazda or a Toyota car. More-

over she believed it was more possible that the car was

a Mazda and a little less possible that it was a Toyota.

The first tuple has identifier 11 and the second 12. We

separate different alternatives of a same x-tuple with ||
symbol. After each alternative we attach its possibil-

ity and after each x-tuple its necessity measure, i.e.,

<t′1:a||t′2:b>:c is an x-tuple with necessity c that has

two alternatives: alternative with data t′1 has possibility a

and alternative t′2 has possibility b. Suppose also that in

x-relation Drives(person, car) we encode uncertainty

about who is driving a car of a specific brand. The un-

certain database U with Trio’s provenance of our running

example is:

Saw(witness,car)=

{11<Amy,Mazda:1||Amy, Toyota:0.8>:1,

12<Billy, Mazda:0.4 || Billy, Lexus:1>:1}
Drives(person,car)=

{21<Hank, Mazda:0.6||Hank,Toyota, :1>:1}

There is a total of 23 = 8 possible worlds. Suppose

that we pose query Q2 which is a projection of attribute

person on the result of query Q1 which is the join of

Saw and Drives over common attribute car, i.e.: Q1 =
Saw 1car=car Drives and Q2 = πperson(Q1(U)).
Only five of the possible worlds include answers over

Q1 (and Q2). Those worlds are:

W1: Saw={11,1<Amy,Mazda:1>:0.2,

12,1<Billy, Mazda:0.4>:0}
Drives={21,1<Hank,Mazda:0.6>:0}
Π(W1) = 0.4, N(W1) = 0
W2: Saw={11,1<Amy,Mazda:1>:0.2,

12,2<Billy, Lexus:1>:0.6}
Drives={21,1<Hank,Mazda:0.6>:0}
Π(W2) = 0.6, N(W2) = 0
W3: Saw={11,2<Amy,Toyota:0.8>:0,

12,1<Billy, Mazda:0.4>:0}
Drives={21,1<Hank,Mazda:0.6>:0}
Π(W3) = 0.4, N(W3) = 0
W4: Saw={11,2<Amy,Toyota:0.8>:0,

12,1<Billy, Mazda:0.4>:0}
Drives={21,2<Hank,Toyota:1>:0.4}
Π(W4) = 0.4, N(W4) = 0
W5: Saw={11,2<Amy,Toyota:0.8>:0,

12,2<Billy, Lexus:1>:0.6}
Drives={21,2<Hank,Toyota:1>:0.4}
Π(W5) = 0.8, N(W5) = 0

For example the possibility of PW1 is equal to the min-

imum of the possibilities of its alternatives, so with

min{1, 0.4, 0, 6} = 0.4. Its necessity is equal to 1
minus the maximum possibility from the possibilities

of alternatives which do not belong to this world have:

1−max{0.8, 1, 1} = 1−1 = 0. The necessity of x-tuple

(11, 1) is equal to 1 minus the maximum possibility of

the other alternatives (in our case only alternative 11, 2)

of initial x-tuple 11, i.e., equal to 1−max{0.8} = 0.2.

For the answers of queries we have similar semantics

with the ones defined for probabilities in [5]: The answer

of a query Q is a set of alternatives and their possibil-

ities. Intuitively for the answer of Q1 we should have:

Q1(U)={31<Amy, Mazda, Hank:0.6>:0,

32<Billy, Mazda,Hank:0.4>:0

33<Amy, Toyota,Hank:0.8>:0}
For example alternative (Amy,Mazda,Hank) appears

in W1, a world with possibility 0.4 and in W2 with pos-

sibility 0.6 (while both necessities are 0 - note that only

a world whose all tuples have possibility 1 has necessity

greater than 0). As a result in the answer of query Q1 we

want to have a tuple with data (Amy,Mazda,Hank)
with possibility the union of the events that this tuple

appears in W1 or in W2. So with the maximum of the

possibilities of 0.4 and 0.6. According to Trio’s semir-

ing provenance we attach the following lineage on each

alternative:

λ(31) = (11, 1) ∧ (21, 1)
λ(32) = (12, 1) ∧ (21, 1)

λ(33) = (11, 2) ∧ (21, 2).
Similarly in the answer of query Q2 we expect:

Q2(Q1(U))={41<Hank:0.8>:0}
λ(41) = {((11, 1) ∧ (21, 1)) ∨ ((12, 1) ∧ (21, 1)) ∨
((11, 2) ∧ (21, 2))}

We would like to be able to directly compute those an-

swers of Q1 and Q2 without having to compute all (ex-

ponentially many) possible worlds. As we already men-

tioned, existing work about possibilistic theory, join or

projection with duplicate elimination was not possible

due to the fact that possibistic sets were not powerful

enough to express the disjunction of two different tuples

occuring in the answer [2]. For example possibility the-

ory could not model the fact that, e.g., tuples 31 and 33
in the answer of Q1 could not coexist. Provenance poses

additional logical restrictions to where an alternative can

exist, thus overcoming this obstacle.

On the other hand until now provenance has only been

combined with probabilistic theory and not with possi-

bilistic. But probabilities have high complexity: for ex-

ample if we want to compute the probability of alter-

native 41 Hank we must compute the probability of

{((11, 1)∧(21, 1))∨(12, 1)∧(21, 1)∨((11, 2)∧(21, 2))}.

In general computing the probability of a DNF boolean

formula is #-P complete [1, 5, 11]. In contrast in our

model which uses possibilities we can compute answers

of selection with equality, projection and join in polyno-

mial time. Note in particular that the possibility of the

union of two events is always equal to the maximum of

their possibilities. We use provenance only to restrict

data. The computation of possibilities and necessities

is not based on provenance; instead, they are computed

directly from initial data. Provenance (which includes

only possibilities of alternatives and not necessities of x-

tuples) is inadequate of computing x-tuple necessities.

3 The Operators

In this section we give the definitions of selection, pro-

jection and join operators. These definitions enable us to

directly compute the answers of SPJ queries posed over

an uncertain database of our model with x-tuples and

possibilities without having to compute first its possible

worlds. In addition the computation of the possibilities

of the answers is polynomial.

Let r be an uncertain relation of our model, A an

attribute and (A = q) a logical selection condition where

q can be another attribute or a constant. With alt(t) we

denote the alternatives of x-tuple t:

Selection

select(r, A = q) = {< restict(alt(t), A = q) >: N ′

such that t:N ∈ r and where:

N ′=min{1− max
t′
i
∈alt(t)∧t′

i
6|=(A=q)

{Π(t′i)}, N(t)} and:

restrict(alt(t), A = q) =
{t′:Π, λ(t′) such that: t′ ∈ alt(t), where t ∈ r, and

t′ |= (A = q) and Π = Π(t′) and λ(t′) = Id(t′)}.

We keep in the select result only the alternatives that

satisfy our select condition, with the same possibility

that they had in our initial database. We set as their lin-

eage, the lineage pointing to the identifiers of the initial

alternatives. As for necessity of each resulting x-tuple, it

is the minimum of: i) the necessity of the original x-tuple

they belonged to, ii) the initial necessity of the original

alternatives and iii) of 1 minus the maximum possibility

that an alternative of the same original x-tuple that

does not satisfy our selection condition has. The proof

that our system is closed under selection with equality

conditions uses a combination of the closure of Trio

system [1] and the closure of selection on Possibilistic

databases [2].

Projection

project(r,X) = {< t′.X : Π′ >: N ′

such that: t ∈ r and t′ ∈ alt(t) and N ′ = max
Ai

{Ni}

where: Ai = {Ni | ti :Ni ∈ r and ∃t′i ∈ alt(ti) with

t′i.X = t′.X}
and Π′ = max

Bi

{Πi} where:

Bi = {Πi | t′i:Πi where t′i ∈ alt(ti) and ti ∈ r and

t′i.X = t.X}.

We also set: λ(t′.X) = ∨Ci
id(t′i) where

Ci = {id(t′i) | t′i ∈ alt(ti) where t′i ∈ alt(ti)
and ti ∈ r and t′i.X = t.X}.

We project the set of attributes X from every alternative

and we perform alternative duplicate elimination. Thus

the necessity of each resulting x-tuple is equal to

the maximum necessity of each original x-tuple that

includes an alternative that has the same projected value

as the one alternative of our resulting x-tuple has. The

same holds for the new possibility as well. Finally we

set as lineage the disjunction of alternatives that give

the same projected value. The proof that our system

is closed under projection is easy. Let us just mention

that the use of lineage allows duplicate elimination

without losing the correct possible worlds. In addition

for the possibilities we can easily use the maximum for

the union of two alternatives with same data when we

perform duplicate elimination.

Join

join(r1, r2, A = B) = {restrict(alt(t1)⊕ alt(t2), A =
B)
such that: t1 : N1 ∈ r1 and t2 : N2 ∈ r2 where:

restrict(alt(t1)⊕ alt(t2), A = B) =
< t′1 ⊕ t′2 : Π′, λ′(t′1 ⊕ t′2) >: N ′ such that: t1 ∈ r1
and t′1 ∈ alt(t1) and t2 ∈ r2 and t′2 ∈ alt(t2) and

t′1 ⊕ t′2 |= (A = B) and Π′ = min{Π(t′1),Π(t
′
2)} and

N ′ = min{1− max
t1

′′

i
∈alt(t1)/t′1

{Π(t′′i1)},

1− max
t
′′

i2
∈alt(t2)/t′2

{Π(t
′′

i2)}, N1, N2} and

λ′(t′1 ⊕ t′2) = id(t′1) ∧ id(t′2).

We note that ⊕ denotes the concatenation of tuples.

Also the above definition can be easily adopted to the

case where the join condition involves a conjunction

of attribute equalities. We restrict in the join results

only the tuples that satisfy the join condition and we

perform duplicate elimination on alternatives. The new

possibility of each alternative of the result is equal

to the minimum of the possibilities of the original

alternatives that contributed to its value. The necessity

of each resulting x-tuple is the minimum of: i) 1 minus

the maximum possibility of each other alternative that

exists in the original contributing x-tuples and ii) the

necessities of the original contributing x-tuples. We also

set as lineage the conjunction of the initial contributing

alternatives.

We now show that our system with Trio’s lineage,

x-tuples, possibilities and necessities is closed for the

join operation. Moreover it follows from the definitions

of our operators that their complexity is polynomial to

the size of the data (alternatives) of our initial uncertain

database.

Theorem 1: The possibilistic database model with

provenance is closed under the join operation.

Proof: We want to prove that PW (join(r1, r2, A =
B)) = join(PW (r1, r2), A = B). Suppose that r1
and r2 both contain a single x-tuple. So suppose that

r1 has x-tuple t1:N1 and r2 has x-tuple t2:N2. Note

that we have no loss of generality: The possibilities

that alternatives have in every x-tuple in base relations

form a possibilistic distribution. As a result in every

base x-tuple always exists (at least one) alternative

with possibility equal to 1. Suppose now that t′ is an

alternative in the result of a join query, resulting from

two alternatives t′1 of t1 and t′2 of t2. The possibility of

t′ in the join result according to our definition is equal

to the minimum of possibilities of t′1 and t′2. If r1 and

r2 had more x-tuples then t′1 and t′2 would exist in more

possible worlds resulting from the choices of alternatives

from the other x-tuples. According to our semantics in

the join result t′ should have the possibility of the union

of all its occurrences in every possible world. From the

definition of possibility union this would be equal to

the maximum of the possibilities of all possible worlds

in which t′1 and t′2 both exist. But the maximum pos-

sibility exists in the possible world where t′1 and t′2 are

selected from t1 and t2 and for all the other x-tuples the

alternative with possibility equal to 1 has been selected.

Hence the possibility of this possible world is equal to

min{Π(t′1),Π(t
′
2), 1, . . . , 1} = min{Π(t′1),Π(t

′
2)}, so

equal to the case where r1 and r2 had only one x-tuple.

So suppose that r1 has x-tuple t1:N1 and r2 has x-

tuple t2:N2. We remind that with alt(t1) we denote

the set of alternatives that exist in x-tuple t1 (respec-

tively for t2). We first show that PW (join(r1, r2, A =
B)) ⊂ join(PW (r1, r2), A = B). Let Wk be a possi-

ble world of PW (join(r1, r2, A = B)) and πk its pos-

sibility. We want to show that Wk is also a world of

join(PW (r1, r2), A = B) with the same possibility. We

consider two cases:

• Wk 6= ∅: We denote with t′ an arbitrary alternative in

Wk. From the definition of join the data of t′ comes from

the concatenation of two alternatives t′1 of x-tuple t1 and

t′2 of t2 that satisfy the join condition (i.e., t′ = t1 ⊕ t2).

These two alternatives also exist in a PW (r1, r2), let us

denote it with W ′
k

2. On the other hand if there exists

a combination of two alternatives of x-tuples of r1 and

r2 in a possible world W ′
k of PW (r1, r2) that satisfy

the join condition then the join answer resulting from

them appears in join(PW (r1, r2), A = B). So there

exists a possible world exactly equal to Wk as concerns

data (and with lineage pointing to the same base data) in

PW (join(r1, r2, A = B)). Note that as concerns data

(and lineage) a similar result was also proven in [1].

Now for the possibilities of Wk and W ′
k:

Again let t′ be an arbitrary alternative in

Wk ∈ PW (join(r1, r2, A = B)). As we just

showed, a tuple with same data also appears in W ′
k ∈

join(PW (r1, r2), A = B). Its possibility in W ′
k is

associated with the possibilities of t′1 ∈ PW (r1) and

t′2 ∈ PW (r2). Specifically it is equal to the minimum

of possibilities of t′1 and t′2 since a possible world that

produces t′ must include them both (conjunction of

possibilities). The same choices have been made in

Wk to derive t′ and according to our join definition

the possibility degrees of the join query is equal to the

minimum of possibilities of alternatives that produce the

result. So the possibilities are the same in W ′
k and Wk.

• Wk= ∅: We can have two subcases: either

join(r1, r2, A = B) is empty (t′ does not exist) or

the necessity N ′ of t′ is less than 1. If it is empty

then (PW (r1, r2), A = B) is also empty and the

possibility of the empty world is in both cases equal to

the maximum possibility of any possible world, i.e., :

min{ max
t′′
i1
∈alt(t1)

{Π(t′′i1)}, max
t′′
i2
∈alt(t2)

{Π(t′′i2)}}.

If join(r1, r2, A = B) is not empty then the neces-

sity degree N ′ of t′ is less than 1 and the empty world

Wk has possibility 1 − N ′. The possibility of Wk must

correspond to a world of PW (r1, r2) with the most

2Unless they have extraneous lineage, but in that case they also not

exist in PW (join(r1, r2, A = B), we refer to [1] for more details).

possible choices of alternatives t′1 of r1 and t′2 of r2
that do not satisfy the join condition, i.e., with possibil-

ity: max{ max
t1

′′

i
∈alt(t1)/t′1

{Π(t′′i1)}, max
t
′′

i2
∈alt(t2)/t′2

{Π(t
′′

i2)},

1−N1, 1−N2}. From our definition of join we see than

indeed this would be the possibility of the empty world

Wk. Using a similar logic it is now easy to also prove

that join(PW (r1, r2), A = B) ⊂ PW (join(r1, r2, A =
B)).

3.1 Examples of Operators

We present in this subsection that if our join and project
operators are posed over the initial data of our running
example, their result directly computes the results
Q1(U) and Q2(Q1(U)) with the correct data and prove-
nance that we expected and presented in subsection 2.3.

Join

We illustrate the use of our operators join and project
though our running example. Query Q2 is a projection of
attribute person on the result of query Q1 which is the
join of Saw and Drives over common attribute car. We
begin with join query Q1. According to our definition
we have the query join(Saw, Drives, car = car).
In our result we naturally restrict the combinations of
all possible alternatives of the two relations Saw and
Drives to the ones that satisfy the condition car = car.
In our example there exist three such combinations. For
the first one we have: Alternatives 11, 1 and 21, 1 from
x-tuples 11, with necessity N11 = 1 and 21 with neces-
sity N21 = 1, yield alternative (Amy,Mazda,Hank).
According to our join definition its possibility is
Π′ = min{Π(11, 1),Π(21, 1)} = min{1, 0.6} = 0.6.
Respectively its necessity is N ′ = min{1 −
max{Π(11, 2)}, 1 − max{Π(21, 2)}, N11, N21} =
min{1 − max{0.8}, 1 − max{1}, 1, 1} =
min{1 − 0.8, 1 − 1, 1, 1} = min{0.2, 0, 1, 1} = 0.
The lineage of (Amy,Mazda,Hank) is equal to the
conjunction of the identifiers of the alternatives that
produce it, i.e., with (11, 1) ∧ (21, 1). For the other
two combinations of alternatives that satisfy our join
condition, the procedure is similar. In order to suc-
cinctly denote lineage we attach a new fresh identifier
to each tuple-alternative of the answer. The final result is:

Q1(U)={31<Amy, Mazda, Hank:0.6>:0,
32<Billy, Mazda,Hank:0.4>:0
33<Amy, Toyota,Hank:0.8>:0}
λ(31) = (11, 1) ∧ (21, 1)
λ(32) = (12, 1) ∧ (21, 1)
λ(33) = (11, 2) ∧ (21, 2)

Projection

We continue with query Q2 which is a projection
of attribute person from the result Q1(U), i.e.,
project(Q1(U), person). Our result has a singe
x-tuple with one alternative Hank. Its necessity,
according to our definition is equal to the maximum
of the necessities of the x-tuples that produce the
same result Hank (we perform duplicate elimina-

tion). In our case all x-tules 31, 32 and 33 produce
Hank, so the set Ai includes the necessities of all
of them. So the necessity of Hank in the result is:
N ′ = max{N(31), N(32), N(33)} = max{0} = 0.
The possibility of Hank is equal to the maxi-
mum of the possibilities of all the alternatives
that give result Hank. In our case the set Bi

of such alternatives includes (31, 1), (32, 1) and
(33, 1). So the possibility of Hank in the result
is: Π′ = max{Π(31, 1),Π(32, 1),Π(33, 1)} =
max{0.4, 0.8, 0.6} = 0.8. The lineage of Hank is equal
to the disjunction of the identifiers of the alternatives
that have Hank in the data of the projection result.
In order to succinctly denote lineage we attach new
identifier 41 to x-tuple Hank of the answer. So we have:
λ(41) = {(31, 1) ∨ (32, 1) ∨ (33, 1)}. As noted in [1]
we can use the lineage information of the initial Q1(U)
and expand with polynomial complexity lineage back to
base data. Hence we can replace, e.g., (31, 1) with its
lineage in Q1(U), which is: {(11, 1) ∧ (21, 1)}. The
final result is:

Q2(Q1(U))={41<Hank:0.8>:0}
λ(41) = {((11, 1) ∧ (21, 1)) ∨ ((12, 1) ∧ (21, 1)) ∨
((11, 2) ∧ (21, 2))}

References

[1] BENJELLOUN, O., SARMA, A. D., HALEVY, A. Y.,

THEOBALD, M., AND WIDOM, J. Databases with uncertainty

and lineage. VLDB J. 17, 2 (2008), 243–264.

[2] BOSC, P., AND PIVERT, O. About projection-selection-join

queries addressed to possibilistic relational databases. IEEE T.

Fuzzy Systems 13, 1 (2005), 124–139.

[3] BOSC, P., PIVERT, O., AND PRADE, H. A model based on

possibilistic certainty levels for incomplete databases. In SUM

(2009), pp. 80–94.

[4] BUNEMAN, P., AND TAN, W. C. Provenance in databases. In

SIGMOD Conference (2007), pp. 1171–1173.

[5] DALVI, N. N., AND SUCIU, D. Efficient query evaluation on

probabilistic databases. In VLDB (2004), pp. 864–875.

[6] DUBOIS, D., FOULLOY, L., MAURIS, G., AND PRADE, H.

Probability-possibility transformations, triangular fuzzy sets, and

probabilistic inequalities. Reliable Computing 10, 4 (2004), 273–

297.

[7] GREEN, T. J., KARVOUNARAKIS, G., AND TANNEN, V. Prove-

nance semirings. In PODS (2007), pp. 31–40.

[8] GREEN, T. J., AND TANNEN, V. Models for incomplete and

probabilistic information. In EDBT Workshops (2006), pp. 278–

296.

[9] IMIELINSKI, T., AND LIPSKI, W. Incomplete information in

relational databases. J. ACM 31, 4 (1984), 761–791.

[10] KARVOUNARAKIS, G., IVES, Z. G., AND TANNEN, V. Query-

ing data provenance. In SIGMOD Conference (2010), pp. 951–

962.

[11] ROY, S., PERDUCA, V., AND TANNEN, V. Faster query answer-

ing in probabilistic databases using read-once functions. In ICDT

(2011), pp. 232–243.

[12] SARMA, A. D., THEOBALD, M., AND WIDOM, J. Exploiting

lineage for confidence computation in uncertain and probabilistic

databases. In ICDE (2008), pp. 1023–1032.

