
Outsourcing the Decryption of ABE Ciphertexts

Matthew Green
Johns Hopkins University

Susan Hohenberger∗

Johns Hopkins University
Brent Waters†

University of Texas at Austin

Abstract

Attribute-based encryption (ABE) is a new vision for
public key encryption that allows users to encrypt and
decrypt messages based on user attributes. For example,
a user can create a ciphertext that can be decrypted only
by other users with attributes satisfying (“Faculty” OR
(“PhD Student” AND “Quals Completed”)). Given its
expressiveness, ABE is currently being considered for
many cloud storage and computing applications. How-
ever, one of the main efficiency drawbacks of ABE is that
the size of the ciphertext and the time required to decrypt
it grows with the complexity of the access formula.

In this work, we propose a new paradigm for ABE that
largely eliminates this overhead for users. Suppose that
ABE ciphertexts are stored in the cloud. We show how
a user can provide the cloud with a single transformation
key that allows the cloud to translate any ABE ciphertext
satisfied by that user’s attributes into a (constant-size) El
Gamal-style ciphertext, without the cloud being able to
read any part of the user’s messages.

To precisely define and demonstrate the advantages of
this approach, we provide new security definitions for
both CPA and replayable CCA security with outsourc-
ing, several new constructions, an implementation of our
algorithms and detailed performance measurements. In a
typical configuration, the user saves significantly on both
bandwidth and decryption time, without increasing the
number of transmissions.

∗Supported by NSF CAREER CNS-1053886, DARPA PROCEED,
Air Force Research Laboratory, Office of Naval Research N00014-11-
1-0470, a Microsoft Faculty Fellowship and a Google Faculty Research
Award. The views expressed are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S.
Government.

†Supported by NSF CNS-0915361 and CNS-0952692, AFOSR
Grant No: FA9550-08-1-0352, DARPA PROCEED, DARPA
N11AP20006, Google Faculty Research Award, the Alfred P. Sloan
Fellowship, and Microsoft Faculty Fellowship. The views expressed
are those of the author and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.

1 Introduction

Traditionally, we have viewed encryption as a method
for one user to encrypt data to another specific targeted
party, such that only the target recipient can decrypt and
read the message. However, in many applications a user
might often wish to encrypt data according to some pol-
icy as opposed to specified set of users. Trying to realize
such applications on top of a traditional public key mech-
anism poses a number of difficulties. For instance, a user
encrypting data will need to have a mechanism which
allows him to look up all parties that have access creden-
tials or attributes that match his policy. These difficul-
ties are compounded if a party’s credentials themselves
might be sensitive (e.g., the set of users with a TOP SE-
CRET clearance) or if a party gains credentials well after
data is encrypted and stored.

To address these issues, a new vision of encryption
was put forth by Sahai and Waters [38] called Attribute-
Based Encryption (ABE). In an ABE system, a user will
associate an encryption of a message M with an function
f (·), representing an access policy associated with the
decryption. A user with a secret key that represents their
set of attributes (e.g., credentials) S and will be able to
decrypt a ciphertext associated with function f (·) if and
only if f (S) = 1. Since the introduction of ABE there
have been several other works proposing different vari-
ants [24, 7, 14, 36, 23, 42, 15, 28, 35] extending both
functionality and refining security proof techniques. 1

One property that all of these ABE systems have is
that both the ciphertext size and time for decryption grow
with the size of the access formula f . Roughly, cur-
rent efficient ABE realizations are set in pairing-based
groups where the ciphertexts require two group elements
for every node in the formula and decryption will require

1A more general concept of functional encryption [11] allows for
more general functions to be computed on the encrypted data and en-
compasses work such as searching on encrypted data and predicate en-
cryption [10, 2, 12, 39, 27].

Scheme ABE Security Model Full CT Full Decrypt Out CT Out Dec
Type Level Size Ops Size Ops

Waters [42] CP CPA - |GT |+(1+2`)|G| ≤ (2+ `)P+2`EG - -
§3.1 CP CPA - |GT |+(1+2`)|G| ≤ (2+ `)P+2`EG 2|GT | ET
§3.2 CP RCCA RO |GT |+(1+2`)|G|+ k ≤ (2+ `)P+2`EG +2ET 2|GT |+ k 3ET

GPSW [24] KP CPA - |GT |+(1+ s)|G| ≤ (1+ `)P+2`EG - -
§4.1 KP CPA - |GT |+(1+ s)|G| ≤ (1+ `)P+2`EG 2|GT | ET
§4.2 KP RCCA RO |GT |+(1+ s)|G|+ k ≤ (1+ `)P+2`EG +2ET 2|GT |+ k 3ET

Figure 1: Summary of ABE outsourcing results. Above s denotes the size of an attribute set, ` refers to an LSSS access
structure with an `×n matrix, k is the message bit length in RCCA schemes, and P,EG,ET stand for the maximum time
to compute a pairing, exponentiation in G and exponentiation in GT respectively. We ignore non-dominant operations.
All schemes are in the selective security setting. We discuss methods for moving to adaptive security in Section 5.1.

a pairing for each node in the satisfied formula. While
conventional desktop computers should be able to handle
such a task for typical formula sizes, this presents a sig-
nificant challenge for users that manage and view private
data on mobile devices where processors are often one to
two orders of magnitude slower than their desktop coun-
terparts and battery life is a persistent problem. Interest-
ingly, in tandem there has emerged the ability for users
to buy on-demand computing from cloud-based services
such as Amazon’s EC2 and Microsoft’s Windows Azure.

Can cloud services be securely used to outsource de-
cryption in Attribute-Based Encryption systems? A
naive first approach would be for a user to simply hand
over their secret key, SK, to the outsourcing service.
The service could then simply decrypt all ciphertexts re-
quested by the user and then transmit the decrypted data.
However, this requires complete trust of the outsourc-
ing service; using the secret key the outsourcing service
could read any encrypted message intended for the user.

A second approach might be to leverage recent out-
sourcing techniques [20, 17] based on Gentry’s [21] fully
homomorphic encryption system. These give outsourc-
ing for general computations and importantly preserve
the privacy of the inputs so that the decryption keys and
messages can remain hidden. Unfortunately, the over-
head for these systems is currently impractical. Gentry
and Halevi [22] showed that even for weak security pa-
rameters one “bootstrapping” operation of the homomor-
phic operation would take at least 30 seconds on a high
performance machine (and 30 minutes for the high se-
curity parameter). Since one such operation would only
count for a small constant number of gates in the overall
computation, this would need to be repeated many times
to evaluate an ABE decryption using the methods above.

Closer to practice, we might leverage recent tech-
niques on secure outsourcing of pairings [16]. These
techniques allow a client to outsource a pairing operation
to a server. However, the solutions presented in [16] still
require the client to compute multiple exponentiations in
the target group for every pairing it outsources. These ex-

ponentiations can be quite expensive and the work of the
client will still be proportional to the size of the policy
f . Moreover, every pairing operation in the original pro-
tocol will trigger four pairings do be done by the proxy.
Thus, the total workload is increased by a factor of at
least four from the original decryption algorithm, and the
client’s bandwidth requirements may actually increase.
Given these drawbacks, we aim for an ABE outsourcing
system that is secure and imposes minimal overhead.

Our Contributions. We give new methods for effi-
ciently and securely outsourcing decryption of ABE ci-
phertexts. The core change to outsourceable ABE sys-
tems is a modified Key Generation algorithm that pro-
duces two keys. The first key is a short El Gamal [19]
type secret key that must be kept private by the user. The
second is what we call a “transformation key”, TK, that
is shared with a proxy (and can be publicly distributed).
If the proxy then receives a ciphertext CT for a func-
tion f for which the user’s credentials satisfy, it is then
able to use the key TK to transform CT into a simple and
short El Gamal ciphertext CT′ of the same message en-
crypted under the user’s key SK. The user is then able to
decrypt with one simple exponentiation. Our system is
secure against any malicious proxy. Moreover, the com-
putational effort of the proxy is no more than that used to
decrypt a ciphertext in a standard ABE system.

To achieve our results, we create what we call a new
key blinding technique. At a high level, the new out-
sourced key generation algorithm will first run a key gen-
eration algorithm from an existing bilinear map based
ABE scheme such as [24, 42]. Then it will choose a
blinding factor exponent z ∈ Zp (for groups of prime or-
der p) and raise all elements to z−1 (mod p). This will
produce the transformation key TK, while the blinding
factor z can serve as the secret key.

We show that we are able to adapt our outsourcing
techniques to both the “Ciphertext-Policy” (CP-ABE)
and “Key-Policy” (KP-ABE) types of ABE systems.2 To

2CP-ABE systems behave as we outlined above where a ciphertext

Server Client

ABE CT

Figure 2: Illustration of how ABE ciphertexts are fetched
today.

Server Proxy Client

ABE CT CT

Figure 3: Outsourcing the Decryption: Illustration of
how ABE ciphertexts could be transformed by a proxy
into much shorter El Gamal-style ciphertexts.

achieve our KP-ABE and CP-ABE outsourcing systems
we respectively apply our methodology to the construc-
tions of Goyal et al. [24] and Waters [42]. To prove se-
curity of the systems we must show that they remain se-
cure even in the presence of an attacker that acts as a
user’s proxy. Our first systems and proofs model seman-
tic security for an attacker that tries to eavesdrop on the
user. We then extend our systems and proofs to chosen
ciphertext attacks where the attack might query the user’s
decryption routine on maliciously formed ciphertexts to
compromise privacy. Our solutions in this setting apply
the random oracle heuristic to achieve efficiency near the
chosen plaintext versions.

Typical Usage Scenarios. We envision a typical usage
scenario in Figures 2 and 3. Here a client sends a single
transformation key once to the proxy, who can then re-
trieve (potentially large) ABE ciphertexts that the user is
interested in and forward to her (small, constant-size) El
Gamal-type ciphertexts. The proxy could be the client’s
mail server, or the ciphertext server and the proxy could
be the same entity, as in a cloud environment.

The savings in bandwidth and local computation time
for the client are immediate: a transformed ciphertext
is always smaller and faster to decrypt than an ABE ci-
phertext of [24, 42] (for any policy size). We emphasize
in this useage scenario that the number of transmissions
will be the same as in the prior (non-outsourced) solu-
tions. Thus, the power consumption can only improve
with faster computations and smaller transmissions.

Implementation and Evaluation. To evaluate our out-
sourcing systems, we implemented the CP-ABE version

is associated with a boolean access formula f and a user’s key is a set of
attributes x, where a user can decrypt if f (x) = 1. KP-ABE is useful in
applications where we want to have the mirror image semantics where
the attributes x are associated with a ciphertext and an access formula
f with the key.

and tested it in an outsourcing environment. Our imple-
mentation modified part of the libfenc [25] library, which
includes a current CP-ABE implementation. We con-
ducted our experiments on both an ARM-based mobile
device and an Intel server to model the user device and
proxy respectively.

Outsourcing decryption resulted in significant practi-
cal benefits. Decrypting on an ABE ciphertext contain-
ing 100 attributes, we found that without the use of a
proxy the mobile device would require about 30 seconds
of computation time and drain a significant amount of
the device’s battery. When we applied our outsourcing
technique, decrypting the ciphertext took 2 seconds on
our Intel server and approximately 60 milliseconds on
the mobile device itself.

To demonstrate compatibility with existing infrastruc-
ture, we constructed a re-usable platform for outsourcing
decryption using the Amazon EC2 service. Our proxy is
deployed as a public Amazon Machine Image that can be
programmatically instantiated by any application requir-
ing acceleration.

In addition to the core benefits of outsourcing, we dis-
covered other collateral advantages. In existing ABE im-
plementations [6, 25] much of the decryption code is
dedicated to determining how a policy is satisfied by a
key and executing the corresponding pairing computa-
tions of decryption. In our outsourcing solution, most
of this code is pushed into the untrusted transformation
algorithm, leaving only a much smaller portion on the
user’s device. This has two advantages. First, the amount
of decryption code that needs to reside on a resource con-
strained user device will be smaller. Actually, all bilinear
map operations can be pushed outside. Second, this par-
titioning will dramatically decrease the size of the trusted
code base, removing thousands of lines of complex pars-
ing code. Even without using outsourcing, this partition-
ing of code is useful.

Related Work: Proxy Re-Encryption. In this work, we
show how to delegate (in a true offline sense) the ability
to transform an ABE ciphertext on message m into an
El Gamal-style ciphertext on the same m, without learn-
ing anything about m. This is similar to the concept of
proxy re-encryption [8, 4] where an untrusted proxy is
given a re-encryption key that allows it to transform an
encryption under Alice’s key of m into an encryption un-
der Bob’s key of the same m, without allowing the proxy
to learn anything about m.

2 Background

We first give the security definitions for ABE with out-
sourcing. We then give background information on bi-
linear maps. Finally, we provide formal definitions for

access structures and relevant background on Linear Se-
cret Sharing Schemes (LSSS), as taken from [42].

Types of ABE. We consider two distinct varieties
of Attribute-Based Encryption: Ciphertext-Policy (CP-
ABE) and Key-Policy (KP-ABE). In CP-ABE an access
structure (policy) is embedded into the ciphertext during
encryption, and each decryption key is based an some
attribute set S. KP-ABE inverts this relationship, embed-
ding S into the ciphertext and a policy into the key.3 We
capture both paradigms in a generalized ABE definition.

2.1 Access Structures
Definition 1 (Access Structure [5]) Let {P1, P2, . . ., Pn}
be a set of parties. A collection A⊆ 2{P1,P2,...,Pn} is mono-
tone if ∀B,C : if B ∈A and B⊆C then C ∈A. An access
structure (respectively, monotone access structure) is a
collection (resp., monotone collection) A of non-empty
subsets of {P1,P2, . . . ,Pn}, i.e., A ⊆ 2{P1,P2,...,Pn}\{ /0}.
The sets in A are called the authorized sets, and the sets
not in A are called the unauthorized sets.

In our context, the role of the parties is taken by the
attributes. Thus, the access structure A will contain the
authorized sets of attributes. We restrict our attention to
monotone access structures. However, it is also possible
to (inefficiently) realize general access structures using
our techniques by defining the “not” of an attribute as
a separate attribute altogether. Thus, the number of at-
tributes in the system will be doubled. From now on,
unless stated otherwise, by an access structure we mean
a monotone access structure.

2.2 ABE with Outsourcing
Let S represent a set of attributes, and A an access struc-
ture. For generality, we will define (Ienc, Ikey) as the in-
puts to the encryption and key generation function re-
spectively. In a CP-ABE scheme (Ienc, Ikey) = (A,S),
while in a KP-ABE scheme we will have (Ienc, Ikey) =
(S,A). A CP-ABE (resp. KP-ABE) scheme with out-
sourcing functionality consists of five algorithms:

Setup(λ ,U). The setup algorithm takes security param-
eter and attribute universe description as input. It outputs
the public parameters PK and a master key MK.

Encrypt(PK,M, Ienc). The encryption algorithm takes
as input the public parameters PK, a message M, and an

3More intuitively, CP-ABE is often suggested as a means to imple-
ment role-based access control, where the user’s key attributes corre-
spond the long-term roles and ciphertexts carry an access policy. Key-
Policy ABE is more appropriate in applications where ciphertexts may
be tagged with attributes (e.g., relating to message content), and each
user’s access to these ciphertexts determined by a policy in their de-
cryption key. For more on applications, see e.g., [37].

access structure (resp. attribute set) Ienc. It outputs the
ciphertext CT.

KeyGenout (MK, Ikey). The key generation algorithm
takes as input the master key MK and an attribute set
(resp. access structure) Ikey and outputs a private key SK
and a transformation key TK.

Transform(TK,CT). The ciphertext transformation al-
gorithm takes as input a transformation key TK for Ikey
and a ciphertext CT that was encrypted under Ienc. It out-
puts the partially decrypted ciphertext CT′ if S ∈ A and
the error symbol ⊥ otherwise.

Decryptout (SK,CT′). The decryption algorithm takes as
input a private key SK for Ikey and a partially decrypted
ciphertext CT′ that was originally encrypted under Ienc.
It outputs the message M if S ∈ A and the error symbol
⊥ otherwise.4

Why RCCA security? We describe a security model for
ABE that support outsourcing. We want a very strong
notion of security. The traditional notion of security
against adaptive chosen-ciphertext attacks (CCA) is a bit
too strong since it does not allow any bit of the cipher-
text to be altered, and the purpose of our outsourcing is
to compress the size of the ciphertext. We thus adopt
a relaxation due to Canetti, Krawczyk and Nielsen [13]
called replayable CCA security, which allows modifica-
tions to the ciphertext provided they cannot change the
underlying message in a meaningful way.

RCCA Security Model for ABE with Outsourcing. Fig-
ure 4 describes a generalized RCCA security game for
both KP-ABE and CP-ABE schemes with outsourcing.
We define the advantage of an adversary A in this game
as Pr[b′ = b]− 1

2 .

Definition 2 (RCCA-Secure ABE with Outsourcing)
A CP-ABE or KP-ABE scheme with outsourcing is
RCCA-secure (or secure against replayable chosen-
ciphertext attacks) if all polynomial time adversaries
have at most a negligible advantage in the RCCA game
defined above.

CPA Security. We say that a system is CPA-secure (or
secure against chosen-plaintext attacks) if we remove the
Decrypt oracle in both Phase 1 and 2.

Selective Security. We say that a CP-ABE (resp. KP-
ABE) system is selectively secure if we add an Init stage
before Setup where the adversary commits to the chal-
lenge value I∗enc.

4Note that we can implement the standard (non-outsourced) ABE
Decrypt algorithm by combining Transform and Decryptout .

Setup. The challenger runs the Setup algorithm and gives the public parameters, PK to the adversary.

Phase 1. The challenger initializes an empty table T , an empty set D and an integer j = 0. Proceeding adaptively,
the adversary can repeatedly make any of the following queries:

• Create(Ikey): The challenger sets j := j+1. It runs the outsourced key generation algorithm on Ikey to obtain the
pair (SK,TK) and stores in table T the entry (j, Ikey,SK,TK). It then returns to the adversary the transformation
key TK.
Note: Create can be repeatedly queried with the same input.

• Corrupt(i): If there exists an ith entry in table T , then the challenger obtains the entry (i, Ikey,SK,TK) and sets
D := D∪{Ikey}. It then returns to the adversary the private key SK. If no such entry exists, then it returns ⊥.

• Decrypt(i,CT): If there exists an ith entry in table T , then the challenger obtains the entry (i, Ikey,SK,TK) and
returns to the adversary the output of the decryption algorithm on input (SK,CT). If no such entry exists, then
it returns ⊥.

Challenge. The adversary submits two equal length messages M0 and M1. In addition the adversary gives a value
I∗enc such that for all Ikey ∈ D, f (Ikey, I∗enc) 6= 1. The challenger flips a random coin b, and encrypts Mb under I∗enc. The
resulting ciphertext CT∗ is given to the adversary.

Phase 2. Phase 1 is repeated with the restrictions that the adversary cannot

• trivially obtain a private key for the challenge ciphertext. That is, it cannot issue a Corrupt query that would
result in a value Ikey which satisfies f (Ikey, I∗enc) = 1 being added to D.

• issue a trivial decryption query. That is, Decrypt queries will be answered as in Phase 1, except that if the
response would be either M0 or M1, then the challenger responds with the special message test instead.

Guess. The adversary outputs a guess b′ of b.

Figure 4: Generalized RCCA Security game for CP- and KP-ABE with outsourcing functionality. For CP-ABE we
define the function f (Ikey, Ienc) as f (S,A) and for KP-ABE it is defined as f (A,S). In either case the function f
evaluates to 1 iff S ∈ A.

2.3 Bilinear Maps

Let G and GT be two multiplicative cyclic groups of
prime order p. Let g be a generator of G and e : G×G→
GT be a bilinear map with the properties:

1. Bilinearity: for all u,v ∈ G and a,b ∈ Zp, we have
e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: e(g,g) 6= 1.

We say that G is a bilinear group if the group opera-
tion in G and the bilinear map e : G×G→GT are both
efficiently computable.

The schemes we present in this work are provably
secure under the Decisional Parallel BDHE Assump-
tion [42] and the Decisional Bilinear Diffie-Hellman as-
sumption (DBDH) [9] in bilinear groups. For reasons
of space we will omit a definition of these assumptions
here, and refer the reader to the cited works.

2.4 Linear Secret Sharing Schemes
We will make essential use of linear secret-sharing
schemes. We adapt our definitions from those in [5]:

Definition 3 (Linear Secret-Sharing Schemes (LSSS))
A secret-sharing scheme Π over a set of parties P is
called linear (over Zp) if

1. The shares of the parties form a vector over Zp.

2. There exists a matrix M with ` rows and n columns
called the share-generating matrix for Π. There ex-
ists a function ρ which maps each row of the matrix
to an associated party. That is for i = 1, . . . , `, the
value ρ(i) is the party associated with row i. When
we consider the column vector v = (s,r2, . . . ,rn),
where s ∈ Zp is the secret to be shared, and
r2, . . . ,rn ∈ Zp are randomly chosen, then Mv is the
vector of ` shares of the secret s according to Π.
The share (Mv)i belongs to party ρ(i).

It is shown in [5] that every linear secret sharing-
scheme according to the above definition also enjoys the

linear reconstruction property, defined as follows: Sup-
pose that Π is an LSSS for the access structure A. Let
S ∈ A be any authorized set, and let I ⊂ {1,2, . . . , `} be
defined as I = {i : ρ(i) ∈ S}. Then, there exist constants
{ωi ∈ Zp}i∈I such that, if {λi} are valid shares of any se-
cret s according to Π, then ∑i∈I ωiλi = s. It is shown
in [5] that these constants {ωi} can be found in time
polynomial in the size of the share-generating matrix M.

Like any secret sharing scheme, it has the property that
for any unauthorized set S /∈ A, the secret s should be
information theoretically hidden from the parties in S.

Note on Convention. We use the convention that vector
(1,0,0, . . . ,0) is the “target” vector for any linear secret
sharing scheme. For any satisfying set of rows I in M,
we will have that the target vector is in the span of I.

For any unauthorized set of rows I the target vector is
not in the span of the rows of the set I. Moreover, there
will exist a vector w such that w · (1,0,0 . . . ,0) =−1 and
w ·Mi = 0 for all i ∈ I.

Using Access Trees. Some prior ABE works (e.g., [24])
described access formulas in terms of binary trees. Using
standard techniques [5] one can convert any monotonic
boolean formula into an LSSS representation. An access
tree of ` nodes will result in an LSSS matrix of ` rows.

3 Outsourcing Decryption for Ciphertext-
Policy ABE

3.1 A CPA-secure Construction

Our CP-ABE construction is based on the “large uni-
verse” construction of Waters [42], which was proven
to be selectively CPA-secure under the Decisional q-
parallel BDHE assumption for a challenge matrix of size
`∗×n∗, where `∗,n∗ ≤ q.5 The Setup, Encrypt and (non-
outsourced) Decrypt algorithms are identical to [42]. To
enable outsourcing we modify the KeyGen algorithm to
output a transformation key. We also define a new Trans-
form algorithm, and modify the decryption algorithm to
handle outputs of Encrypt as well as Transform. We
present the full construction in Figure 5.

Discussion. For generality, we defined the transfor-
mation key TK as being created by the master author-
ity. However, we observe that our outsourcing approach
above is actually backwards compatible with existing de-
ployments of the Waters system. In particular, one can
see that any existing user with her own Waters SK can
create a corresponding outsourcing pair (SK′,TK′) by
rerandomizing with a random value z.

5By “large universe”, we mean a system that allows for a super-
polynomial number of attributes.

Theorem 3.1 Suppose the large universe construction
of Waters [42, Appendix C] is a selectively CPA-secure
CP-ABE scheme. Then the CP-ABE scheme of Figure 5
is a selectively CPA-secure outsourcing scheme.

Note that the Waters scheme of [42] was proven secure
under the Decisional q-parallel BDHE assumption. Due
to space constraints, we omit a proof of Theorem 3.1.
However, we observe that the proof techniques are quite
similar to those used for the RCCA-secure variant we
present in the next section.

3.2 An RCCA-secure Construction

We now extend our CPA-secure system to achieve the
stronger RCCA-security guarantee. To do so, we borrow
some techniques from Fujisaki and Okamoto [18], who
(roughly) showed how to transform a CPA-secure en-
cryption scheme into a CCA-secure encryption scheme
in the random oracle model. Here we relax to RCCA-
security and have the additional challenge of preserving
the decryption outsourcing capability.

The Setup and KeyGen algorithms operate exactly as
in the CPA-secure scheme, except the public key addi-
tionally includes the description of hash functions H1 :
{0,1}∗ → Zp and H2 : {0,1}∗ → {0,1}k. We now de-
scribe the remaining algorithms.

Encryptrcca(PK,M ∈ {0,1}k,(M,ρ)) The encryption

algorithm selects a random R ∈ GT and then com-
putes s = H1(R,M) and r = H2(R). It then computes
(C1,D1), . . . ,(C`,D`) as in the CPA-secure construction
of Figure 5 (except that s is no longer chosen randomly
as part of~v). The ciphertext is published as CT =

C = R · e(g,g)αs, C′ = gs, C′′ = M ⊕ r,

(C1,D1), . . . ,(C`,D`)

along with a description of access structure (M,ρ).

Transformrcca(TK,CT). The transformation algorithm
recovers the value e(g,g)sα/z as before. It outputs the
partially decrypted ciphertext CT′ as (C,C′′,e(g,g)sα/z).

Decryptrcca(SK,CT). The decryption algorithm takes
as input a private key SK = (z,TK) and a ciphertext CT.
If the ciphertext is not partially decrypted, then the algo-
rithm first executes Transformout(TK,CT). If the output
is⊥, then this algorithm outputs⊥ as well. Otherwise, it
takes the ciphertext (T0,T1,T2) and computes R = T0/T z

2 ,
M = T1⊕H2(R), and s = H1(R,M). If T0 = R ·e(g,g)αs

and T2 = e(g,g)αs/z, it outputs M ; otherwise, it outputs
the error symbol ⊥.

Setup(λ ,U). The setup algorithm takes as input a security parameter and a universe description U . To cover the most general
case, we let U = {0,1}∗. It then chooses a group G of prime order p, a generator g and a hash function F that maps {0,1}∗
to G.a In addition, it chooses random exponents α,a ∈ Zp. The authority sets MSK = (gα ,PK) as the master secret key. It
publishes the public parameters as:

PK = g, e(g,g)α , ga, F

Encrypt(PK,M ,(M,ρ)) The encryption algorithm takes as input the public parameters PK and a message M to encrypt. In
addition, it takes as input an LSSS access structure (M,ρ). The function ρ associates rows of M to attributes. Let M be an
`× n matrix. The algorithm first chooses a random vector ~v = (s,y2, ...,yn) ∈ Zn

p. These values will be used to share the
encryption exponent s. For i = 1 to `, it calculates λi =~v ·Mi, where Mi is the vector corresponding to the ith row of M. In
addition, the algorithm chooses random r1, . . . ,r` ∈ Zp. The ciphertext is published as CT =

C = M · e(g,g)αs, C′ = gs,

(C1 = gaλ1 ·F(ρ(1))−r1 , D1 = gr1), . . . ,(C` = gaλ` ·F(ρ(`))−r` , D` = gr`)

along with a description of (M,ρ).

KeyGenout (MSK,S) The key generation algorithm runs KeyGen(MSK,S) to obtain SK′ = (PK,K′ = gα gat ′ ,L′ = gt ′ ,{K′x =
F(x)t ′}x∈S). It chooses a random value z ∈ Z∗p. It sets the transformation key TK as

PK, K = K′1/z = g(α/z)ga(t ′/z) = g(α/z)gat , L = L′1/z = g(t ′/z) = gt , {Kx}x∈S = {K′1/z
x }x∈S

and the private key SK as (z,TK).

Transformout(TK,CT) The transformation algorithm takes as input a transformation key TK = (PK,K,L,{Kx}x∈S) for a set S
and a ciphertext CT = (C,C′,C1, . . . ,C`) for access structure (M,ρ). If S does not satisfy the access structure, it outputs ⊥.
Suppose that S satisfies the access structure and let I ⊂ {1,2, . . . , `} be defined as I = {i : ρ(i) ∈ S}. Then, let {ωi ∈ Zp}i∈I
be a set of constants such that if {λi} are valid shares of any secret s according to M, then ∑i∈I ωiλi = s. The transformation
algorithm computes

e(C′,K)/
(

e(∏i∈I Cωi
i ,L) ·∏i∈I e(Dωi

i ,Kρ(i))
)

=

e(g,g)sα/ze(g,g)ast/
(

∏i∈I e(g,g)taλiωi

)
= e(g,g)sα/z

It outputs the partially decrypted ciphertext CT′ as (C,e(g,g)sα/z), which can be viewed as the El Gamal ciphertext (M ·
Gzd ,Gd) where G = e(g,g)1/z ∈GT and d = sα ∈ Zp.

Decryptout(SK,CT) The decryption algorithm takes as input a private key SK = (z,TK) and a ciphertext CT. If the ciphertext is
not partially decrypted, then the algorithm first executes Transformout(TK,CT). If the output is ⊥, then this algorithm outputs
⊥ as well. Otherwise, it takes the ciphertext (T0,T1) and computes T0/T z

1 = M .
Notice that if the ciphertext is already partially decrypted for the user, then she need only compute one exponentiation and no
pairings to recover the message.

aSee Waters [42] for details on how to implement this hash in the standard model. For our purposes, one can think of F as a random oracle.

Figure 5: A CPA-secure CP-ABE outsourcing scheme based on the large-universe construction of Waters [42, Ap-
pendix C].

Theorem 3.2 Suppose the large universe construction
of Waters [42, Appendix C] is a selectively CPA-secure
CP-ABE scheme. Then the outsourcing scheme above is
selectively RCCA-secure in the random oracle model for
large message spaces.6

We present a proof of Theorem 3.2 in Appendix A.

4 Outsourcing Decryption for Key-Policy
ABE

4.1 A CPA-secure Construction
We now present an outsourcing scheme based on the
large universe KP-ABE construction due to Goyal,
Pandey, Sahai and Waters [24].7 The Setup and Encrypt
algorithms are identical to [24]. We modify KeyGen to
output a transformation key, introduce a Transform algo-
rithm, and then modify the decryption algorithm to han-
dle outputs of Encrypt as well as Transform. The full
construction is presented in Figure 6.

Theorem 4.1 Suppose the GPSW KP-ABE scheme [24]
is selectively CPA-secure. Then the KP-ABE scheme of
Figure 6 is a selectively CPA-secure outsourcing scheme.

Discussion. As in the previous construction, we defined
the transformation key TK as being created by the master
authority. We again note that our outsourcing approach
above is actually backwards compatible with existing de-
ployments of the GPSW system.

Due to restrictions on space, we leave the proof of se-
curity to the full version of this work [26].

4.2 An RCCA-secure construction
We now extend our above results, which only hold for
CPA-security, to the stronger RCCA-security guarantee.
Once again, we accomplish this using the techniques
from Fujisaki and Okamoto [18]. The Setup and Key-
Gen algorithms operate exactly as before, except the pub-
lic key additionally includes the value e(g,h)α (which
was already computable from existing values) and the
description of hash functions H1 : {0,1}∗ → Zp and
H2 : {0,1}∗→{0,1}k.

6The security of this scheme follows for large message spaces; e.g.,
k-bit spaces where k ≥ λ , the security parameter. To obtain a secure
scheme for smaller message spaces, replace C′′ with any CPA-secure
symmetric encryption of M using key H2(R) and let the range of H2 be
the key space of this symmetric scheme. Since the focus of this work is
on efficiency, we’ll typically be assuming large enough message spaces
and therefore opting for the quicker XOR operation.

7This construction was originally described using access trees; here
we generalize it to LSSS access structures.

Encryptrcca(PK,M ∈ {0,1}k,S). The encryption al-
gorithm chooses a random R ∈ GT . It then computes
s = H1(R,M) and r = H2(R). For each x ∈ S it gener-
ates Cx as in the CPA-secure scheme. The ciphertext is
published as CT =

C = R · e(g,h)αs, C′ = gs, C′′ = r⊕M , {Cx}x∈S

along with a description of S.

Transformrcca(TK,CT). The transformation algorithm
recovers the value e(g,h)sα/z as before. It outputs the
partially decrypted ciphertext CT′ as (C,C′′,e(g,h)sα/z).

Decryptrcca(SK,CT). The decryption algorithm takes
as input a private key SK = (z,TK) and a ciphertext CT.
If the ciphertext is not partially decrypted, then the algo-
rithm first executes Transformout(TK,CT). If the output
is⊥, then this algorithm outputs⊥ as well. Otherwise, it
takes the ciphertext (T0,T1,T2) and computes R = T0/T z

2 ,
M = T1⊕H2(R), and s = H1(R,M). If T0 = R ·e(g,h)αs

and T2 = e(g,h)αs/z, it outputs M ; otherwise, it outputs
the error symbol ⊥.

Theorem 4.2 Suppose the construction of GPSW [24]
is a selectively CPA-secure KP-ABE scheme. Then the
outsourcing scheme above is selectively RCCA-secure in
the random oracle model for large message spaces.

See the footnote on Theorem 3.2 for a definition and dis-
cussion of “large message spaces”. We present a proof
of Theorem 4.2 in the full version [26] of this work.

5 Discussion

5.1 Achieving Adaptive Security
The systems we presented were proven secure in the se-
lective model of security. We briefly sketch how we can
adapt our techniques to achieve ABE systems that are
provably secure in the adaptive model.8

Recently, the first ABE systems that achieved adap-
tive security were proposed by Lewko et al. [28] using
the techniques of Dual System Encryption [41]. Since
the underlying structure of the KP-ABE and CP-ABE
schemes presented by Lewko et al. is almost respectively
identical to the underlying Goyal et al. [24] and Wa-
ters [42] systems we use, it is possible to adapt our con-
struction techniques to these underlying constructions.9

8We briefly note that it is simple to prove adaptive security of our
schemes in the generic group model like Bethencourt, Sahai, and Wa-
ters [7]. Here we are interested in proofs under non-interactive assump-
tions.

9The main difference in terms of the constructions is that the sys-
tems proposed by Lewko et al. are set in composite order groups where
the “core scheme” sits in one subgroup. The primary novelty of their
work is in developing adaptive proofs of security for ABE systems.

Setup(λ ,U). The setup algorithm takes as input a security parameter and a universe description U . To cover the most general
case, we let U = {0,1}∗. It then chooses a group G of prime order p, a generator g and a hash function F that maps {0,1}∗
to G.a In addition, it chooses random values α ∈ Zp and h ∈G. The authority sets MSK = (α,PK) as the master secret key.
The public key is published as

PK = g, gα , h, F

Encrypt(PK,M ,S). The encryption algorithm takes as input the public parameters PK, a message M to encrypt, and a set of
attributes S. It chooses a random s ∈ Zp. The ciphertext is published as CT = (S,C) where

C = M · e(g,h)αs, C′ = gs, {Cx = F(x)s}x∈S.

KeyGenout(MSK,(M,ρ)). Parse MSK = (α,PK). The key generation algorithm runs KeyGen((α , PK),(M,ρ)) to obtain SK′ =
(PK,(D′1 = hλ1 ·F(ρ(1))r′1 ,R′1 = gr′1), . . . ,(D′`,R

′
`)). Next, it chooses a random value z ∈ Zp, computes the transformation key

TK as below, and outputs the private key as (z,TK). Denoting r′i/z as ri, TK is computed as:

PK, (D1 = D′1/z
1 = hλ1/z ·F(ρ(1))r1 , R1 = R′1/z

1 = gr1), . . . ,(D` = D′1/z
` , R` = R′1/z

`)

Transformout(TK,CT). The transformation algorithm takes as input a transformation key TK = (PK,(D1,R1), . . . ,(D`,R`)) for
access structure (M,ρ) and a ciphertext CT = (C,C′,{Cx}x∈S) for set S. If S does not satisfy the access structure, it outputs
⊥. Suppose that S satisfies the access structure and let I ⊂ {1,2, . . . , `} be defined as I = {i : ρ(i) ∈ S}. Then, let {ωi ∈ Zp}i∈I
be a set of constants such that if {λi} are valid shares of any secret s according to M, then ∑i∈I ωiλi = s. The transformation
algorithm computes

e(C′,∏
i∈I

Dωi
i)/

(
∏
i∈I

e(Ri,C
ωi
ρ(i))

)
= e(gs,∏

i∈I
hλiωi/z ·F(ρ(i))riωi)/

(
∏
i∈I

e(gri ,F(ρ(i))sωi)

)

= e(g,h)sα/z ·∏
i∈I

e(gs,F(ρ(i))riωi)/

(
∏
i∈I

e(gri ,F(ρ(i))sωi)

)
= e(g,h)sα/z

It outputs the partially decrypted ciphertext CT′ as (C,e(g,h)sα/z), which can be viewed as the El Gamal ciphertext (M ·
Gzd ,Gd) where G = e(g,h)1/z ∈GT and d = sα ∈ Zp.

Decryptout(SK,CT). The decryption algorithm takes as input a private key SK = (z,TK) and a ciphertext CT. If the ciphertext is
not partially decrypted, then the algorithm first executes Transformout(TK,CT). If the output is ⊥, then this algorithm outputs
⊥ as well. Otherwise, it takes the ciphertext (T0,T1) and computes T0/T z

1 = M .

aGoyal et al. [24] give a standard model instantiation for F using an n-wise independent hash function (in the exponents) with the restriction
that any ciphertext can contain at most n attributes. For our purposes, one can think of F as a random oracle.

Figure 6: A CPA-secure KP-ABE outsourcing scheme based on the large-universe construction of Goyal, Pandey,
Sahai and Waters [24].

Outsourcing Proxy

Amazon EC2

Outsourcing Proxy
Outsourcing Proxy

Application

Amazon S3
Datastore

TKABE ciphertext(s)Web server

Proxy AMI

Partially-decrypted
ciphertext(s)

Figure 7: Architecture and data flow for our cloud-based outsourcing proxy. An application programmatically instan-
tiates one or more instances of the outsourcing proxy, which is loaded from a public Amazon Machine Image (AMI)
in the S3 storage cloud. Next the application uploads a transform key TK to the proxy, and subsequently instructs
the proxy to obtain ciphertexts from remote web servers or from locations within the S3 storage cloud. The proxy
transforms the ciphertexts and returns the partially-decrypted result to the application, which completes decryption to
obtain a plaintext. We emphasize that the setup step including uploading the transformation key only needs to be done
once; subsequently, many decryption steps can follow. In an alternative configuration (not shown) the application can
also upload ABE ciphertexts to the proxy from its local storage. We note the first configuration conflates the ciphertext
delivery and partial decryption and thus requires no additional transmissions relative to non outsourcing solutions. The
alternative will require an round trip for each outsourcing operation.

One might hope that the proof of adaptive security
could be a black box reduction to the adaptively secure
schemes of Lewko et al. Unfortunately, this seems in-
feasible. Consider any direct black box reduction to the
security of the underlying scheme. When the attacker
makes a query to some transformation key, the reduction
algorithm has two options. First, it could ask the security
game for the underlying ABE system for a private key.
Yet, it might turn out that the key both is never corrupted
and is capable of decryption for the eventual challenge
ciphertext. In this case the simulator will have to abort.
A second option is for the reduction algorithm not to ask
for such a key, but fill in the transformation key itself.
However, if that user’s key is later corrupted it will be
difficult for the reduction to both ask for such a private
key and match it to the published transformation key.

Accordingly, to prove security one needs to make a
direct Dual-System encryption type proof. The proof
would go along the lines of Lewko et al., with the ex-
ception that in the hybrid stage of the proof all private
keys and transformational keys will be set (one by one)
to be semi-functional including those that could decrypt
the eventual challenge ciphertext. In the Lewko et al.
proof giving a private key that could decrypt the chal-
lenge ciphertext would undesirably result in the sim-
ulator producing observably incorrect correlations be-
tween the challenge ciphertext and keys. However, if
we only give out the transformation part of such a key
(and keep the whole private key hidden) then this cor-
relation will remain hidden. This part of the argument
is somewhat similar to the work of Lewko, Rouselakis,
and Waters [29], who show that in their leakage resilient
ABE scheme if only part of a private key is leaked such
a correlation will be hidden.

5.2 Checking the Transformation
In the description of our systems a proxy will be able
to transform any ABE ciphertext into a short ciphertext
for the user. While the security definitions show that an
attacker will not be able to learn an encrypted message,
there is no guarantee on the transformation’s correctness.
In some applications a user might want to request the
transformation of a particular ciphertext and (efficiently)
check that the transformation was indeed done correctly
(assuming the original ciphertext was valid). It is easy to
adapt our RCCA systems to such a setting. Since decryp-
tion results in recovery of the ciphertext randomness, one
can simply add a tag to the ciphertext as H ′(r), where H ′

is a different hash function modeled as a random oracle
and r is the ciphertext randomness. On recovery of r the
user can compute H ′(r) and make sure it matches the tag.

6 Performance in Practice

To validate our results, we implemented the CPA-secure
CP-ABE of Section 3 as an extension to the libfenc At-
tribute Based Encryption library [25]. We then used this
as a building block for a platform for accelerating ABE
decryption through cloud-based computing resources.

The core of our solution is a virtualized outsourcing
“proxy” that runs in the Amazon Elastic Compute Cloud
(EC2). Our proxy exists as a machine image that can
be programmatically instantiated by any application that
requires assistance with ABE decryption. As we demon-
strate below, this proxy is particularly useful for accel-
erating decryption on constrained devices such as mo-
bile phones. However, the system can be used in any
application where significant numbers of ABE decryp-
tions must be performed, e.g., in large-scale search op-

erations.10 The use of on-demand computing is particu-
larly well-suited to our outsourcing techniques, since we
do not require trusted remote servers or long-term stor-
age of secrets.

System Architecture. Figure 7 illustrates the architec-
ture of our outsourcing platform. The proxy is stored in
Amazon’s S3 datastore as a public Amazon Machine Im-
age (AMI), which wraps a standard Linux/Apache distri-
bution along with the code needed to execute the Trans-
form algorithm. Applications can remotely instantiate
the proxy and upload a TK corresponding to a particu-
lar ABE decryption key.11 Depending on the use case,
they can either push ciphertexts to the proxy for transfor-
mation, or direct the proxy to retrieve ABE ciphertexts
from remote locations such as the web or the Amazon S3
storage cloud. The latter technique is helpful when ac-
cessing remotely-held records on a mobile device, since
the proxy transformation dramatically reduces the mo-
bile device’s bandwidth requirements vs. downloading
and decrypting each ABE ciphertext locally. This can
significantly enhance device battery life.

6.1 Performance: Microbenchmarks
To evaluate the performance of our CPA-secure CP-ABE
outsourcing scheme in isolation (without confounding
factors such as network lag, file I/O, etc.) we conducted a
series of microbenchmarks using the libfenc implemen-
tation. For consistency, we ran these tests on two dedi-
cated hardware platforms: a 3GHz Intel Core Duo plat-
form with 4GB of RAM running 32-bit Linux Kernel
version 2.6.32, and a 412MHz ARM-based iPhone 3G
with 128MB of RAM running iOS 4.0.12 We instantiated
the ABE schemes using a 224-bit MNT elliptic curve
from the Stanford Pairing-Based Crypto library [30].13

The existing libfenc implementation implements the
Waters scheme using a Key Encapsulation variant. For
backwards compatibility, we adopted this approach in
our implementation as well. Herein, the ciphertext car-
ries a symmetric session key k that is computed at en-
cryption time as k = H(e(g,g)αs). The element C =

10Indeed, since cloud computing platforms support the creation of
multiple proxy instances, servers can rapidly scale their outsourcing
capability up and down to meet demand.

11The proxy requires only one TK to decrypt an unlimited number
of ciphertexts. However, a proxy can be shared by multiple users, each
with their own TK.

12Note that our tests were single-threaded, and thus used resources
from only a single core of the Intel processor. In all cases we conducted
our timing experiments with accessible background services disabled,
and with the mobile device connected to a power source.

13Although we define our schemes in the symmetric bilinear group
setting, the MNT curve choice required that we implement the scheme
in asymmetric groups with a pairing of the form G1×G2 → GT . As
a result we assigned various elements of the ciphertext and key to the
groups G1 and G2 with the aim of minimizing ciphertext size.

M ·e(g,g)αs is omitted from the ciphertext, and any data
payload must be carried via a separate symmetric encryp-
tion under k. The practical impact of this approach is
that the ABE ciphertexts (and partially-decrypted cipher-
texts) are shortened by one element of GT .

Experimental setup. Both decryption time and cipher-
text size in the CP-ABE scheme depend on the com-
plexity of the ciphertext’s policy. To capture this in our
experiments, we first generated a collection of 100 dis-
tinct ciphertext policies of the form (A1 AND A2 AND
. . . AND AN), where each Ai is an attribute, for values of
N increasing from 1 to 100. In each case we constructed
a corresponding decryption key that contained the N at-
tributes necessary for decryption. This approach ensures
that the decryption procedure depends on all N compo-
nents of the ciphertext and is a reasonable sample of a
complex policy.

To obtain our baseline results, we encapsulated a ran-
dom 128-bit symmetric key under each of these 100 dif-
ferent policies, then decrypted the resulting ABE cipher-
text using the normal (non-outsourced) Decrypt algo-
rithm.14 To smooth any experimental variability, we re-
peated each of our experiments 100 times on the Intel
device (due to the time consuming nature of the experi-
ments, we repeated the test only 30 times on the ARM
device) and averaged to obtain our decryption timings.
Figure 8 shows the size of the resulting ciphertexts as a
function of N, along with the measured decryption times
on our Intel and ARM test platforms.

Next, we evaluated the algorithms by generating a
Transform Key (TK) from the appropriate N-attribute
ABE decryption key and applying the Transform algo-
rithm to the ABE ciphertext using this key.15 Finally we
decrypted the resulting transformed ciphertext. Figure 8
shows the time required for each of those operations.

Discussion. As expected, the ABE ciphertext size and
decryption/transform time were linear in the complexity
of the ciphertext’s policy (N). However, our results illus-
trate the surprisingly high constants. Encrypting under a
100-component ciphertext policy produced an unwieldy
25KB of ABE ciphertext. The relatively fast Intel proces-
sor required nearly 2 full seconds to decrypt this value.
By comparison, the same machine can perform a 1024-
bit RSA decryption in 1.7 milliseconds.16

The results were more dramatic on the mobile device.
Decrypting a 100-component ciphertext policy on the

14Note that for this experiment we did not employ any symmetric
encryption, hence all times and ciphertext sizes refer to the ABE key
encapsulation ciphertext.

15We used the “backwards-compatible” key generation approach de-
scribed in Section 3.1 to derive a TK from a standard ABE decryption
key, rather than having the PKG generate the TK directly. This allowed
us to retain compatibility with the existing CP-ABE implementation.

16Measured with OpenSSL 1.0 [40].

ABE Ciphertext Size Partially-decrypted Ciphertext Size ABE Decryption Time

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

s
iz

e
 i
n

 K
b

y
te

s

Number of policy attributes (N)

Ciphertext

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100

s
iz

e
 i
n

 K
b

y
te

s

Number of policy attributes (N)

Ciphertext

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

T
im

e
 i
n

 s
e

c
o

n
d

s

Number of policy leaves (N)

Intel
ARM

Outsourcing Keygen (Time) Transform (Time) Final Decryption (Time)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100

T
im

e
 i
n

 s
e

c
o

n
d

s

Number of key attributes (N)

Intel
ARM

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 20 40 60 80 100

T
im

e
 i
n

 s
e

c
o

n
d

s

Number of key attributes (N)

Intel

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 20 40 60 80 100

T
im

e
 i
n

 s
e

c
o

n
d

s

Number of key attributes (N)

Intel
ARM

Figure 8: Microbenchmark results for our CP-ABE scheme with outsourcing. Timing results are provided for both
Intel and ARM platforms. Key generation times represent the time to convert a standard ABE decryption key into
an outsourcing key, using the “backwards-compatible” approach described in Section 3.1. “Final decryption” refers
to the decryption of a partially-decrypted ciphertext. Note that we present the Transform timing results for the Intel
platform only, since we view this as the more likely outsourcing platform. Intel (resp. ARM) timings represent the
average of 100 (resp. 30) test iterations.

ARM processor required nearly 30 seconds of sustained
computation. Even at lower policy complexities, our re-
sults seem problematic for implementers looking to de-
ploy unassisted ABE on limited computing devices.

Outsourcing substantially reduced both ciphertext size
and the time needed to decrypt the partially-decrypted ci-
phertext. Each partially-decrypted ciphertext was a fixed
188 bytes in size, regardless of the original ciphertext’s
CP-ABE policy. Furthermore, the final decryption pro-
cess required only 4ms on the Intel processor and a man-
ageable 60ms on ARM.17 Thus, it appears that outsourc-
ing can provide a noticeable decryption time advantage
for ciphertexts with 10 or more attributes.

Other Implementation Remarks. There are several opti-
mizations and tradeoffs one might explore that could im-
pact both the performance of the existing ABE scheme
and our outsourced scheme. We chose to use the PBC
library due to its use in the libfenc system and its simple
API. However, PBC does not include all of the latest op-
timizations discussed in the research literature. Other fu-
ture optimizations could include the use of multi-pairings
for decryption. We emphasize that while using such op-

17We conducted our experiments on the CPA-secure version of our
scheme. The primary performance differences in the RCCA version
are an extra exponentiation in GT and some additional bytes.

timizations to the existing ABE systems could give some
performance improvements, they will not improve the
size of ABE ciphertexts. Furthermore, decryption time
will still be linear in the size of the satisfied formula,
whereas our outsourcing technique transforms the final
decryption step to a short El-Gamal-type ciphertext.

A note on policy complexity. The reader might assume
that 50- or 100-component policies are rare in practice.
In fact, we observed that it is relatively easy to arrive
at highly complex policies in typical use cases. This is
particularly true when using policies that contain integer
comparison operators, e.g., “AGE < 30”. The libfenc li-
brary implements integer comparison operators using the
technique of Bethencourt et al. [7]: prior to encryption,
each comparison operator is converted into a boolean
policy circuit composed of OR and AND gates, and the
resulting policy is applied to the ciphertext. Comparing
an attribute to a fixed n-bit integer adds approximately
n components to the policy. For example, without spe-
cial optimizations, a restriction window involving a Unix
time value (x < KEY CREATION TIME < y) increases
the policy size by approximately 64 components.

Operation local-only local+web proxy proxy+web
(sec) (sec/kb) (sec/kb) (sec/kb)

New proxy instantiation · · 93.4 sec 93.4 sec
Restart existing proxy instance · · 45 sec 45 sec
Generate & set 70-element transform key · · 2.9 sec 2.9 sec
Decryption:

((DOCTOR OR NURSE) AND INSTITUTION) 1.1s 1.2s/1.1k .2s/1.4k .2s/0.4k
(DOCTOR AND TIME > 1262325600 AND TIME < 1267423200) 17.3s 17.3s/22.8k 1.2s/23.2k 1.2s/0.4k

Figure 9: Some average performance results for the proxy-enhanced iHealthEHR application running on our iPhone
3G. From left to right, “local-only” indicates device-local decryption and storage of ciphertexts, “local+web” indicates
that ciphertexts were downloaded from a web server and decrypted at the device. “proxy” indicates local ciphertext
storage with proxy outsourcing. “proxy+web” indicates that ciphertexts were obtained from the web via the proxy.
Where relevant we provide both timings and total bandwidth transferred (up+down) from the device. Note that proxy
launch times exhibit some variability depending on factors outside of our control.

6.2 Performance: Mobile Example
To validate our ideas in a real application, we incorpo-
rated outsourcing into the iPhone viewer component of
iHealthEHR [3], an experimental system for distributing
Electronic Health Records (EHRs). Since EHRs can con-
tain highly sensitive data, iHealthEHR uses CP-ABE to
perform end-to-end encryption of records from the orig-
ination point to the viewing device. Distinct ciphertext
policies may be applied to each node in an individual’s
health record (e.g., to admit special permissions for psy-
chiatric records). iHealthEHR supports both local and
cloud-based storage of records.

We modified the iPhone application to remotely
instantiate our outsourcing proxy on startup, using
a “small” server instance within Amazon’s storage
cloud.18 In our experiments we found that the first EC2
instantiation required anywhere from 1-3 minutes, pre-
sumably depending on the system’s load. However, once
the proxy was launched, it could be left running indefi-
nitely and shared by many different users with different
TKs, or — when not in use — paused and brought back
to full operation in as little as 30 seconds (with an av-
erage closer to 45 seconds). During this startup interval
we set the application to locally process all decryption
operations. Once the proxy signaled its availability, the
application pushed a TK to it via HTTP, and outsourced
all further decryption operations.

To evaluate the performance implications, we con-
ducted experiments on the system with outsourcing en-
abled and disabled, considering four likely usage sce-
narios. In the first scenario (local-only), we conducted
device-local decryption on ciphertexts stored locally in
the device’s Flash memory. In the second scenario (lo-
cal+web) we downloaded ciphertexts from a web server,

18According to Amazon’s documentation, a small EC2 instance pro-
vides “the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or
2007 Xeon processor” and 1.7GB of RAM, at a cost of USD $0.085/hr.
[1].

then decrypted them locally at the device. In the third
scenario (proxy), we stored ciphertexts locally and then
uploaded them to the proxy for transformation. In the
final scenario (proxy+web) ciphertexts were retrieved
from a web server by the proxy, then Transformed be-
fore being sent to the device. In each case we measured
the time required to decrypt, along with the total band-
width transmitted and received by the device (excepting
the local-only case, which did not employ the network
connection). The results are summarized in Figure 9.

7 Hardening ABE Implementations

Thus far we described outsourcing solely as a means to
improve decryption performance. In certain cases out-
sourcing can also be used to enhance security. By way
of motivation, we observe that ABE implementations
tend to be relatively complex compared to implementa-
tions of other public-key encryption schemes. For ex-
ample, libfenc’s policy handling components alone com-
prise nearly 3,000 lines of C code, excluding library de-
pendencies. It has been observed that the number of vul-
nerabilities in a software product tends to increase in pro-
portion to the code’s complexity [34].

It is common for designers to mitigate software issues
by sandboxing vulnerable processes e.g., [33], or through
techniques that isolate security-sensitive functions within
a process [32]. McCune et al. recently proposed TrustVi-
sor [31], a specialized hypervisor designed to protect and
isolate security-sensitive “Pieces of Application Logic”
(PALs) from less sensitive code.

We propose outsourcing as a tool to harden ABE im-
plementations in platforms with code isolation. For ex-
ample, in a system equipped with TrustVisor, imple-
menters can embed the relatively simple key generation
and Decryptout routines in security-sensitive code (e.g.,
a TrustVisor PAL) and use outsourcing to push the re-
maining calculations into non-sensitive code. This not

only reduces the size of the sensitive code base, it also
simplifies parameter validation for the PAL (since the
partially-decrypted ABE ciphertext is substantially less
complex than the original). We refer to this technique
as “self-outsourcing” and note that it can also be used
in systems containing hardware security modules (e.g.,
cryptographic smart cards). Moreover, based on our ex-
periments of Section 6, we estimate that this approach
will have a minimal impact on performance.

Acknowledgments

We thank the anonymous reviewers for their helpful
comments.

References

[1] Amazon EC2 FAQs. http://aws.amazon.com/
ec2/faqs/, November 2010.

[2] Michel Abdalla, Mihir Bellare, Dario Catalano,
Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John
Malone-Lee, Gregory Neven, Pascal Paillier, and
Haixia Shi. Searchable encryption revisited: Con-
sistency properties, relation to anonymous ibe, and
extensions. In CRYPTO, pages 205–222, 2005.

[3] Joseph A. Akinyele, Christoph U. Lehmann,
Matthew Green, Matthew W. Pagano, Zachary N. J.
Peterson, and Aviel D. Rubin. Self-protecting
electronic medical records using Attribute-Based
Encryption. Cryptology ePrint Archive, Report
2010/565, 2010. Available from http://eprint.
iacr.org/.

[4] Giuseppe Ateniese, Kevin Fu, Matthew Green, and
Susan Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed
storage. In NDSS, pages 29–43, 2005.

[5] Amos Beimel. Secure Schemes for Secret Sharing
and Key Distribution. PhD thesis, Israel Institute of
Technology, Technion, Haifa, Israel, 1996.

[6] John Bethencourt. Ciphertext-policy attribute-
based encryption library. Available from http:
//acsc.cs.utexas.edu/cpabe, May 2010.

[7] John Bethencourt, Amit Sahai, and Brent Waters.
Ciphertext-policy attribute-based encryption. In
IEEE Symposium on Security and Privacy, pages
321–334, 2007.

[8] Matt Blaze, Gerrit Bleumer, and Martin Strauss.
Divertible protocols and atomic proxy cryptogra-
phy. In EUROCRYPT, pages 127–144, 1998.

[9] Dan Boneh and Xavier Boyen. Efficient selective-
id secure identity-based encryption without random
oracles. In EUROCRYPT, pages 223–238, 2004.

[10] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostro-
vsky, and Giuseppe Persiano. Public key encryp-
tion with keyword search. In EUROCRYPT, pages
506–522, 2004.

[11] Dan Boneh, Amit Sahai, and Brent Waters. Func-
tional encryption: Definitions and challenges. In
TCC, pages 253–273, 2011.

[12] Dan Boneh and Brent Waters. Conjunctive, subset,
and range queries on encrypted data. In TCC, pages
535–554, 2007.

[13] Ran Canetti, Hugo Krawczyk, and Jesper Buus
Nielsen. Relaxing chosen-ciphertext security. In
CRYPTO, pages 565–582, 2003.

[14] Melissa Chase. Multi-authority attribute based en-
cryption. In TCC, pages 515–534, 2007.

[15] Melissa Chase and Sherman S. M. Chow. Im-
proving privacy and security in multi-authority
attribute-based encryption. In ACM Conference
on Computer and Communications Security, pages
121–130, 2009.

[16] Benoı̂t Chevallier-Mames, Jean-Sébastien Coron,
Noel McCullagh, David Naccache, and Michael
Scott. Secure delegation of elliptic-curve pairing.
In CARDIS, pages 24–35, 2010.

[17] Kai-Min Chung, Yael Kalai, and Salil P. Vadhan.
Improved delegation of computation using fully ho-
momorphic encryption. In CRYPTO, pages 483–
501, 2010.

[18] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure
integration of asymmetric and symmetric encryp-
tion schemes. In CRYPTO ’99, volume 1666, pages
537–554, 1999.

[19] Taher El Gamal. A public key cryptosystem and a
signature scheme based on discrete logarithms. In
CRYPTO, pages 10–18, 1984.

[20] Rosario Gennaro, Craig Gentry, and Bryan Parno.
Non-interactive verifiable computing: Outsourcing
computation to untrusted workers. In CRYPTO,
pages 465–482, 2010.

[21] Craig Gentry. Fully homomorphic encryption using
ideal lattices. In STOC, pages 169–178, 2009.

[22] Craig Gentry and Shai Halevi. Implementing Gen-
try’s fully-homomorphic encryption scheme. In
EUROCRYPT, pages 129–148, 2011.

[23] Vipul Goyal, Abishek Jain, Omkant Pandey, and
Amit Sahai. Bounded ciphertext policy attribute-
based encryption. In ICALP, pages 579–591, 2008.

[24] Vipul Goyal, Omkant Pandey, Amit Sahai, and
Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In ACM
Conference on Computer and Communications Se-
curity, pages 89–98, 2006.

[25] Matthew Green, Ayo Akinyele, and Michael
Rushanan. libfenc: The Functional Encryption
Library. Available from http://code.google.
com/p/libfenc.

[26] Matthew Green, Susan Hohenberger, and Brent
Waters. Outsourcing the decryption of ABE cipher-
texts, 2011. The full version of this paper is avail-
able from the Cryptology ePrint Archive.

[27] Jonathan Katz, Amit Sahai, and Brent Waters.
Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In EURO-
CRYPT, pages 146–162, 2008.

[28] Allison Lewko, Tatsuaki Okamoto, Amit Sahai,
Katsuyuki Takashima, and Brent Waters. Fully
secure functional encryption: Attribute-based en-
cryption and (hierarchical) inner product encryp-
tion. In EUROCRYPT, pages 62–91, 2010.

[29] Allison Lewko, Yannis Rouselakis, and Brent Wa-
ters. Achieving leakage resilience through dual sys-
tem encryption. In TCC, pages 70–88, 2011.

[30] Ben Lynn. The Stanford Pairing Based Crypto
Library. Available from http://crypto.
stanford.edu/pbc.

[31] Jonathan M. McCune, Yanlin Li, Ning Qu, Zong-
wei Zhou, Anupam Datta, Virgil D. Gligor, and
Adrian Perrig. TrustVisor: Efficient TCB Reduc-
tion and Attestation. In IEEE Symposium on Secu-
rity and Privacy, pages 143–158, May 2010.

[32] Jonathan M. McCune, Bryan Parno, Adrian Perrig,
Michael K. Reiter, and Arvind Seshadri. Minimal
tcb code execution (extended abstract). In IEEE
Symposium on Security and Privacy, pages 267–
272, 2007.

[33] Elinor Mills. Chrome OS security: ’Sandboxing’
and auto updates. eWeek., 2009.

[34] Subhas C. Misra and Virendra C. Bhavsar. Rela-
tionships between selected software measures and
latent bug-density: guidelines for improving qual-
ity. In ICCSA’03, pages 724–732, 2003.

[35] Tatsuaki Okamoto and Katsuyuki Takashima. Fully
secure functional encryption with general relations
from the decisional linear assumption. In CRYPTO,
pages 191–208, 2010.

[36] Rafail Ostrovsky, Amit Sahai, and Brent Waters.
Attribute-based encryption with non-monotonic ac-
cess structures. In ACM Conference on Com-
puter and Communications Security, pages 195–
203, 2007.

[37] Matthew Pirretti, Patrick Traynor, Patrick Mc-
Daniel, and Brent Waters. Secure attribute-based
systems. In ACM Conference on Computer and
Communications Security, pages 99–112, 2006.

[38] Amit Sahai and Brent Waters. Fuzzy identity-
based encryption. In EUROCRYPT, pages 457–
473, 2005.

[39] Elaine Shi, John Bethencourt, Hubert T.-H. Chan,
Dawn Xiaodong Song, and Adrian Perrig. Multi-
dimensional range query over encrypted data. In
IEEE Symposium on Security and Privacy, pages
350–364, 2007.

[40] The OpenSSL Project v1.0. OpenSSL: The open
source toolkit for SSL/TLS. www.openssl.org,
April 2010.

[41] Brent Waters. Dual system encryption: Realizing
fully secure IBE and HIBE under simple assump-
tions. In CRYPTO, pages 619–636, 2009.

[42] Brent Waters. Ciphertext-policy attribute-based en-
cryption: An expressive, efficient, and provably se-
cure realization. In PKC, pages 53–70, 2011.

A Proof of Theorem 3.2

Proof. Suppose there exists a polynomial-time adversary
A that can attack our scheme in the selective RCCA-
security model for outsourcing with advantage ε . We
build a simulator B that can attack the Waters scheme
of [42, Appendix C] in the selective CPA-security model
with advantage ε minus a negligible amount. In [42] the
Waters scheme is proven secure under the decisional q-
parallel BDHE assumption.
Init. The simulator B runs A . A chooses the chal-
lenge access structure (M∗,ρ∗), which B passes on to
the Waters challenger as the structure on which it wishes
to be challenged.

Setup. The simulator B obtains the Waters public
parameters PK = g,e(g,g)α ,ga and a description of the
hash function F . It sends these to A as the public pa-
rameters.

Phase 1. The simulator B initializes empty tables
T,T1,T2, an empty set D and an integer j = 0. It answers
the adversary’s queries as follows:

• Random Oracle Hash H1(R,M): If there is an en-
try (R,M ,s) in T1, return s. Otherwise, choose a
random s ∈ Zp, record (R,M ,s) in T1 and return s.
• Random Oracle Hash H2(R): If there is an entry

(R,r) in T2, return r. Otherwise, choose a random
r ∈ {0,1}k, record (R,r) in T2 and return r.
• Create((S)): B sets j := j +1. It now proceeds one

of two ways.

– If S satisfies (M∗,ρ∗), then it chooses a “fake”
transformation key as follows: choose a ran-
dom d ∈ Zp and run KeyGen((d,PK),S) to
obtain SK′. Set TK = SK′ and set SK =
(d,TK). Note that the pair (d,TK) is not well-
formed, but that TK is properly distributed if d
was replaced by the unknown value z = α/d.

– Otherwise, it calls the Waters key genera-
tion oracle on S to obtain the key SK′ =
(PK,K′,L′,{K′x}x∈S). (Recall that in the
non-outsourcing CP-ABE game, the Create
and Corrupt functionalities are combined in
one oracle.) The algorithm chooses a ran-
dom value z ∈ Zp and sets the transfor-
mation key TK as (PK, K = K′1/z,L =
L′1/z, {Kx}x∈S = {K′1/z

x }x∈S) and the private
key as (z,TK).

Finally, store (j,S,SK,TK) in table T and return TK
to A .
• Corrupt(i): A cannot ask to corrupt any key cor-

responding to the challenge structure (M∗,ρ∗). If
there exists an ith entry in table T , then B obtains
the entry (i,S,SK,TK) and sets D := D∪ {S}. It
then returns SK to A , or ⊥ if no such entry exists.

• Decrypt(i,CT): Without loss of generality, we as-
sume that all ciphertexts input to this oracle are al-
ready partially decrypted. Recall that both B and
A have access to the TK values for all keys created,
so either can execute the transformation operation.
Let CT = (C0,C1,C2) be associated with structure
(M,ρ). Obtain the record (i,S,SK,TK) from table
T . If it is not there or S 6∈ (M,ρ), return ⊥ to A .
If key i does not satisfy the challenge structure
(M∗,ρ∗), proceed as follows:

1. Parse SK = (z,TK). Compute R = C0/Cz
2.

2. Obtain the records (R,Mi,si) from table T1. If
none exist, return ⊥ to A .

3. If in this set, there exists indices y 6= x such
that (R,My,sy) and (R,Mx,sx) are in table T1,
My 6= Mx and sy = sx, then B aborts the sim-
ulation.

4. Otherwise, obtain the record (R,r) from table
T2. If it does not exist, B outputs ⊥.

5. For each i, test if C0 = R ·e(g,g)αsi , C1 = Mi⊕
r and C2 = e(g,g)αsi/z.

6. If there is an i that passes the above test, output
the message Mi; otherwise, output ⊥. (Note:
at most one value of si, and thereby one index
i, can satisfy the third check of the above test.)

If key i does satisfy the challenge structure
(M∗,ρ∗), proceed as follows:

1. Parse SK = (d,TK). Compute β = C1/d
2 .

2. For each record (Ri,Mi,si) in table T1, test if
β = e(g,g)si .

3. If zero matches are found, B outputs ⊥ to A .
4. If more than one matches are found, B aborts

the simulation.
5. Otherwise, let (R,M ,s) be the sole match.

Obtain the record (R,r) from table T2. If it
does not exist, B outputs ⊥.

6. Test if C0 = R ·e(g,g)αs, C1 = M ⊕r and C2 =
e(g,g)ds.

7. If all tests pass, output M ; else, output ⊥.

Challenge. Eventually, A submits a message pair
(M ∗

0 ,M ∗
1) ∈ {0,1}2×k. B acts as follows:

1. B chooses random “messages” (R0,R1) ∈G2
T and

passes them on to the Waters challenger to obtain a
ciphertext CT = (C,C′,{Ci}i∈[1,`]) under (M∗,ρ∗).

2. B chooses a random value C′′ ∈ {0,1}k.
3. B sends to A the challenge ciphertext CT∗ =

(C,C′,C′′,{Ci}i∈[1,`]).

Phase 2. The simulator B continues to answer queries
as in Phase 1, except that if the response to a Decrypt
query would be either M ∗

0 or M ∗
1 , then B responds with

the message test instead.

Guess. Eventually, A must either output a bit or abort,
either way B ignores it. Next, B searches through tables
T1 and T2 to see if the values R0 or R1 appear as the
first element of any entry (i.e., that A issued a query of
the form H1(Ri, ·) or H2(Ri).) If neither or both values
appear, B outputs a random bit as its guess. If only value
Rb appears, then B outputs b as its guess.

This ends the description of the simulation. Due to space
limitations, our analysis of this simulation appears in the
full version of this work [26].

�

