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Abstract

Fill-in-the-bubble forms are widely used for surveys,
election ballots, and standardized tests. In these and
other scenarios, use of the forms comes with an implicit
assumption that individuals’ bubble markings them-
selves are not identifying. This work challenges this
assumption, demonstrating that fill-in-the-bubble forms
could convey a respondent’s identity even in the absence
of explicit identifying information. We develop methods
to capture the unique features of a marked bubble and
use machine learning to isolate characteristics indicative
of its creator. Using surveys from more than ninety indi-
viduals, we apply these techniques and successfully re-
identify individuals from markings alone with over 50%
accuracy. This bubble-based analysis can have either
positive or negative implications depending on the ap-
plication. Potential applications range from detection of
cheating on standardized tests to attacks on the secrecy
of election ballots. To protect against negative conse-
quences, we discuss mitigation techniques to remove a
bubble’s identifying characteristics. We suggest addi-
tional tests using longitudinal data and larger datasets
to further explore the potential of our approach in real-
world applications.

1 Introduction

Scantron-style fill-in-the-bubble forms are a popular
means of obtaining human responses to multiple-choice
questions. Whether conducting surveys, academic tests,
or elections, these forms allow straightforward user com-
pletion and fast, accurate machine input. Although not
every use of bubble forms demands anonymity, common
perception suggests that bubble completion does not re-
sult in distinctive marks. We demonstrate that this as-
sumption is false under certain scenarios, enabling use
of these markings as a biometric. The ability to uncover
identifying bubble marking patterns has far-reaching po-

tential implications, from detecting cheating on standard-
ized tests to threatening the anonymity of election bal-
lots.

Bubble forms are widely used in scenarios where con-
firming or protecting the identity of respondents is crit-
ical. Over 137 million registered voters in the United
States reside in precincts with optical scan voting ma-
chines [27], which traditionally use fill-in-the-bubble pa-
per ballots. Voter privacy (and certain forms of fraud)
relies on an inability to connect voters with these bal-
lots. Surveys for research and other purposes use bub-
ble forms to automate data collection. The anonymity
of survey subjects not only affects subject honesty but
also impacts requirements governing human subjects re-
search [26]. Over 1.6 million members of the high school
class of 2010 completed the SAT [8], one of many large-
scale standardized tests using bubble sheets. Educators,
testing services, and other stakeholders have incentives
to detect cheating on these tests. The implications of
our findings extend to any use of bubble forms for which
the ability to “fingerprint” respondents may have conse-
quences, positive or negative.

Our contributions. We develop techniques to extract
distinctive patterns from markings on completed bubble
forms. These patterns serve as a biometric for the form
respondent. To account for the limited characteristics
available from markings, we apply a novel combination
of image processing and machine learning techniques
to extract features and determine which are distinctive
(see Section 2). These features can enable discovery of
respondents’ identities or of connections between com-
pleted bubbles.

To evaluate our results on real-world data, we use a
corpus of over ninety answer sheets from an unrelated
survey of high school students (see Section 3). We train
on a subset of completed bubbles from each form, ef-
fectively extracting a biometric for the corresponding re-
spondent. After training, we obtain a test set of addi-
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Figure 1: Example marked bubbles. The background color is white in all examples except Figure 1(e), which is gray.

tional bubbles from each form and classify each test set.
For certain parameters, our algorithms’ top match is cor-
rect over 50% percent of the time, and the correct value
falls in the top 3 matches 75% percent of the time. In ad-
dition, we test our ability to detect when someone other
than the expected respondent completes a form, simulta-
neously achieving false positive and false negative rates
below 10%. We conduct limited additional tests to con-
firm our results and explore details available from bubble
markings.

Depending on the application, these techniques can
have positive or negative repercussions (see Section 4).
Analysis of answer sheets for standardized tests could
provide evidence of cheating by test-takers, proctors, or
other parties. Similarly, scrutiny of optical-scan bal-
lots could uncover evidence of ballot-box stuffing and
other forms of election fraud. With further improvements
in accuracy, the methods developed could even enable
new forms of authentication. Unfortunately, the tech-
niques could also undermine the secret ballot and anony-
mous surveys. For example, some jurisdictions publish
scanned images of ballots following elections, and em-
ployers could match these ballots against bubble-form
employment applications. Bubble markings serve as a
biometric even on forms and surveys otherwise contain-
ing no identifying information. We discuss methods for
minimizing the negative impact of this work while ex-
ploiting its positive uses (see Section 5).

Because our test data is somewhat limited, we dis-
cuss the value of future additional tests (see Section 7).
For example, longitudinal data would allow us to better
understand the stability of an individual’s distinguishing
features over time, and stability is critical for most uses
discussed in the previous paragraph.

2 Learning Distinctive Features

Filling in a bubble is a narrow, straightforward task.
Consequently, the space for inadvertent variation is rela-
tively constrained. The major characteristics of a filled-

in bubble are consistent across the image population—
most are relatively circular and dark in similar locations
with slight imperfections—resulting in a largely homo-
geneous set. See Figure 1. This creates a challenge in
capturing the unique qualities of each bubble and extrap-
olating a respondent’s identity from them.

We assume that all respondents start from the same
original state—an empty bubble with a number inscribed
corresponding to the answer choice (e.g., choices 1-5 in
Figure 1). When respondents fill in a bubble, opportuni-
ties for variation include the pressure applied to the draw-
ing instrument, the drawing motions employed, and the
care demonstrated in uniformly darkening the entire bub-
ble. In this work, we consider applications for which it
would be infeasible to monitor the exact position, pres-
sure, and velocity of pencil motions throughout the col-
oring process.1 In other contexts, such as signature ver-
ification, these details can be useful. This information
would only strengthen our results and would be helpful
to consider if performing bubble-based authentication, as
discussed in Section 4.

2.1 Generating a Bubble Feature Vector

Image recognition techniques often use feature vectors
to concisely represent the important characteristics of an
image. As applied to bubbles, a feature vector should
capture the unique ways that a mark differs from a per-
fectly completed bubble, focusing on characteristics that
tend to distinguish respondents. Because completed bub-
bles tend to be relatively homogeneous in shape, many
common metrics do not work well here. To measure the
unique qualities, we generate a feature vector that blends
several approaches from the image recognition literature.
Specifically, we use PCA, shape descriptors, and a cus-
tom bubble color distribution to generate a feature vector
for each image.

1Clarkson et al. [7] use multiple scans to infer the 3D surface texture
of paper, which may suggest details like pressure. We assume multiple
scans to be infeasible for our applications.
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Figure 2: An example bubble marking with an approx-
imating circle. The circle minimizes the sum of the
squared deviation from the radius. We calculate the
circle’s center and mean radius, the marking’s variance
from the radius, and the marking’s center of mass.

Principal Component Analysis (PCA) is one common
technique for generating a feature set to represent an im-
age [16]. At a high level, PCA reduces the dimensional-
ity of an image, generating a concise set of features that
are statistically independent from one another. PCA be-
gins with a sample set of representative images to gener-
ate a set of eigenvectors. In most of our experiments, the
representative set was comprised of 368 images and con-
tained at least one image for each (respondent, answer
choice) pair. Each representative image is normalized
and treated as a column in a matrix. PCA extracts a set
of eigenvectors from this matrix, forming a basis. We re-
tain the 100 eigenvectors with the highest weight. These
eigenvectors account for approximately 90% of the in-
formation contained in the representative images.

To generate the PCA segment of our feature vector,
a normalized input image (treated as a column vector)
is projected onto the basis defined by the 100 strongest
eigenvectors. The feature vector is the image’s coordi-
nates in this vector space—i.e., the weights on the eigen-
vectors. Because PCA is such a general technique, it may
fail to capture certain context-specific geometric charac-
teristics when working exclusively with marked bubbles.

To compensate for the limitations of PCA, we capture
shape details of each bubble using a set of geometric
descriptors and capture color variations using a custom
metric. Peura et al. [24] describe a diverse a set of ge-
ometric descriptors that measure statistics about various
shapes. This set includes a shape’s center of mass, the
center and radius of a circle approximating its shape, and
variance of the shape from the approximating circle’s ra-
dius (see Figure 2). The approximating circle minimizes
the sum of squared radius deviations. We apply the spec-
ified descriptors to capture properties of a marked bub-

Figure 3: Each dot is split into twenty-four 15° slices.
Adjacent slices are combined to form a sector, spanning
30°. The first few sectors are depicted here.

PCA Sector Shape Color Distribution
100 Features 368 Features 336 Features

804 Features

Figure 4: Feature vector components and their contribu-
tions to the final feature vector length.

ble’s boundary. Instead of generating these descriptors
for the full marked bubble alone, we also generate the
center of mass, mean radius, and radial variance for “sec-
tors” of the marked bubble. To form these sectors, we
first evenly divide each dot into twenty-four 15° “slices.”
Sectors are the 24 overlapping pairs of adjacent slices
(see Figure 3). Together, these geometric descriptors add
368 features.

Finally, we developed and use a simple custom metric
to represent color details. We divide a dot into sectors as
in the previous paragraph. For each sector, we create a
histogram of the grayscale values for the sector consist-
ing of fifteen buckets. We throw away the darkest bucket,
as these pixels often represent the black ink of the circle
border and answer choice numbering. Color distribution
therefore adds an additional 14 features for each sector,
or a total of 336 additional features.

The resulting feature vector consists of 804 features
that describe shape and color details for a dot and each
of its constituent sectors (see Figure 4). See Section 3.3,
where we evaluate the benefits of this combination of
features. Given feature vectors, we can apply machine
learning techniques to infer distinguishing details and
differentiate between individuals.

3



2.2 Identifying Distinguishing Features

Once a set of feature vectors are generated for the rele-
vant dots, we use machine learning to identify and utilize
the important features. Our analysis tools make heavy
use of Weka, a popular Java-based machine learning
workbench that provides a variety of pre-implemented
learning methods [12]. In all experiments, we used Weka
version 3.6.3.

We apply Weka’s implementation of the Sequential
Minimal Optimization (SMO) supervised learning al-
gorithm to infer distinctive features of respondents and
classify images. SMO is an efficient method for train-
ing support vector machines [25]. Weka can accept a
training dataset as input, use the training set and learn-
ing algorithm to create a model, and evaluate the model
on a test set. In classifying individual data points, Weka
internally generates a distribution over possible classes,
choosing the class with the highest weight. For us, this
distribution is useful in ranking the respondents believed
to be responsible for a dot. We built glue code to collect
and process both internal and exposed Weka data effi-
ciently.

3 Evaluation

To evaluate our methods, we obtained a corpus of 154
surveys distributed to high school students for research
unrelated to our study. Although each survey is ten
pages, the first page contained direct identifying infor-
mation and was removed prior to our access. Each of the
nine available pages contains approximately ten ques-
tions, and each question has five possible answers, se-
lected by completing round bubbles numbered 1-5 (as
shown in Figure 1).

From the corpus of surveys, we removed any com-
pleted in pen to avoid training on writing utensil or pen
color.2 Because answer choices are numbered, some risk
exists of training on answer choice rather than marking
patterns—e.g., respondent X tends to select bubbles with
“4” in the background. For readability, survey questions
alternate between a white background and a gray back-
ground. To avoid training bias, we included only surveys
containing at least five choices for each answer 1-4 on a
white background (except where stated otherwise), leav-
ing us with 92 surveys.

For the 92 surveys meeting our criteria, we scanned
the documents using an Epson v700 Scanner at 1200
DPI. We developed tools to automatically identify, ex-
tract, and label marked bubbles by question answered

2We note that respondents failing to use pencil or to complete the
survey anecdotally tended not to be cautious about filling in the bubbles
completely. Therefore, these respondents may be more distinguishable
than those whose surveys were included in our experiment.

and choice selected. After running these tools on the
scanned images, we manually inspected the resulting im-
ages to ensure accurate extraction and labeling.

Due to the criteria that we imposed on the surveys,
each survey considered has at least twenty marked bub-
bles on a white background, with five bubbles for the “1”
answer, five for the “2” answer, five for the “3” answer,
and five for the “4” answer.3 For each experiment, we
selected our training and test sets randomly from this set
of twenty bubbles, ensuring that sets have equal numbers
of “1,” “2,” “3,” and “4” bubbles for each respondent and
trying to balance the number of bubbles for each answer
choice when possible.

In all experiments, a random subset of the training set
was selected and used to generate eigenvectors for PCA.
We required that this subset contain at least one exam-
ple from each respondent for each of the four relevant
answer choices but placed no additional constraints on
selection. For each dot in the training and test sets, we
generated a feature vector using PCA, geometric descrip-
tors, and color distribution, as described in Section 2.1.

We conducted two primary experiments and a number
of complementary experiments. The first major test ex-
plores our ability to re-identify a respondent from a test
set of eight marks given a training set of twelve marks per
respondent. The second evaluates our ability to detect
when someone other than the official respondent com-
pletes a bubble form. To investigate the potential of
bubble markings and confirm our results, we conducted
seven additional experiments. We repeated each experi-
ment ten times and report the average of these runs.

Recall from Section 2.2 that we can rank the respon-
dents based on how strongly we believe each one to be
responsible for a dot. For example, the respondent that
created a dot could be the first choice or fiftieth choice
of our algorithms. A number of our graphs effectively
plot a cumulative distribution showing the percent of test
cases for which the true corresponding respondent falls
at or above a certain rank—e.g., for 75% of respondents
in the test set, the respondent’s true identity is in the top
three guesses.

3.1 Respondent Re-Identification

This experiment measured the ability to re-identify in-
dividuals from their bubble marking patterns. For this
test, we trained our model using twelve sample bubbles
per respondent, including three bubbles for each answer
choice 1-4. Our test set for each respondent contained
the remaining two bubbles for each answer choice, for a
total of eight test bubbles. We applied the trained model

3To keep a relatively large number of surveys, we did not consider
the number of “5” answers and do not use these answers in our analysis.
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Figure 5: Respondent re-identification with 12 training
bubbles and 8 test bubbles per respondent.

to each of the 92 respondents’ test sets and determined
whether the predicted identity was correct.

To use multiple marks per respondent in the test set,
we classify the marks individually, yielding a distribu-
tion over the respondents for each mark in the set. After
obtaining the distribution for each test bubble in a group,
we combine this data by averaging the values for each
respondent. Our algorithms then order the respondents
from highest to lowest average confidence, with highest
confidence corresponding to the top choice.

On average, our algorithm’s first guess identified the
correct respondent with 51.1% accuracy. The correct re-
spondent fell in the top three guesses 75.0% of the time
and in the top ten guesses 92.4% of the time. See Fig-
ure 5, which shows the percentage of test bubbles for
which the correct respondent fell at or above each pos-
sible rank. This initial result suggests that individuals
complete bubbles in a highly distinguishing manner, al-
lowing re-identification with surprisingly high accuracy.

3.2 Detecting Unauthorized Respondents

One possible application of this technique is to detect
when someone other than the authorized respondent cre-
ates a set of bubbles. For example, another person might
take a test or survey in place of an authorized respondent.
We examined our ability to detect these cases by mea-
suring how often our algorithm would correctly detect a
fraudulent respondent who has claimed to be another re-
spondent. We trained our model using twelve training
samples from each respondent and examined the output
of our model when presented with eight test bubbles. The
distribution of these sets is the same as in Section 3.1.

For these tests, we set a threshold for the lowest rank
accepted as the respondent. For example, suppose that
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Figure 6: False positive and false negative rates when
detecting unauthorized respondents.

the threshold is 12. To determine whether a given set of
test bubbles would be accepted for a given respondent,
we apply our trained model to the test set. If the respon-
dent’s identity appears in any of the top 12 (of 92) posi-
tions in the ranked list of respondents, that test set would
be accepted for the respondent. For each respondent, we
apply the trained model both to the respondent’s own test
bubbles and to the 91 other respondents’ test bubbles.

We used two metrics to assess the performance of our
algorithms in this scenario. The first, false positive rate,
measures the probability that a given respondent would
be rejected (labeled a cheater) for bubbles that the re-
spondent actually completed. The second metric, false
negative rate, measures the probability that bubbles com-
pleted by any of the 91 other respondents would be ac-
cepted as the true respondent’s. We varied the threshold
from 1 to 92 for our tests. We expected the relationship
between threshold and false negative rate to be roughly
linear: increasing the threshold by 1 increases the proba-
bility that a respondent randomly falls above the thresh-
old for another respondent’s test set by roughly 1/92.4

Our results are presented in Figure 6. As we increase
the threshold, the false positive rate drops precipitously
while the false negative rate increases roughly linearly.
If we increase the threshold to 8, then a fraudulent re-
spondent has a 7.8% chance of avoiding detection (by
being classified as the true respondent), while the true
respondent has a 9.9% chance of being mislabeled a
cheater. These error rates intersect with a threshold ap-
proximately equal to 9, where the false positive and false
negative rates are 8.8%.

4This is not exact because the order of these rankings is not entirely
random. After all, we seek to rank a respondent as highly as possible
for the respondent’s own test set.
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Figure 7: Respondent re-identification accuracy using
lower-resolution images. Note that the 1200, 600, 300,
and 150 DPI lines almost entirely overlap.

3.3 Additional Experiments

To study the information conveyed by bubble markings
and support our results, we performed seven comple-
mentary experiments. In the first, we evaluate the ef-
fect that scanner resolution has on re-identification ac-
curacy. Next, we considered our ability to re-identify a
respondent from a single test mark given a training set
containing a single training mark from each respondent.
Because bubble forms typically contain multiple mark-
ings, this experiment is somewhat artificial, but it hints
at the information available from a single dot. The third
and fourth supplemental experiments explored the ben-
efits of increasing the training and test set sizes respec-
tively while holding the other set to a single bubble. In
the fifth test, we examined the tradeoff between training
and test set sizes. The final two experiments validated
our results using additional gray bubbles from the sam-
ple surveys and demonstrated the benefits of our feature
set over PCA alone. As with the primary experiments,
we repeated each experiment ten times.

Effect of resolution on accuracy. In practice, high-
resolution scans of bubble forms may not be available,
but access to lower resolution scans may be feasible. To
determine the impact of resolution on re-identification
accuracy, we down-sampled each ballot from the orig-
inal 1200 DPI to 600, 300, 150, and 48 DPI. We then
repeated the re-identification experiment of Section 3.1
on bubbles at each resolution.

Figure 7 shows that decreasing the image resolution
has little impact on performance for resolutions above
150 DPI. At 150 DPI, the accuracy of our algorithm’s
first guess decreases to 45.1% from the 51.1% accu-
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Figure 8: One marked bubble per respondent in each of
the training and test sets. The expected value from ran-
dom guessing is provided as reference.

racy observed at 1200 DPI. Accuracy remains relatively
strong even at 48 DPI, with the first guess correct 36.4%
of the time and the correct respondent falling in the top
ten guesses 86.8% of the time. While down-sampling
may not perfectly replicate scanning at a lower resolu-
tion, these results suggest that strong accuracy remains
feasible even at resolutions for which printed text is dif-
ficult to read.

Single bubble re-identification. This experiment
measured the ability to re-identify an individual using a
single marked bubble in the test set and a single example
per respondent in the training set. This is a worst-case
scenario, as bubble forms typically contain multiple
markings. We extracted two bubbles from each survey
and trained a model using the first bubble.5 We then
applied the trained model to each of the 92 second
bubbles and determined whether the predicted identity
was correct. Under these constrained circumstances, an
accuracy rate above that of random guessing (approxi-
mately 1%) would suggest that marked bubbles embed
distinguishing features.

On average, our algorithm’s first guess identified the
correct respondent with 5.3% accuracy, five times better
than the expected value for random guessing. See Fig-
ure 8, which shows the percentage of test bubbles for
which the correct respondent fell at or above each pos-
sible rank. The correct respondent was in the top ten
guesses 31.4% of the time. This result suggests that indi-
viduals can inadvertently convey information about their

5Note: In this experiment, we removed the restriction that the set
of images used to generate eigenvectors for PCA contains an example
from each column.
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Figure 9: Increasing the training set size from 1 to 19
dots per respondent.

identities from even a single completed bubble.

Increasing training set size. In practice, respondents
rarely fill out a single bubble on a form, and no two
marked bubbles will be exactly the same. By training
on multiple bubbles, we can isolate patterns that are con-
sistent and distinguishing for a respondent from ones that
are largely random. This experiment sought to verify this
intuition by confirming that an increase in the number of
training samples per respondent increases accuracy. We
held our test set at a single bubble for each respondent
and varied the training set size from 1 to 19 bubbles per
respondent (recall that we have twenty total bubbles per
respondent).

Figure 9 shows the impact various training set sizes
had on whether the correct respondent was the top guess
or fell in the top 3, 5, or 10 guesses. Given nineteen train-
ing dots and a single test dot, our first guess was correct
21.8% of the time. The graph demonstrates that a greater
number of training examples tends to result in more ac-
curate predictions, even with a single-dot test set. For the
nineteen training dots case, the correct respondent was
in the top 3 guesses 40.8% of the time and the top 10
guesses 64.5% of the time.

Increasing test set size. This experiment is similar to
the previous experiment, but we instead held the training
set at a single bubble per respondent and varied the test
set size from 1 to 19 bubbles per respondent. Intuitively,
increasing the number of examples per respondent in the
test set helps ensure that our algorithms guess based on
consistent features—even if the training set is a single
noisy bubble.

Figure 10 shows the impact of various test set sizes
on whether the correct respondent was the top guess or
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Figure 10: Increasing the test set size from 1 to 19 dots
per respondent.

fell in the top 3, 5, or 10 guesses. We see more grad-
ual improvements when increasing the test set size than
observed when increasing training set size in the previ-
ous test. From one to nineteen test bubbles per respon-
dent, the accuracy of our top 3 and 5 guesses increases
relatively linearly with test set size, yielding maximum
improvements of 4.3% and 7.6% respectively. For the
top-guess case, accuracy increases with test set size from
5.3% at one bubble per respondent to 8.1% at eight bub-
bles then roughly plateaus. Similarly, the top 10 guesses
case plateaus near ten bubbles and has a maximum im-
provement of 8.0%. Starting from equivalent sizes, the
marginal returns from increasing the training set size
generally exceed those seen as test set size increases.
Next, we explore the tradeoff between both set sizes
given a fixed total of twenty bubbles per respondent.

Training-test set size tradeoff. Because we have a
constraint of twenty bubbles per sample respondent, the
combined total size of our training and test sets per re-
spondent is limited to twenty. This experiment examined
the tradeoff between the sizes of these sets. For each
value of x from 1 to 19, we set the size of the training
set per respondent to x and the test set size to 20− x. In
some scenarios, a person analyzing bubbles would have
far larger training and test sets than in this experiment.
Fortunately, having more bubbles would not harm per-
formance: an analyst could always choose a subsample
of the bubbles if it did. Therefore, our results provide a
lower bound for these scenarios.

Figure 11 shows how varying training/test set sizes af-
fected whether the correct respondent was the top guess
or fell in the top 3, 5, or 10 guesses. As the graph demon-
strates, the optimal tradeoff was achieved with roughly
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Figure 11: Trade-off between training and test set sizes.

Figure 12: This respondent tends to have a circular pat-
tern with a flourish stroke at the end. The gray back-
ground makes the flourish stroke harder to detect.

twelve bubbles per respondent in the training set and
eight bubbles per respondent in the test set.

Validation with gray bubbles. To further validate our
methods, we tested the accuracy of our algorithms with a
set of bubbles that we previously excluded: bubbles with
gray backgrounds. These bubbles pose a significant chal-
lenge as the paper has both a grayish hue and a regular
pattern of darker spots. This not only makes it harder to
distinguish between gray pencil lead and the paper back-
ground but also limits differences in color distribution
between users. See Figure 12.

As before, we selected surveys by locating ones with
five completed (gray) bubbles for each answer choice,
1-4, yielding 97 surveys. We use twelve bubbles per re-
spondent in the training set and eight bubbles in the test
set, and we apply the same algorithms and parameters for
this test as the test in Section 3.1 on a white background.

Figure 13 shows the percentage of test cases for which
the correct respondent fell at or above each possible
rank. Our first guess is correct 42.3% of the time, with
the correct respondent falling in the top 3, 5, and 10
guesses 62.1%, 75.8%, and 90.0% of the time respec-
tively. While slightly weaker than the results on a white
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Figure 13: Using the unmodified algorithm with the
same configuration as in Figure 5 on dots with gray back-
grounds, we see only a mild decrease in accuracy.
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Figure 14: Performance with various combinations of
features.

background for reasons specified above, this experiment
suggests that our strong results are not simply a byprod-
uct of our initial dataset.

Feature vector options. As discussed in Section 2.1,
our feature vectors combine PCA data, shape descrip-
tors, and a custom color distribution to compensate for
the limited data available from bubble markings. We
tested the performance of our algorithms for equivalent
parameters with PCA alone and with all three features
combined. This test ran under the same setup as Figure 5
in Section 3.1.

For both PCA and the full feature set, Figure 14 shows
the percentage of test cases for which the correct respon-
dent fell at or above each possible rank. The additional
features improve the accuracy of our algorithm’s first
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(a) Person A (b) Person B

Figure 15: Bubbles from respondents often mistaken for
each other. Both respondents use superficially similar
techniques, leaving unmarked space in similar locations.

guess from 39.0% to 51.1% and the accuracy of the top
ten guesses from 87.2% to 92.4%.

3.4 Discussion
Although our accuracy exceeds 50% for respondent re-
identification, the restrictive nature of marking a bubble
limits the distinguishability between users. We briefly
consider a challenging case here.

Figure 15 shows marked bubbles from two respon-
dents that our algorithm often mistakes for one another.
Both individuals appear to use similar techniques to com-
plete a bubble: a circular motion that seldom deviates
from the circle boundary, leaving white-space both in the
center and at similar locations near the border. Unless the
minor differences between these bubbles are consistently
demonstrated by the corresponding respondents, differ-
entiating between these cases could prove quite difficult.
The task of completing a bubble is constrained enough
that close cases are nearly inevitable. In spite of these
challenges, however, re-identification and detection of
unauthorized respondents are feasible in practice.

4 Impact

This work has both positive and negative implications de-
pending on the context and application. While we limit
our discussion to standardized tests, elections, surveys,
and authentication, the ability to derive distinctive bub-
ble completion patterns for individuals may have conse-
quences beyond those examined here. In Section 7, we
discuss additional tests that would allow us to better as-
sess the impact in several of these scenarios. In particu-
lar, most of these cases assume that an individual’s dis-
tinguishing features remain relatively stable over time,
and tests on longitudinal data are necessary to evaluate
this assumption.

4.1 Standardized Tests

Scores on standardized tests may affect academic
progress, job prospects, educator advancement, and
school funding, among other possibilities. These high
stakes provide an incentive for numerous parties to cheat
and for numerous other parties to ensure the validity of
the results. In certain cheating scenarios, another party
answers questions on behalf of an official test-taker. For
example, a surrogate could perform the entire test, or a
proctor could change answer sheets after the test [11, 17].
The ability to detect when someone other than the autho-
rized test-taker completes some or all of the answers on
a bubble form could help deter this form of cheating.

Depending on the specific threat and available data,
several uses of our techniques exist. Given past answer
sheets, test registration forms, or other bubbles ostensi-
bly from the same test-takers, we could train a model as
in Section 3.2 and use it to infer whether a surrogate com-
pleted some or all of a test.6 Although the surrogate may
not be in the training set, we may rely on the fact that the
surrogate is less likely to have bubble patterns similar to
the authorized test-taker than to another set of test-takers.
Because our techniques are automated, they could flag
the most anomalous cases—i.e., the cases that would be
rejected even under the least restrictive thresholds—in
large-scale datasets for manual review.

If concern exists that someone changed certain an-
swers after the test (for example, a proctor corrected
the first five answers for all tests), we could search for
questions that are correctly answered at an usually high
rate. Given this information, two possible analysis tech-
niques exists. First, we could train on the less suspicious
questions and use the techniques of Section 3.2 to deter-
mine whether the suspicious ones on a form are from the
same test-taker. Alternatively, we could train on the non-
suspicious answer choices from each form and the sus-
picious answer choices from all forms other than a form
of interest. Given this model, we could apply the tech-
niques of Section 3.1 to see whether suspicious bubbles
on that form more closely match less-suspicious bubbles
on the same form or suspicious bubbles on other forms.

4.2 Elections

Our techniques provide a powerful tool for detecting cer-
tain forms of election fraud but also pose a threat to voter
privacy.

Suppose that concerns exist that certain paper ballots
were fraudulently submitted by someone other than a
valid voter. Although the identity of voters might not
be known for direct comparison to past ballots or other

6Note our assumption that the same unauthorized individual has not
completed both the training bubbles and the current answer sheet.
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forms, we can compare batches of ballots in one election
to batches from past elections. Accounting for demo-
graphic changes and the fact that voters need not vote
in all elections, the ballots should be somewhat similar
across elections. For example, if 85% of the voters on
the previous election’s sign-in list also voted during this
election, we would expect similarities between 85% of
the old ballots and the new ballots.

To test this, we may train on ballots from the previ-
ous election cycle and attempt to re-identify new ballots
against the old set. We would not expect ballots to per-
fectly match. Nevertheless, if less than approximately
85% of the old “identities” are covered by the new ballots
or many of the new ballots cluster around a small num-
ber of identities, this would raise suspicion that someone
else completed these forms, particularly if the forms are
unusually biased towards certain candidates or issues.

Similarly, analysis could also help uncover fraudulent
absentee ballots. Because absentee ballots do not require
a voter to be physically present, concerns exist about
individuals fraudulently obtaining and submitting these
ballots [19]. By training a model on past ballots, we
could assess whether suspicious absentee ballots fail to
match the diversity expected from the population com-
pleting these forms.7

Unfortunately, because bubble markings can serve as
a biometric, they can also be used in combination with
seemingly innocuous auxiliary data to undermine ballot
secrecy. Some jurisdictions now release scanned images
of ballots following elections with the goal of increasing
transparency (e.g., Humboldt County, California [14],
which releases ballot scans at 300 DPI). If someone has
access to these images or otherwise has the ability to ob-
tain ballot scans, they can attempt to undermine voter pri-
vacy. Although elections may be decided by millions of
voters, an attacker could focus exclusively on ballots cast
in a target’s precinct. New Jersey readjusts larger elec-
tion districts to contain fewer than 750 registered voters
[22]. Assuming 50% turnout, ballots in these districts
would fall in groups of 375 or smaller. In Wisconsin’s
contentious 2011 State Supreme Court race, 71% of re-
ported votes cast fell in the 91% of Wisconsin wards with
1,000 or fewer total votes [28].

Suppose that an interested party, such as a potential
employer, wishes to determine how you voted. Given
the ability to obtain bubble markings known to be from
you (for example, on an employment application), that
party can replicate our experiment in Section 3.1 to iso-
late one or a small subset of potential corresponding bal-
lots. What makes this breach of privacy troubling is that
it occurs without the consent of the voter and requires
no special access to the ballots (unlike paper fingerprint-

7If a state uses bubble form absentee ballot applications, analysis
could even occur on the applications themselves.

ing techniques [4], which require access to the physical
ballot). The voter has not attempted to make an iden-
tifying mark, but the act of voting results in identifying
marks nonetheless. This threat exists not only in tradi-
tional government elections but also in union and other
elections.

Finally, one known threat against voting systems is
pattern voting. For this threat, an attacker coerces a voter
to select a preferred option in a relevant race and an un-
usual combination of choices for the other races. The un-
usual voting pattern will allow the attacker to locate the
ballot later and confirm that the voter selected the cor-
rect choice for the relevant race. One proposed solution
for pattern voting is to cut ballots apart to separate votes
in individual contests [6]. Our work raises the possibil-
ity that physically divided portions of a ballot could be
connected, undermining this mitigation strategy.8

4.3 Surveys

Human subjects research is governed by a variety of re-
strictions and best practices intended to balance research
interests against the subjects’ interests. One factor to be
considered when collecting certain forms of data is the
level of anonymity afforded to subjects. If a dataset con-
tains identifying information, such as subject name, this
may impact the types of data that should be collected and
procedural safeguards imposed to protect subject privacy.
If subjects provide data using bubble forms, these mark-
ings effectively serve as a form of identifying informa-
tion, tying the form to the subject even in the absence of
a name. Re-identification of subjects can proceed in the
same manner as re-identification of voters, by matching
marks from a known individual against completed sur-
veys (as in Section 3.1).

Regardless of whether ethical or legal questions are
raised by the ability to identify survey respondents, this
ability might affect the honesty of respondents who are
aware of the issue. Dishonesty poses a problem even
for commercial surveys that do not adhere to the typical
practices of human subjects research.

The impact of this work for surveys is not entirely neg-
ative, however. In certain scenarios, the person respon-
sible for administering a survey may complete the forms
herself or modify completed forms, whether to avoid the
work of conducting the survey or to yield a desired out-
come. Should this risk exist, similar analysis to the stan-
dardized test and election cases could help uncover the
issue.

8We thank an anonymous reviewer for suggesting this possibility.
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4.4 Authentication
Because bubble markings are a biometric, they may be
used alone or in combination with other techniques for
authentication. Using a finger or a stylus, an individual
could fill in a bubble on a pad or a touchscreen. Be-
cause a computer could monitor user input, various de-
tails such as velocity and pressure could also be collected
and used to increase the accuracy of identification, poten-
tially achieving far stronger results than in Section 3.2.
On touchscreen devices, this technique may or may not
be easier for users than entry of numeric codes or pass-
words. Additional testing would be necessary for this ap-
plication, including tests of its performance in the pres-
ence of persistent adversaries.

5 Mitigation

The impact of this paper’s techniques can be both bene-
ficial and detrimental, but the drawbacks may outweigh
the benefits under certain circumstances. In these cases, a
mitigation strategy is desirable, but the appropriate strat-
egy varies. We discuss three classes of mitigation strate-
gies. First, we consider changes to the forms themselves
or how individuals mark the forms. Second, we exam-
ine procedural safeguards that restrict access to forms or
scanned images. Finally, we explore techniques that ob-
scure or remove identifying characteristics from scanned
images. No strategy alone is perfect, but various combi-
nations may be acceptable under different circumstances.

5.1 Changes to Forms or Marking Devices
As explored in Section 3.3, changes to the forms them-
selves such as a gray background can impact the accu-
racy of our tests. The unintentional protection provided
by this particular change was mild and unlikely to be
insurmountable. Nevertheless, more dramatic changes
to either the forms themselves or the ways people mark
them could provide a greater measure of defense.

Changes to the forms themselves should strive to limit
either the space for observable human variation or the
ability of an analyst to perceive these variations. The ad-
dition of a random speckled or striped background in the
same color as the writing instrument could create diffi-
culties in cleanly identifying and matching a mark. If
bubbles had wider borders, respondents would be less
likely to color outside the lines, decreasing this source
of information. Bubbles of different shapes or alternate
marking techniques could encourage less variation be-
tween users. For example, some optical scan ballots re-
quire a voter simply to draw a line to complete an arrow
shape [1], and these lines may provide less identifying
information than a completed bubble.

The marking instruments that individuals use could
also help leak less identifying information. Some Los
Angeles County voters use ink-marking devices, which
stamp a circle of ink for a user [18]. Use of an ink-
stamper would reduce the distinguishability of markings,
and even a wide marker could reduce the space for inad-
vertent variation.

5.2 Procedural Safeguards
Procedural safeguards that restrict access to both forms
themselves and scanned images can be both straightfor-
ward and effective. Collection of data from bubble forms
typically relies on scanning the forms, but a scanner need
not retain image data for any longer than required to pro-
cess a respondent’s choices. If the form and its image
are unavailable to an adversary, our techniques would be
infeasible.

In some cases, instructive practices or alternative tech-
niques already exist. For example, researchers conduct-
ing surveys could treat forms with bubble markings in the
same manner as they would treat other forms containing
identifying information. In the context of elections, some
jurisdictions currently release scanned ballot images fol-
lowing an election to provides a measure of transparency.
This release is not a satisfactory replacement for a sta-
tistically significant manual audit of paper ballots (e.g.,
[2, 5]), however, and it is not necessary for such an au-
dit. Because scanned images could be manipulated or
replaced, statistically significant manual confirmation of
the reported ballots’ validity remains necessary. Further-
more, releasing the recorded choices from a ballot (e.g.,
Washington selected for President, Lincoln selected for
Senator, etc.) without a scanned ballot image is sufficient
for a manual audit.

Whether the perceived transparency provided by the
release of ballot scans justifies the resulting privacy risk
is outside the scope of this paper. Nevertheless, should
the release of scanned images be desirable, the next sec-
tion describes methods that strive to protect privacy in
the event of a release.

5.3 Scrubbing Scanned Images
In some cases, the release of scanned bubble forms
themselves might be desirable. In California, Humboldt
County’s release of ballot image scans following the
2008 election uncovered evidence of a software glitch
causing certain ballots to be ignored [13]. Although a
manual audit could have caught this error with high prob-
ability, ballot images provide some protection against un-
intentional errors in the absence of such audits.

The ability to remove identifying information from
scanned forms while retaining some evidence of a re-
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spondent’s actions is desirable. One straightforward ap-
proach is to cover the respondent’s recorded choices with
solid black circles. Barring any stray marks or mis-
readings, this choice would completely remove all iden-
tifying bubble patterns. Unfortunately, this approach
has several disadvantages. First, a circle could cover
choices that were not selected, hiding certain forms of
errors. Second, suppose that a bubble is marked but not
recorded. While the resulting image would allow review-
ers to uncover the error, such marks retain a respondent’s
identifying details. The threat of a misreading and re-
identification could be sufficient to undermine respon-
dent confidence, enabling coercion.

An alternative to the use of black circles is to re-
place the contents of each bubble with its average color,
whether the respondent is or is not believed to have se-
lected the bubble. The rest of the scan could be scrubbed
of stray marks. This would reduce the space for variation
to color and pressure properties alone. Unfortunately, no
evidence exists that these properties cannot still be dis-
tinguishing. In addition, an average might remove a re-
spondent’s intent, even when that intent may have been
clear to the scanner interpreting the form. Similar mit-
igation techniques involve blurring the image, reducing
the image resolution, or making the image strictly black
and white, all of which have similar disadvantages to av-
eraging colors.

One interesting approach comes from the facial image
recognition community. Newton et al. [23] describe a
method for generating k-anonymous facial images. This
technique replaces each face with a “distorted” image
that is k-anonymous with respect to faces in the input
set. The resulting k-anonymous image maintains the ex-
pected visual appearance, that of a human face. The ex-
act details are beyond the scope of this paper, but the
underlying technique reduces the dimensionality using
Principal Component Analysis and an algorithm for re-
moving the most distinctive features of each face [23].

Application of facial anonymization to bubbles is
straightforward. Taking marked and unmarked bubbles
from all ballots in a set, we can apply the techniques
of Newton et al. to each bubble, replacing it with its k-
anonymous counterpart. The result would roughly main-
tain the visual appearance of each bubble while removing
certain unique attributes. Unfortunately, this approach
is imperfect in this scenario. Replacement of an image
might hide a respondent’s otherwise obvious intent. In
addition, distinguishing trends might occur over multi-
ple bubbles on a form: for example, an individual might
mark bubbles differently near the end of forms (this is
also a problem for averaging the bubble colors). Fi-
nally, concerns exist over the guarantees provided by k-
anonymity [3], but the work may be extensible to achieve
other notions of privacy, such as differential privacy [9].

We caution that the value of these images for proving
the true contents of physical bubble forms is limited: an
adversary with access to the images, whether scrubbed
or not, could intentionally modify them to match a de-
sired result. These approaches are most useful where the
primary concern is unintentional error.

6 Related Work

Biometrics. Biometrics can be based on physical or
behavioral characteristics of an individual. Physical bio-
metrics are based on physical characteristics of a person,
such as fingerprints, facial features, and iris patterns. Be-
havioral biometrics are based on behavioral characteris-
tics that tend to be stable and difficult to replicate, such
as speech or handwriting/signature [15]. Bubble comple-
tion patterns are a form of behavioral biometric.

As a biometric, bubble completion patterns are simi-
lar to handwriting, though handwriting tends to rely on
a richer, less constrained set of available features. In ei-
ther case, analysis may occur on-line or off-line [21].
In an on-line process, the verifying party may monitor
characteristics like stroke speed and pressure. In an off-
line process, a verifying party only receives the resulting
data, such as a completed bubble. Handwriting-based
recognition sometimes occurs in an on-line setting. Be-
cause off-line recognition is more generally applicable,
our analysis occurred purely in an off-line manner. In
some settings, such as authentication, on-line recogni-
tion would be possible and could yield stronger results.

Document re-identification. Some work seeks to re-
identify a precise physical document for forgery and
counterfeiting detection (e.g., [7]). While the presence
of biometrics may assist in re-identification, the prob-
lems discussed in this paper differ. We seek to discover
whether sets of marked bubbles were produced by the
same individual. Our work is agnostic towards whether
the sets come from the same form, different forms, or du-
plicates of forms. Nevertheless, our work and document
re-identification provide complementary techniques. For
example, document re-identification could help deter-
mine whether the bubble form (ballot, answer sheet, sur-
vey, etc.) provided to an individual matches the one
returned or detect the presence of fraudulently added
forms.

Cheating Detection. Existing work uses patterns in
answer choices themselves as evidence of cheating.
Myagkov et al. [20] uncover indicators of election fraud
using aggregate vote tallies, turnout, and historical data.
Similarly, analysis of answers on standardized tests can
be particularly useful in uncovering cheating [10, 17].
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For example, if students in a class demonstrate mediocre
overall performance on a test yet all correctly answer a
series of difficult questions, this may raise concerns of
cheating. The general strategy in this line of research is
to look for answers that are suspicious in the context of
either other answers or auxiliary data.

Bubble-based analysis is also complementary to these
anti-cheating measures. Each technique effectively iso-
lates sets of suspicious forms, and the combination of
the two would likely be more accurate than each inde-
pendently. Although our techniques alone do not exploit
contextual data, they have the advantage of being un-
biased by that data. If a student dramatically improves
her study habits, the resulting improvement in test scores
alone might be flagged by other anti-cheating measures
but not our techniques.

7 Future Work

Although a variety of avenues for future work exist, we
focus primarily on possibilities for additional testing and
application-specific uses here.

Our sample surveys allowed a diverse set of tests, but
access to different datasets would enable additional use-
ful tests. We are particularly interested in obtaining and
using longitudinal studies—in which a common set of re-
spondents fill out bubble forms multiple times over some
period—to evaluate our methods. While providing an
increased number of examples, this could also identify
how a respondent’s markings vary over time, establish
consistency over longer durations, and confirm that our
results are not significantly impacted by writing utensil.
Because bubble forms from longitudinal studies are not
widely available, this might entail collecting the data our-
selves.

While we tested our techniques using circular bubbles
with numbers inscribed, numerous other form styles ex-
ist. In some cases, respondents instead fill in ovals or
rectangles. In other cases, selection differs dramatically
from the traditional fill-in-the-shape approach—for ex-
ample, the line-drawing approach discussed in Section 5
bears little similarity to our sample forms. Testing these
cases would not only explore the limits of our work but
could also help uncover mitigation strategies.

Section 4 discusses a number of applications of our
techniques. Adapting the techniques to work in these
scenarios is not always trivial. For example, Section 6
discusses existing anti-cheating techniques for standard-
ized tests. Combining the evidence provided by existing
techniques and ours would strengthen anti-cheating mea-
sures, but it would also require some care to process the
data quickly and merge results.

Use of bubble markings for authentication would re-
quire both additional testing and additional refinement

of our techniques. Given a dataset containing on-line
information, such as writing instrument position, veloc-
ity, and pressure, we could add this data to our fea-
ture vectors and test the accuracy of our techniques with
these new features. This additional information could
increase identifiability considerably—signature verifica-
tion is commonly done on-line due to the utility of this
data—and may yield an effective authentication system.
Depending on the application, a bubble-based authenti-
cation system would potentially need to work with a fin-
ger rather than a pen or stylus. Because the task of fill-
ing in a bubble is relatively constrained, this application
would require cautious testing to ensure that an adversary
cannot impersonate a legitimate user.

8 Conclusion

Marking a bubble is an extremely narrow task, but as
this work illustrates, the task provides sufficient expres-
sive power for individuals to unintentionally distinguish
themselves. Using a dataset with 92 individuals, we
demonstrate how to re-identify a respondent’s survey
with over 50% accuracy. In addition, we are able to
detect an unauthorized respondent with over 92% accu-
racy with a false positive rate below 10%. We achieve
these results while performing off-line analysis exclu-
sively, but on-line analysis has the potential to achieve
even higher rates of accuracy.

The implications of this study extend to any system
utilizing bubble forms to obtain user input, especially
cases for which protection or confirmation of a respon-
dent’s identity is important. Additional tests can better
establish the threat (or benefit) posed in real-world sce-
narios. Mitigating the amount of information conveyed
through marked bubbles is an open problem, and so-
lutions are dependent on the application. For privacy-
critical applications, such the publication of ballots, we
suggest that groups releasing data consider means of
masking respondents’ markings prior to publication.
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