Peeping Tom in the Neighborhood: Keystroke EavesdroppingmMulti-User

Systems
Kehuan Zhang XiaoFeng Wang
Indiana University, Bloomington Indiana University, Bloomington
kehzhang@indiana.edu Xw7@indiana.edu
Abstract resources. Such an approach, however, is fraught with

)) security risks: without proper protection in place, one’s
A mu'“'l_JSGr system usually involves a large amount O_fsensitive information can be exposed to unintended par-
information shared among its users. The security implivieg o the same system. This threat is often dealt with
cations of such information can never be underestimateq)y an access control mechanism that confines each user's
In this paper, we present a new attack that allows a magjities to her compartment. As an example, programs
licious user to eavesdrop on other users’ keystrokes Uy nning in a user's account are typically not allowed to
N9 su<_:h |nf0rmat|0n. Our attack t_akes advantf';lge _Of th&auch the data in another account without the permission
stack information of a process disclosed by its virtual ¢ 1ha owner of that account. The problem is that dif-
f'l.e within procfs, the process f'l,e system supported bY ferent ysers do need to interact with each other, and they
Linux. We show that on a multi-core system, the ESPy,q;5jly expect this to happen in a convenient way. As
of a process when it is making system calls can be efy o1t ‘most multi-user systems tend to trade security
fectively sampled by a “shadow” program that continu- 54 hrivacy for functionality, letting certain informatio
ously reads the public statistical information of the PrO- 44 across the boundaries between the compartments. For
cess. Such a sampling is shown to be reliable even in th@xample, the process status commasddisplays the
presence of multiple users, when the system is under g, rmation of currently-running processes; while this is
realistic workload. From the ESP content, a keyStrOk%ecessary for the purpose of system administration and

event can be identified if they trigger system calls. AS . |ahorative resource sharing, the command also en-
result, we can accurately determine inter-keystroke tim-

: e : ables one to peek into others’ activities such as the pro-
ings and launch a timing attack to infer the characters th%rams they run
victim entered. : ' : .
. . : In this paper, we show that such seemingly minor
We developed techniques for automatically analyzing bap gy

o . information leaks can have more serious conseguences
an application’s binary executable to extract the ESP patt- d

: . han the system designer thought. We present a new at-
tern that fingerprints a keystroke event. The OCCUITENCEE, '\ bich & malicious user can eavesdrop on others’

‘ieystrokes using nothing but her non-privileged account.

shadow program records from t he application’s runtime ur attack takes advantage of the information disclosed
to calculate timings. These timings are further analyze

using a Hidden Markov Model and other public informa- y pro_cfs [19]. the process file system_supported by mqst
. . . Unix-like operating systems such as Linux, BSD, Solaris
tion related to the victim on a multi-user system. Our

; and IBM AIX. Procfs contains a hierarchy of virtual files
experimental study demonstrates that our attack great% . : . o
- : at describe the current kernel state, including statikti
facilitates password cracking and also works very well. :
o . information about the memory of processes and some of
on recognizing English words. . . .
their register values. These files are used by the programs
like ps andt op to collect system information and can
1 Introduction also help software debugging. By default, many of the

files are readable for all users of a system, which nat-
Multi-user operating systems and application softwareurally gives rise to the concern whether their contents
have been in use for decades and are still pervasive t¢ould disclose sensitive user information. This concern
day. Those systems allow concurrent access by multipl&as been confirmed by our study.
users so as to facilitate effective sharing of computing The attack we describe in this paper leverages the

procfs information of a process to infer the keystroke in- an automatic program analyzer that extracts from
puts it receives. Such information includes the contents the binary executable of an application the instruc-
of the extended stack pointer (ESP) and extended instruc- tions related to keystroke events, which are used to
tion pointer (EIP) of the process, which are presentinthe build a pattern that fingerprints the events. During
file / proc/ pi d/ st at on a Linux system, whengi d the execution of the application, we use a shadow
is the ID of the process. In response to keystrokes, an program to log a trace of its ESP/EIP values from
application could make system calls to act on these in- procfs. The trace is searched for the occurrences of
puts, which is characterized by a sequence of ESP/EIP the pattern to identify inter-keystroke timing. Our
values. Such a sequence can be identified through ana- attack does not need to change the application un-
lyzing the binary executables of the application and used der surveillance, and works even in the presence of
as a pattern to fingerprint the program behavior related address space layout randomization [29] and realis-
to keystrokes. To detect the keystroke event at runtime, tic workloads. Our research also demonstrates that
we can match the pattern to the ESP/EIP values acquired though other UNIX-like systems (e.g., FreeBSD
through continuously reading from tis¢ at file of the and OpenSolaris) do not publish these register val-
application’s process. As we found in our research, this ues, they are subject to similar attacks that utilize
is completely realistic on a multi-core system, where the other information disclosed by their procfs.

program logging those register values can run side by Keystroke analysis. We augmented the existing
side with its target process. As such, we can figure out keystroke analysis technique [26] with semantic
when a user strokes a key and use inter-keystroke tim- jnformation: once multiple timing sequences are
ings to infer the key sequences [26]. This attack canbe tgund to be associated with the same sequence of
automated using the techniques for automatic program keys, our approach can combine them together to

analysis [20, 23]. o infer these keys, which turns out to be very effec-

Compared with existing side-channel attacks on e We also took advantage of the information re-
keystroke inputs [26, 3], our approach significantly low- garding the victim’s writing style to learn the En-
ers the bar for launching a successful attack on a multi- glish words she types.

user system. Specifically, attacks using keyboard acous-
tic emanations [3, 33, 2] require physically implanting a
recording device to record the sound when a user’s typ-
ing, whereas our attack just needs a normal user account
for running a non-privileged program. The timing attack
on SSH proposed in the prior work [26] estimates inter-
keystroke timings from the packets transmitting pass-
words. However, these packets cannot be deterministi-
cally identified from an encrypted connection [13]. In

c_ontrast, our attack_det_ects keystrokes f_rom an applica- Tne attack we propose aims at keystroke eavesdrop-
tion’s execution, _Nh_lch is much more reliable, and alsoping. However, the privacy implication of disclosing the
works when the victim uses the system locally. Actually, esp/g|p information of other users’ process can be much
we can do more with an application’s semantic informa-pqre significant. With our techniques, such information
tion recovered from its executable and procfs. For exaMzan pe conveniently converted to a system-call sequence

ple, once we observe that the same user runs the CON5; describes the behavior of the process, and some-
mandsu multiple times through SSH, we can assumeyjmeg the data it works on and the activities of its users.

that the key sequences she entered in these interactiong j yesylt, sensitive information within the process can
actually belong to the same password, and thus acCUMyse interred under some circumstances: for example, it is
!ate their tlmlng sequences to infer he_r password, Wh'dbossible to monitor a key-generation program to deduce
is more effective than using only a single sequence age secret key it creates for another user, because the key
the prior work [26] does. As another example, we canis computed based on random activities within a system,

even tell when a user is typing her username and wheg,,c, a5 mouse moves, keystrokes and networking events,
she inputs her password if these two events have differetich can be discovered using our techniques.

ESP/EIP patterns in an application.
This paper makes the following contributions:

e Implementation and evaluations. We implemented
an automatic attack tool and evaluated it using real
applications, includingi m SSHandGedi t . Our
experimental study demonstrates that our attack is
realistic: inter-keystroke timings can be reliably
collected even when the system is under a realistic
workload. We also discuss how to defend against
this attack.

The information-leak vulnerability exploited by our
attack is pervasive in Linux: we checked 8 popular dis-
e Novel techniques for determining inter-keystroke tributions (Red Hat Enterprise, Debian, Ubuntu, Gentoo,

timings. We propose a suite of new techniques thatSlackware, openSUSE, Mandriva and Knoppix) that rep-

accurately detects keystrokes and determines interresent the mainstream of Linux market [9] and found
keystroke timings on Linux. Our approach includesthat all of them publish ESP and EIP. Some other Unix-

like systems, particularly FreeBSD, haye different im- | 1. System Call System Call
plementations of procfs that do not disclose the con-| 2 f (input_ready()) { Sequence for | Sequence for
| - 3 ¢ =vgetc(); MOV_CURSOR: | insert a char:
tents of those registers to unauthorized party. However, 4 switch (c){ -
given unrestricted access to procfs, similar attacks that ® - read read
. . . 6 MOV_CURSOR: { select select
use other information can still happen: for example, we |7 select coloct
found that/ pr oc/ pi d/ st at us on FreeBSD reveals |8 cursor_pos_info(); select select
. 9 update_cursor(); select select
the accumulated kernel time consumed by the system ;5 select oloat
calls within a process; such data, though less informative| 11 ... select select
H HH 12) select select
_than ESP/EII_D, CQU|d still b_e utlllzed_to dete_ct keystrokes| 15 letauit {Jlinsert a char | select e
in some applications, as discussed in Section 6.2. Fundar14 ... select write
mentally, we believe that the privacy risks of procfs need | 12 ﬁ:'sfﬁbgggé()_ wrte select
to be carefully evaluated on multi-core systems, as these 17 update_undo(); selec write
systems enable one process to gather information from]g flush_buffers; select
other processes in real time. 20 ;sgggt
The rest of the paper is organized as follows. Sec- g; } select
tion 2 presents an overview of our attack. Section 3 elab-| 533~

orates our techniques for detecting inter-keystroke tim-
ings. Section 4 describes a keystroke analysis using the
timings. Section 5 reports our experimental study. Sec-

tion 6 discusses the limitations of our attack, similar at- 1, prepare for an attack, our approach first performs
tack§ on other UNIX-like systems_and potential defenseg dynamic analysis on the program’s executable to ex-
Section 7 surveys the related prior research, and SeGzact jts ESP/EIP pattern that characterizes the pro-
tion 8 concludes the paper. gram’s response to a keystroke input. Examples of
such a response includes allocating a buffer to hold
the input @l | oc_buf ()) and inserting it to the text

(i nsert _char ()). Inourresearch, we found that such

a pattern needs to be built upon system calls because
] sampling of a process'st at file can hardly achieve
Attack phases. Our attack has two phases: first, the {he frequency necessary for catching the ESP/EIP pairs
timing information between keystrokes is collected, andnrelated to system calls (Section 3.1). When a system
then such information is analyzed to infer the related keyqq)| happens, the EIP of the process always points to vir-
sequences. These phases and their individual compggg) Dynamic Shared Object (vDSOIR2], a call entry
nents are illustrated in Figure 1. In the first phase, OUlyoint set by the kernel, whereas its ESP value reflects
approach analyzes the binary executable of an applicgne dynamics of the process’s call stack. Therefore, our
tion to extract the ESP/EIP pattern that characterizes it%tpproach uses the ESP sequence of system calls as the
response to a keystroke event, and samplestfeg file yattern for keystroke recognition. Such a pattern is auto-
of the application at its runtime to log a trace of those yaically identified from the executable through a differ-
register values. Inter-keystroke timings are determinedyntia| analysis or an instruction-level program analysis
by matching the pattern to the trace. In the second phasesection 3.1).

these timings are fed into an analysis mechanism that \when the program is running on behalf of the victim,
uses the H|dden Markov Model (HMM) to infer the char- approach samples it at file to get its ESP/EIP
acters being typed. values, from which we remove those unrelated to sys-
An example. We use the code fragment in Figure 2 astem calls according to their EIPs. The rest constitutes an
an example to explain the design of the techniques beESP trace of the program’s system calls. This trace is
hind our attack. The code fragment is part of an edi-searched for the ESP patterns of keystrokes. Note that
tor program for processing a keystroke input. Upon re- the trace may only contain part of the patterns: in the
ceiving a key, the program first checks its value: if it is example, inserting a character triggers 17 system calls,
‘MOV_CURSOR, a set of API calls are triggered to move whereas only 5 - 6 of them appear in the trace. Our
the cursor; otherwise, the program makes calls to inser@pproach uses a threshold to determine a match (Sec-
the input letter to the text buffer being edited and displaytion 3.3). Inter-keystroke timings are measured between
its content. These two program behaviors produce twdwo successive occurrences of a same pattern.

different system call sequences, as illustrated in the fig- The timings are analyzed using anViterbi algo-

ure. This example is written i@ for illustration purpose. rithm [26] to infer the characters being typed: our ap-
Our techniques actually work on binary executables. proach first constructs an HMM based upon a set of train-

Figure 2: An Example.

2 Overview

This section describes our attack at a high level.

' Extract Keystroke Search the 1 - '

M ™ ESP Pattern > pattern in | character | |

| | Binary sampling the ESP trace | | HMM "1 sequence |

| Program > jprocipidistat > and get ‘ Training Data > recovered [

; at runtime keystroke timing| | ;

-t > >
Phase 1 Phase 2

Figure 1: Attack phases

ing data that reflect the timing distributions of different
key pairs the victim types, and then runs the algorithm to
computen most likely key sequences with regards to the
timing sequence acquired from the ESP trace. We extend
the algorithm to take advantage of multiple traces of the
same key sequence, which turns out to be particularly ef-
fective for password cracking. We also show that the
techniques are also effective in inferring English words a
user types.

Assumptions. We made the following assumptions in
our research:

e Capability to execute programs. To launch the at-

also set by the kernel; as a result, one needs to re-
vise these permissions as soon as she triggers new
process, which is unreliable and also affects the use
of the tools such asop. The fundamental solu-
tion is to patch the kernel, which has not been done
yet. In addition, we assume that the attacker can
obtain some of the text the victim types as training
data. This is possible on a multi-user system. For
example, some commands typed by a user, such as
“su” and “l s”, causes new processes to be forked
and therefore can be observed by other users of the
system, which allows the observer to bind the tim-
ing sequence of the typing to the content of the text

tack, the attacker should own or control an account the user entered. As another example, a malicious

that allows her to execute her programs. This iS jnqjder can use the information shared with the vic-
not a strong assumption, as most users of UNIX- tim, such as the emails they exchanged, to acquire

like systems do hav_e_sucr_l a_pr|V|Iege. .The attacker o |atter's text and the corresponding timings.
here could be a malicious insider or an intruder who

cracks a legitimate user’s account.

Multi-core systems. To detect a keystroke, our 3 |nter-keystroke Timing Identification
shadow process needs to access the ESP of the tar-

get process before it accomplishes key-related sySp, g section, we elaborate our techniques for obtaining
Fem calls. prever, due to process .schedullng, th'?nter—keystroke timings from a process.

is not very likely to happen on a single-core sys-

tem. On one hand, these system calls are typically

done within a single time slice. On t_h_e othe_r hand,3_1 Pattern Extraction

the shadow process often lacks sufficient privileges

to preempt the target process when it is workingThe success of our attack hinges on accurate identifica-
on keystroke inputs, as the latter is usually grantedion of keystroke events from the victim’s process. We
with a high privilege during its interactions with the fingerprint such an event with an ESP pattern of the sys-
user. As a result, our process can become comtem calls related to a keystroke. The focus on system
pletely oblivious to the keystroke events in the tar- calls here comes from the constraints on the informa-
get process. This problem is effectively avoidedtion obtainable from a process: on one hand, a signifi-
on a multi-core system, which allows us to reli- cant portion of the process’s execution time can be spent
ably detect keystroke events in the presence of reen system calls, particularly when 1/O operations are
alistic workload$, as observed in our experiment involved; on the other hand, our approach collects the
(Section 5). Given the pervasiveness of multi-coreprocess’s information through system calls and therefore
systems nowadays, we believe that the assumptiopannot achieve a very high sampling rate. As a result,
is reasonable. the shadow program that logs ESP/EIP traces is much
Access to the victim's information. Our attack re- more likely to pick up system calls than other instruc-
quires a read access to the victim’s procfs files. Thigtions. In our research, we found that more than 90% of
assumption is realistic for Linux, on which most the ESP/EIP values collected from a process actually be-
part of procfs are readable for every user by defaultlong to system calls. Note that a process’s EIP when it is
Though one can change her files’ permissions, thisnaking a system call always points to vDSO. It is used
can hardly eliminate the problem: all the procfs files in our research to locate the corresponding ESP whose
are dynamically created by the kernel when a newcontent is much more dynamic and thus more useful for
process is forked and their default permissions ardingerprinting a keystroke event.

Our approach extracts the ESP pattern through an au- .o m { {
tomatic analysis of binary executables. This analysis isPaten ||| ||’

.

conducted offline and in an environment over which thefnesp ‘ | 3 I | T ‘ T T P
attacker has full control. Following we present two anal- compiete) qital Ll t [T g
ysis techniques, one for the programs that execute in a window ————» — _—
deterministic manner and the other for those whose exe-

cutions are affected by some random factors. Figure 3: A false positive check. Spikes in the figure

Differential analysis. Many text-based applications represent ESP values.

such asvi mare deterministic in the sense that two in-
dependent runs of these applications under the sam
keystroke inputs yield identical system call traces an
ESyP sequenrt):es. ¥I’he ESP patterxrlws of these applicatio [4], Wh_iCh can be effic_iently solved through dynam_ic
can be easily identified through a differential analysispmgrammlng [15]. _The size of such a sequence, which
that compares the system call traces involving keystrok e call anFE]evel, IS recorde_zd. As such, our approach
events with those not. Specifically, our program analyze €€ps on sliding the trace window to measure FP. levels
usesst r ace [27] to intercept the system calls of an ap- untl! all the ESP values on the trace have left the window.
plication and record their ESP values when it is running. Figure 3 presents an example that shows how the al-
An ESP sequence is recorded before a keystroke is typeg’orlthm works. In the initial state, the trace window is
and another sequence is generated after the keystroke docated before the first ESP value. Then the trace win-
curé. The ESP pattern for a keystroke event is extractedOW Starts to slide right to include the first ESP value,
from the second sequence after removing all the syste/ich gives a FP level of one. After the window slides
calls that happen prior to the keystroke, as indicated byp92in 0 include one more ESP value, our algorithm re-
the first sequence. To ensure that the pattern does nd{'nS @ common sequence with two members. This pro-
contain any randomness, we can compare the ESP tral€SS continues, and finally, the window is moved to em-
of typing the same character twice with the one involvingPrace all four trace members and we observe an FP level
only a single keystroke to check whether the ESPs asscRf four. This aIgonthm_ identifies the portion of the pat—_
ciated with the second keystroke are identical to thosd€™ that can show up in absence of keystrokes. The size
of the first one. The same technique is also applied t§' the portion, as indicated by the FP level, is used to de-
test different keys that may have discrepant patterns. If€rmine a threshold for recognizing keystrokes from an
the example described in Figure 2, the ESP sequence dicomplete ESP trace sampled from a process, which is
vi mbefore Line 2 is dropped from the traces involving €l@borated in Section 3.3.
keystrokes and as a result, the system calls triggered binstruction-level analysis. Applications with graphic
the instructions from Line 7 to 11 are picked out as theuser interfaces (GUI) can work in a non-deterministic
fingerprint for MOV_CURSOR' and those between Line manner: these applications are event-driven and can
14 and 19 identified as the pattern for inserting a letter. change their system-call behaviors in response to the
The ESP pattern identified above will go through aevents from operating systems (OS), which can be un-
false positive check to evaluate its accuracy for keystrokgredictable. For exampl&edi t uses a timer to deter-
detection. In other words, we want to know whether themine when to flash its cursor; the timer, however, can be
pattern or a significant portion of it can also be observedielayed when the process is switched out of the CPU,
when the user is not typing. This is achieved in our re-which causes system call sequences to vary in different
search through searching for the pattern in an applicaruns of the application. To extract a pattern from these
tion's ESP trace unrelated to keystroke inputs. Specifiapplications, we adopted an instruction-level analysis as
cally, our analyzer logs the execution time between thedescribed below.
first and the last system calls on the pattern, and uses this Under Linux, many X-Window based applications are
time interval to define a duration window on the trace,developed using the GIMP Toolkit (aka. GTK+) [28].
which we calltracewindow. The trace window is slidon GTK+ uses a standard procedure to handle the
the trace to determine a segment against which the pakeystroke event. a program uses a function such as
tern is compared. For this purpose, every ESP value ogt k_nmai n_.do_event (event) to processevent;
the trace is labeled with the time when its correspondwhen a key is prességdthis function is invoked to trig-
ing system call is invoked. The trace window is first lo- ger a call-back function of the keystroke event. In our
cated prior to the first ESP value on the trace. Then, itesearch, we implemented a Pin [20] based analysis tool
is slid rightwards: each slide either moves an ESP intadhat automatically analyzes a binary executable at the
the window or moves one outside the window. After instruction level to identify such a function. After a
a slide, our analyzer attempts to find the longest comkey has been typed, our analyzer detects the keystroke

on sequence between the trace segment within the win-
ow and the pattern. This is the well-known LCS prob-

event from the function’s parameter and from that point3.3 Timing Detection

on, records all the system calls and their ESPs un-

til the executable is found to receive or dispatch aWe determine inter-keystroke timings from the time in-

new event, as indicated by the calls to the functionservals between the occurrences of a pattern on an ESP

like g_mai n_cont ext _acqui re() . Allthese system trace sampled from an application’s system calls. Two

calls are thought to be part of the call-back function andissues here, however, complicate the task. First, some

therefore related to the keystroke everfthe pattern for Linux versions may run the mechanisms for address

keystroke recognition is built upon these calls. We alsospace layout randomization (ASLR) [29] that can cause

check false positives of the pattern, as described beforethe ESP values on the pattern to differ from those on the
trace. Second, the trace can be incomplete, containing
only part of the system calls on the pattern, which makes
recognition of the pattern nontrivial. Following we show
how these issues were handled in our research.

ASLR performed by the tools such &ax [30]
involves randomly arranging the locations of an exe-
Our attack eavesdrops on the victim’s keystrokes throughtable’s memory objects such as stack, executable im-
shadowing the process that receives her keystroke inputgge' library images and heap. It is aimed at thwarting
Our shadow process stealthily monitors the target prothe attacks like control-flow hijacking that heavily rely
cess's keystroke events by keeping track of its ESP/EIRn an accurate prediction of target memory addresses.
values disclosed by itst at file. Since the attack hap- Though the defense works on the attacks launched re-
pens in the userland, the attacker has to use system caligotely, it is much less effective on our attack, which is
to open and read the file. Moreover, a more efficientcommenced locally. Specifically, the address for the bot-
approach, memory mapping throughap() , does not tom of a process’s stack can be found instsat and
work on the virtual file that exists only in memory. These proc/ Pl D/ maps’. This allows us to “normalize” the
issues prevent the shadow process from achieving a highsp values on both the trace and the pattern with the dif-
sampling rate. For example, a program we implementegerences between the tops of the stack, as pointed by the
for evaluating our approach updated ESP/EIP values eveSps, and their individual bottoms. Neither does ASLR
ery 5 to 10 microseconds. As a result, we could endyrevent us from correlating an ESP/EIP pair on a trace
up with an incomplete ESP/EIP trace of the target pro+p a system call, though the knowledge about the vDSO
cess. ThiS, hOWeVer, is sufficient for determining inter'address may not be pub“ca”y available on some Linux
keystroke timings, as we found in our research (Secyersjons: we can filter out the pairs unrelated to system
tion 3.3). calls according to the observation that the vast majority

Trace logging with full steam can cost a lot of CPU Of the members on the trace actually belong to system
time. If the activity drags on, suspicions can be roused-alls and therefore have the same EIP values.
and alarms can be triggered. To avoid being detected, To recognize an ESP pattern from an incomplete ESP
our attack takes advantage of the semantic informatiorace of system calls, we use a threshalé segment of
recovered from procfs and the target application to conthe trace, as determined by the trace window, is deemed
centrate the efforts of data collection on the time inter-matching the pattern if it contains at leadESP values of
val when the victim is typing the information of interest system calls and the sequence of these values also appear
to the attacker. For example, the shadow process starts the pattern. The threshold here can be determined us-
monitoring the victim’sSSH process at a low rate, say ing the results of the false positive test described in Sec-
once per 100 milliseconds; once the process is observeibn 3.1. Leth be the highest FP level found in the test,
to fork asu process, our shadow process immediatelyands be the number of the system calls that our shadow
increases its sampling rate to acquire the timings for thgrocess can find from a process when a keystroke occurs.
password key sequence. Another approach is using aWe letr = h + 1 if s > h. Intuitively, this means that
existing technique [32] to hide CPU usage: UNIX-like a trace segment is considered matching the pattern if it
systems keep track of a process’s use of CPU accordindoes not contain any ESP sequences not on the pattern
to the number of ticks it consumes at the end of each tickand no segments unrelated to keystrokes can match as
the trick proposed in [32] lets the attack process sleep jusiany ESP values on the pattern as that segmenfdoes
before the end of each tick it uses and as a result, OS willf s < h, we have to set = s because we cannot get
schedule a victim process to run and bill the whole tickmore tharns ESP samples for every keystroke when mon-
to that victim process instead of the attack process. Wétoring a process. Several measures can be taken to miti-
implemented this technique and found that it was verygate the false positives that threshold could bring in. One
effective (Section 5). approach is to leverage the observation that people typ-

3.2 Trace Logging

o Matched o
value }‘ I T long latencies caused by intermittent typing. An example
Patism ‘ \ JJ for illustrating the algorithm is presented in Figure 5, in

An ESP Tr which the trace window locates four matches with: 3,
(incomplete) | I ‘ I j ‘ and the durations between these matches are picked out
1.2 3 45 678 >

as inter-keystroke timings.
-

| Trace | g | Trace |5 ™ | Trace time
‘window 1} ‘window 2 ‘window 3!

4 Keystroke Analysis

Figure 4: Using time framé to remove possible false

positive matches In this section, we describe how to use inter-keystroke
timings to infer the victim’s key sequence. Our approach

+ Matched I is built upon the technique used in the existing timing
value .
Pattern IT T‘ ‘ ‘ ‘I M ‘I ‘ ‘ ‘I attack [26]. However, we demonstrate that the technique
AnESP j oo 1 1 1 can become much more effective with the information
trace available on a multi-user system.

(incomplete): T T : i I P

123 4 56 7809 M0 1112
~Timing 1 ™ Timing2 >~ Timing 3 * tme 4.1 HMM-based Inference of Key Se-
quences

Figure 5: Pattern matching on an ESP trace and the) . o
timing interval A Hidden Markov Model [24] describes a finite stochas-

tic process whose individual states cannot be directly ob-

ically type more than one key within a short period of served. Instead, the outputs of these states are visible
time. Therefore, we can require that a segment matchingnd therefore can be used to infer the existence of these
a pattern according to be preceded or followed by an- states. An HMM, like a regular Markov model, assumes
other pattern-matching segment within a predeterminedhat the next states a system can move into only depend
time framed, before both of them can be deemed to beon the current state. In addition, it has a property that
indicative of keystroke events. Figure 4 presents an exthe outputs of a state are completely determined by that
ample in which the segment within the Window 2 is not state. These two properties allow a hidden sequence to
treated as a match to the pattern because there is no othige easily computed and therefore make the model a per-
matches happening within the time framheither before vasive tool for the purposes such as speech recognition
or after the window. In another approach, we use the exand text modeling.
ecution time of a process to estimate the time pointwhen Prior research [26] models the problem of key infer-
it starts receiving keystrokes, which helps avoid searchence using an HMM. Specifically, Ky, ..., K be
ing the trace unlinked to keystrokes. the key sequence typed by the victim, apd € Q

After normalizing ESP values and determining the(1 < ¢ < T) be a sequence of states representing the
thresholdr, our approach starts searching the trace samkey pair(K;_1, K;), where@ is the set of all possible
pled from the victim’s process for the occurrences of thestates. In each statg, an inter-keystroke latengy with
pattern. The searching algorithm we adopted slides tha Gaussian-like distribution can be observed. Our ob-
trace window in the same way as the false positive checlective is to find out the hidden statég, . .., ¢r) from
does (Section 3.1). For each slide, an LCS problem ighe timings(y1,...,yr). This modeling is simple and
solved to find the longest common sequence between th@as shown to work well in practice [26], and is further
trace segmentin the window and the pattern. If the lengtitonfirmed by our research, though it has oversimplified
of the sequence is no less tharand every member on the relations between the characters being typed: particu-
the segment is also on the sequence, the segment is lkrly, the chance for a letter to appear at a certain position
beled as a match. Once a match is found, we slide then an English word may actually relate to all other letters
window rightwards to pass all trace members within abefore it, which invalidates the HMM assumption that a
short time interval that describes the minimal delay be-ransition fromg; to ¢:; depends only og;.
tween two consecutive keystrokes, and then start the next The HMM for key inference can be solved us-
round of searching. This process continues until all traceng the Viterbi algorithm [24], a dynamic program-
members pass the window. Then, our approach deteming algorithm that computes the most likely state se-
mines timings from the segments labeled as matches: thguence(qs, . . ., ¢r) from the observed timing sequence
time interval between two such segments is identified asy;,...,yr). Let V(¢:) be the probability of the se-
an inter-keystroke timing if there is no other labeled seg-quence that most likely ends ip at time¢. The algo-
ments in-between and the duration of the interval is betrithm computesV/(¢;) through two steps. In the first
low a predetermined threshold that serves to rule out thetep, we assign a set of initial probabiliti®gq;) =

Prlq1|y1]. The second step inductively compulééy;) these observationgyy, ..., y/™) are independent from
foreveryl < t < T and everyg, € Q asV(q:) = each other. This treatment works even in the presence of
maxg, , Priyi|q:]Prigi|gi—1]V (gi—1), wherePrly:|q;] the key pairs with very close timing distributions. How-
can be estimated from a set of training data (the thirdever, it needs a large number of timing sequences to get
assumption in Section 2) an@r[q;|q;—1], the transition a good outcome.

probability, comes from a uniform distribution over the Our research shows that both approaches can signifi-
states reachable from_;. This step also keeps track cantly shrink the space for searching a password. Actu-
of all the prior states on the sequence with the probabilally, in our experiment (Section 5.2), we found that using
ity V(¢:). The most likely sequence is identified from 50 timing sequences, our techniques sped up the pass-
the stateyy that maximized/(¢r). A direct application word searching by factors ranging from 250 to 2000.

of this approach, however, does not work well in prac-
tice, because even the most likely sequence usually ha; .
a very small probability to match the real keystroke in—E'B English Text

puts. This problem is mitigated in the prior work [26] Recovery of English text from a timing sequence is
that extends the algorithm to theViterbi algorithm so 14 |ess challenging than password cracking. A pass-
as to return the top most likely sequences given a tim- o can be figured out through testing many candidates
ing sequence. The difference here is thatihéiterbi against the target application or a hashed password list.

algorithm changes the inductive step (the second step)iowever, the same trick cannot be played on English
to identify the sequences with thelargest probabilities. \yords because no application and password list can tell

The details of the algorithm can be found in [26]. you whether you made a right guess. All that we can do
is to check all the combinations of the possible words to
4.2 Password Cracking see whether a meaningful sentence comes out, which be-

comes a daunting task if the list of such words is long.

The effectiveness of the-Viterbi algorithm can be sig- Moreover, it can be more difficult to find multiple tim-
nificantly improved with the information available on a ing sequences associated with the same text, and there-
multi-user system. Particularly, the name of a processore the aforementioned approaches become less appli-
and its owner can be directly found from procfs or indi- cable. On the bright side, English words are much less
rectly from running commands such@s ort op. Once random than passwords: the letters they include and the
the same user is observed to run the same applicatiofombinations of those letters have distributions with low
multiple times and if such interactions happen within aentropies. Such a property can be leveraged to adjust
no-so-long period of time and all involve typing pass- the transition probabilities of an HMM to improve the
words, a reasonable assumption we can make is that alutcomes of key sequence inference. Here we elaborate
these passwords are actually the same. Therefore, we cgnch techniques used in our research.
combine together the timing sequences recorded fromin- A prominent property of English text is use of the
dividual interactions to infer a key sequence. Following SPACE character to separate words. People tend to type
we describe two ways to do that. the letters in a word faster than SPACE, a signal for a

Our first approach is simply averaging all the tim- transition between words. This gives the character an
ings for every key pair to create a new sequence angentifiable timing feature: typically the key pair involv-
run then-Viterbi algorithm over it. Formally, givem» ing SPACE incurs longer inter-keystroke latency than
timing sequencesy{,...,yr),..., (y{",...,¥'), We other pairs, as illustrated in Figure 6. In our research,
can compute a new sequengg, ..., yr), wherey: = we detected SPACE by checking if the timing interval is
~ > i<i<m ¥t @nd1 < t < T. The rationale here is larger than a predetermined threshold. This threshold
that the distribution of the timing! of a key pairg; is can be determined from the training data collected from
a Gaussian-like unimodal distribution and therefore thethe victim’s typing. Knowledge about the SPACE key
probability Pr[y:|g:] in the inductive step of the algo- helps us to divide a long timing sequence into a collec-
rithm is maximized wheny, becomes the mean of the tion of small sequences, with each of them representing
distribution, which is approximated by averaginggll ~ a word, and then learn these words one by one.
This approach works particularly well when the means Another important property of English text is its dis-
of two key pairs are not extremely close. tinct distribution of letters. It is well known that some

The other approach, which we call the-n-Viterbi letters such as ‘e’ occur more frequently than others, and
algorithm, utilizes multiple observations to perform some bigrams like ‘th’ and trigrams like ‘ion’ are also
the inductive step of the original algorithm. Specifi- pervasive in a meaningful text. This fact has been lever-
cally, our approach replacd®r(y.|q;] in that step with aged by frequency analysis to crack classic ciphers [1].
Priyt,...,y™a] = Prlytla]...Prly™|¢:]) given The same game can also be played to make key se-

0.045

0.04 1 ‘ggggtg t'g‘llg{ter e | Table ;I.:Normalized ESP pattern values (include system calls)
0,035 | vim ssh gedit
0.03 I threshold line SysCall ESP| SysCall ESP | SysCall ESP
% 0025 | read 1628 rt_sigprocmask 4932 | gettimeofday 3624
£ L0l select | 1604 rt_sigprocmask 4932
E .
o Lo1st | select | 1876 read 20904
001 | select | 2244 select 4548
0.005 | | select | 1540 rt_sigprocmask 4932
Ly select | 1908 rt_sigprocmask 4932
0 100 200 300 400 500 600 700 800 select | 1558 write 37434
Mean (in millisecond) select | 1924 ioctl 3750(
select | 1604 select 4548

Figure 6: Timing Distribution of SPACE-letter pair,

. write | 1548 rt_sigprocmask 4932
letter-letter pair and threshold 9p

select | 1972 rt_sigprocmask 4932
llseek| 1876 read 37436
guence inference more effective: we can adjust the tran- write | 183§ select 4548
sition probabilities of an HMM to ensure that the transi-| select | 2180 rt_sigprocmask 4932
tion between certain states such as (‘','0’) to (‘0’, ‘n’) |_fsync | 1752 rt_sigprocmask 4932
is more likely to happen than others. These probabil}_Select | 214§ write 4620
ities can be conveniently obtained from various publicl_Select | 1974 select 4548
sources [18, 10] that provide the statistics of common

English text. Such statistics can be further tuned to the]

victim’s writing style according to public writing sam- thellnformatlon leaks caused by procfs can be a real se-
ples such as her web pages and publications. MoreovefUrity problem.

it comes with no surprise that users on the same system

are often rlelayed: for example, they could all belong_t05_1 Inter-keystroke Timings

one organization. This allows the attacker to get familiar

with the victim’s writing from the information they ex- As the first step of our evaluation, we applied our tech-
changed, for example, the emails between them. In addiique to identify the timings fronai m SSHandGedi t

tion, since the timing sequence corresponding to such inen a multi-core system.

formation can also be identified using our technique, thq/i m Vi mis an extremely common text editor, which
attacker can actually use the information as the traininqS supported by almost all Linux versions. It f’its well

data for estimating the timing distributions of different with the notion of deterministic programs as discussed

key pairs the victim typed. in Section 3.1, because independent runs of the appli-
cation with the same inputs always produce the same
5 Evaluation system call sequence and related ESP sequence. This
property enabled us to identify its ESP pattern for a
In this section, we describe an experimental study of the&keystroke event using the differential analysis. The pat-
attack techniques we propose. Our objective is to undertern we discovered for inserting a letter includes 17 calls.
stand whether these technigues present a realistic thredihese calls and their normalized ESP values are pre-
To this end, we evaluated them using 3 common Linuxsented in Table 1. We further ran the application from
applicationsvi m SSHandGedi t . In our experiments, a user account to enter words, and in the meantime,
we first ran our approach to automatically extract timinglaunched a shadow process from another account to col-
sequences when a user was typing, evaluated the acclgct the ESP trace of the application. From the trace, our
racy of these timings and the effectiveness of the attackpproach automatically identified all the keystrokes we
under different workloads. Then, we analyzed them ustyped. Table 2 shows a trace segment corresponding to
ing our techniques to study how much keystroke infor-two keystrokes, which involves 5 system calls for each
mation could be deduced. Our experiments were mainljkeystroke.
carried out on a computer with a 2.40GHz Core 2 Duo In order to evaluate the accuracy of the timing se-
processor and 3GB memory, on which we conductedjuence our shadow process found, an instrumented ver-
our study under three Linux versions: RedHat Enterprisesion ofvi mwas used in our experiment, which recorded
Linux 4.0, Debian 4.0 and Ubuntu 8.04. We found thatthe time when it received a key fromget c() . Such
our techniques worked effectively even in the presencénformation was used to compute a real timing sequence.
of realistic workloads on the server. This suggests thatVe compared these two sequences and found that the de-

Table 3: Examples of the timings measured from ESP traces
Table 2: Examples of ESP traces (values that appear in thqMeasured) and the real timings (Real) in milliseconds.

pattern are in bold font). . vim ssh Gedi t
vim ssh gedit Timings measuref reall measuref real| measured real
1604 4548 520 1 80 81 | 135 135 301 303
2244 4932 2988 2 139 139| 124 123| 285 285
1908 20908 3052 3 88 88 | 103 103| 259 259
1924 4548 696 4 101 101 110 109| 236 236
1972 37500 3624 5 334 335| 134 134| 181 182
1604 4548 3068 6 86 87 | 111 110| 265 265
2244 37436 2988 7 124 124| 132 132 174 174

1908 4932 696
1924 4620 520
1972 4548 2988 will not give us the real timing sequence. We solved

this problem by replacingu with another program that
recorded the time when it received a key fr&8H, and
viations between corresponding timings were at most used such information to generate a timing sequence.
millisecond, below 3% of the average standard deviationT his sequence was found to be very close to the one we
of the timings of different key pairs, as illustrated in Ta- got from the trace collected by our shadow process, as
ble 3. This demonstrates that the timings extracted fronglescribed in Table 3. We further employed the timings
the process were accurate. obtained fromsu to infer the passwords being typed,

SSH. The Secure ShellSSH) has long been known to which we found to be very effective (Section 5.2).
have a weakness in its interactive mode, where everyedit. Gedit is a text editor designed for the X
keystroke is transmitted through a separate packet anglindow system. Like many other applications based
immediately after the key is pressed. This weakness cafipon theGTK+, it is non-deterministic in the sense that
be exploited to determine inter-keystroke timings for in- two independent runs of the application under the same
ferring the sensitive information a user types, such as thmputs often produce different system call sequences.
password fosu. Prior work [26] proposes an attack that |n our experiment, we performed an instruction-level
eavesdrops on an SSH channel to identify such timingsanalysis of its binary executables using the Pin-based
A problem of the attack, as pointed out by SSH Commu-ool we developed. This analysis revealed the call-
nications Security, is that determination of where a passhack function of the key-press event, from which we
word starts in an encrypted connection can be hard [25]extracted the system call sequence and related ESP
This problem, however, does not present a hurdle to Ousequence. An interesting observation is tieeidi t
attack, because we can easily find out from procfs whemctually does not immediately display a character a
su is spawned from aBSH process, and start collecting user types: instead, it put the character to a buffer
information fromSSHfrom then on. This is exactly what through aGTK+ functiongt k_t ext _buf f er _i nsert
we did in our experiment. Jinteractive.at_cursor (), which does not in-
Using the differential analysis, our approach automatvolve any system calls, and the content of the buffer is
ically discovered an ESP pattern frd8$H when a key displayed when it becomes full or a timer expires. As a
was typed for entering a password fou. We further result, we could not count on the system calls involved in
ran a shadow process to monitor another use8ld pro- such a display process for fingerprinting keystrokes. Ac-
cess: as soon as it forked am process, our shadow tually, only one system call was found to be present every
process started collecting ESP values from3B&ipro- time when a key was receiveget t i meof day(), a
cess’sst at file. The trace collected thereby was com- call thatGedi t uses to determine when to auto-save the
pared with the pattern to pinpoint keystroke events andlocument the user is editing. This call seems too gen-
gather the timings between them. The pattern that weral. However, its ESP value turned out to be specific
found in our experiment included 17 system calls, ofenough for a pattern: in our false positive check, we did
which 7 to 10 appeared in every occurrence of the patnot find any other system calls within the application that
tern on the trace. The detailed experimental results are ialso had the same ESP. Moreover, our shadow process
Table 1 and Table 2. always caught that ESP whenever we typed. Therefore,
Verification of the correctness of those timings turnedthis ESP value was adopted as the pattern in our experi-
out to be more difficult than we expectedu does not ment. We further instrumentegedi t to dump the time
read password characters one by one from the input. Inwhen this call was invoked for calculating the real timing
stead, it takes all of them after a RETURN key has beersequence. Table 1 shows that this sequence is very close
stroked. Therefore, instrumentation of its source codeo the one collected by our shadow process.

25

— Serverl
— Server2
— Server3

-
o
o

201

=]
o

o
o
T
-
v

[
o

»
o
User numbers

N

o
T
5]

— vim
- - SSH
Gedit

Percentage of keystrokes detected

0 5 10 15 20 25 30 0 10 20 30 40 50 60 70 80
CPU usage Time (in Hours)

Figure 7: Percentage of keystrokes detected vs. CPWigure 9: Variations of user numbers on the three servers

usage during 72 hours
4.0 T T
— Serverl CPU time was consumed by other processes. This dis-
| — Server2 | | . . y
35 — Server3 crepancy comes from applications’ ESP patterns: those

I E— m——_ | involving more system calls are easier to detect.

On the other hand, the workloads on a real-world sys-
tem are reasonable enough to be handled by our attack.
Figure 8 and 9 reports the CPU usages and user numbers
we measured from three real-world systems, including a
Linux workstation in a public machine room (Server 1), a
server for students’ course projects (Server 3) and a web
server of Indiana University that allov8SH connections
from its users (Server 2). The number of users on these
5 5% 30 0 % 20 =5 30 Systems range from 1 to 24. Our 72-hour monitoring re-

Time (in Hours) veals that for 90 percent of time, the CPU usages of these
servers were below 3.2%.
Figure 8: CPU usages of three real-world servers during We also implemented the technique proposed in [32]
72 hours to hide the CPU usage of our shadow process. As a re-
sult, the process appeared to consume 0% of CPU, as
Impacts of server workloads. A multi-user system of- ob;erve_d frof“. Op. The cost, however, was that it only
ten concurrently serves many users. These users’ activ[€liably identified about 50% of keystrokes we entered.

ties could interfere with the collection of inter-keysteok Nevertheless, this St'”_ helped inference of keys, partic-
timings. This problem was studied in our researchUIarIy when the same input from a user (e.g., password)

through evaluating the effectiveness of our attack undeV3S sampled repeatedly, as discussed in Section 4.2.
different workloads. Specifically, we ran our attacks on

vi m SSH and Gedi t under different CPU usages to 5 2 Key Sequence Inference

measure the percentage of the keystrokes still detectable

to our shadow process. The experimental results ar®Ve further studied how to use the timings to infer key
elaborated in Figure 7. Here, we sketch our findings. sequences. Experiments were conducted in our research

We found that the impacts of workloads varied amongto_ evaluate our techniques using both passwords and En-
applications. The attacks ari mandSSH appear to be 9lish words. Here we report the results.
quite resilient to the interferences from other processesPassword. To study the effectiveness of our approach
our shadow process picked up 100% keystrokes for botlon passwords, we first implemented thé/iterbi algo-
applications when CPU usage was no more than 10% andthm [26] and used it to compute a baseline result, and
still detected 94% fromri mwhen the usage went above then compared the baseline with what can be achieved
20%. In contrast, the attack @dBedi t was less robust: by the analysis using multiple timing sequences, as de-
we started missing keystrokes when more than 2% ofcribed in Section 4.2. Our experiment was carefully

w
o

N
5
T

=
%)
T

Percentage of CPU usage
5 5

o
[
T

o
=)

Table 4: The percentage of the search space the attacker 183; —
has to search before the right password is found. 80% S NN U B B
Method Test Cases 70% —t 1 1
password [L password P password 3 60% 1 1 1
Baselinef-Viterbi) | 7.8% 6.6% 6.8% ig:f BTN
Timing Averaging | 0.38% 0.34% 0.05% 20% HE B D B
m-n-Viterbi 0.39% 0.34% 0.05% 20% BN N L N () B
10% o P s B e B

0%
designed to make it comparable with that of the prior Top10 Top20 Top30 Top50 Top100 Top500

work [26]: we chose 15 keys for training and testing angigyre 10: The success rates of the attack on English
HMM, which include 13 letters and 2 numb&rsFrom words

these keys, we identified 225 key pairs and measured

45 inter-keystroke timings for each of these pair frompractice, and therefore, the same password entered by
a user. We found that the timing for each pair indeedone can become easier to crack than by another.

had Gaussian-like distributions. These distributionsawer English words. We also studied how the timing infor-

used to parameterize two HMMs: one for the first 4 bytesy, 540 can help infer English words. To prepare for the

of an 8-byte password and the other for the second half'experiment, a program was used to randomly generate

We ra_ndomly selected 3 passwords from the space 0(f,haracter sequences with lengths of 3, 4 and 5 létters
all possible 8-byte sequences formed by.the 15 charaGyg from them, we selected 2103 words that also ap-
ters. Fpr gach password, we ran ih¥iterbi algorithm peared in a dictionary. These words were classified into
on 50 timing sequences. Each of these sequences causgoe categories according to their lengths. For the words
the algorithm to produce a ranking list of candidate pass;;ihin each category, we computed a distribution using
WOFdS- The position of the real password on the list qe'their frequencies reported by [18] . These distributions
scribes the search space an attacker has to explore: Qo e ysed to determine the transition probabilities of the

example, we only need to check 1012 candidates if the;\ s for individual categories, which we applied to in-
password is the 1012th member on the list, which r'®%er the words with different lengths.

duces the search space for a 4-byte password by 50 times.

. i) ; : . In the experiment, we randomly draw words from each
To avoid the intensive computation, our implementation

category in accordance with their distribution, and typed
only output the top 4500 members from an HMM. We them to collect timing sequences. The timing segments

found-that for apout 75% of the sequences tested in OUhat represented individual words were identified from
experiment, their corresponding passwords were amon e sequences using the feature of the SPACE key. For
these members. In Table 4, we present the averaged Pelzch segment, we picked up an HMM according to the

ce\r;\;age of t(;lehsea_rch shace for.fmdmg a paiswo;i. length of the word and solved it using theViterbi algo-

Vit %.tGISte 'tr;[edtlmln_gb a:jv_erggmtg aap;oa_?h 5a(§nt' " rithm, which gave us a ranking list of candidates. From
ieroraigorithm described in section 2.2 Wi IMING 4,6 list, our approach further removed the candidates that

sequences for each password, and present the res_ultsdi not pass a spelling check. We tested 14 3-letter

Tgbl_e_ 4. Ag the table shows, both qpprqaches_ aCh_'eve\S\irords, 11 4-letter words and 14 5-letter words. The out-

significant improvements over the Viterbi algorithm: omes are described in Figure 10. From the table, we can

they shrank the search space by factors ranging from 25 ee that the real words were highly ranked in most cases:

to 2000. In contrast, the speed-up factor introduced b%llmost 40% of them appeared in top 10 and 86% among
then-Viterbi algorithm was much small&:

top 50.
We also found that the speed-up factors achieved byOp

our approach, like the prior work [26], depended on the

letter pairs the victim chose for her password: if the tim-§ Discussion

ing distribution of one pair (Figure 6) is not very close

to those of other pairs, it can be more reliably deter-g 1 Eurther Study of the Attack

mined, which contributes to a more significant reduc-

tion of searching spaces. For example, in Figure 6, @ur current implementation only tracks the call-back
password built on the pairs whose means are around 30f@nction for the key press event. We believe that the
milliseconds is much easier to be inferred than the ongattern for keystroke recognition can be more specific
composed of the pairs around 100 milliseconds, as thand easier to detect by adding the ESP sequences of the
latter pairs are more difficult to distinguish from others system calls related to the key release event. Moreover,
with very similar distributions. Itis importantto note tha we evaluated our approach using three applications. It is
those distributions actually reflect an individual’s tygin interesting to know whether other common applications

are also subject to our attack. What we learnt from ourtem calls from the process. Disclosure of such informa-
study is that our attack no longer works when systention actually enables keystroke eavesdropping, which is
calls are not immediately triggered by keystrokes. Thiselaborated in Section 6.2.

could happen when the victim's process postpones the
necessary actions such as access to the standard I/O urél_l2 Information Leaks in the Procfs of
multiple keystrokes are received. For example,does .

not read a password character by character, and instead, Other UNIX-like Systems

imports the string as a whole; as a result, it cannot bezesjdes Linux, most other UNIX-like systems also im-
attacked when it is not used under the interactive mOd‘E)Iement procfs. These implementations vary from case
of SSH. As another examplésTK+ applications tend 10 tg case, and as a result, their susceptibilities to side-
display keys only when the buffer holding them becomes;hannel attacks also differ. Here we discuss such privacy
full or a timer is triggered. Further study to identify the (isks on two systems, FreeBSD and OpenSolaris.
type of applications vulnerable to our attack is leftas our FreeBSD manages its process files more cautiously
future research. In addition, it is conceivable that thehan Linuxd? it puts all register values into the file
same techniques can be applied beyond identification o,fpr oc/ pi d/ r egs that can only be read by the owner
inter-keystroke timing. For example, we can track thegs 5 process, which blocks the information used by
ESP dynamics caused by other events such as moving,r attack. However, we found that other informa-
mouse to peek into a user's activities. tion released by the procfs can lead to similar attacks.
Our current research focuses more on extracting interA prominent example is the system time reported by
keystroke timings from an application than on analyz-/ pr oc/ pi d/ st at us, a file open to every user. Fig-
ing these timings. Certainly more can be done to im-ure 11 shows the correlations between the time con-
prove our timing analysis techniques. Specifically, passsumed byvi mand the keystrokes it received, as ob-
word cracking can be greatly facilitated with the knowl- served in our research. This demonstrates that keystroke
edge about the types of individual password charactergvents within the process can be identified from the
such as letter or number. Acquisition of such knowl- change of its system time, which makes keystroke eaves-
edge can be achieved using our enhanced versions @fopping possible. A problem here is that we may not
the n-Viterbi algorithm that accept multiple timing se- be able to detect special keys a user enters, for example,
guences. This “classification” attack can be more effec* MOV_CURSOR”, which is determined from ESP/EIP in-
tive than the timing attack proposed in [26], as it doesformation on Linux. A possible solution is using the dis-
not need to deal with a large key-pair space. Moreovergrepancies of system-time increments triggered by dif-
the approach we used to infer English words is still pre-ferent keys being entered to fingerprint these individual
liminary. We did not evaluate it using long words, be- keys. Further study of this technique is left to our future
cause solving the HMMs for these words can be timeresearch.
consuming. A straightforward solution is to split along OpenSolaris kernel makes tthgr oc directory of a
word into small segments and model each of them withprocess only readable to its owner, which prevents other
an HMM, as we did for password cracking. This treat- users from entering that directory. Interestingly, some
ment, however, could miss the inherent relations betweefiles under the directory are actually permitted to be read
the segments of a word, which is important because lethy others, for supporting the applications suchpas
ters in a word are often correlated. Fundamentally, theandt op. Like FreeBSD, the registers of the process
first-order HMM we adopted is limited in its capability are kept off-limits. However, other information, includ-
of modeling such relations: it cannot describe the depening system time, is still open for grabs. Figure 11 il-
dency relation beyond that between two key pairs. Ap-ustrates the changes of the system time versus a series
plication of other language models such as the high-ordesf keystrokes we entered on OpenSolaris, which demon-
HMM [12] can certainly improve our techniques. strates that identification of inter-keystroke timings is
Actually, ESP/EIP is by no means the only infor- completely feasible on the system.
mation within procfs that can be used for acquiring
inter-keystroke timings. Other information that can
lead to a similar attack includes interrupt statistics
file /proc/interrupts, and network status data An immediate defense against our attack is to prevent
/ proc/ net. The latter enables an attacker to track one from reading thet at file of another user’s process
the activities of the TCP connections related to the in-once it is forked, which can be done by manually chang-
puts from a remote client. Moreover, the procfs of mosting the permissions of the file. However, this approach is
UNIX-like systems expose thaystem time of a process, notreliable because human are error-prone and whenever
i.e., the amount of time the kernel spends serving the syshe step for altering permissions is inadvertently missed,

6.3 Defense

FreeBSD quire timings: we take advantage of the information of a

g 310000 process exposed by procfs to find out when a key is re-
g 305000 1 ceived by the process, which has been made possible by
g zggggg I L] the rapid development of multi-core techniques. Com-
2 e0000 L ‘ ‘ ‘ ‘ pared with the prior approach, our attack can happen to
600000 800000 1e+06 12e+06 1.4e+06 16e+06 1.8e+06 the clients who use a multi-user system locally as well as
the time point when a key is entered (s) those who connect to the system remotely. Moreover, our
OpenSolaris timing analysis is much more accurate than the prior ap-
g 39500 F ' ' ' ' ' '] proach, through effective use of the information available
_f’gj 38500 | 1 from procfs. On the downside, we need a user account to
£ 30T | —] launch our attack, which is not required by the prior ap-
2 36800 i1] proach. Another prior proposal measures CPU timings

500000 19*‘1‘2 t_'se"(’e_ tze;% 2:9*_06 fe"ze(355‘”06 4406 tg acquire the information about the password a user en-
e time point wnen a Key Is entere! S, B . .
P Y g ters [31]. This approach only gets the information such

Figure 11: System time (solid line) vs. keystroke eventsas password length and some special characters, and is
(dashed line) invi munder FreeBSD (Release 7.1) and subject to the interference of the activities such as pro-
OpenSolaris (Release 2008.11). In the experiments, weessing mouse events, whereas our approach can accu-
found that the system time ofi mchanged only in re- rately identify the events related to keystrokes and infer

sponse to keystrokes, which were recorded by shadowhe characters being entered. Timing analysis has also
programs. been applied to attack cryptosystems [5, 34, 17, 8].

Keyboard acoustic emanations [34] also leak out infor-

mation regarding a user’s keystrokes. Such information
the door to our attack becomes wide open. The approachas been leveraged by several prior approaches [2, 33, 3]
also affects the normal operations of common tools sucho identify the keys being entered. Similar to our attack,
asps andt op, which all depend orst at to acquire some of these approaches also apply language models
process information. A complete solution is to patch(including the high-order HMM) to infer English words.
Linux kernels to remove the ESP and EIP informationThey all report very high success rates. Acoustic ema-
from a process’s virtual file or move them into a separatenations are associated to individual keys, whereas tim-
file which can only be read by the owner. The problemings are measured between a pair of keys. This makes
is that there is no guarantee that other information discharacter inference based on timings more challenging.
closed by procfs will not lead to a similar attack (Sec-On the other hand, acquisition of acoustic emanations
tion 6.1 and Section 6.2). Detection of our attack Canrequires physically implanting a recording device close
also be hard, because our shadow process behaves @y-the victim, whereas our attack only needs a normal
actly like the legitimate tools such a®op, which also yser account. Moreover, these attacks can only be used
continuously read from virtual files. The shadow pro- against a local user. In contrast, our approach works on
gram can also hide its CPU usage by leveraging existingyoth local and remote users.
techniques [32]. Fundamentally, with the pervasiveness
of multi-core systems that enable one process to effec: .
tively monitor another process’s execution, we feel it i58 Conclusion

necessary to rethink the security implications of the pub- .
S . : : In this paper, we present a new attack that allows a ma-
lic information available on current multi-user systems.

licious user to eavesdrop on other users’ keystrokes us-
ing procfs, a virtual file system that shares statistic infor
7 Related Work mation regarding individual users’ processes. Our attack
utilizes the stack information of a process present in its
It has long been known that individual users can be charst at file on a Linux system to fingerprint its behavior
acterized by their unique and stable keystroke dynamicsyhen a keystroke is received. Such behavior is modeled
the timing information that can be observed when one isas an ESP pattern of its system calls, which can be ex-
typing [16]. Such information has been intensively stud-tracted from an application through automatic program
ied for biometric authentication [21]. In comparison, lit- analysis. During the runtime of the application, our ap-
tle has been done to explore its potential for inferring theproach shadows its process with another process to col-
characters a user typed [6]. The first paper on this sublect an ESP trace from itst at file. Our research shows
ject'® proposes to measure inter-keystroke timings fromthat on a multi-core system, the shadow process can ac-
the latencies betweeBSH packets [7] and use them to quire a trace with a sufficient granularity for identifying
crack passwords. Our attack takes a different path to adceystroke events. This allows us to determine the tim-

ings between keystrokes and analyze them to infer the[g]
key sequence the victim entered. We also show that other
information available from procfs can be of great help
to character inference: knowing that the same user en-
ters her password to the same application, we can com-
bine multiple timing sequences related to the password to
significantly reduce the space for searching it. We aIsqu]
propose to utilize the victim’s writing style to infer the
English words she enters. Both approaches are very ef-
fective, according to our experimental study. [11]

Our attack can be further improved through adopt-
ing more advanced analysis techniques such as the high-
order HMM and other language model. The same ided'?
can also be applied to infer other user activities such
as moving and clicking mouse, and even deduce otherﬁ’m]
secret keys. More generally, other information within
procfs, such as system time, can be used for a similar at-
tack, which threatens other UNIX-like systems such as
FreeBSD and OpenSolaris. Research in these directiori&?]
is left as our future work.

Acknowledgements (15]
The authors thank our shepherd Angelos Stavrou for hi$L6l
guidance on the preparation of the final version, and
anonymous reviewers for their comments on the draft of
the paper. We also thank Rui Wang for his assistance irﬁm
preparing one of the experiments reported in the paper.
This work was supported in part by the National Sci-
ence Foundation the Cyber Trust program under Gran[g]
No. CNS- 0716292.

[19]
References

[1] Cryptography/frequency analysibt t p: // en. wi ki books.

or g/ wi ki / Crypt ogr aphy: Frequency\.anal ysi s,

Aug 2006.

AsonNov, D., AND AGRAWAL, R. Keyboard acoustic emana-

tions. InlEEE Symposium on Security and Privacy (2004), pp. 3—
11.

(20]

(2]

[3] BERGER Y., WooOL, A., AND YEREDOR A. Dictionary attacks
using keyboard acoustics emanations. A@S (2006), ACM,

pp. 245-254.

BERGROTH L., HAKONEN, H., AND RAITA, T. A survey of
longest common subsequence algorithm<Prisceedings of Sev-
enth International Symposium on Sring Processing and Informa-
tion Retrieval (2000), pp. 39-48.

BRUMLEY, D.,AND BONEH, D. Remote timing attacks are prac-
tical. In In proceedings of the 12th Usenix Security Symposium
(2003).

BucHHOLTZ, M., GILMORE, S. T., HLLSTON, J.,AND NIEL-
SoN, F. Securing statically-verified communications protscol
against timing attacksElectronic Notes in Theoretical Computer
Science 128, 4 (2005), 123-143.

DESIGNER S.,AND SONG, D. Passive analysis of ssh (secure
shell) traffic. Openwall advisory OW-003, March 2001.

[21]

[4] [22]

(23]
(5]

(24]
(6]

[25]

(7]

] DISTROWATCH.COM.

DHEM, J. F., KOEUNE, F., LEROUX, P.-A., MESTRE P.,
QUISQUATER, J.-J.,AND WILLEMS, J.-L. A practical im-
plementation of the timing attack. IRroceedings of CARDIS
(1998), pp. 167-182.

Top ten distributions: An overview
of today’s top distributions.ht t p: // di st rowat ch. com
dwr es. php?r esour ce=mgj or, 2008.

EDIT VIRTUAL LANGUAGE CENTER. Word frequency
lists. http://ww. edi ct.com hk/textanal yser/
wor dl i st s. ht m as of September, 2008.

FERRELL, J. procfs: Gone but not forgotten.
http://ww. freebsd. org/ doc/en/articles/
|'i nux-users/procfs. htnl,2009.

FRANCOIS, M. J.,AND PAUL, H. J. Automatic word recognition
based on second-order hidden markov model$CBLP (1994),
pp. 247-250.

HOGYE, M. A., HUGHES, C. T., SARFATY, J. M., AND WOLF,
J. D. Analysis of the feasibility of keystroke timing attacver
ssh connections. Technical Report CS588, School of Engitgee
and Applied Science, University of Virginia, December 2001

INC., R. Process directories. http://ww.redhat.
com docs/ manual s/ ent er pri se/ RHEL- 4- Manual /
en- US/ Ref er enceGui de/ s2- proc- processdirs.
ht m , 2007.

JoNEs, N. C.,AND PEVZNER, P. A. An Introduction to Bioin-
formatics Algorithms. the MIT Press, August 2004.

JOYCE, R., AND GUPTA, G. Identity authorization based on
keystroke latenciesCommunications of the ACM 33, 2 (1990),
168-176.

KOCHER, P., AE, J.,AND JuN, B. Differential power analy-
sis. InProceedings of the 19th Annual International Cryptology
Conference on Advances in Cryptology (1999), Springer-Verlag,
pp. 388-397.

LEeCH, G., RaysoNn, P.,AND WILSON, A. Word frequencies in
written and spoken english: based on the british nationgdu=
http://ww. conp. | ancs. ac. uk/ ucrel / bncfreq.

LoscoccqQ P., AND SMALLEY, S. procfs analysis.
http://ww. nsa. gov/ SeLi nux/ paper s/ sl i nux/
node57. ht m , February 2001.

LUk, C. K., COHN, R., MUTH, R., RTIL, H., KLAUSER, A.,
LOWNEY, G., WALLACE, S., REDDI, V. J.,AND HAZELWOOD,

K. Pin: building customized program analysis tools with dy-
namic instrumentation. [®PLDI '05: Proceedings of the 2005
ACM S GPLAN conference on Programming language design
and implementation (2005), pp. 190-200.

MONROSE F.,AND RUBIN, A. Authentication via keystroke dy-
namics. InProceedings of the 4th ACM conference on Computer
and communications security (1997), ACM Press, pp. 48-56.

PETERSSON J. What is linux-gate.so.1? http://ww.
trilithium contjohan/2005/08/1inux-gate/, as
of September, 2008.

PrRovos, N. Systrace - interactive policy generation for sys-
tem calls. http://wwmv. citi.um ch. edu/ u/ provos/
systrace/, 2006.

RABINER, L. R. A tutorial on hidden markov models and se-
lected applications in speech recognitiorProceedings of the
IEEE 77, 2 (1989), 257-286.

SECURITY, S. C. Timing analysis is not a real-life threat to
ssh secure shell userhitt p: / / www. ssh. com conpany/
news/ 2001/ english/all/articlel/ 204/, November
2001.

[26] SONG, D. X., WAGNER, D., AND TIAN, X. Timing analysis
of keystrokes and timing attacks on ssh. USENIX Security
Symposium (2001), USENIX Association.

[27] SOURCEFORGENET. http://sourceforge. net/
proj ect s/ strace/, August 2008.

[28] TEAM, G. http://ww. gt k. or g, as of September, 2008.

[29] TEAM, P. Pax address space layout randomization (dsir) p:
/| pax. grsecurity. net/docs/asl r.txt,March 2003.

[30] TEam, P.http://pax. grsecurity. net/,as of Septem-
ber, 2008.

[31] TROSTLE, J. Timing attacks against trusted path.|BEE Sym-
posium on Security and Privacy (1998).

[32] TSAFRIR, D., ETSION, Y., AND FEITELSON, D. G. Secretly
monopolizing the cpu without superuser privileges.Phaceed-
ings of 16th USENIX Security Symposium (Berkeley, CA, USA,
2007), USENIX Association, pp. 1-18.

[33] ZHANG, L., ZHOU, F.,AND TYGAR, J. D. Keyboard acoustic
emanations revisited. IBCS 05: ACM Conference on Computer
and Communications Security (2005), ACM Press, pp. 373-382.

[34] ZHou, Y., AND FENG, D. Side-channel attacks: Ten years after
its publication and the impacts on cryptographic moduleusec
rity testing. csrc.nist.gov/groups/STM/cmvp/docum£igs140-
3/physec/papers/physecpaperl9.pdf, December 2005.

Notes

1The program is actually a simplified versiondfm

2Some old Linux distributions such as RedHat Enterprise 4 do
not use vDSO, and instead then entry of their system callstpdd
_dl _sysi nf o_i nt 80 in library /lib/ld-linux.so or /lib/ld.so.

SWe designed our attack in a way that a keystroke event can-be re
liably identified even in the presence of some missing ESPY&lues,
which could happen when the shadow process is preemptechby ot
processes (Section 3).

“4After the application enter the state that keystroke inpuesex-
pected, our approach waits for a time period before exppttie first
sequence. This allows for the accomplishment of all theesystalls
prior to keystrokes. Similarly, the second sequence is xjporeed un-
til the keystroke happens for a while so as to ensure thatakystem
calls related to the stroke are completed.

5There are actually two events associated with a keystroley: k
press and key release. We use the first event here for theigiynpl
of explanation. Our technique can actually be applied th lewents.

SWe did not use the instructions such ast ' to identify the end of
a call-back function because compiler optimization coelthove such
instructions from a binary executable.

7Some Linux versions such as RedHat [14] turn off the permissi
onnmaps butst at is always open.

8Theoretically, this approach may not eliminate false paesit
when it comes to non-deterministic applications, becaussst applica-
tions may contain ESP sequences we did not observe durirafftine
analysis.

9The prior work used 10 letters and 5 numbers. We increased the
number of letter keys to get a larger set of legitimate wotsolur
experiment on English text.

10The factor is actually below what was reported in the prior
work [26]. A possibility is that we adopted 225 key pairs mtithan
142 used in the prior work.

11we did not choose longer words in our experiment to avoichinte
sive computation. However, such a word can also be learntgtr
splitting it into shorter segments and analyzing them uslifigrent
HMMs.

121t is reported that FreeBSD moves to phase out procfs [11].

13The possibility of timing attack 08SH has also been briefly dis-
cussed in [26].

