Cross-Origin JavaScript Capability Leaks:
Detection, Exploitation, and Defense

Joel Weinberger

Cross-Origin JavaScript Capability Leaks
Detection: Detection, Exploitation, and Defense

Joint work with Adam Barth and Dawn Song

JavaScript Contexts

5N The Wk s n pris =

JavaScript Context 1

YU COULD STAND AT HOME PLATE AN

CALL YOUR SHOT

AT THE STATE FARM HOME RUN DERSY.

JavaScript Context 2 /

JavaScript Context 3

JavaScript is a simple language with complex security properties. Specifically, it is
concerned about hostile code being run in a variety of JavaScript contexts. Take this
example. We have (at least) three distinct JavaScript contexts: the ESPN page, an
advertisement running in a frame, and NYTimes.com running in another tab. All of
these could be running JavaScript.

JavaScript objects from one JavaScript context should not necessarily be accessible
from another JavaScript context. This could lead to all sorts of malicious behavior
such as accessing another site’s cookies or changing the JavaScript of that page. In
this work, we’re particularly worried about a class of vulnerabilities that leaks
JavaScript objects from one JavaScript context to another.

In particular, are there ways for one context to maliciously access objects and
properties in another context?

Contributions

* Identify new class of browser vulnerabilities

In this work, we identify a new class of web browser security vulnerabilities which
allow for the access of objects and properties in other JavaScript contexts. These
vulnerabilities exploit a particular hole in the security enforcement by web browsers
of their security policies. We call these vulnerabilities “Cross-Origin JavaScript

Capability Leaks.”

Contributions

* Identify new class of browser vulnerabilities

* A dynamic tool for detecting these bugs

We also have created a dynamic analysis tool for detecting these vulnerabilities. We
use a novel form of JavaScript heap graph analysis to accomplish this.

Contributions

* Identify new class of browser vulnerabilities
* A dynamic tool for detecting these bugs

* Discover several real vulnerabilities

Using the tool, we find two several real vulnerabilities in a major web browser.
Additionally, we also use to the tool to dissect a “safe” mashup JavaScript library and
exploit it.

Contributions

Identify new class of browser vulnerabilities

A dynamic tool for detecting these bugs

* Discover several real vulnerabilities

A new enforcement mechanism for browser
security policies

Finally, we propose a new enforcement mechanism for web browsers. We do not
propose a new policy; we only propose a new, more effective, enforcement
mechanism for current policies.

Overview

Current JavaScript Security Model

Cross-Origin JavaScript Capability Leaks

Capability Leak Detection

Browser Defense Mechanism

To start the talk, let’s discuss the current JavaScript security model for object access.
Then, we'll introduce the problem of Cross-Origin JavaScript Capability Leaks. We’'ll
show a method of detecting these vulnerabilities. Finally, we’ll discuss a general
solution to this class of attacks.

The DOM and Access Control

JavaScript Context

Access?

I
I
1
I
I
A4

DOM Reference Monitor

T
I
I
I
I
v

Object

Granted

The Document Object Model, or DOM, is the structure that represents many of the
important objects on web pages, such as the document’s cookie. It also allows for the
physical manipulation of the web page itself. The DOM is not directly a part of the
JavaScript engine; it is a set of built in objects and methods for manipulating objects,
but the JavaScript engine is theoretically separate from the DOM.

In order to gain access to DOM objects, the DOM does a security check to make sure
that the accessing context is allowed to handle the specified object. If the JavaScript
contexts match, the connection is granted and access given.

The DOM and Access Control

JavaScript Context

Access?

T
I
I
I
I
A4

DOM Reference Monitor

T
I
I
I
I
v

Object

Granted

From the JS Engine’s perspective, the JavaScript context now holds a reference to the
object.

The DOM and Access Control

JavaScript Context

Access?

T
I
I
I
I
A4

DOM Reference Monitor

T
I
I
I
I
v

Object

Denied

If the JavaScript contexts do not match, then access is denied and no reference is

given.

10

The JS Engine and Capabilities

JavaScript Context

Object 1 Object 2

Accessible Inaccessible

The JavaScript engine itself has a different way of doing things. It works as a capability
system. If a JavaScript context is given a reference to a JS object, it has permission to
access it. If no such reference exists, the object cannot be accessed. There is no way
to “divine” objects in the JavaScript engine. This is sort of where the DOM comes in. If

you need access to a DOM object, you can reference it, even if no particular object
has a reference to it.

11

DOM vs JS Engine

* The DOM provides an access control layer

In short, inside of web browsers, there are two different ways mechanisms for
security. On the one hand, the DOM provides access control checks when a DOM
object is initially accessed.

DOM vs JS Engine

* The DOM provides an access control layer

* The JavaScript engine treats objects as
capabilities

On the other hand, the JavaScript engine treats all objects as capabilities, including
DOM objects once they have been accessed and assigned a variable.

13

Overview

Current JavaScript Security Model

Cross-Origin JavaScript Capability Leaks

Capability Leak Detection

Browser Defense Mechanism

You might start to get a sense that this situation is a bit odd. We have the DOM acting
as an access control system and the JS Engine as a capability system, both of which
are dealing with the same JavaScript objects. Let’s delve into the precise problem
we’re dealing with.

Cross-Context References

Window 1 Window 2

Global Object

document function
fool)

We've been talking about JavaScript rather abstractly so far, but what are all these
JavaScript contexts, and what does it mean for a context to reference an object in
another context?

What happens when one context has a reference to an object in another context? It
turns out that JavaScript defines a set of very special objects called global objects.
Each window and frame has its own global object, and, in fact, JavaScript contexts are
defined by JavaScript engines by the global object of the context. Global objects have
a number of special properties, the most important of which, for our purposes, is that
it is the reference monitor for the DOM discussed earlier. Any context is allowed to
access any global object and the it will perform the appropriate access control checks
on accessed properties.

Window 1

Cross-Context References

Window 2

For example, the function “bar” may make a reference to the global object from the

context “Window 1.

16

Cross-Context References

Window 1 Window 2

However, it would be bad if bar() was able to reference all of the objects that the
global object points to. Fortunately, global objects provide the reference monitor, so
this is not an issue.

Cross-Context References

Window 1 Window 2

It would also be very bad if bar() held a direct reference to either of the other objects
in the “Window 1” context. Unfortunately, they do not have reference monitors
wrapping them, so if bar() held a reference to them, it would be game over, unlike if it
held a reference to the other context’s global object.

JavaScript Context 1

DOM meets JS Engine

Access?

I
I
]
I
I
v

JavaScript Context 2

DOM Reference Monitor

T
I
I
I
I
W

Object

So let’s jump back to the two policies of the DOM and JavaScript engine. What

happens when the two meet?

19

DOM meets JS Engine

JavaScript Context 1 JavaScript Context 2

Access Granted

DOM Reference Monitor

Object

Specifically, let us assume that context 1 is granted access to an object through the
reference monitor. From the perspective of the JavaScript engine, the context now
holds a reference to the object which is also a capability.

DOM meets JS Engine

JavaScript Context1 ~ R~~~ """ """ == > JavaScript Context 2

Access?

T
I
I
I
I
v

DOM Reference Monitor

T
I
I
I
I
hvd

Object

Granted

The JavaScript context can do whatever it wants with the reference, including handing
the reference to another JavaScript context, on purpose or otherwise.

21

DOM meets JS Engine

JavaScript Context 1

JavaScript Context 2

Access?

I
I
]
I
I
v

DOM Reference Monitor

T
I
I
I
I
hvd

Object

Granted

Because the engine is a capability system, it now can access the object with full
permissions. Even though it is a DOM obiject, it is now bypassing the reference
monitor check. Now, we haven’t established this a problem yet per se; it is not clear
that there is any way for a JavaScript context to do this illegitimately. However, it
turns out that this is a serious problem because of a number of bugs in web browsers.
In these bugs, a malicious script can “trick” the browser into thinking that it’s from a
different JavaScript context, thus gaining access to a sensitive object through the
DOM access control. The malicious JavaScript context now has a capability to this
object so it can manipulate it however it sees fit, including all of the things to which it

references.

22

DOM meets JS Engine

JavaScript Context 1 JavaScript Context 2

T
I
I
I
I
v

Access?

DOM Reference Monitor

4

T
I
I
I
I
hvd

- Cross-Origin JavaScript
Capability Leak

Object

Granted

This is a Cross-Origin JavaScript Capability Leak. One context leaks a capability
reference to another context, and this second context now holds an unbridled

reference to the DOM

object. This is a very bad thing.

23

Overview

Current JavaScript Security Model

Cross-Origin JavaScript Capability Leaks

Capability Leak Detection

Browser Defense Mechanism

Let’s discuss how to help detect these problems in an application using our heap

graph analysis tool.

24

JavaScript Heap Inspection

The state we want to detect is when an object from one context holds a reference to an object in a different context. Our
solution is to use a heap graph analysis to dynamically mark the JavaScript context of all objects in the JavaScript heap and to
through an alert when there is a reference between two objects in different contexts. We modify the WebKit JavaScript engine to
perform the instrumentation and analysis for this tool.

25

Instrumentation

* In the JavaScript Engine object system
* Object creation, destruction, and reference

* Calls into analysis library

We needed to instrument the WebKit JavaScript engine with calls to our heap graph
analysis library. These points are rather straightforward. Rather than putting the
instrumentation in the interpreter and JIT, we placed the instrumentation within the
object system entirely since that is what we were entirely concerned with. We placed
instrumentation points at object creation, object destruction, and the creation of
object references (along with several other specialized points).

26

Empty Page Heap Graph

~ e p 2O N T
; - O @@ -
o o sesee elhe
b i el ® o o
Q@ © o ® VDOCOVODOODOD
A (g™ S T
DD D@ D OD® @ . b
oo® .. ‘ P YRR AR AN
® © @ @ = ooo®
OO ®D e @
S eo00000000D
DOO®

Here’s an graph of the empty page. Because we are tracking all objects on the heap,
at any time we can dump an image of the heap as a Graphviz graph. Clearly, even the
empty page is rather complex, and these graphs were mainly useful for (a) debugging
our work, and (b) reduced versions are useful for finding exploits.

google.com Heap Graph
° e ® oo
oo - ® ° ety
o SO0 000 e ¢ 9
] @ I . s
@ © 000000000V OCO 'D......O.‘ ¢
o e
oo:ooooo. Ji I
e e
® 00000 °
‘o ® cocoocooose % © e
000000 DODO B D oo
oo » T b. g 2 K. .obo.
oooodoooo:: st povyass
= b
o000

This is the heap graph of google.com. Clearly, more complicated but it turns out that
google.com doesn’t have that much JavaScript on it and even reaches this level of
complexity.

Graph Stats

* empty page
— 82 nodes
— 170 edges
* google.com
— 384 nodes
— 733 edges
* store.apple.com/us
— 5332 nodes
— 11691 edges
* gmail.com
— 55106 nodes
— 133567 edges

The graphs can get rather big quickly. While even Google doesn’t appear that large,
things quickly explode on larger pages, making graphs rather unwieldy. Thus, we
realized that we needed to automatically detect violations rather than just manually
examining heap graphs.

29

Computing JavaScript Contexts

Global Object

Object

Object Prototype

The key insight to finding these exploits is how the JavaScript context is calculated.
Remember that JavaScript contexts are defined by the global object they are
associated with. When a new context is created, several things are built, including a
instance of a global object, and a unique “object prototype,” which, in the prototype
class hierarchy, serves as the ultimate parent of all objects.

30

Computing JavaScript Contexts

Global Object

Object

Object Prototype

__proto___

Object

When a new object is created, there is either a direct or indirect path to the Object
Prototype. This path goes through the special “__proto__” property. Thus, our
algorithm tracks the creation of new contexts, and every time a new object is created,
checks the __proto__ property, looking up the referenced object. Because the context
is defined by the transitive closure of __proto__ references to the object prototype,
we can assign the new object the context of __proto__ object.

Along the way, if we every come across a reference between two objects of different
contexts (other than the __proto__ reference), we mark it as a potential problem. Of
course, there are some exceptions to this, such as the global object, as discussed
earlier, and we white list these.

31

Generated Coverage

* Total WebKit tests:
— 9957 tests

* ...but most of these tests are for drawing

* Security tests:
— 143 tests

We were able to generate fairly good coverage by executing our tool across all of the
WebKit regression tests. Of course, this is hardly a complete test, but we were simply
trying to find proof-of-concept vulnerabilities, not perform an exhaustive search of all
possible cross-origin references.

32

Example Vulnerability

Attacker Global Object@0x1¢1d0040 Victim Global Object@Ox Ic1d13e0)

ocation location

object@(x1c1d2740
object@0x1cld1e20
object@0x 1¢1d2700

—_proto__

prototype

Object Prototype @0x1¢1d1420

This “zooms in” on one of the vulnerabilities we found. Here, the black represents an
object from security context 1 while the white represents objects from security
context 2. This is what we particularly want to detect... one JavaScript context
referencing another. Despite the graphs being so large, we can perform this
reachability analysis rather quickly.

In this example, the vulnerability occurred in WebKit because it was lazily creating the
location object. If the location object was created during the execution of another
context (i.e. if it belonged to context 1, but context 2 was accessing it), it would be
created with the wrong Object prototype. This is dangerous because it allows the
object to redefine the behavior of functions, such as toString, that apply to all Objects
created in the other context. Then, if that function is called, arbitrary JavaScript will
be executed.

33

Example Vulnerability

Victim Global Object@Ox Ic1d13e0)

Attacker Global Object@0x1¢1d0040

location

object@(x1c1d2740
object@0x1cld1c20
object@0x 1¢1d2700

*2 WebKit Vulnerabilities

ocation

prototype

Object Prototype @0x1¢1d1420

*Major flaws in CrossSafe
cross-domain JSON
request library

Overall, in our test setup, we found 2 vulnerabilities in WebKit among the 143 tests
ran. Additionally we found that the CrossSafe cross-domain JSON request library had
a number of vulnerabilities. In all cases, we were able to design subtle exploits of the
vulnerabilities that created arbitrary code execution in the other security context.

Overview

Current JavaScript Security Model

Cross-Origin JavaScript Capability Leaks

Capability Leak Detection

Browser Defense Mechanism

The good news is that we have a proposal to prevent these problems in the future.

35

Access Control Checks

Window 1 Window 2
Global Object Global Object
document function document function
fool) bar()

Here we have a small view of some of the objects in current web browsers. For the
most part, if there is a leak in the browser that gives an object from context to a
second context, that context can access those objects. Yes, there are some
exceptions, such as wrapped objects in Firefox, but those are hardly exhaustive and
cannot cover cases for which objects are not explicitly wrapped.

In this particular example, function bar() in Window 2 has access to Window 2’s
document object (as it should), but it also holds a reference to the document object
of Window 1, which it can now access.

Our solution is to add an access control check to get and put operations to make it
look more like this...

36

Access Control Checks
Window 1 Window 2
Global Object Global Object
document function document function
fool) bar()
?)
| L

These checks will verify that the JavaScript context of the two objects in question
match. If not, the engine should reject the access. It’s a simple idea that has been
considered in the past. However people have been very concerned about its
performance. Additionally, we had concerns initially that it would be difficult to
assure that all that places that need to have access control checks would be easy to
find and such an implementation would be error prone itself. As to the
implementation concerns, we discovered that there are relatively few places that this
needs to be actually calculated, and it’s fairly clear where those points are.
Additionally, in a non-prototype implementation, the access control checks could be
built in as a more fundamental and simple mechanism in WebKit, thereby reducing
the number of places checks would have to be explicitly placed.

37

General Benchmarks

3.0%
2.5%
2.0%

1.5%

Slowdown

1.0%

0.5%

0.0%
Dromaeo SunSpider V8 Suite

Benchmark

The access control adds negligible performance hits to general benchmarks. Across all
of the major industry benchmarks, our access control prototype adds no more than
2% overhead to the base implementation (+/- error).

However, if you consider that In the last year alone there has been a 300%
performance increase to WebKit, a 2% hit starts to look a bit paltry..

38

WebKit Unmodified vs. Access Control

10% l

8%

6%

4%

Slowdown

2%

0% I 1

Read Write Read Write

2%
Inline Cache No Inline Cache

We hypothesized that our access control was relatively fast because of the inline
cache in the new WebKit implementation. In short, for most objects, when a property
is looked up the first time, it is looked up in a hash table and the offset into the
structure is recorded. When that particular piece of code is accessed again in the
future, Instead of hashing in future lookups, the property is accessed by just going
directly into the structure with the recorded offset. Because of the offset lookup, we
know that the object has access to this object because the first lookup made an
access control check. However, whenever a property is deleted, this lookup system is
forgone and a hash table lookup is done, making an access control check every time.

In order to test if the inline cache is what’s causing the speedup, we made micro-
benchmarks for repeatedly reading and writing an object property. In two of the
benchmarks, however, we deleted a property from the object first, thus forcing the
lookups to occur in the hash table rather than through the inline cache. As the chart
clearly shows, where the inline cache is used, there is hardly a noticeable slowdown.
However, when the cache is not in use, there is a 9-10% slowdown in the access
control implementation.

39

Conclusion

* Heap Graph Analysis can be used to find
vulnerabilities in web browsers

* Web Browsers can provide mechanisms to
eliminate these vulnerabilities

* Heap Graph Tool and Access Control Prototype
for WebKit:
— http://webblaze.cs.berkeley.edu/2009/heapgraph

In conclusion, we have introduced a novel tool using heap graph analysis to aid us in
finding a new class of vulnerabilities in web browsers, cross-origin JavaScript
capability leaks. Additionally, the damage of these vulnerabilities can be mitigated in
the future be implementing a new access control mechanism in the web browser.

40

