
USENIX Association 	 18th USENIX Security Symposium	 199

Physical-layer Identification of RFID Devices

Boris Danev
Dept. of Computer Science
ETH Zürich, Switzerland
boris.danev@inf.ethz.ch

Thomas S. Heydt-Benjamin
IBM Zürich Research

Laboratory, Switzerland
hey@zurich.ibm.com

Srdjan Čapkun
Dept. of Computer Science
ETH Zürich, Switzerland

capkuns@inf.ethz.ch

Abstract
In this work we perform the first comprehensive study
of physical-layer identification of RFID transponders.
We propose several techniques for the extraction of
RFID physical-layer fingerprints. We show that RFID
transponders can be accurately identified in a controlled
environment based on stable fingerprints corresponding
to their physical-layer properties. We tested our tech-
niques on a set of 50 RFID smart cards of the same
manufacturer and type, and we show that these tech-
niques enable the identification of individual transpon-
ders with an Equal Error Rate of 2.43% (single run) and
4.38% (two runs). We further applied our techniques to a
smaller set of electronic passports, where we obtained
a similar identification accuracy. Our results indicate
that physical-layer identification of RFID transponders
can be practical and thus has a potential to be used in a
number of applications including product and document
counterfeiting detection.

1 Introduction

Passively powered Radio Frequency Identification De-
vices (RFID) are becoming increasingly important com-
ponents of a number of security systems such as elec-
tronic passports [3], contactless identity cards [4], and
supply chain systems [16]. Due to their importance,
a number of security protocols have been proposed for
RFID authentication [46, 25, 17], key management [31,
28] and privacy-preserving deployment [6, 29, 26, 37,
19, 14, 13]. International standards have been accepted
that specify the use of RFID tags in electronic travel
documents [3]. Although the literature contains a num-
ber of investigations of RFID security and privacy proto-
cols [27, 5] on the logical level, little attention has been
dedicated to the security implications of the RFID phys-
ical communication layer.

In this work, we focus on the RFID physical com-
munication layer and perform the first study of RFID

transponder physical-layer identification. We present a
hardware set-up and a set of techniques that enable us to
perform the identification of individual RFID transpon-
ders of the same manufacturer and model. We show that
RFID transponders can be accurately identified in a con-
trolled measurement environment based on stable finger-
prints corresponding to their physical-layer properties.
The measurement environment requires close proximity
and fixed positioning of the transponder with respect to
the acquisition antennas.

Our techniques are based on the extraction of the mod-
ulation shape and spectral features of the signals emit-
ted by transponders when subjected to both well formed
reader signals, and to out of specification reader signals.
We tested our techniques on a set of 50 RFID smart
cards of the same manufacturer and type and show that
these techniques enable the identification of individual
cards with an Equal Error Rate of 2.43% (single run) and
4.38% (two runs). We further applied our techniques to
a smaller set of electronic passports, where we obtained
a similar identification accuracy. We also tested the clas-
sification accuracy of our techniques, and show that they
achieve an average classification error of 0% for a set of
classes corresponding to the countries of issuance. We
further show that our techniques produce features that
form compact and computationally efficient fingerprints.
Given the low frequencies of operation of the transpon-
ders in our study, the extraction of the fingerprints is
inexpensive, and could be performed using a low-cost
purpose-built reader.

Although the implications of physical-layer identifi-
cation of RFID transponders are broad, we believe that
the techniques we present can potentially find their use
in the detection of cloned products and identity docu-
ments, where the (stored) fingerprints of legitimate doc-
uments are compared with those of the presented doc-
uments. Our experimental setup corresponds to this
application in which the transponders are fingerprinted
from close proximity and in a controlled environment.



200	 18th USENIX Security Symposium	 USENIX Association

It has been recently shown that despite numerous pro-
tections, RFIDs in current electronic documents can be
successfully cloned [18, 34, 33, 47], even if they ap-
ply the full range of protective measures specified by
the standard [3], including active authentication. We see
our techniques as an additional, efficient and inexpen-
sive mechanism that can be used to detect RFID cloning.
More precisely, to avoid detection of a cloned document,
an adversary has to produce a clone using a transponder
with the same fingerprint as the original document. Al-
though, it may be hard to perform such task, the amount
of effort required is an open research problem. We dis-
cuss two methods of applying RFID physical-layer iden-
tification to cloning detection and compare it to other
anti-cloning solutions, like those based on physically-
unclonable functions (PUFs) [12].

Our results show the feasibility of RFID transponder
fingerprinting in a controlled environment. Using the
proposed methods is not enough to extract the same or
similar fingerprints from a larger distance (e.g., 1 meter).
In our experiments, such remote feature extraction pro-
cess resulted in incorrect identification. Therefore, we
cannot assert that chip holder privacy can be compro-
mised remotely using our techniques. This result further
motivates an investigation of physical-layer features of
RFID transponders that would allow their remote iden-
tification, irrespective of (e.g., random) protocol-level
identifiers that the devices use on the logical communi-
cation level. Our current results do not allow us to con-
clude that such distinguishable features can be extracted
remotely.

The remainder of this paper is organized as follows. In
Section 2, we present our system model and investigation
parameters. In Section 3, we detail our fingerprinting
setup (i.e., a purpose-built reader), signal capturing pro-
cess and summarize the data acquisition procedure and
collected data. The proposed features for transponder
classification and identification are explained in Section
4 and their performance is analyzed in Section 5. We dis-
cuss an application of our techniques to document coun-
terfeiting detection in Section 6, make an overview of
background and related work in Section 7 and conclude
the paper in Section 8.

2 Problem and System Overview

In this work, we explore physical-layer techniques for
detection of cloned and/or counterfeit devices. We
focus on building physical-layer fingerprints of RFID
transponders for the following two objectives:

1. RFID transponder classification: the ability to as-
sociate RFID transponders to previously defined
transponder classes. In the case of identity docu-

ments classes might, for example, be defined based
on the country that issued the document and the year
of issuance.

2. RFID transponder identification: the ability to iden-
tify same model and manufacturer RFID transpon-
ders. In the case of identity documents, this could
mean identifying documents from the same country,
year and place of issuance.

A classification system must associate unknown RFID
transponder fingerprints to previously defined classes C.
It performs ”1-to-C” comparisons and assigns the RFID
fingerprint to the class with the highest similarity accord-
ing to a chosen similarity measure (Section 5.1). This
corresponds to a scenario in which an authority verifies
whether an identity document belongs to a claimed class
(e.g., country of issuance).

An identification system typically works in one of
two modes: either identification of one device among
many, or verification that a device’s fingerprint matches
its claimed identity [8]. In this work, we consider veri-
fication of a device’s claimed or assumed identity. This
corresponds to a scenario in which the fingerprint of an
identity document (e.g., passport), stored in a back-end
database or in the document chip, is compared to the
measured fingerprint of the presented document. The
verification system provides an Accept/Reject decision
based on a threshold value T (Section 5.1). Identity ver-
ification requires only ”1-to-1” fingerprint comparison
and is therefore scalable in the number of transponders.

In this study we use a single experimental setup for ex-
amination of both classification and identification. Our
setup consists of two main components: a signal acquisi-
tion setup (i.e., a purpose-built RFID reader) (Section 3)
and a feature selection and matching component (Sec-
tion 4). In our signal acquisition setup we use a purpose-
built reader to transmit crafted signals which then stim-
ulate a response from the target RFID transponders. We
then capture and analyze such responses. In particular,
we consider transponder responses when subjected to the
following signals from the reader: standard [4] transpon-
der wake-up message, transponder wake-up message
at intentionally out-of-specification carrier frequencies,
a high-energy burst of sinusoidal carrier at an out-of-
specification frequency, and a high-energy linear fre-
quency sweep.

To evaluate the system accuracy, we make use of
two different device populations (Table 1). The first
population consists of 50 ”identical” JCOP NXP 4.1
smart cards [2] which contain NXP RFID transponders
(ISO 14443, HF 13.56 MHz). We chose these transpon-
ders since they are popular for use in identity docu-
ments and access cards, and because they have also been
used by hackers to demonstrate cloning attacks against

2



USENIX Association 	 18th USENIX Security Symposium	 201

e-passports [47]. The second population contains 8
electronic passports from 3 different countries1. These
two populations allow us to define different transponder
classes (e.g., 3 issuing countries, and a separate class for
JCOP cards) for classification and include a sufficient set
of identical transponders to quantify the identification ac-
curacy of the transponders of the same model and manu-
facturer.

In summary, in this work, we answer the following
interrelated questions:

1. What is the classification accuracy for different
classes of transponders, given the extracted fea-
tures?

2. What is the identification accuracy for transponders
of the same model and manufacturer, given the ex-
tracted features?

3. How is the classification and identification accuracy
affected by the number of signals used to build the
transponder fingerprint?

4. How stable are the extracted features, across differ-
ent acquisition runs and across different transponder
placements (relative to the reader)?

3 Experimental Setup and Data

In this section, we first describe our signal acquisition
setup. We then detail the different types of experiments
we performed and present the collected datasets from our
population of transponders.

3.1 Hardware Setup
Figure 1 displays the hardware setup that we use to col-
lect RF signals from the RFID devices. Our setup is
essentially a purpose-built RFID reader that can oper-
ate within the standardized RFID communication spec-
ifications [4], but can also operate out of specifications,
thus enabling a broader range of experiments. The setup
consists of two signal generators, used for envelope gen-
eration (envelope generator) and for signal modulation
(modulation generator), and of transmitting and acqui-
sition antennas. The envelope generator is fed with a
waveform that represents the communication protocol
wake-up command2 required for initiating communica-
tion with RFID transponders. The envelope waveform

1The small quantity of the electronic passports used in the experi-
ments is due to the difficulty of finding people who are in possession of
such passports and at the same time willing to allow experimentation
on them.

2ISO/IEC 14443 for RFID communication defines two different
communication protocols, Type A and B, which use different wake-up
commands: WUQA and WUQB, respectively.

is then sent to the modulation generator and is modu-
lated according to the ISO/IEC 14443 protocol Type A or
B, depending on the transponders being contacted. The
modulated signal is then sent over a PCB transmitting an-
tenna. Finally, the wake-up signal and the response from
the transponder are received at the acquisition antenna
and captured at the oscilloscope. The separation of the
envelope generation and modulation steps allowed us to
independently vary envelope and modulation character-
istics in our experiments.

In order to collect the RF signal response, we built a
”sandwich” style antenna arrangement (Figure 2b) where
an acquisition antenna is positioned between the trans-
mission antenna and the target RFID transponder. An
wooden platform holds the transmission and acquisition
antennas in a fixed position to avoid changes in antenna
polarization3. The platform is separated from the desk by
a non-metallic wooden cage. The transmission and ac-
quisition antennas are both connected to an oscilloscope.
We used the RF signal on the transmission antenna to
trigger the acquisition and then record the transponder’s
response at the acquisition antenna. It should be noted
that we can also observe the transponder’s response at
the transmission antenna, however as the acquisition an-
tenna had a higher gain than the transmission antenna, we
used the described setup to obtain better signal-to-noise
ratio.

3.2 Performed Experiments

Using the proposed setup, we performed four major ex-
periments:
Experiment 1 (Standard): In this experiment we initi-
ate communication with the transponders as defined by
Type A and B protocols in the ISO/IEC 14443 standard.
The envelope generator generates the Type A and B en-
velopes and the modulation generator modulates the sig-
nal at a carrier frequency Fc= 13.56 MHz, using 100%
ASK for Type A and 10% ASK for Type B at the nomi-
nal bit rate of Fb ∼ 106kbit/s.4 The experiment consists
of the following steps: a period of unmodulated carrier
is transmitted to power the transponder at which time
the oscilloscope begins recording the data. The carrier
is then modulated according to the envelope such that it
corresponds to a WUQA (Type A) or WUQB (Type B)
wake-up command. When the commands are no longer
transmitted, an unmodulated period of carrier is then sus-
tained while the oscilloscope records the response from
the transponder. The carrier is turned off between each

3It has been observed that such changes can reduce the identifica-
tion accuracy [11].

4For 100% ASK modulation we used pulse modulation as standard
built-in amplitude modulation (AM) in our generators could not reach
the required precision.

3



202	 18th USENIX Security Symposium	 USENIX Association

Transmission Antenna

R
F

RF

Envelop
Generator

GPIB RF

Modulation
Generator

GPIB RF

Scope

CH
1

CH
2

Target Transponder

Acquisition Antenna GPIB

Figure 1: Signal acquisition setup. Envelope and modulation generators generate wake-up signals that initiate the
response from the RFID transponder. This wake-up signal is transmitted by the transmitting antenna. The acquisition
antenna captures both the wake-up signal and the response from the transponder. The signal from the acquisition
antenna is then captured and recorded by the oscilloscope.

(a) (b)

Figure 2: a) Transmission and acquisition antennas. b) An electronic identity document being placed in the finger-
printing setup.

observation to ensure the transponder reboots each time.
Figures 3a and 3b show the collected samples from Type
A and Type B RFID transponders, respectively. This ex-
periment enables us to test if the transponder’s responses
can be distinguished when they are subjected to standard
signals from the reader.
Experiment 2 (Varied Fc): In this experiment, we test
transponder responses to the same signals as in Exper-
iment 1, but on out of (ISO/IEC 14443) specification
carrier frequencies. Instead of on Fc=13.56 MHz, our
setup transmits the signals on carrier frequencies be-
tween Fc=12.96 MHz and 14.36 MHz. Figures 3c and
3d display sample transponder responses to signals on
Fc=13.06 MHz. We expect the variation in the transpon-
der responses to be higher when they are subjected to out
of specification signals, since the manufacturers mainly
focus on transponder responses within the specified fre-
quency range.
Experiment 3 (Burst): In this experiment, we tested
transponder responses to bursts of RF energy. We sub-
jected the transponders to 10 cycles (2 µs) of non-
modulated 5 MHz carrier at an amplitude of Vpp=10 V
(the maximum frequency and amplitude supported by

our generators while in burst mode). Figure 4a shows
a sample transponder response to such an RF burst. This
experiment tests the response of transponders to an addi-
tional out-of-specification signal. We expect to see vari-
ation in different transponders’ responses for a variety
of reasons. For example since each transponder’s an-
tenna and charge pump is unique, we believe that dur-
ing power-up it will present a unique modulation of an
activating field.
Experiment 4 (Frequency Sweep): This experiment
consists of observing transponder responses to a non-
modulated carrier linear sweep from 100 Hz to 15 MHz
at an amplitude of Vpp=10 V (as measured at transmit-
ting antenna). The duration of the sweep is fixed to the
maximum allowed by our generator, 10 ms. In this test
we examine how the transponders react to many differ-
ent frequencies. Among other things, such an experiment
provides information about the resonances of the RF cir-
cuitry in each transponder. Figure 4b shows a sample
transponder response to a frequency sweep. Note the dif-
ferent shape artifacts.

We found that samples collected from Experiment 2
were well suited for transponder classification, whereas

4



USENIX Association 	 18th USENIX Security Symposium	 203

0 100 200 300 400 500
−3

−2

−1

0

1

2

3

Time (microseconds)

Si
gn

al
 a

m
pl

itu
de

 (V
)

WUQA

ATQA

(a)

0 100 200 300 400 500
−4

−3

−2

−1

0

1

2

3

4

Time (microseconds)

Si
gn

al
 a

m
pl

itu
de

 (V
)

ATQB
WUQB

(b)

0 100 200 300 400 500
−3

−2

−1

0

1

2

3

Time (microseconds)

Si
gn

al
 a

m
pl

itu
de

 (V
) ATQAWUQA

(c)

0 100 200 300 400 500
−4

−3

−2

−1

0

1

2

3

4

Time (microseconds)

Si
gn

al
 a

m
pl

itu
de

 (V
) WUQB

ATQB

(d)

Figure 3: Experiment 1: Type A (a) and Type B (b) RFID transponder responses to WUQA and WUQB commands
sent on the ISO/IEC 14443 specified carrier frequency (Fc=13.56 MHz). Experiment 2: Type A (c) and Type B
(d) RFID transponder responses ATQA and ATQB to WUQA and WUQB commands respectively sent on an out of
ISO/IEC 14443 specification carrier frequency (Fc=13.06 MHz)

.

0 100 200 300 400

−0.1

−0.05

0

0.05

0.1

0.15

Time (microseconds)

Si
gn

al
 a

m
pl

itu
de

 (V
)

Transponder response to 
a burst

(a)

0 100 200 300 400

−0.1

−0.05

0

0.05

0.1

0.15

Time (microseconds)

Si
gn

al
 a

m
pl

itu
de

 (V
)

Transponder response to 
a frequency sweep

(b)

Figure 4: a) Experiment 3: transponder response sample to a non-modulated 5 MHz carrier in duration of 10 cycles.
b) Experiment 4: transponder response sample to a non-modulated carrier linear sweep from 100 Hz to 15 MHz. The
duration of the sweep is 10 ms.

those collected from Experiments 3 and 4 were better
suited for identification of individual RFID transponders.
We discuss this result at greater length in Section 4.

3.3 Collected Data
Using the proposed setup, we performed the experiments
described in Section 3.2 and collected samples from
8 passports and 50 JCOP NXP 4.1 smart cards (same
model and manufacturer). The types of devices used in
the experiments are shown in Table 1. For the privacy of
our research subjects we arbitrarily labeled the passports
as ID1 to 8. To further protect their privacy we give the
country and place of issuance under the pseudonyms C1
to C3 and P1 to P6 respectively.

Our data collection procedure for a single experi-
ment ”run” was as follows: We positioned the target
RFID device on the experimental platform with all other
transponders being at an out-of-range distance from the

activating field. We then placed a heavy non-metallic
weight on top of the transponder to position it firmly
and horizontally on the platform. For each device we
then performed Experiments 1-4 at fixed acquisition tim-
ing offset and sampling rate and saved the samples to
a disk for later analysis. For each transponder we per-
formed two runs, completely removing and replacing
the target transponder on the experimental platform be-
tween runs. This ensures that extracted features are sta-
ble across repositioning.

In each iteration of Experiment 2 we collected 4 sam-
ples per run for 14 different carrier frequencies starting
from Fc=12.96 up to 14.36 MHz with a step of 100 KHz.
This resulted in 64 samples per transponder per run. In
Experiments 3 and 4 we collected 50 samples per device
per run.

5



204	 18th USENIX Security Symposium	 USENIX Association

Table 1: RFID device populations (passports and JCOP NXP smart cards).
Type Number Label Country Year Place of Issue

Passport 2 ID1, ID2 C1 2006 P1
1 ID3 C1 2006 P2
1 ID4 C1 2006 P3
1 ID5 C1 2007 P4
1 ID6 C2 2008 P5
1 ID7 C3 2008 P6
1 ID8 C1 2008 P1

JCOP 50 J1..J50 JCOP NXP 4.1 cards (same model and manufacturer)

4 Feature Extraction and Selection

The goal of the feature extraction and selection is to ob-
tain distinctive fingerprints from raw data samples col-
lected in the proposed experiments, which most effec-
tively support the two objectives in our work, namely
classification and identification. In this section, we de-
tail the extraction and matching procedures of two types
of features effective for that purpose: modulation-shape
features (Section 4.1) and spectral PCA features (Sec-
tion 4.2). We also investigated the use of some tim-
ing features, such as the time interval within which the
transponder responds to an WUQ command and the du-
ration of that response (Figure 5a). These timing features
performed poorly in both tasks, hence in this work we fo-
cus on the modulation-shape and spectral features.

4.1 Modulation-shape Features
In this section, we describe the extraction and match-
ing procedures for the features extracted from the shape
of the modulated signal of the transponder responses at
a given carrier frequency Fc (Experiment 1&2). Fig-
ure 5 b) shows the shape of the On-Off keying modu-
lation for the JCOP NXP 4.1 card for the first packet in a
transponder’s response to a wake-up command. All Type
A transponders in our study had a logically identical first
packet.

For a given transponder, the features of the modulated
signal are extracted from the captured transponder re-
sponse (see Figure 3) denoted as f(t, l), using Hilbert
transformation. Here, f(t, l) is the amplitude of the sig-
nal l at time t. The Hilbert transformation is a com-
mon transformation in signal processing used to obtain
the signal envelope [38].

In Step (i), we apply Hilbert transformation on f(t, l)
to obtain H(t, l):

H(t, l) = Hil(f(t, l)) (1)

where Hil is a function implementing the Hilbert trans-
form [36].

In Step (ii), the starting point of the modulation in
H(t, l) is determined using the variance-based threshold
detection algorithm described in [40]. The end point is
fixed to a pre-defined value (see Section 5) and then the
modulation-shape fingerprint is extracted.

Feature matching between a reference and a test fin-
gerprints is performed using standardized Euclidean dis-
tance, where each coordinate in the sum of squares is
inverse weighted by the sample variance of that coordi-
nate [35].

4.2 Spectral Features

In this section, we describe the extraction and match-
ing of spectral features from data collected from Experi-
ments 3 (Burst) and 4 (Sweep) (Section 3.2).

Both frequency sweep and burst data samples are ex-
tremely high-dimensional: each sweep data sample con-
tains 960000 points (dimensions) and each burst data
sample contains 40000. Such high-dimensional data typ-
ically contain many noisy dimensions which are detri-
mental to finding distinctive features. Therefore, it is
critical to remove the noise as much as possible from the
raw data samples.

We explored two basic approaches to solve the dimen-
sionality problem. In the first approach, we considered
transforming the data in the frequency domain by means
of the Fast Fourier Transform (FFT) and remove the high
frequencies (usually considered noisy) by filtering. How-
ever, matching experiments using direct vector similarity
measures such as Euclidean and Cosine distance failed
to produce distinctive enough features. This may be be-
cause in removing the high frequencies we are also re-
moving frequencies that contain discriminative capabil-
ities. Such behavior is commonly noticed in biometrics
research [10]. In the second approach we down-sampled
the signal at different rates in order to reduce the dimen-
sionality. We then transformed the data in the frequency
domain by FFT and applied standard vector similarity
measures. Again reducing the dimensionality in this way
did not prove to be effective in extracting sufficiently dis-

6



USENIX Association 	 18th USENIX Security Symposium	 205

0 100 200 300 400 500
−5

0

5

Time (microseconds)

Si
gn

al
 a

m
pl

itu
de

 (V
)

Time length to 
start of response

Time length of
response

(a)

0 200 400 600 800 1000 1200
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time (ns)

Si
gn

al
 a

m
pl

itu
de

 (V
)

JCOP NXP 4.1 Card modulation shape

Start of ATQA response
On−Off keying modulation

Considered end

(b)

Figure 5: a) Timing features extracted from Type B transponder responses. b) Modulation-shape features.

criminative features.
To overcome the above problems, we use a modifi-

cation of Principal Component Analysis (PCA) for high-
dimensional data [7], that reduces data dimensionality by
discarding dimensions that do not contribute to the total
covariance. Given that the number of dimensions is very
high, orders of magnitude higher than the number of data
samples we can process, a standard PCA procedure can-
not be applied. In the following subsection, we briefly
describe the used PCA modification.

4.2.1 Feature Extraction and Matching

For a given RFID device, spectral PCA features are ex-
tracted from N captured samples using a linear transfor-
mation derived from PCA for high-dimensional data. We
denote a signal by f(t, l), where f(t, l) is the amplitude
of the signal l at time t. The features are extracted in the
following three steps:
In Step (i), we apply a one-dimensional Fourier transfor-
mation on f(t, l) to obtain F (ω, l):

F (ω, l) =
1√
M

M−1
m=0

f(t, l) exp(−2πi
tω

M
) (2)

where M is the length of signal considered and 0 ≤ t ≤
M − 1 is time. We then remove from F (ω, l) its DC
component and the redundant part of the spectrum; we
denote the remaining part of the spectrum by sl.
In Step (ii), a projected vector gl, also called a spectral
feature, is extracted from the Fourier spectrum using a
PCA matrix WPCA:

gl = W t
PCAsl (3)

The feature extraction from N captured samples for a
given transponder is then given by G = W t

PCAS where
G is an array of gl and S is a matrix S = [ s0 .. sl .. sN ].

Finally, in Step (iii), the feature template (fingerprint) h
used for matching is computed:

h = {Ĝ; ΣG} (4)

where Ĝ denotes the mean vector of G and ΣG denotes
the covariance matrix of G. The number of captured
samples N used to build the feature template and the
number of projected vectors in WPCA (i.e., the subspace
dimension) are experimentally determined.

Mahalanobis distance is used to find the similarities
between fingerprints5. The result of matching a reference
hR and a test hT feature templates is a matching score,
calculated as follows.

scr(hR, hT ) = min(

(ĜT − ĜR)tΣ−1

GR
(ĜT − ĜR),


(ĜT − ĜR)tΣ−1

GT
(ĜT − ĜR)) (5)

Values of the matching score closer to 0 indicate a bet-
ter match between the feature templates. The proposed
matching uses the mean and covariance of both test and
reference templates. It also ensures the symmetric prop-
erty, that is scr(hR, hT ) = scr(hT , hR).

It should be noted that the proposed feature extraction
and matching method can be efficiently implemented
in hardware as they use only linear transformations for
feature extraction and inter-vector distance matchings.
These operations have a low memory footprint and are
computationally efficient.

4.2.2 PCA Training

In order to compute the eigenvalues and corresponding
eigenvectors of the high-dimensional data (the number

5We discovered that the feature templates are distributed in ellip-
soidal manner and therefore use Mahalanobis distance that weights
each projected sample according to the obtained eigenvalues.

7



206	 18th USENIX Security Symposium	 USENIX Association

of samples  the number of dimensions), we used the
following lemma:

Lemma: For any K × D matrix W , mapping x →
Wx is a one-to-one mapping that maps eigenvectors of
WTW onto those of WWT .

Here W denotes a matrix containing K samples of di-
mensionality D. Using this lemma, we can first eval-
uate the covariance matrix in a lower space, find its
eigenvectors and eigenvalues and then compute the high-
dimensional eigenvectors in the original data space by
normalized projection [7]. Based on this description, we
compute the PCA matrix WPCA=[ u1 u2 . . . ui] by solv-
ing the eigenvector equation:

(
1
K
XTX)(XT vi) = λi(XT vi) (6)

where X is the training data matrix K ×D and vi are
the eigenvectors of XXT . We then compute the eigen-
vectors of our matrix ui by normalizing:

ui =
1√
Kλi

(XT vi) (7)

It should be noted that other algorithms like proba-
bilistic PCA (e.g., EM for PCA) can potentially be also
used given the fact that we discovered that only 5-10
eigenvectors are predominant. We intend to investigate
these as a part of our future work.

5 Performance Results

In this section, we present the performance results of our
fingerprinting system. First, we review the metrics that
we use to evaluate the classification and identification ac-
curacy.

5.1 Evaluation Metrics
As a metric for classification, we adopt the average clas-
sification error rate, defined as the percentage of incor-
rectly classified signatures to a predefined set of classes
of signatures (e.g., countries). We used the 1-Nearest
Neighbor rule [7] for estimating the similarity between
testing and reference signatures from a given class; that
is, a testing signature is matched to all reference sig-
natures from all classes and assigned to the class with
nearest distance similarity. It should be noted that more
sophisticated classifiers can be devised such as Support
Vector Machines (SVM), Probabilistic Neural Networks
(PNN) [7]. However these classifiers require more train-
ing which we do not consider in this work.

As metrics for identification, we adopt the Equal Error
Rate (EER) and the Receiver Operating Characteristic
(ROC) since these are the most agreed metrics for eval-
uating identification systems [8]. The False Accept Rate

(FAR) and the False Reject Rate (FRR) are the frequen-
cies at which the false accept and the false reject events
occur. The FAR and FRR are closely related to each
other in the Receiver Operating Characteristic (ROC).
ROC is a curve which allows to automatically compute
FRR when the FAR is fixed at a desired level and vice
versa [8]. The operating point in ROC, where FAR and
FRR are equal, is called the Equal Error Rate (EER). The
EER represents the most common measure of the accu-
racy of identification systems [1]. The operating thresh-
old value at which the EER occurs is our threshold T for
an Accept/Reject decision.

To increase the clarity of presentation, we use the Gen-
uine Accept Rate (GAR = 1 - FRR) in the ROC because it
shows the rate of Accepts of legitimate identities. In ad-
dition, we also compute FRR for common target values
of FAR (e.g., FAR = 1%).

5.2 Classification Results

In this section, we present the results of the classifica-
tion using modulation-shape and spectral features. In
this evaluation, we consider all our passport samples and
5 of the JCOP NXP 4.1 cards. Here, the identity docu-
ments ID1, ID2, ID3, ID4, ID7, ID8 (see Table 1) and
the JCOP cards implement Type A communication pro-
tocol, whereas ID5 and ID6 use Type B protocol. It is
interesting to notice that within the same country class
(C1) we have documents with two different communi-
cation protocols (ID1-ID4 and ID8 implement Type A,
whereas ID5 implements Type B protocol).

5.2.1 Classification using Modulation-shape Fea-
tures

The modulation-shape features described in Section 4
show the discriminant artifacts in the transponder’s re-
sponse. In particular, we discovered that these artifacts
(shapes) vary from one transponder to another on out-of-
specification carrier frequencies.

Figure 6 shows the modulation envelope shapes of the
initial sequence of the RFID transponder’s response af-
ter Hilbert transformation for 4 different classes of Type
A protocol devices. These were recorded at an out of
specification carrier frequency Fc=13.16MHz. Visual in-
spection shows that the modulation shapes not only dif-
fer from class to class but also are stable within different
runs.

In order to quantify these observations more precisely,
we considered classification with 3 classes (2 countries +
JCOP cards) with all fingerprints from two different runs.
The classification process was repeated 8 times with 8
different reference fingerprints per class for validation.

8



USENIX Association 	 18th USENIX Security Symposium	 207

Table 2: Classification using modulation-shape features (Experiment 2)
Number of Classes Class structure Average Classification Error Rate

3 (C1),(C2),(JCOP) 0%
4 (ID1,ID3,ID4,ID8), (ID2), (ID7), (JCOP) 0%
2 (ID5-C1),(ID6-C3) 0%

0 200 400 600 800 1000 1200
Time (ns)

JCOP NXP 4.1 Card
C1
C1−ID2
C2

(a)

0 200 400 600 800 1000 1200
Time (ns)

JCOP NXP 4.1 Card
C1
C1−ID2
C2

(b)

Figure 6: Modulation shape of the responses of 4 different classes (C1),(C1-ID2),(C2),(JCOP): a) first run b) second
run. In each run, the sample transponders were freshly placed in the fingerprinting setup. These plots show the stability
of the collected modulation-shape features across different runs.

The results show perfect separability of the classes
with average classification error rate of 0%. In addi-
tion, after detailed inspection of the modulation-shape
features we discovered that ID2 from C1 differs signif-
icantly from the representatives of that class. We there-
fore formed a new classification scenario with 5 classes
and obtained again a classification error rate of 0%. It
is an interesting result given that ID1 and ID2 are is-
sued by the same country, in the same year and place
of issue. However, their transponders are apparently dif-
ferent. The modulation-shapes of ID1,ID3 and ID4 from
C1 could not be further distinguished using the combina-
tion of modulation-shape features and Euclidean match-
ing. Table 2 shows the results.

Similar to Type A, the 2 Type B transponders from
two different countries (C1,C3) available in our popula-
tion showed complete separability with classification er-
ror rate of 0%. We acknowledge that our data set is insuf-
ficient due to the difficulty of obtaining e-passports. We
believe however that our results are promising to stimu-
late future work with a larger set of e-passports.

In summary, the modulation shapes at an out-of-
specification carrier frequency are successful in catego-
rizing different classes of transponders (e.g., countries).
They are quickly extractable and stable across different
runs. For the classification task, there is no need of statis-

tical analysis in contrast with the proposed spectral fea-
tures analyzed in the next sections. An additional ad-
vantage is that specialized hardware is not required as
current RFID readers can be easily adapted.

5.2.2 Classification using Burst and Sweep Spectral
Features

We also performed classification using burst and sweep
spectral features (Experiment 3 & 4) on the same set
of classes as with modulation-shape features (Table 2).
Similar to the modulation-shape features, this classifica-
tion achieved a 0% classification error rate on the pro-
posed classes. Moreover, using the spectral features we
were also able to distinguish individually each of our 9
identity documents with an EER=0%, i.e. we were able
to verify the identify of each individual document with
an accuracy of 100% with FRR=FAR=0%. This result
motivated us to estimate the identification accuracy of
spectral features on a larger set of identical (of the same
make and model) transponders.

5.3 Identification results

In this section we present the results of the identification
capabilities of the (burst and sweep) spectral features for

9



208	 18th USENIX Security Symposium	 USENIX Association

1 5 10 15 20 30 40 50
5

10

15

20

25

30

Subspace Dimensionality

Eq
ua

l E
rro

r R
at

e 
(%

)

N=15
N=10
N=5

(a)

1 5 10 15 20 30 40 50
4

5

6

7

8

9

10

11

12

Subspace Dimensionality

Eq
ua

l E
rro

r R
at

e 
(%

)

N=15

(b)

Figure 7: Spectral features identification accuracy for different number of samples N used to built the fingerprint
and for different subspace dimensions: a) burst spectral features, b) sweep spectral features. 50 identical (same
manufacturer and model) transponders are used in the computation.

our data population (50 identical JCOP NXP 4.1 cards).
We adopt the following approach. We first evaluate the
accuracy over the data collected in a single run of the
experiment (Section 5.3.1 and 5.3.2). We then quantify
the feature stability of the spectral features by consider-
ing samples from two independent runs together (Section
5.3.3).

We validate our results using cross-validation [7]. We
measured 50 samples per transponder per run of which
we use 5-10 samples for training and the remaining 40-
45 samples for testing depending on the number of sam-
ples N used to build the fingerprint. The training and
testing data are thus separated and allow validation of
the identification accuracy.

5.3.1 Identification using Burst Spectral Features

In this evaluation, we consider the samples from the burst
dataset, from a single experiment run (Experiment 3) in
order to obtain a benchmark accuracy. We varied two
parameters: the number of samples N used to build the
feature templates (fingerprints) and the dimension of the
PCA subspace used to project the original features into.
The dimension of the PCA subspace is also related to the
feature template size which we discuss below.

The results of this analysis are presented in Figure 7a
for different N and subspace dimensionality. The di-
mension of the features before the projection is 19998.
The results show the EER of the system reaching 0.0537
(5.37%) for N=15. This means that our system correctly
identifies individual identical transponders with an accu-
racy of approximately 95% (GAR at the EER operating
point) using the features extracted from the burst sam-

ples. We later show that this accuracy is preserved in
cross-matchings between different runs. Table 3 summa-
rizes the underlying data, namely the number of samples
N , total genuine and imposter matchings performed for
EER computation6, Accept/Reject threshold, EER and
confidence interval (CI).

The results in Figure 7a also confirm that using the
first 5 eigenvectors to project and store the feature tem-
plate provides the highest accuracy. Our proposed fea-
tures therefore form compact and computationally effi-
cient fingerprints (see Section 5.4).

5.3.2 Identification using Sweep Spectral Features

Similarly to the above analysis, we considered the first
run of samples from the sweep experiment (Experiment
4) dataset. For computational reasons, we did not con-
sider the entire sample. Instead, we extracted the spec-
tral features from the part of the sample between 220 to
270 microseconds. As it can be seen in Figure 4, this
part contains the biggest shape changes in the frequency
sweep. This decision reduced the considered space to
100000 points which allowed reasonably fast feature ex-
traction (26 s per sample). This clearly excludes some
discriminant information from our analysis, and future
work should include other sections of the sample signals.

The results are presented in Figure 7b for N=15 and

6The number of genuine and imposter matchings depends on the
number of available fingerprints per transponder. For N=10, we are
able to built 4 different fingerprints with the testing data within a run.
This results in 6 different matchings of fingerprints from the same de-
vice (i.e., genuine matchings) and 392 different matchings of finger-
prints from different transponders (i.e., imposter matchings). For 50
transponders, this makes 300 genuine and 19600 imposter matchings.

10



USENIX Association 	 18th USENIX Security Symposium	 209

1 5 10 15 20 30 40 50
5

10

15

20

25

Subspace Dimensionality

Eq
ua

l E
rro

r R
at

e 
(%

)
N=15, Run 1
N=15, Run 1x2

(a)

1 5 10 15 20 30 40 50
4

5

6

7

8

9

10

11

12

Subspace Dimensionality

Eq
ua

l E
rro

r R
at

e 
(%

)

N=15, Run 1
N=15, Run 1x2

(b)

1 5 10 15 20 30 40 50
5

10

15

20

25

Subspace Dimensionality

Eq
ua

l E
rro

r R
at

e 
(%

)

Sweep, Run 1x2, Indep.
Burst, Run 1x2, Indep.

(c)

Figure 8: Feature stability in identification: a) burst spectral features b) sweep spectral features. 50 identical (same
manufacturer and model) transponders are used in the experiments. c) burst and sweep spectral features on independent
transponder sets for training and testing; 20 transponders are used for training and 30 transponders - for testing; N=15.

different subspace dimensions. The dimension of the
original features before projection is 49998. We com-
puted the EER for N=15 (see Burst analysis in Sec-
tion 5.3.1). The obtained EER is 0.0469 (4.69%), when
using the first 5 eigenvectors to project and store the fea-
ture template. The obtained accuracy is therefore similar
to the one obtained with the burst features, i.e. our sys-
tem correctly identifies the individual identical transpon-
ders with an accuracy of approximately 95% (GAR at the
EER point). Table 3 shows the confidence intervals.

5.3.3 Feature Stability

In the previous sections we have analyzed the identifi-
cation accuracy using burst and sweep spectral features
within a single experiment run. This allows us to have a
benchmark for estimating the stability of the features. In
particular, we performed the following stability analysis:

1. Using the linear transformations WPCA obtained in
the first run, we selected 4 feature templates (2 from
each run) and computed again the EER by consid-
ering only the cross matching scores of fingerprints
from different runs7. The process was repeated 3
times with different feature templates from the two
runs to validate the feature stability.

2. We trained the system over the first 20 transpon-
ders and then used the obtained linear transforma-
tion to estimate the accuracy over the remaining 30
transponders. This analysis tests the stability of the
obtained linear transformations to discriminate in-
dependent transponder populations8.

7This procedure is required in order to remove any possible bias
from cross matching scores of fingerprints from the same run. We
point out that this results in a reduced number of genuine and imposter
matchings for the EER computation, 200 and 9800 respectively (see
Table 3).

8The motivation behind this division (20 vs. 30) is that it gives

Figure 8 compares the EER accuracy obtained with
the first run (Run 1) and the accuracy obtained by mix-
ing fingerprints of both runs (Run 1×2) for a fixed N=15.
Table 3 displays the confidence interval for subspace di-
mension of 5 eigenvectors. The obtained EERs do not
show a statistically significant difference between the
two experiments for both the burst and sweep features
using 4-fold validation.

Figure 9 displays the EER accuracy obtained using in-
dependent transponder sets for training and testing for
a fixed N=15. Here, the fingerprints from both runs
are mixed as in the previous analysis. Table 4 summa-
rizes the numeric results together with confidence in-
tervals of the EER. Even though the testing population
(30 transponders) is smaller, we observe that the sweep
features do not show any significant accuracy deviation
from the benchmark accuracy on Run 1×2 (Table 3). On
the other hand, the burst features slightly decreased the
accuracy on average (Table 3). The reason for this might
be that 20 different transponders are not sufficient to train
the system; however, we cannot assert this with certainty.

5.3.4 Combining Sweep and Burst Features

Given that the identification accuracies of both burst and
sweep spectral features are similar; in order to fully char-
acterize the identity verification we computed the ROC
curves for the burst and sweep features as shown in Fig-
ure 9b. We notice that while the EERs are similar, the
curves exhibit different accuracies at different FARs. In
particular, for low FAR≤1% the sweep features show
lower GAR.

The burst and sweep features discriminate the finger-
prints in a different way, and therefore these features can
be combined in order to further increase the accuracy.
Such combinations are being researched in multi-modal

reasonable number of transponders for both training and testing.

11



210	 18th USENIX Security Symposium	 USENIX Association

Table 3: Summary of accuracy for the 5-dimensional spectral features (50 transponders).
Type Run N Test matchings Threshold T EER (%) EER CI (%) Validation

Genuine Imposter lower upper
Burst 1 15 150 11025 1.88 5.37 4.38 6.36 4-fold

1 10 300 19600 2.91 7.79 5.29 10.28 4-fold
1 5 300 19600 7.56 13.47 13.22 13.72 4-fold

1x2 15 200 9800 2.64 6.57 6.25 6.89 4-fold
Sweep 1 15 150 11025 1.68 4.69 3.65 5.74 4-fold

1x2 15 200 9800 1.93 5.46 5.08 5.84 4-fold

Table 4: Accuracy when independent sets are used for training (20) and testing (30) transponders.
Type Run N Test matchings Threshold T EER (%) EER CI (%) Validation

Genuine Imposter lower upper
Burst 1x2 15 120 3480 2.78 7.33 6.01 8.65 3-fold
Sweep 1x2 15 120 3480 2.03 5.75 5.45 6.05 3-fold

biometrics [42] where different ”modalities” (e.g., fin-
gerprint and vein) are combined to increase the identifi-
cation accuracy and bring more robustness to the identi-
fication process [42].

A number of integration strategies have been proposed
based on decision rules [32], logistic functions to map
output scores into a single overall score [24], etc. Fig-
ure 9 shows the EERs and ROC curves of feature combi-
nation by using the sum as an integration function. The
overall matching score between a test and a reference
template is the sum of the matching scores obtained sep-
arately for the burst and sweep features. Table 5 summa-
rizes the results.

For the benchmark datasets (Run 1), we observe
significant improvement of the accuracy reaching an
EER=2.43%. The improvement is also significant for all
target FARs (e.g., 0.1%, 1%) as shown in Figure 9b. We
also observe a statistically significant improvement on
using fingerprints from both Run 1 and 2. The accuracy
is slightly lower (EER=4.38%). These results motivate
further research on feature modalities and novel integra-
tion strategies.

5.4 Summary and Discussion

In this section, we have experimentally analyzed the clas-
sification and identification capabilities of three different
physical-layer features with related signal acquisition,
feature extraction and matching procedures.

The results show that classification can successfully
be achieved using the modulation shape of the transpon-
der’s response to a wake-up command at an out-of-
specification frequency (e.g., Fc=13.06 MHz). This
technique is fast, does not require special hardware and
can be applied without statistically training the classifi-
cation process.

For identification, we proposed using spectral features
extracted from the transponder’s reaction to purpose-
built burst and linear frequency sweep signals. Our pro-
posed signal acquisition and feature extraction/matching
techniques achieved separately an identification accu-
racy of approximately EER=5% over 50 identical RFID
transponders. The proposed features are stable across ac-
quisition runs. In addition, our spectral features showed
that they can be combined in order to further improve the
accuracy to EER=2.43%.

The results also confirm that using the first 5 eigenvec-
tors is sufficient to represent the proposed features while
keeping the identification accuracy high. Therefore, our
proposed features also form very compact and compu-
tationally efficient fingerprints. Typically, if each dimen-
sion is represented by a 4-byte floating-point number, the
size of the corresponding feature template h = {Ĝ; ΣG}
is 20 (5×4) bytes for Ĝ and 100 (5x5x4) bytes for the
square covariance matrix ΣG resulting in a total of 120
bytes.

In terms of feature extraction performance, given the
much lower dimensionality of the burst samples (40000
vs. 960000 for the sweep), they are much faster to digi-
tally acquire and extract with approximately 2 sec. com-
pared to 26 sec. for the sweep data samples. The times
are measured on a machine with 2.00 GHz CPU, 2 GB
RAM running Linux Ubuntu. It should be noted that all
the components of the feature extraction can be imple-
mented efficiently in hardware which would significantly
improve the performance.

6 Application to Cloning Detection

The classification and identification results presented in
Section 5 indicate that physical-layer fingerprinting can
be practical in a controlled environment. In this section,

12



USENIX Association 	 18th USENIX Security Symposium	 211

1 5 10 15 20 30 40 50
0

2

4

6

8

10

Subspace Dimensionality

Eq
ua

l E
rro

r R
at

e 
(%

)
Burst/Sweep−combined, Run 1
Burst/Sweep−combined, Run 1x2

(a)

0.1% 1% 10%
0

20

40

60

80

100

False Accept Rate (%)

G
en

ui
ne

 A
cc

ep
t R

at
e(

%
) =

 1
00

 −
 F

R
R

(%
)

Sweep
Burst
Burst/Sweep−combined

(b)

Figure 9: a) The identification accuracy combining the sweep and burst features b) Receiver Operating Characteristic
(ROC) for N=15 for burst and sweep spectral features and their combination. 50 identical transponders are used. The
subspace dimension is fixed to 5. See Table 5 for the underlying data.

Table 5: Summary of accuracy when a combination of burst and sweep features used (50 transponders).
Type Run N Test matchings Threshold T EER (%) EER CI (%) Validation

Genuine Imposter lower upper
Burst/Sweep 1 15 150 11025 1.56 2.43 1.54 3.33 4-fold
Burst/Sweep 1x2 15 200 9800 2.18 4.38 3.9 4.9 4-fold

we discuss how it could be used in the context of product
or document cloning detection. We point out however
that the cloning detection will obey to the achieved er-
ror rates. Despite a number of protective measures, it
has been recently shown [18, 34, 33, 47] that even RFID
transponders in electronic identity documents can be suc-
cessfully cloned, even if the full range of protective mea-
sures specified by the standard [3], including active au-
thentication, is used. We consider the physical-layer fin-
gerprinting described in this work as an additional ef-
ficient mechanism that can be used to detect document
counterfeiting.

We foresee two use cases in which fingerprints can
be applied for anti-counterfeiting. In the first use case,
the fingerprints are measured before RFID deployment
and are stored in a back-end database, indexed with the
unique transponder (document) identifier. When the au-
thenticity of the document with identifier ID is verified,
the fingerprint of the document transponder is measured,
and then compared with the corresponding transponder
fingerprint of document ID stored in the database. In
order to successfully clone the document, the attacker
needs to perform two tasks:

1. Obtain the fingerprint template of the transponder
in the original document and

2. Produce or find a document (transponder) with the
same fingerprint.

In order to extract a fingerprint template the attacker
needs to fully control the target document (hold it in
possession) for long enough to complete the extraction.
Using the methods from our study, it would be hard, if
not infeasible, for the attacker to extract the same fin-
gerprints remotely (e.g., from few meters away). In our
experiments, such remote feature extraction process re-
sulted in an EER of approximately 50%. We assume that
this is due to the change of acquisition antenna orienta-
tion and lower signal-to-noise ratio. We do not exclude
the possibility that other discriminant features could be
found that could be extracted remotely. However, this
does not appear to be the case for our features. After
obtaining the original fingerprint, the attacker now needs
to produce or find an RFID transponder with that finger-
print (i.e., such that it corresponds to the one of the origi-
nal document), which is hard given that the extracted fin-
gerprints are due to manufacturing process variation. Al-
though manufacturing process variation effects the RFID
micro-controller itself, it is likely that the main source
of detectable variation lies in the RFID radio circuitry.
However, we cannot conclude with certainty which com-
ponent of the entire transponder circuit contributes most
to the fingerprints. We leave this determination to future

13



212	 18th USENIX Security Symposium	 USENIX Association

work. Because of the complexity of these circuits this
is a challenging task in the lab, let alone in ”the wild”
environment of the attacker.

In the second use case, transponder fingerprints are
measured before their deployment as in the first case, but
are stored on the transponders instead of in a back-end
database. Here, we assume that the fingerprints stored
on the transponders are digitally signed by the document-
issuing authority and that they are protected from unau-
thorized remote access; the digital signature binds the
fingerprint to the document unique identifier, and both
are stored on the transponder. When the document au-
thenticity is validated, the binding between the document
ID and the fingerprint stored on the transponder is en-
sured through cryptographic verification of the author-
ity’s signature. If the signature is valid, the stored fin-
gerprint is compared to the measured fingerprint of the
document transponder. The main advantage in this use
case is that the document authenticity can be verified
”off-line”. The main drawback is that the fingerprint is
now stored on the transponder and without appropriate
access protection, it can be remotely obtained by the at-
tacker. Here, minimal access protection can be ensured
by means of e.g., Basic Access Authentication [3] al-
though, that mechanism has been shown to have some
weaknesses due to predictable document numbers [33].
As we mentioned in Section 5.4, our technique generates
compact fingerprints, which can be stored in approxi-
mately 120 bytes. This means that they can easily be
stored in today’s e-passports. The ICAO standard [3]
provides space for such storage in files EF.DG[3-14],
which are left for additional biometric and future use;
transponder fingerprints can be stored in those files. Our
proposal does not require the storage of a new public key
or maintenance of a separate public-key infrastructure,
since the integrity of the fingerprints, stored in EF.DG[3-
14] will be protected by the existing passive authentica-
tion mechanisms implemented in current e-passports.

The closest work to ours in terms of transponder
cloning protection is the work of Devadas et al. [12],
where the authors propose and implement Physically Un-
clonable Function(PUF)-Based RFID transponders. Pro-
cessors in these transponders are specially designed and
contain special circuits, PUFs, that are hard to clone and
thus prevent transponder cloning. The main difference
between PUF-based solutions and our techniques is that
our techniques can be used with existing RFID transpon-
ders, whereas PUF-based solutions can detect cloning
only of PUF-based transponders. However, PUF-based
solutions do have an advantage that they rely on ”con-
trolled” randomness, unlike our techniques, that relies
on randomness that is unintentionally introduced in the
manufacturing of the RFID tags.

7 Related Work

Besides PUF-based RFIDs [12], that we discuss in the
previous section, the following works relate to ours.

In [41], Richter et al., report on the possibility of de-
tecting the country that issued a given passport by look-
ing at the bytes that an e-passport sends as a reply in
response to some carefully chosen commands from the
reader. This technique therefore enables classification of
RFID transponders used in e-passports. Our technique
differs from that proposal as it enables not only classi-
fication, but also identification of individual passports.
Equally, the technique proposed in [41] cannot be used
for cloning detection since the attacker can modify the
responses of a tag on a logical level.

The proliferation of radio technologies has triggered a
number of research initiatives to detect illegally operated
radio transmitters [44, 45, 23], mobile phone cloning
[30], defective transmission devices [48] and identify
wireless devices [20, 22, 43, 40, 39, 9] by using physi-
cal characteristics of the transmitted signals [15]. Below,
we present the most relevant work to ours in terms of
signal similarities, features and objectives.

Hall et al. [20, 21] explored a combination of features
such as amplitude, phase, in-phase, quadrature, power
and DWT of the transient signal. The authors tested on
30 IEEE 802.11b transceivers from 6 different manu-
facturers and scored a classification error rate of 5.5%.
Further work on 10 Bluetooth transceivers from 3 manu-
facturers recorded a classification error rate of 7% [22].
Ureten et al. [39] extracted the envelope of the instanta-
neous amplitude by using the Hilbert transformation and
classified the signals using a Probabilistic Neural Net-
work (PNN). The method was tested on 8 IEEE 802.11b
transceivers from 8 different manufacturers and regis-
tered a classification error rate of 2%-4%. Rasmussen
et al. [40] explored transient length, amplitude variance,
number of peaks of the carrier signal and the difference
between mean and maximum value of the transient. The
features were tested on 10 identical Mica2 (CC1000)
sensor devices (approx. 15cm from the capturing an-
tenna) and achieved a classification error rate of 30%.
Brik et al. [9] proposed a device identification technique
based on the variance of modulation errors. The method
was tested on 100 identical 802.11b NICs (3-15 m from
the capturing antenna) and achieved a classification er-
ror rate of 3% and 0.34% for k-NN and SVM classifiers
respectively. In [11] the authors demonstrate the fea-
sibility of transient-based Tmote Sky (CC2420) sensor
device identification with an EER of 0.24%. The same
work considered the stability of the proposed fingerprint
features with respect to capturing distance, antenna po-
larization and voltage, and related attacks on the identifi-
cation system.

14



USENIX Association 	 18th USENIX Security Symposium	 213

8 Conclusion

In this work we performed the first comprehensive study
of physical-layer identification of RFID transponders.
We showed that RFID transponders have stable finger-
prints related to physical-layer properties which enable
their accurate identification. Our techniques are based
on the extraction of the modulation shape and spectral
features of the response signals of the transponders to the
in- and out- of specification reader signals. We tested our
techniques on a set of 50 RFID smart cards of the same
manufacturer and type and we showed that these tech-
niques enable the identification of individual transpon-
ders with an Equal Error Rate of 2.43% (single run) and
4.38% (two runs). We further applied our techniques to a
smaller set of electronic passports, where we obtained
a similar identification accuracy. We tested the clas-
sification accuracy of our techniques, and showed that
they achieve 0% average classification error for a set of
classes corresponding to manufacturers and countries of
issuance. Finally, we analyzed possible applications of
the proposed techniques to the detection of cloned prod-
ucts and documents.

Acknowledgements

This work was partially supported by the Zurich Infor-
mation Security Center. It represents the views of the
authors.

References
[1] Fingeprint verification competitions (FVC). http://bias.csr.uni-

bo.it/fvc2006/.

[2] IBM JCOP family. ftp://ftp.software.ibm.com/software/ perva-
sive/info/JCOP Family.pdf.

[3] ICAO. http://www.icao.int/.

[4] ISO/IEC 14443 standard. http://www.iso.org/.

[5] RFID security and privacy lounge. http://www.avoine.net/rfid /in-
dex.html.

[6] AVOINE, G., AND OECHSLIN, P. RFID traceability: A multi-
layer problem. In Financial Cryptography (2005), A. Patrick and
M. Yung, Eds., vol. 3570 of LNCS, pp. 125–140.

[7] BISHOP, C. Pattern Recognition and Machine Learning.
Springer, 2006.

[8] BOLLE, R., CONNELL, J., PANKANTI, S., RATHA, N., AND
SENIOR, A. Guide to Biometrics. Springer, 2003.

[9] BRIK, V., BANERJEE, S., GRUTESER, M., AND OH, S. Wire-
less device identification with radiometric signatures. In Proc.
ACM MobiCom (2008).

[10] COSTEN, N., PARKER, D., AND CRAW, I. Effects of high-pass
and low-pass spatial filtering on face identification. Perception &
Psychophysics 58, 4 (1996), 602–612.

[11] DANEV, B., AND ČAPKUN, S. Transient-based identification of
wireless sensor nodes. In Proc. ACM/IEEE IPSN (2009).

[12] DEVADAS, S., SUH, E., PARAL, S., SOWELL, R., ZIOLA, T.,
AND KHANDELWAL, V. Design and implementation of PUF-
based ”unclonable” RFID ICs for anti-counterfeiting and security
applications. Proc. IEEE Intl. Conf. on RFID (2008), 58–64.

[13] DIMITRIOU, T. A lightweight RFID protocol to protect against
traceability and cloning attacks. In Proc. ICST SecureComm
(2005).

[14] DUC, D. N., PARK, J., LEE, H., AND KIM, K. Enhancing
security of EPCglobal Gen-2 RFID tag against traceability and
cloning. In Proc. Symposium on Cryptography and Information
Security (2006).

[15] ELLIS, K., AND SERINKEN, N. Characteristics of radio trans-
mitter fingerprints. Radio Science 36 (2001), 585–597.

[16] EPCGLOBAL. Architecture framework v. 1.2. standard, 2007.
http://www.epcglobalinc.org/standards/
architecture/architecture 1 2-framework-20070910.pdf.

[17] FELDHOFER, M., DOMINIKUS, S., AND WOLKERSTORFER, J.
Strong authentication for RFID systems using the AES algorithm.
In Workshop on Cryptographic Hardware and Embedded Systems
(2004), M. Joye and J.-J. Quisquater, Eds., vol. 3156 of LNCS,
pp. 357–370.

[18] GRUNWALD, L. Cloning ePassports without active authentica-
tion. In BlackHat (2006).

[19] HALAMKA, J., JUELS, A., STUBBLEFIELD, A., AND WEST-
HUES, J. The security implications of VeriChipTMcloning.
Manuscript in submission, 2006.

[20] HALL, J., BARBEAU, M., AND KRANAKIS, E. Enhancing in-
trusion detection in wireless networks using radio frequency fin-
gerprinting. In Proc. CIIT (2004).

[21] HALL, J., BARBEAU, M., AND KRANAKIS, E. Radio frequency
fingerprinting for intrusion detection in wireless networks. Sub-
mission to IEEE TDSC (Electronic Manuscript) (2005).

[22] HALL, J., BARBEAU, M., AND KRANAKIS, E. Detecting rogue
devices in bluetooth networks using radio frequency fingerprint-
ing. In Proc. CCN (2006).

[23] HIPPENSTIEL, R., AND PAYAL, Y. Wavelet based transmitter
identification. In Proc. ISSPA (1996).

[24] JAIN, A., PRABHAKAR, S., AND CHEN, S. Combining multiple
matchers for a high security fingerprint verification system. In
Pattern Recognition Letters (1999).

[25] JUELS, A. Minimalist cryptography for low-cost RFID tags.
In Intl. Conf. on Security in Communication Networks (2004),
C. Blundo and S. Cimato, Eds., vol. 3352 of LNCS, pp. 149–164.

[26] JUELS, A. Strengthening EPC tags against cloning. Manuscript,
2005.

[27] JUELS, A. Rfid security and privacy: A research survey. IEEE
Journal on Selected Areas in Communications 24, 2 (2006).

[28] JUELS, A., PAPPU, R., AND PARNO, B. Unidirectional key dis-
tribution across time and space with applications to RFID secu-
rity. In Proc. 17th USENIX Security Symposium (2008), pp. 75–
90.

[29] JUELS, A., RIVEST, R., AND SZYDLO, M. The blocker tag:
Selective blocking of RFID tags for consumer privacy. In Proc.
ACM CCS (2003), pp. 103–111.

[30] KAPLAN, D., AND STANHOPE, D. Waveform collection for use
in wireless telephone identification, 1999.

[31] KERSCHBAUM, F., AND SORNIOTTI, A. RFID-based supply
chain partner authentication and key agreement. In Proc. ACM
WiSec (2009).

15



214	 18th USENIX Security Symposium	 USENIX Association

[32] KITTLER, J., HATEF, M., DUIN, R., AND MATAS, J. On com-
bining classifiers. IEEE Trans. on Pattern Analysis and Machine
Intelligence 20, 3 (1998).

[33] LAURIE, A. Reading ePassports with predictable document num-
bers. In news report (2006).

[34] M, W. Cloning ePassports with active authentication enabled. In
What The Hack (2005).

[35] MANLY, B. Multivariate Statistical Methods: A Primer, 3rd ed.
Chapman & Hall, 2004.

[36] MARPLE, S. Computing the discrete-time analytic signal via
FFT. IEEE Trans. on Signal Processing 47, 9 (1999).

[37] MITRA, M. Privacy for RFID systems to prevent tracking and
cloning. Intl. Journal of Computer Science and Network Security
8, 1 (2008), 1–5.

[38] OPPENHEIM, A., SCHAFER, R., AND BUCK, J. Discrete-Time
Signal Processing, 2nd ed. Prentice-Hall Signal Processing Se-
ries, 1998.

[39] O.URETEN, AND N.SERINKEN. Wireless security through RF
fingerprinting. Canadian J. Elect. Comput. Eng. 32, 1 (Winter
2007).

[40] RASSMUSSEN, K., AND CAPKUN, S. Implications of radio
fingerprinting on the security of sensor networks. In Proc. Se-
cureComm (2007).

[41] RICHTER, H., MOSTOWSKI, W., AND POLL, E. Fingerprinting
passports. In NLUUG Spring Conference on Security (2008).

[42] ROSS, A., AND JAIN, A. Multimodal biometrics: An overview.
In Proc. EUSIPCO (2004).

[43] TEKBAS, O., URETEN, O., AND SERINKEN, N. Improvement
of transmitter identification system for low SNR transients. In
Electronic Letters (2004).

[44] TOONSTRA, J., AND KISNER, W. Transient analysis and genetic
algorithms for classification. In Proc. IEEE WESCANEX (1995).

[45] TOONSTRA, J., AND KISNER, W. A radio transmitter finger-
printing system ODO-1. In Canadian Conf. on Elect. and Comp.
Engineering (1996).

[46] VAJDA, I., AND BUTTYÁN, L. Lightweight authentication pro-
tocols for low-cost RFID tags. In Proc. 2nd Workshop on Security
in Ubiquitous Computing – Ubicomp (2003).

[47] VANBEEK, J. ePassports reloaded. In BlackHat (2008).

[48] WANG, B., OMATU, S., AND ABE, T. Identification of the de-
fective transmission devices using the wavelet transform. IEEE
PAMI 27, 6 (2005), 696–710.

16



USENIX Association 	 18th USENIX Security Symposium	 215

CCCP: Secure Remote Storage for Computational RFIDs

Mastooreh Salajegheh1 Shane Clark1 Benjamin Ransford1 Kevin Fu1 Ari Juels2
1Department of Computer Science, University of Massachusetts Amherst

2RSA Laboratories, The Security Division of EMC
{negin, ssclark, ransford, kevinfu}@cs.umass.edu, ajuels@rsa.com

Abstract
Passive RFID tags harvest their operating energy from
an interrogating reader, but constant energy shortfalls
severely limit their computational and storage capabili-
ties. We propose Cryptographic Computational Contin-
uation Passing (CCCP), a mechanism that amplifies pro-
grammable passive RFID tags’ capabilities by exploiting
an often overlooked, plentiful resource: low-power radio
communication. While radio communication is more en-
ergy intensive than flash memory writes in many embed-
ded devices, we show that the reverse is true for passive
RFID tags. A tag can use CCCP to checkpoint its com-
putational state to an untrusted reader using less energy
than an equivalent flash write, thereby allowing it to de-
vote a greater share of its energy to computation.

Security is the major challenge in such remote check-
pointing. Using scant and fleeting energy, a tag must
enforce confidentiality, authenticity, integrity, and data
freshness while communicating with potentially untrust-
worthy infrastructure. Our contribution synthesizes well-
known cryptographic and low-power techniques with a
novel flash memory storage strategy, resulting in a secure
remote storage facility for an emerging class of devices.

Our evaluation of CCCP consists of energy measure-
ments of a prototype implementation on the batteryless,
MSP430-based WISP platform. Our experiments show
that—despite cryptographic overhead—remote check-
pointing consumes less energy than checkpointing to
flash for data sizes above roughly 64 bytes. CCCP en-
ables secure and flexible remote storage that would oth-
erwise outstrip batteryless RFID tags’ resources.

1 Introduction

Research involving low-energy computing systems has
long treated radio as an energy-hungry resource to
be used sparingly. Our work uncovers a key re-
source in which programmable passive RFID tags differ

from higher-powered wireless embedded devices such as
motes: radio communication consumes less energy than
persistent local storage. We exploit radio as a resource to
amplify the storage capabilities of an emerging class of
batteryless, programmable devices called computational
RFIDs (CRFIDs) [7, 26, 27].

The main idea of this paper is that a CRFID can
securely use radio communication as a less energy-
intensive alternative to local, flash-based storage. The
smaller energy requirements of radio allow the CRFID
either to devote more energy to computation or to ac-
complish the same tasks using less energy, which may
translate into a longer operating range. We use estab-
lished cryptographic mechanisms to protect against un-
trustworthy RFID readers that could attempt to violate
the confidentiality, authenticity, integrity, and freshness
of the data on a CRFID. However, the cryptographic
overhead threatens to eliminate the energy advantage of
remote storage. Thus, the main challenge is to design an
energy-saving remote storage system that provides secu-
rity under the constraints of passive RFID systems.

This paper uses computational state checkpointing as
an example of an application that benefits from our
techniques. Cryptographic Computational Continuation
Passing (CCCP) enables CRFIDs to perform sophisti-
cated computations despite limited energy and continual
interruptions of power that lead to complete loss of the
contents of RAM. CCCP extends the Mementos architec-
ture [26] for execution checkpointing by securely storing
a CRFID’s computational state on the untrusted RFID
reader infrastructure that powers the CRFID, thereby
making program execution on CRFIDs robust against
loss of power. The design of CCCP is motivated by (1) a
desire to minimize the amount of energy devoted to flash
memory writes and (2) the observation that a CRFID’s
backscatter transmission is surprisingly efficient com-
pared to alternatives such as active radio (like that found
in motes) or flash memory writes.

Our contribution in this paper is the synthesis of sev-



216	 18th USENIX Security Symposium	 USENIX Association

eral existing ideas with techniques that are specifically
applicable to computational RFIDs:

• We describe the design and implementation of
CCCP, a secure remote storage protocol that suits
the characteristics and constraints of CRFIDs, and
we show how this protocol can be used in the con-
texts of execution checkpointing and external data
storage on an untrusted RFID reader infrastructure
(Sections 3, 4).

• Motivated by a desire to save energy when storing
CCCP’s numeric counters to nonvolatile memory,
we introduce hole punching (Section 3.4.4), a unary
encoding technique that allows a counter stored in
flash memory to be updated economically, mini-
mizing energy- and time-intensive flash erase op-
erations. For a CRFID, less frequent flash erasure
means more energy available for computation.

Since CCCP involves communication with a poten-
tially untrustworthy RFID reader, it must ensure the
integrity, confidentiality, and data freshness of check-
pointed messages. For message integrity, CCCP employs
UMAC [4], a Message Authentication Code (MAC)
scheme based on universal hash functions (UHF) that
involves the application of a cryptographically secure
pseudorandom pad. Remotely stored messages in CCCP
are encrypted for confidentiality using a simple stream
cipher. CCCP’s frequent use of key material motivates
the use of opportunistic precomputation: when a CRFID
is receiving abundant energy, CCCP generates and stores
keystream bits in flash memory for later consumption.
CCCP maintains a small amount of its own state in lo-
cal nonvolatile memory, including a counter that must be
updated during checkpoint operations when energy may
be low. To minimize the energy required to update the
counter, CCCP employs hole punching.

Conventional passive RFID tags perform rudimen-
tary computation, often in extremely tight real-time
constraints using nonprogrammable finite state ma-
chines [1], but CRFIDs offer true general-purpose com-
putational capabilities, broadening the range of their pos-
sible applications (Section 6). Although CRFIDs offer
more flexibility, they present challenging resource con-
straints. While sensor motes, which rely on batteries for
power, often have an active lifetime measured in weeks
or months, a CRFID may be able to compute for less
than a second given a burst of energy, and may receive
such bursts in quick succession—putting CRFIDs in an
entirely different class with regard to energy constraints.
Moreover, although CRFIDs have a small amount of
flash memory available as nonvolatile storage, writing to
this flash memory is energy intensive (Section 2).

Because CRFIDs are new and prototypes are not yet
widely available for use in the laboratory, there is lit-

tle previous work describing their applications or lim-
itations; Section 7 summarizes relevant work that has
appeared to date. CCCP extends a recent execution
checkpointing system called Mementos [26] by adding
remote, rather than local flash-based, storage capabili-
ties to CRFIDs. While systems such as Mementos in-
vestigate how to effectively store checkpoints locally in
trusted flash memory to achieve computational progress
on CRFIDs despite power interruptions, CCCP focuses
on using external, untrusted resources to increase tag
storage capacity in a secure and energy-efficient manner.

2 Computational RFIDs: Background,
Observations, Challenges

Consistent with the usage of RFID terminology, the term
Computational RFID (CRFID) has two meanings: the
model under which passively powered computers oper-
ate in concert with an RFID reader infrastructure, and
the passively powered computers themselves. CRFIDs
represent a class of programmable, batteryless comput-
ers [7, 26, 27]. The small size and low maintenance
requirements of CRFIDs make them especially appeal-
ing for adding computational capabilities to contexts in
which placing or maintaining a conventional computer
would be infeasible or impossible. However, CRFID sys-
tems require that nearby, actively powered RFID readers
provide energy whenever computation is to occur, a re-
quirement that may not suit all applications.

The components of a CRFID are: a low-power micro-
controller; onboard RAM; flash memory (on or off the
microcontroller); energy harvesting circuitry tuned to a
certain frequency (e.g., 913 MHz for EPC Gen 2 RFID);
an antenna; a transistor between the antenna and the
microcontroller to modulate the antenna’s impedance; a
capacitor for storage of harvested energy; one or more
analog-to-digital converters; and optional sensors for
physical phenomena such as acceleration, heat, or light.
The first working example of a CRFID is the Wireless
Identification and Sensing Platform, orWISP [29], a pro-
totype device slightly smaller than a postage stamp (dis-
counting its inches-long antenna). The WISP is built
around an off-the-shelf TI MSP430 microcontroller.

Like passive RFID tags but unlike sensor motes,
CRFIDs are powered solely by harvested RF energy and
lack active radio components. Instead, such CRFIDs use
backscatter communication: in the presence of incom-
ing radio waves, a CRFID electrically modulates its an-
tenna’s impedance using a transistor, encoding binary in-
formation by varying the antenna’s reflectivity. While the
omission of active radio circuitry saves energy, it gives
up the tag’s autonomy; a CRFID can send and receive
information only at the command of an RFID reader.



USENIX Association 	 18th USENIX Security Symposium	 217

A CRFID’s lack of autonomy is one of the factors that
makes it difficult to protect.

2.1 Frequent Power Loss on Tags, but
Plentiful External Resources

Several key observations motivate the development of se-
cure remote storage for computational RFIDs.

Frequent loss of power may interrupt computation.
The CRFID model posits computing devices that are pri-
marily powered by RF energy harvesting, a mechanism
that is naturally finicky because of its dependence on
physical conditions. Any change to a CRFID’s phys-
ical situation—such as its position or the introduction
of an occluding body—may affect its ability to harvest
energy. Existing systems that use RF harvesting typ-
ically counteract the effect of physical conditions by
placing stringent requirements on use. For example, an
RFID transit card reader presented with a card may be-
have in an undefined way unless the card is within 1 cm
for at least 300 ms, parameters designed to ensure that
the card’s computation finishes while it is still near the
reader. CRFID applications may preclude such a strat-
egy: programs on general-purpose CRFIDs may not of-
fer convenient execution time horizons, and communica-
tion distances may not be easily controlled. Without any
guarantees of energy availability, it may be unreasonable
to mandate that programs running on CRFIDs complete
within a single energy lifecycle. As an extension of the
Mementos system [26], CCCP aims to address the prob-
lem of suspending and resuming computations to facili-
tate spreading work across multiple energy lifecycles.

Storing remotely may require less energy than stor-
ing locally. Some amount of onboard nonvolatile mem-
ory exists on a CRFID, so an obvious approach to sus-
pension and resumption is simply to use this local mem-
ory for state storage. However, to implement non-
volatile storage, current microcontrollers use flash mem-
ory, which imports several undesirable properties. While
reading from flash consumes energy comparable to read-
ing from volatile RAM, the other two flash operations—
writing and erasing—require orders of magnitude more
energy per datum (Table 3). Our measurements of a
CRFID prototype reveal that the energy consumption of
storing a datum locally in flash can in fact exceed the
energy consumption of transmitting the same datum via
backscatter communication.
To illustrate the difference between flash and radio

storage on a CRFID and to show how the relationship
is different on a sensor mote, we offer Figure 1. The fig-
ure helps explain why designers of mote-based systems
choose to minimize radio communication; similarly, it
justifies our exploration of radio-based storage as an al-
ternative to flash-based storage on CRFIDs.

It should be noted that CCCP, although its primary
data storage mechanism is the communication link be-
tween CRFIDs and readers, still requires some flash
writes during storage operations: CCCP maintains a
counter in flash to ensure that key material is not
reused. However, because CCCP employs hole punch-
ing (Section 3.4.4) to maintain the counter, the amount
of data written for counter updates is small compared
to the amount of data that can be stored at once—small
enough not to obviate the energy advantage of radio-
based storage—and counter updates do not frequently
necessitate erasures.

EPC Gen 2 RFID readers are typically not stan-
dalone devices. Rather, they are connected to networks
or other systems (for, e.g., control or logging) that can
offer computing resources such as storage. The benefit
to CRFIDs that communicate with such a reader infras-
tructure is access to effectively limitless storage. Several
kilobytes of onboard flash memory is minuscule com-
pared to the potentially vast amount of storage available
to networked RFID readers. While unlimited external
storage is not obviously helpful for saving computational
state—a CRFID cannot save or restore more state than it
can hold locally—its usefulness as general-purpose long-
term storage is analogous to the usefulness of networked
storage for PCs.

RFID protocols allow arbitrary payloads. While the
EPC Gen 2 protocol imposes constraints on the trans-
missions between RFID tags and RFID readers—for ex-
ample, the maximum upstream data rate from tag to
reader is 640 Kbps [13]—it also offers sufficient flexi-
bility that CCCP can be implemented on top. In partic-
ular, the Gen 2 protocol permits a reader to issue a Read
command to which a tag can respond with an arbitrary
amount of data. Previous versions of the EPC RFID stan-
dard mandated a small response size that would have im-
posed severe communication overhead on large upstream
transmissions.

CRFID is not married to EPC Gen 2 as an underlying
protocol, but the existence of a widespread RFID reader
infrastructure and the availability of commodity reader
hardware makes for easy prototyping.

2.2 Challenges Due to Energy Scarcity
Several energy-related considerations limit the resources
available for computation on CRFIDs, limiting the util-
ity of CRFIDs as a general-purpose computing platform.
Ransford et al. [26] discuss the difficulty of effectively
utilizing a storage capacitor and enumerate the draw-
backs of using capacitors for energy storage; Buettner
et al. [7] discuss how energy limitations bear on the de-
ployment of a CRFID-based system. Two key design fea-
tures of CRFIDs pose energy challenges to a system like



218	 18th USENIX Security Symposium	 USENIX Association

0 10 20 30 40 50 60 70 80 90 100
Percent of total

CPU
1.55%

Radio
61.18%

Flash
71.22%

Flash
37.27%

CPU
15.99%

Radio
12.79%

CRFID
(WISP Rev 4.0)

Mote
(Hydrowatch)

Figure 1: Per-component maximum power consumption of two embedded devices. Radio communication on the WISP requires
less power than writes to flash memory. The relative magnitudes of the power requirements means that a sensor mote favors shifting
storage workloads to local flash memory instead of remote storage via radio, while a computational RFID favors radio over flash.
The numbers for the mote are calculated based on the current consumption numbers given by Fonseca et al. [15]. For the CRFID,
we measured three operations (radio transmit, flash write, and register-to-register move) for a 128-byte payload.

CCCP: first, the voltage and current requirements of flash
memory constrain the design of flash-bearing CRFIDs
and limit the portion of a CRFID’s energy lifecycle that is
usable for computation. Second, a CRFID’s reliance on
energy harvesting and backscatter communication means
that a CRFID cannot compute or communicate without
reader contact.

Flash memory limitations. Microcontrollers that in-
corporate flash typically have separate threshold volt-
ages: one threshold for computation, and a higher thresh-
old for flash writes and erases. Because of this differ-
ence, flash writes cannot be executed at arbitrary times
during computation on a CRFID; they require sufficient
voltage on the storage capacitor. Without a constant sup-
ply of energy, capacitor voltage declines with time and
computation, so waiting until the end of a computation
to record its output to nonvolatile memory may be risky.

The size of a CRFID’s storage capacitor imposes an-
other basic limitation. Flash writes, which owe their
durability to a process that effects significant physical
changes, require more current and time (and therefore
energy) than much simpler RAM or register writes. Per-
datum measurements show that, on a WISP’s microcon-
troller, writing to flash consumes roughly 400 times as
much energy as writing to a register [26]. Such outflow
from the storage capacitor can dramatically shorten the
device’s energy lifecycles.

Non-autonomous operation. Backscatter communi-
cation involves modulating an antenna’s impedance to
reflect radio waves—an operation that, for the sender,
involves merely toggling a transistor to transmit bi-
nary data. Such communication cannot occur without
a signal to reflect; CRFIDs, like other passive RFIDs,
are therefore constrained to communicate only when a
reader within range is transmitting. Computation may
occur during times of radio silence, but only if suffi-
cient energy remains in the CRFID’s storage capacitor.
Unlike battery-powered platforms that can operate au-
tonomously between beacon messages from other enti-
ties, a CRFID may completely lose power between in-

teractions with an RFID reader. Our experience shows
that, lacking a source of harvestable energy, the storage
capacitor on a WISP (Revision 4.0) can support roughly
one second of steady computation before its voltage falls
below the microcontroller’s operating threshold. Such
limitations constrain the design space of applications that
can run on CRFIDs. For example, without autonomy, an
application cannot plan to perform an action at a specific
time in the future.

Unsteady energy supply. A key challenge CRFIDs
face is that their supply of energy can be unsteady and
unpredictable, especially under changing physical con-
ditions. RFID readers may not broadcast continuously
or even at regular intervals, and they do not promise any
particular energy delivery schedule to tags. In our exper-
iments, even within inches of an RFID reader that emit-
ted RF energy at a steady known rate, the voltage on a
CRFID’s storage capacitor did not appear qualitatively
easy to predict despite the fixed conditions. A CRFID’s
storage capacitor must buffer a potentially unsteady sup-
ply of RF energy without the ability to predict future en-
ergy availability.

3 Design of CCCP

CCCP’s primary design goal is to furnish computational
RFIDs with a mechanism for secure outsourced storage
that facilitates the suspension and resumption of pro-
grams. This section describes how CCCP is designed
to meet that goal and several others. Refer to Section 4
for a discussion of CCCP’s implementation, and refer to
Section 5 for an evaluation of CCCP’s design choices
and security; in particular, Section 5.3.1 discusses the
overhead imposed by cryptographic operations.

Given a chunk of serialized computational state on a
CRFID, CCCP sends the state to the reader infrastructure
for storage. (CCCP is designed to work independently
of the state serialization method, and does not prescribe
a specific method.) In a subsequent energy lifecycle, an
RFID reader that establishes communication with the tag



USENIX Association 	 18th USENIX Security Symposium	 219

Design goal Approach
Computational progress Communicating checkpoints via radio to untrusted RFID readers
Security: authentication, integrity UHF-based MAC
Security: data freshness Key non-reuse; counter stored by hole punching in nonvolatile memory
Security: confidentiality Symmetric encryption with keystream precomputation

Table 1: CCCP’s design goals and techniques for accomplishing each of them.

sends back the state, CCCP performs appropriate checks,
and the CRFID resumes computation where it left off.
CCCP provides several operating modes that allow an
application designer to increase security—by adding au-
thentication alone, or authentication and encryption—at
the cost of additional per-checkpoint energy consump-
tion. Table 1 describes how CCCP meets each of the
goals discussed in this section.

3.1 Design Goal: Computational Progress
on CRFIDs

CCCP remotely checkpoints computational state to make
long-running operations robust against power loss—
i.e., to enable their computational progress. We de-
fine computational progress as change of computational
state toward a goal (e.g., the completion of a loop).
While CRFIDs are able to finish short computations in
a small number of energy lifecycles (e.g., symmetric-
key challenge-response protocols [9, 19]), the challenges
described in Section 2 make it difficult for a CRFID to
guarantee the computational progress of longer-running
computations.

If a CRFID loses power before it completes a com-
putation, all volatile state involved in the computation is
lost and must be recomputed in the next cycle. If en-
ergy availability is similarly inadequate in subsequent
cycles, the CRFID may never obtain enough energy to
finish its computation or even to checkpoint its state to
flash memory. We refer to such vexatious computations
as Sisyphean tasks. (Sisyphus was condemned to roll a
large stone up a hill, but was doomed to drop the stone
and repeat hopelessly forever [20].) A major goal of
CCCP is to prevent tasks from becoming Sisyphean by
shifting energy use away from flash operations and to-
ward less energy-intensive radio communication.

3.2 Checkpointing Strategies: Local vs.
Remote

We consider two strategies for the nonvolatile storage of
serialized checkpointed state. The first, writing the state
to flash memory, involves finding an appropriately sized
region of erased flash memory or creating one via erase
operations. The second strategy, using CCCP, requires

a CRFID to perform zero or more cryptographic opera-
tions (depending on the operating mode) and then trans-
mit the result via backscatter communication.

The obvious advantage of flash memory is that its
proximity to the CRFID makes it readily accessible. On-
chip flash has the further advantage that it may be in-
accessible to an attacker. However, the operating re-
quirements of flash are onerous in many situations. With
unlimited energy, a CRFID could use flash freely and
avoid the complexity of a radio protocol such as CCCP.
Unfortunately, energy is limited in ways described else-
where in this paper, and several disadvantages of flash
memory diminish its appeal as a store for checkpointed
state. The most obvious disadvantage is an imbalance
between the requirements for reading and writing. Write
and erase operations require more time and energy per bit
than reading (Table 3); additionally, the minimum volt-
age and current requirements are higher. For example, in
the case of the MSP430F2274, read operations are sup-
ported at the microcontroller’s minimum operating volt-
age of 1.8 V, but write and erase operations require 2.2 V.
Finally, flash memory (bothNOR and NAND types) gen-
erally imposes the requirement that memory segments
be erased before they are written: if a bit acquires a
zero value, the entire segment that contains it must be
erased for that bit to return to its default value of 1.
Aside from burdening the application programmer with
inconvenience, erase-before-write semantics complicate
considerations of energy requirements. These disadvan-
tages are minor afflictions for higher-powered systems,
but they pose serious threats to the utility of flash mem-
ory on CRFIDs.

Backscatter transmission, since it involves modulating
only a single transistor to encode data, requires signifi-
cantly less energy than transmission via active radio. In
fact, our measurements (Figure 4) show that backscatter
transmission of an authenticated, encrypted state check-
point (plus a small amount of bookkeeping in flash)
can require less energy than exclusively writing to flash
memory, even after including the energy cost of encrypt-
ing and hashing the checkpointed state. Because of its
consistent behavior throughout the microcontroller’s op-
erating voltage range, backscatter transmission is an es-
pecially attractive option when the CRFID receives radio
contact frequently but cannot harvest energy efficiently,



220	 18th USENIX Security Symposium	 USENIX Association

in which case writing to flash may be infeasible because
of insufficient energy in the storage capacitor. These cir-
cumstances may occur far from the reader, or in the pres-
ence of radio occlusions, or when a computation uses
energy quickly as soon as the CRFID wakes up.
Despite its advantages over flash storage and active

radio, CCCP’s reliance on backscatter transmission has
drawbacks. Bitrate limitations in the EPC Gen 2 proto-
col cause CCCP’s transmissions to require up to twice
as much time per datum as flash storage on some work-
loads. The best choice of storage strategy depends on an
application’s ability to tolerate delay and the necessity of
saving energy.

3.3 Threat Model

We define CCCP’s threat model as a superset of the at-
tacks that typically threaten RFID systems [21]. The
most obvious way an attacker can disrupt the operation of
a CRFID is to starve it of energy by jamming, interrupt-
ing, or simply never providing RF energy for the CRFID
to harvest. Because they depend entirely on harvestable
energy, CRFIDs cannot defend against such denial-of-
service (DoS) attacks, so we consider these attacks as a
problem to be dealt with at a higher system level. We
instead focus on two types of attacks that a CRFID can
use its resources to address: (1) active and passive radio
attacks and (2) attacks by an untrusted storage facility.

An adversary may attempt to:

• Eavesdrop on radio communication in both direc-
tions between a CRFID and reader.

• Masquerade as a legitimate RFID reader in order
to collect checkpointed state from CRFIDs. Be-
cause CRFIDs do not trust reader infrastructure,
such an attack should allow an attacker to collect
only ciphertext.

• Masquerade as a legitimate RFID reader in order
to send corrupted data or old data (e.g., a previ-
ous computational state) to the CRFID. Such invalid
data should not trick the CRFID into executing ar-
bitrary or inappropriate code.

• Masquerade as a specific legitimate CRFID in or-
der to retrieve that CRFID’s stored state from the
reader. This state should be useless without ac-
cess to the keystream material that encrypted it—
keystream material that is stored in the legitimate
owner’s nonvolatile memory and never transmitted.

We additionally assume that an adversary cannot physi-
cally inspect the contents of a CRFID’s memory.

3.4 Secure Storage in CCCP
Because computational RFIDs depend on RFID read-
ers for energy—if a CRFID is awake, there is probably
a reader nearby—readers are a natural choice for stor-
ing information. But a reader trusted to provide energy
should not necessarily be trusted with sensitive informa-
tion such as checkpointed state.

CCCP involves communication with untrusted reader
infrastructure, so we establish several security goals:

• Authenticity: a CRFID that stores information on
external infrastructure will eventually attempt to re-
trieve that information, and the authenticity of that
information must be cryptographically guaranteed.
Under CCCP, the only party that ever needs to ver-
ify the authenticity of a CRFID’s stored information
is the CRFID itself.

• Integrity: an untrusted reader may attempt to im-
pede a CRFID’s computational progress by pro-
viding data from which the CRFID cannot resume
computation (e.g., random junk). While CCCP
cannot prevent a denial of service attack in which
a reader provides only junk, it guarantees that
CRFIDs will compute only on data they recognize.

• Data freshness: just as a reader can provide cor-
rupted data instead of usable data, it can replay
old state in an attempt to hinder the computational
progress of a computation. Under CCCP, a CRFID
recognizes and rejects old state.

• Confidentiality: in certain applications, the leaking
of intermediate computational state might be a crit-
ical security flaw. For other applications, confiden-
tiality may not be necessary.

3.4.1 Keystream Precomputation

Because CCCP’s threat model assumes a powerful ad-
versary that can intercept all transmissions, CCCP never
reuses keystream material when encrypting data or com-
puting MACs. We use CCCP’s refreshable pool of
pseudorandom bits (a circular buffer in the CRFID’s non-
volatile memory) as a cryptographic keystream to pro-
vide confidentiality and authentication.

CCCP stores keystream material on the CRFID be-
cause we assume that the CRFID trusts only itself; a
CRFID cannot extract trustworthy keystream material
from a reader it does not trust, nor from any observ-
able external phenomenon (which, in our threat model,
an attacker would be able to observe equally well). Be-
cause a CRFID can reserve only finite storage for stor-
age of keystream material, the material must be period-
ically refreshed. CCCP opportunistically refreshes the
keystream material with pseudorandom bits, following
Algorithm 3.



USENIX Association 	 18th USENIX Security Symposium	 221

To provide unique keystream bits to cryptographic op-
erations (encryption and MAC), CCCP uses an exist-
ing implementation [9] of the RC5 block cipher [28] in
counter mode to generate pseudorandom bits and store
them to flash. The choice of a block cipher in counter
mode means that the resulting MAC and ciphertext are
secure against a computationally bounded adversary [6].
A stream cipher would work equally well in principle,
but in implementing CCCP, we found that those under
consideration required a large amount of internal read-
write state. For example, the stream cipher ARC4 re-
quires at least 256 bytes of RAM [30], whereas RC5 re-
quires only an 8-byte counter. The RC5 key schedule
is preloaded into flash memory the first time the device
is programmed, and the keystream materials are gen-
erated during periods of excess energy (or power sea-
sons; see § 3.5). One such period of excess energy is
the CRFID’s initial programming, at which time the en-
tire keystream buffer is filled with keystream bits. To
avoid reusing keystream bits, CCCP maintains several
variables in nonvolatile memory. Table 2 summarizes the
variables CCCP stores in nonvolatile memory.

Variable Description
chkpt counter Counter representing the number of

checkpoints completed; used to cal-
culate the location of the first un-
used keystream material; updated
each time keystream material is con-
sumed; unary representation

kstr end Pointer to the end of the last
chunk of unused keystream bits in
keystream memory; updated during
key refreshment

rc5counter Incrementing counter used as an in-
put to RC5 while filling keystream
memory with pseudorandom data;
updated during key refreshment

Table 2: Variables CCCP stores in nonvolatile memory.

3.4.2 UHF-based MAC for Authentication and In-
tegrity

CCCP uses a MAC scheme based on universal hash func-
tions (UHF) [8] to provide authentication and integrity.
CCCP constructs the MAC by first hashing the message
and then XORing the 80-bit hash with a precomputed
cryptographic keystream. Because of the resource con-
straints of CRFIDs, it is critical to use a scheme that
consumes minimal energy, and according to recent liter-
ature [4, 14], UHF-based MACs are potentially an order
of magnitude faster than MACs based on cryptographic

hash functions. We chose UMAC [4] as the MAC func-
tion after evaluating several alternatives. Our experi-
ments on WISP (Revision 4.0) CRFIDs determined that
UMAC takes on average 18.38 ms and requires 28.79 µJ
of energy given a 64-byte input.

3.4.3 Stream Cipher for Confidentiality

To provide confidentiality, a CRFID simply XORs its
computational state with a precomputed cryptographic
keystream. This encryption scheme is low-cost in terms
of computation and energy, but it relies on using each
keystream bit at most once. CCCP ensures that the
encryption and MAC functions never reuse keystream
bits by keeping track of the beginning and end of fresh
keystream material in flash memory. The keystream
pool is represented as a circular buffer. The address
of the first unused keystream material is derived from
the value of chkpt counter (Table 2), and the last unused
keystream material ends just before the address pointed
to by kstr end.
If the application using CCCP demands confidentiality

at all times, then if CCCP cannot satisfy a request for un-
used keystream bits, it pauses its work to generate more
keystream bits. This behavior is inspired by that of the
blocking random device in Linux [17].

3.4.4 Hole Punching for Counters Stored in Flash

To avoid reusing keystream material, CCCP maintains a
counter (chkpt counter) from which the address of the
first unused keystream bits can be derived. The counter
is stored in flash memory because it is used for state
restoration after power loss. However, incrementing a
counter stored in binary representation always requires
changing a 0 bit into a 1 bit (Figure 2(a)). On segmented
flash memories, changing a single bit to 1 requires the
erasure (setting to 1) of the entire segment that contains
it—at least 128 bytes on the MSP430F2274—before the
new value can be written. An additional cost that varies
among flash cells is that they wear out with repeated era-
sure and writing [18].

To avoid energy-intensive erasures and minimize the
energy cost of writing counter updates, CCCP represents
chkpt counter in complemented unary instead of binary.
CCCP interprets the value of such a counter as the num-
ber of 0 bits therein. Because 1 bits can be changed to
0 bits without erasure, incrementing a counter requires
a relatively small write, with erasures necessary only if
the unary counter must be extended into unerased mem-
ory. We call this technique hole punching after the visual
effect of turning 1 bits into 0 bits. Since chkpt counter
is simply incremented at each remote checkpoint, updat-
ing the counter generally requires writing only a single



222	 18th USENIX Security Symposium	 USENIX Association

00000111 2 (=710)

00001000 2 (=810)

11111111 2 (erase)

…111000000001 (=810)

…111100000001 (=710)

(a) Binary counter (b) Unary counter

Figure 2: Illustration of hole punching. While incrementing
a binary counter (a) in flash memory may require an energy-
intensive erase operation, complemented unary representation
((b), with the number of zeros, or “holes,” representing the
counter value) allows for incrementing without erasure at a cost
of space efficiency.

word. Table 3 illustrates the energy cost of erasing an
entire segment and the energy cost of writing a single
word.

Operation Seg. erase Write Read Write
Size (bytes) 128 128 128 2
Energy (µJ) 46.81 56.97 0.64 0.96

Table 3: Comparison of energy required for flash operations on
an MSP430F2274. Hole punching often allows CCCP to use a
single-word write (2 bytes on the MSP430) instead of a seg-
ment erase when incrementing a complemented unary counter.

To minimize the length of the unary chkpt counter’s
representation and to facilitate simple computation of
offsets, CCCP assumes a fixed size for checkpointed
state; in practice an application designer can choose an
appropriate value for the fixed checkpoint size.

3.4.5 Extension for Long-Term Storage

Under CCCP, readers can act not only as outsourced stor-
age for computational state, but also as long-term exter-
nal storage. Because of their ultra-low-power microcon-
trollers, CRFIDs are likely to have only a small amount
of flash available for data storage. Moreover, since flash
operations are energy intensive, depending exclusively
on flash memory as a storage medium is undesirable.
CCCP could enable a CRFID to instead use the reader
infrastructure as an external storage facility with effec-
tively limitless space.

Long-term storage requires a different key manage-
ment strategy than checkpointing data. With a tempo-
rary checkpointing system, the CRFID needs access only
to the keystream material used to prepare the last check-
point sent to a reader. However, in the case of long-term
storage, the CRFID may require access to all of the data it
has ever stored on the reader and therefore must remem-
ber all of the cryptographic keys from those stores. To
avoid this unrealistic requirement, a potential extension

to CCCP allows the CRFID to generate keys on demand
when long-term storage is required.

There are two operations that CCCP can provide to a
CRFID application for this purpose:

• To satisfy a STORE(data) request, CCCP provides
a keystream generator in the form of a block ci-
pher in counter mode; this requires a monoton-
ically increasing counter in addition to CCCP’s
chkpt counter. CCCP XORs the given data with the
generated keystream and then constructs a MAC,
then sends the ciphertext and MAC to the reader for
storage. CCCP then sends the counter value back to
the application.

• To satisfy a RETRIEVE(index) request, CCCP asks
the RFID reader for the data at the given index.
CCCP then generates the same keystream it used
to encrypt the data by passing the index to the block
cipher. Finally, CCCP verifies the MAC provided
by the reader and returns the decrypted data to the
application.

3.5 Power Seasons
If a CRFID could predict future energy availability, then
it would be able to schedule its generation of keystream
bits and ensure that it never exhausted its supply of pseu-
dorandomness during normal operation. However, be-
cause CRFIDs lack autonomy and cannot depend on
RFID reader infrastructure to provide a steady energy
supply, we roughly classify the energy availability sce-
narios a CRFID faces into two seasons. We assume that
the general case is a winter season, in which a CRFID
cannot consistently harvest enough energy to perform
all of its tasks. During winter, the CRFID must fo-
cus on minimizing checkpoints and wasted energy. The
other season is summer, during which harvested energy
is plentiful and the CRFID can afford to perform energy-
intensive operations such as precomputation and storage
of keystream material for later use.

CCCP can identify a summer season if one of two con-
ditions is true. First, the CRFID may find itself awake
with no computations left to complete, for example after
it has finished a sensor reading. Second, the CRFID may
find itself communicating with a reader that does not un-
derstand CCCP and simply provides harvestable energy.

4 Implementation

The components of CCCP span two environments:
CRFIDs and RFID readers. On a CRFID, CCCP accepts
data from an application and uses the CRFID’s backscat-
ter mechanism to ship the data to a reader. The reader



USENIX Association 	 18th USENIX Security Symposium	 223

(which we consider as an RFID reader plus a control-
ling computer) is programmed to participate in the CCCP
protocol and return computational state where necessary.
This section describes the CRFID-side components, the
reader-side components, and the protocol that ties them
together.

The CRFID side of CCCP is implemented in
the C programming language on WISP (Revi-
sion 4.0) prototypes. At its core are three pri-
mary routines, which we present in pseudocode:
CHECKPOINT (Algorithm 1), RESUME (Algorithm 2),
and KEY-REFRESH (Algorithm 3). CHECKPOINT and
RESTORE refer to a counter called chkpt counter from
which CCCP derives the address of the first unused
keystream material. For routines that require radio
communication, we borrow radio code from Intel’s
WISP firmware version 1.4. Note that, since a CRFID
cannot assume that a reader is listening at an arbitrary
time, the TRANSMIT subroutine waits for an interrupt
indicating that the CRFID has received a go-ahead
message from the reader.

The RFID reader side of CCCP consists only of
code to drive the reader appropriately for communica-
tion events. Because of the Gen 2 protocol’s complexity,
we have not completely implemented the reader side of
the CCCP protocol. Rather than write a large amount of
code for the reader, we chose to use simple control pro-
grams for the reader and inspect the exchanged messages
manually, a strategy that allowed us to concentrate on
the more resource-constrained CRFID side of the system
while avoiding porting applications from one proprietary
reader to another. (The WISP [Revision 4.0] is nominally
compatible with only the Alien ALR-9800 and Impinj
Speedway readers; we chose to use a desktop PC to pro-
gram these readers for the sake of simplicity and porta-
bility.) A full implementation of the reader side would
properly parse each message received from the CRFID
and manage storage for checkpointed state.

4.1 Communication Protocol
The CRFID model places a number of restrictions on
communication. The only communication hardware on
a CRFID is a backscatter circuit involving an antenna
and a modulating transistor; an active radio would re-
quire significantly more energy. Since backscatter sim-
ply reflects an incoming carrier signal, a prerequisite for
communication is that the reader emits an appropriate
carrier signal. In our experiments, we used two differ-
ent EPC Gen 2-compatible RFID readers that are readily
available as off-the-shelf products; we used no nonstan-
dard reader hardware or antennas.

CCCP’s communication protocol is based on primi-
tives provided by the EPC Gen 2 RFID protocol (the

RFID protocol the WISP understands). Specifically,
CCCP makes use of three EPC Gen 2 commands:

• A reader issues a Query command to a specific
tag (in our case, a CRFID). The Query command
comprises a 4-tuple: �action, membank, pointer,
length�. While a conventional RFID tag may re-
quire reasonable values for all four tuple members,
a CRFID need examine only the fourth member to
learn the maximum reply length the reader will ac-
cept. The reader can use the other three fields to en-
code meta-information such as whether the reader
wants to offer checkpointed state to the CRFID.

• A reader issues a Read command to a specific tag to
request an arbitrary amount of data from an RFID
tag’s memory. A CRFID can respond to a coordi-
nated Read command with a chunk of checkpointed
state.

• A reader issues a Write command to send data
for storage in a specific tag’s memory. Because
RFID tags tend to have fewer resources even than
CRFIDs, Write commands transmit only a small
amount (16 bits) of data. A CRFID can request a se-
ries of Write commands from the reader to retrieve
checkpointed state, then reassemble the results in
memory and restore its state from the checkpoint.

Figure 3 gives an overview of CCCP’s message types
and their ordering. CCCP does not require protocol
changes to the EPC Gen 2 standard, but it requires that
an RFID reader be controlled by an application that un-
derstands CCCP. While a proprietary radio protocol for
CCCP could be more efficient than one built atop an ex-
isting RFID protocol, a goal of CCCP—inherited from
the design goals of the WISP CRFID—is to maintain
compatibility with existing RFID readers.

5 System Evaluation

This section justifies our design choices and offers ev-
idence for our previous claims. We evaluate the secu-
rity properties of four distinct checkpointing strategies—
three based on CCCP’s radio transmission and one on
local flash storage—and describe how CCCP provides
data integrity with or without confidentiality. We de-
scribe our experimental setup and methods, then provide
empirical evidence that CCCP’s radio-based checkpoint-
ing requires less energy per checkpoint than a flash-based
strategy. Finally, we characterize the overhead incurred
by CCCP’s cryptographic operations in terms of both en-
ergy and the keystream material that they consume.



224	 18th USENIX Security Symposium	 USENIX Association

Algorithm 1 The CHECKPOINT routine encrypts, MACs, and transmits a fixed-size (STATE SIZE, selected by the
application designer) chunk of computational state. �A,B� means the concatenation of A and B with a delimiter in
between. 80 bits is the fixed output size of NH, the hash function used by UMAC. For arithmetic simplicity, this
pseudocode treats the keystream pool as an infinite array.

CHECKPOINT(state,keystream,chkpt counter)
1 � Compute the (constant) amount of keystream material that will be used in this invocation
2 chkpt size = STATE SIZE+LENGTH(�state,chkpt counter�)+ 80 bits
3
4 k ← chkpt counter×chkpt size � keystream[k] holds unused keystream material
5 chkpt counter ← chkpt counter+1 � Update chkpt counter in nonvolatile memory
6
7 C ← state⊕keystream[k . . .k + STATE SIZE −1] � Encrypt state by XORing with keystream material
8 k ← k + STATE SIZE � . . . and advance k
9

10 H ← NH(�C,k�,keystream[k . . .k + LENGTH(�C,k�)−1]) � Hash the encrypted state
11 k ← k + LENGTH(�C,k�) � . . . and advance k
12
13 M ← H ⊕ keystream[k . . .k + LENGTH(H)−1] � Construct an 80-bit MAC
14
15 TRANSMIT(C,M) � Note: TRANSMIT blocks until a reader is detected

5.1 Security Semantics
CCCP trades the physical security of local storage for
the energy savings of remote storage, but its use of radio
communications introduces different security properties.
We consider CCCP’s four operating modes in increasing
order of cryptographic complexity. Note that the algo-
rithm listings (Algorithms 1–3) describe the most com-
putationally intensive operating mode; the other modes
involve subsets of its operations.

• Under CCCP’s threat model, storing checkpointed
state only in local flash memory is the most secure
option, since it involves no radio transmission at all.
However, for reasons detailed elsewhere in this pa-
per, writing to flash memory is not always possible
or desirable. We call the flash-only approach Me-
mentos after the system [26] that inspired CCCP.

• In a mode called CCCP/NoSec, a CRFID sends
computational state in plaintext. Under CCCP’s
threat model, CCCP/NoSec allows an attacker to in-
tercept computational state and trivially recover the
information it contains.

• In a mode called CCCP/Auth, the CRFID com-
putes a message authentication code (MAC), at-
taches it to plaintext computational state, and trans-
mits both. To trick a CRFID into accepting il-
legitimate state, an attacker must craft a message
that incorporates a MAC that the CRFID can verify.
However, since CCCP’s MAC routine incorporates

keystream material that is local to the CRFID, the
attacker must guess the contents of a chunk of the
CRFID’s keystream memory, which requires brute
force under our threat model.

• In a mode called CCCP/AuthConf, CCCP encrypts
computational state, computes a MAC, and trans-
mits both (Algorithm 1). As with CCCP/Auth, an
attacker who wants to trick a CRFID into accepting
illegitimate state must find a hash collision; how-
ever, part of her colliding input must be a valid en-
crypted computational state from which the CRFID
would be able to resume. Since CCCP does not
reuse keystream material, the attacker is limited to
brute-force search to find such an encrypted state.

5.2 Experimental Setup & Methods
We used a consistent experimental setup to obtain timing
and energy measurements for a prototype CRFID. We
programmed a WISP with a task (e.g., a flash write) and
set a GPIO pin to toggle immediately before and after the
task. We then charged the WISP’s capacitor to 4.5 V us-
ing a DC power supply, disconnected the power supply
so that the storage capacitor was the only source of en-
ergy for the WISP, and observed the task’s execution and
storage capacitor’s voltage on an oscilloscope. We deliv-
ered energy directly from a DC power supply when tak-
ing measurements because the alternative, providing an
RF energy supply, results in unpredictable and unsteady



USENIX Association 	 18th USENIX Security Symposium	 225

Algorithm 2 The RESUME routine receives an encrypted checkpoint C and a message authentication code M from a
reader, then restores the computational state of the CRFID if the received data pass an authenticity test. chkpt counter
is the value stored in nonvolatile memory at the beginning of CHECKPOINT (Algorithm 1). We assume that, since k
and chkpt counter are both numbers, their in-memory representations have the same length. As in Algorithm 1, this
pseudocode treats the keystream pool as an infinite array for arithmetic simplicity. �A,B� means the concatenation of
A and B with a delimiter in between. 80 bits is the fixed output size of NH, the hash function used by UMAC.

RESUME(C,M,keystream,chkpt counter)
1 � Find the first unused keystream material, then backtrack to find the keystream material CHECKPOINT used to

hash and MAC the ciphertext
2 chkpt size = STATE SIZE+LENGTH(�C,chkpt counter�)+ 80 bits � N.b.: STATE SIZE = LENGTH(C)
3 k ← chkpt counter×chkpt size
4 k ← k− (LENGTH(�C,k�)+ 80 bits)
5
6 H ← NH(�C,k�,keystream[k . . .k + LENGTH(�C,k�)−1]) � Compute the ciphertext’s hash
7 k ← k + LENGTH(�C,k�) � . . . and advance k to point to the MAC
8
9 if M = H ⊕ keystream[k . . .k + LENGTH(H)−1] � If the MAC is OK, then. . .

10 then k ← k− (LENGTH(C)+ LENGTH(�C,k�)) � backtrack further . . .
11 state = C⊕ keystream[k . . .k + LENGTH(C)−1] � and decrypt C to yield state
12 RESTORE-STATE(state)
13 else � Do nothing

charge accumulation, making it difficult to shut off the
energy supply at a precise capacitor voltage.

After watching the GPIO pin signal the beginning and
end of the task, we calculated the task’s duration and
the corresponding change in the storage capacitor’s volt-
age. When an operation completed too quickly to ob-
serve clearly on the oscilloscope, we repeated it in an
unrolled loop and divided our measurements by the num-
ber of repetitions. Finally, we calculated per-bit energy
values by subtracting the baseline energy consumption
of the WISP with its MSP430 microcontroller in the
LPM3 low-power (sleep) mode. We subtract the WISP’s
baseline energy consumption in order to discount the ef-
fects of omnipresent consumers such as RAM and CPU
clocks. For all measurements that we present, we give
the average of five trials.

5.3 Performance

Figure 4 shows that, for data sizes greater than 16 bytes,
a checkpoint operation under CCCP/NoSec requires
less energy than a checkpoint to flash. Under
CCCP/AuthConf, which adds encryption and MAC op-
erations, a similar threshold exists between 64 and
128 bytes. Checkpointing via flash has an additional
cost: if the checkpointing mechanism needs to overwrite
existing data (e.g., old checkpoints) in flash memory, it
must erase the corresponding flash segments and poten-

tially replace whatever data it did not overwrite. Even if
a flash write does not necessitate an immediate erasure, it
makes less space available in the flash memory and there-
fore increases the probability that a long-running appli-
cation will eventually need to erase the data it wrote—
that is, it incurs an energy debt. In the ideal case, an ap-
plication can pay its energy debt easily if erasures happen
to occur only when energy is abundant—i.e., in summer
power seasons. However, since CCCP is designed to ad-
dress scenarios in which energy availability fluctuates,
we consider the case in which each write incurs an en-
ergy debt. Factoring in debt, we characterize the energy
cost of a write of size dsize as

Cost∗(write(dsize)) = Cost(seg. erase)×
dsize

Size(seg.)
+ Cost(write(dsize)).

In practice, because some erasures will likely occur in
summer power seasons and some in winter power sea-
sons, the energy cost of a flash write of size dsize
falls between Cost(write(dsize)) (the ideal cost) and
Cost∗(write(dsize)) (the worst-case cost), inclusive.

The energy measurements we present in this paper
(e.g., in Figure 4) fail in some cases to strongly support
the hypothesis that radio-based checkpointing is consis-
tently less energy intensive than flash-based checkpoint-
ing. The imbalance is due to a missed opportunity for
optimization on the WISP prototype. The transistor used



226	 18th USENIX Security Symposium	 USENIX Association

Algorithm 3 The KEY-REFRESH replaces used keystream material with new keystream material in nonvolatile mem-
ory. Unlike in CHECKPOINT and RESUME, this pseudocode treats the keystream pool as a fixed-size circular buffer.
This allows us to treat keystream material between k and kstr end as unused, and the rest—between kstr end and
k—as used. This pseudocode omits two subtleties for simplicity: first, the routine must not erase keystream ma-
terial that is waiting to be used by RESUME. Second, because flash erasure affects entire segments at once, the
ERASE-MEMORY-RANGE routine must sometimes restore data that should not have been erased.

KEY-REFRESH(keystream,kstr end,chkpt counter,rc5counter)
1 � Find the first unused keystream material in the circular keystream buffer
2 chkpt size = STATE SIZE+(STATE SIZE+LENGTH(�null,chkpt counter�))+ 80 bits
3 k ← chkpt counter×chkpt size (mod LENGTH(keystream)/chkpt size)
4
5 � Erase all used keystream memory, then write pseudorandom data to it
6 ERASE-MEMORY-RANGE(keystream[kstr end . . .k])
7 i ← kstr end
8 while (i < k)
9 do rc5counter ← rc5counter+1 � Update counter in nonvolatile memory

10 keystream[i] ← RC5(rc5counter−1) � Write keystream material into nonvolatile memory
11 kstr end ← i+ 1 � Update kstr end in nonvolatile memory
12 i ← i+ 1

N
e
e
d
 C

h
kp

t M
s
g
 s

iz
e

C
ip

h
e
rt

e
xt

CRFID
Q

u
e
ry

C
ip

h
e
rte

x
t

Tasks 1...k

Reader

Encrypt
+ MAC

MAC +
Decrypt

Store

Tasks k...n

…

…

Retrieve

emits
carrier

Figure 3: Application-level view of the CCCP protocol. The CRFID sends a request to checkpoint state while in the presence of a
reader, and the reader specifies the maximum size of each message. The CRFID then prepares the checkpoint and transmits it in a
series of appropriately sized messages. The reader stores the checkpoint data for later retrieval by the CRFID. All messages from
the reader to the CRFID also supply power to the CRFID if the latter is within range.

for backscatter modulation on the WISP (Revision 4.0)
draws 500 µW of power, far more than is typical of
a comparable mechanism on a conventional RFID tag.
Alien’s Higgs 3, a conventional RFID tag, draws only
15.8 µW of power [2] (total) during operation—an or-
der of magnitude difference that supports an alternative
design choice for future CRFIDs.

5.3.1 System Overhead

An application on a CRFID can balance energy con-
sumption against security by choosing one of CCCP’s
operating modes:

• CCCP/NoSec imposes the least overhead because it
does not encrypt data or compute a MAC; it requires

no computation and consumes no keystream mate-
rial. However, CCCP/NoSec imposes a time over-
head to receive computational state from a reader
at power-up and to transmit new state at checkpoint
time.

• CCCP/Auth avoids encryption overhead (like
CCCP/NoSec) but requires time, energy, and
keystream bits to compute a MAC over the plain-
text checkpoint. However, it requires no energy or
keystream bits for encryption because it does not
encrypt the plaintext checkpoint.

• CCCP/AuthConf offers the most security, since it
adds confidentiality to CCCP/Auth, but the extra se-
curity comes at the expense of time, energy, and
keystream bits. In this mode, CCCP encrypts the
computational state before computing a MAC and



USENIX Association 	 18th USENIX Security Symposium	 227

8 16 32 64 128 192 256
0

20

40

60

80

100

120

140

160

180

Data size (bytes)

E
n

e
rg

y
 c

o
m

s
u

m
p

ti
o

n
 (
µ

J
)

CCCP/AuthConf
CCCP/Auth
CCCP/NoSec
Flash Write
Flash Erase+Write (Calculated)

Figure 4: Energy consumption measurements from a WISP (Revision 4.0) prototype for all considered checkpointing strategies.
Under our experimental method, we are unable to execute flash writes larger than 256 bytes on current hardware because larger
data sizes exhaust the maximum amount of energy available in a single energy lifecycle. The average and maximum percent error
of the measurements are 5.85% and 14.08% respectively.

transmitting both. It requires as much keystream
material as the size of the state plus a constant
amount for authentication.

6 Applications

The outsourced memory introduced by CCCP expands
the design space for applications on a computational
RFID. This section offers some illustrative example ap-
plications.

CRFIDs as low-maintenance sensors. Consider a
cold-chain monitoring application for pharmaceutical
supplies, in which a CRFID carries an attached temper-
ature sensor and stores in flash memory a temperature
reading each time it is scanned. To prevent exhaustion
of its flash memory, the CRFID periodically computes
aggregate statistics on, then discards, stored readings.
Some statistical computations (e.g., computation of quar-
tiles) require memory-intensive manipulation of the data
set. If the flash memory on the CRFID considerably ex-
ceeds the size of RAM, computation of such statistics
would require many writes to flash, an energy-intensive
operation. An alternative is to use outsourced memory
for the computation. (In the case of cold-chain monitor-
ing, maintaining privacy of harvested data with respect
to the reader may be unessential, but the integrity of the
statistical computation is important.)

RFID sensor networks. Recent work [7] de-
scribes RFID sensor networks (RSNs) that combine
RFID reader infrastructure with sensor-equipped com-
putational RFIDs. RSNs do not simply replace tradi-
tional sensor networks because of several limitations.
First, they require an infrastructure of readers that pro-
vide power to sensor nodes. Second, they are constrained
by the distances (several meters) at which CRFIDs cur-

rently operate. Third, because RFID communication is
asymmetric, the nodes of an RSN cannot exchange in-
formation with each other except through a more pow-
erful reader. However, there are applications for which
short-range networks of batteryless sensors would be ap-
propriate; Yeager et al. offer several examples [34].

Computational RFIDs as smartcards. Some pas-
sive RFID tags are capable of executing strong crypto-
graphic primitives. For example, various models of the
Mifare DESfire can perform triple-DES or AES, while
other RFID devices can compute elliptic-curve and RSA
signatures, such as the RF360 introduced by Texas In-
struments [32]. The RF360 is designed to allow public-
key authentication in RFID-enabled identification docu-
ments, such as e-passports.
The RF360 incorporates an MSP430, but also includes

a cryptographic co-processor, and is designed to operate
at relatively short range as a high-frequency, ISO 14443
device. As we show in this paper, CCCP creates the pos-
sibility of a more lightweight device. Such a “CCCP
smartcard” has two notable benefits: (1) a CCCP smart-
card eliminates the cost of cryptography-specific hard-
ware; and (2) a CCCP smartcard can operate in a mode
compatible with EPC Gen 2 and achieve read ranges be-
yond those of a high-frequency device like the RF360.

Some smartcards are capable of performing bio-
metric authentication—generally fingerprint verification.
Match-on-card, i.e., verification of the validity of a
fingerprint through computation exclusively within the
smartcard, has long stood as a technical challenge. The
U.S. National Institute of Standards and Technology
(NIST) recently conducted an evaluation of a range of
such algorithms in contactless cards [11]. CCCP is a
promising tool for expanding the class of radio devices
for which match-on-card is feasible. While CCCP does



228	 18th USENIX Security Symposium	 USENIX Association

not follow a strict match-in-device paradigm—given that
it outsources data to a reader—it nonetheless provides
comparable security assurances.

Trusted computing: outsourcing computation via
TPMs. CCCP permits a computational RFID to use ex-
ternal memory via an RFID reader. It can support an even
broader design space if we use CCCP instead for secure
outsourcing not of memory, but of computational tasks.

Trusted platform modules (TPMs) [3, 33] offer sup-
port for such outsourcing. A TPM is a hardware device,
standard in the CPUs of modern PCs and servers, that
can provide a secure attestation to the software config-
uration of the computing platform on which it operates.
Briefly stated, an attestation takes the form of a digital
signature on a digest of the software components loaded
onto the device. (An attestation does not provide assur-
ance against hardware tampering or subversion of run-
ning software.)

A computational RFID can in principle make use of a
TPM-enabled reader—or platform communicating with
the reader—to gain secure access to a more powerful ex-
ternal computer. The process for such use of a TPM is
subtle. The operations of verifying a TPM attestation and
creating a secure session are both cryptographic opera-
tions that require computationally intensive modular ex-
ponentiation. Hence the computational outsourcing pro-
cess requires CCCP as a bootstrapping mechanism.

7 Related Work

CCCP is closely related to Mementos [26] in that both
systems provide checkpointing of program execution on
CRFIDs. Whereas Mementos relies purely on flash
memory and focuses on finding optimal checkpoint fre-
quencies via static and dynamic analysis, CCCP relies
primarily on untrusted remote storage via radio and fo-
cuses on low-power cryptographic protections to ensure
that remotely stored data is as secure as if it were stored
locally.

Several systems share CCCP’s goal of exploiting prop-
erties of RFID systems to enhance security and privacy.
For instance, Shamir’s SQUASH hash algorithm [31] ex-
ploits the underutilized radio link between a tag and a
reader to reduce the amount of cryptographic computa-
tion necessary on a tag. While number-theoretic hash
functions typically require significant computational re-
sources for modular arithmetic, the SQUASH function
eliminates costly modular reductions and produces large
(unreduced) hash outputs that a tag can send directly
to a reader. Tags can thus use the SQUASH func-
tion to engage in secure challenge-response protocols
with minimal computational resources on the tag. The
scheme is provably as one-way as Rabin encryption.
Like SQUASH, CCCP exploits the relatively low cost

of radio communication between a tag and a reader to
increase security. While SQUASH increases radio com-
munication to reduce computation, CCCP increases ra-
dio communication to reduce writes to flash memory.

CCCP uses cryptographic techniques from past work
on secure file systems and secure content distribution.
CFS [5], the SFS read-only file system [16], and Plu-
tus [22] investigated how to provide secure storage lay-
ered on various degrees of untrusted infrastructure. The
key generation techniques in secure file systems help
CCCP to precompute keystream materials during power
seasons. While scalability and throughput are the main
challenges in such file systems, CCCP primarily ad-
dresses energy and memory constraints. The semantics
of CCCP storage are similar to the semantics of secure
file systems. None of the systems explicitly and directly
prevent denial of service. Storing information on un-
trusted RFID readers trades off the gain in storage capac-
ity and energy conservation versus the risk of losing data
due to compromise or destruction of the external stor-
age. To mitigate the risk against denial of service, CCCP
could choose to replicate data as do secure file systems.

CCCP shares some goals with power-aware encryp-
tion systems such as that proposed by Chandramouli
et al. [10]. Both systems are designed to consume lit-
tle energy while offering the security of well-known
cryptographic primitives and both are motivated by a
study of power profiling results, but they have different
goals. Chandramouli et al. focus on deriving an energy
consumption model and establishing a relationship be-
tween energy consumption and security, and they offer
an encryption scheme that might allow CCCP to con-
sume less energy during its precomputation of keystream
bits. However, CCCP’s opportunistic precomputation
occurs during periods of abundant energy, when the
choice of encryption scheme is not of the utmost im-
portance. CCCP’s precomputation allows it to use time-
and energy-efficient XOR operations at checkpoint time,
when energy is low; an alternative encryption scheme
would have to save time or energy over simple XOR op-
erations to be useful when energy consumption matters.

CCCP shares a number of properties with systems
built for sensor networks. Storage-centric sensor net-
works [12, 24] have focused on reducing radio communi-
cation and increasing writes to flash memory to conserve
energy. One of our motivating observations is that this
relationship is inverted in the CRFID model: CCCP re-
duces writes to flash memory in favor of increasing ra-
dio communication. Performing cryptography is hard
on both a CRFID and its elder cousin the sensor mote.
Previous systems, such as SPINS [25] and TinySec [23]
for sensor networks, have faced design choices similar
to CCCP’s. SPINS and TinySec use RC5 because of its
small code size and efficiency, but the battery-powered



USENIX Association 	 18th USENIX Security Symposium	 229

platform underlying these systems differs in fundamen-
tal ways from batteryless computational RFIDs. For a
side-by-side comparison of such embedded systems, see
Table 1 of Chae et al. [9].

CCCP provides secure storage for CRFIDs, and
CRFIDs are closely related to existing passively powered
RFID tags conforming to the EPC Gen 2 standard [13].
At times the RFID and sensor world fuse together. Buet-
tner et al. [7] propose RFID sensor networks (RSNs) as
a replacement for wireless sensor networks in applica-
tions where batteries are inconvenient, and the authors
describe RSNs built on WISP CRFIDs. However, the
RSN work does not consider remote storage options for
CRFIDs.

8 Future Work

Our future work includes enhancements to the CCCP
protocol. Most pressingly, the protocol currently
suffers from a potential atomicity problem. In
CHECKPOINT (Algorithm 1), chkpt counter is updated
before the checkpointed state is transmitted, so that even
if the transmission fails, chkpt counter will point to un-
used keystream material the next time CHECKPOINT
runs. However, if CHECKPOINT updates the offset but
terminates before transmission succeeds, then the next
RESUME operation will see a value of chkpt counter
from which its normal backtracking operation will not
find the correct keystream material. CCCP cannot cur-
rently recover from such a mismatch.

An unacceptable solution is for CHECKPOINT to up-
date chkpt counter after a successful transmission; such
a strategy opens the possibility that, if power loss oc-
curred between the transmission and the counter update,
CCCP would reuse keystream material. A more reason-
able solution (which we have not implemented) is to use
a separate commit bit that is set in nonvolatile mem-
ory after both the chkpt counter update and the trans-
mission; this solution avoids both problems mentioned
above. Minimizing the energy cost of maintaining a
commit bit is an opportunity for hardware optimization.

A number of implementation enhancements are also
future work. For instance, shortfalls in over-the-air RFID
protocols and a lack of drivers on the WISP make the
restore procedure unnecessarily complicated and diffi-
cult to implement. We also plan to extend the borders
of CCCP from checkpointing towards long-term storage
as described in Section 3.4.5. Key management makes
long-term storage more challenging than checkpointing.
Another area for further investigation is modifying the
checkpoint function to operate at lower voltages. Writ-
ing the counter value to flash memory restricts check-
points to periods where the available energy can support
at least one write to flash memory. Our future work seeks

to circumvent these minimum voltages in order to ac-
complish secure remote storage for CRFIDs whenever
their processors have sufficient energy to compute. Fi-
nally, for simplicity, CCCP’s communication protocol
currently addresses only the scenario in which a single
tag communicates with a single reader. We plan to dis-
card that simplifying assumption during further testing
in multi-reader infrastructures.

9 Conclusion

CRFIDs enable pervasive computing in places where
batteries are difficult to maintain. However, the high en-
ergy necessary to erase and write to flash memory makes
storage difficult without a constant energy source. CCCP
extends Mementos [26] by exploiting the backscatter
transmission common on passive RFID systems to re-
motely store checkpoints on an untrusted RFID reader
infrastructure. CCCP protects data with UHF-based
MACs, opportunistic precomputation of keystream ma-
terial for symmetric cryptography, and hole punching to
store a counter used to enforce data freshness. Our mea-
surements of a prototype implementation of CCCP on the
WISP tag shows that radio-based, remote checkpoints re-
quire less energy than local, flash-based checkpoints—
despite the overhead of the cryptography to restore the
security semantics of local, trusted storage. CCCP gives
a CRFID increased storage capacity at low energy cost
and enables long-running computations to make progress
despite continual power interruptions that destroy the
contents of RAM. Moreover, the abstraction provided by
CCCP allows application developers to focus on com-
putation rather than space, energy, and security man-
agement. Flash memory generally requires a coarse-
grained, high-power erase operation before writing a new
value. Our hole punching technique allows CCCP to par-
tially reuse unerased flash memory, thus reducing the fre-
quency with which flash memory must be erased.

10 Acknowledgments

We thank Robert Jackson for guidance on RF power con-
sumption; Berk Sunar and Christof Paar for advice on
UHF-based MACs; Mike Todd for help with circuit-level
aspects of flash memory; Mankin Yuen for assisting with
measurements; and John Brattin for identifying algorith-
mic flaws. We also thank the members of the SPQR
group from UMass Amherst CS and ECE for reviewing
early drafts of this work. This research was supported
by NSF grants CNS-0520729, CNS-0627529, and the
NSF REU program. This research is supported in part
by UMass through the CVIP Technology Development
Fund. This material is based upon work supported by



230	 18th USENIX Security Symposium	 USENIX Association

the U.S. Department of Homeland Security under Grant
Award Number 2006-CS-001-000001. The views and
conclusions contained in this document are those of the
authors and should not be interpreted as necessarily rep-
resenting the official policies, either expressed or im-
plied, of the U.S. Department of Homeland Security.

References
[1] AHSON, S. A., AND ILYAS, M., Eds. RFID Handbook: Appli-

cations, Technology, Security, and Privacy. CRC Press, 2008.
[2] ALIEN TECHNOLOGY. Product Overview: Higgs-3 EPC Class 1

Gen 2 RFID Tag IC, July 2008.
[3] BERGER, S., CÁCERES, R., GOLDMAN, K. A., PEREZ, R.,

SAILER, R., AND VAN DOORN, L. vTPM: virtualizing the
trusted platform module. In Proceedings of the 15th USENIX
Security Symposium (2006), USENIX Association.

[4] BLACK, J., HALEVI, S., KRAWCZYK, H., KROVETZ, T., AND
ROGAWAY, P. UMAC: Fast and secure message authentication.
In CRYPTO (1999), Springer-Verlag, pp. 216–233.

[5] BLAZE, M. A cryptographic file system for UNIX. In 1st
ACM Conference on Communications and Computing Security
(November 1993), pp. 9–16.

[6] BRASSARD, G. On computationally secure authentication tags
requiring short secret shared keys. In CRYPTO (1982), pp. 79–
86.

[7] BUETTNER, M., GREENSTEIN, B., SAMPLE, A., SMITH, J. R.,
AND WETHERALL, D. Revisiting smart dust with RFID sensor
networks. In Proceedings of the 7th ACM Workshop on Hot Top-
ics in Networks (HotNets-VII) (October 2008).

[8] CARTER, L., AND WEGMAN, M. Universal hash functions.
In Journal of Computer and System Sciences (1979), Elsevier,
pp. 143–154.

[9] CHAE, H.-J., YEAGER, D. J., SMITH, J. R., AND FU, K. Max-
imalist cryptography and computation on the WISP UHF RFID
tag. In Proceedings of the Conference on RFID Security (July
2007).

[10] CHANDRAMOULI, R., BAPATLA, S., SUBBALAKSHMI, K. P.,
AND UMA, R. N. Battery power-aware encryption. ACM Trans.
Inf. Syst. Secur. 9, 2 (2006), 162–180.

[11] COOPER, D., DANG, H., LEE, P., MACGREGOR, W., AND
MEHTA, K. Secure Biometric Match-on-Card Feasibility Report,
2007.

[12] DIAO, Y., GANESAN, D., MATHUR, G., AND SHENOY, P. Re-
thinking data management for storage-centric sensor networks.
In Proceedings of the Third Biennial Conference on Innovative
Data Systems Research (CIDR) (January 2007).

[13] EPCGLOBAL. EPC Radio-Frequency Iden-
tity Protocols, Class-1 Generation-2 UHF RFID.
http://www.epcglobalinc.org/standards/uhfc1g2/, 2008.

[14] ETZEL, M., PATEL, S., AND RAMZAN, Z. Square hash: Fast
message authentication via optimized universal hash functions. In
In Proc. CRYPTO 99, Lecture Notes in Computer Science (1999),
Springer-Verlag, pp. 234–251.

[15] FONSECA, R., DUTTA, P., LEVIS, P., AND STOICA, I. Quanto:
Tracking energy in networked embedded systems. In 8th USENIX
Symposium of Operating Systems Design and Implementation
(OSDI’08) (2008), pp. 323–328.

[16] FU, K., KAASHOEK, M. F., AND MAZIÈRES, D. Fast and
secure distributed read-only file system. ACM Transactions on
Computer Systems 20, 1 (February 2002), 1–24.

[17] GUTTERMAN, Z., PINKAS, B., AND REINMAN, T. Analysis
of the Linux random number generator. In IEEE Symposium on
Security and Privacy (2006), IEEE Computer Society, pp. 371–
385.

[18] HADDAD, S., CHANG, C., SWAMINATHAN, B., AND LIEN, J.
Degradations due to hole trapping in flash memory cells. In Elec-
tron Device Letters (March 1989), IEEE, pp. 117–119.

[19] HALPERIN, D., HEYDT-BENJAMIN, T. S., RANSFORD, B.,
CLARK, S. S., DEFEND, B., MORGAN, W., FU, K., KOHNO,
T., AND MAISEL, W. H. Pacemakers and implantable cardiac
defibrillators: Software radio attacks and zero-power defenses.
In IEEE Symposium on Security and Privacy (May 2008), IEEE
Computer Society, pp. 129–142.

[20] HOMER. Odyssey, vol. XI. ca. 750 B.C.
[21] JUELS, A. RFID security and privacy: A research survey. IEEE

Journal on Selected Areas in Communications 24, 2 (February
2006), 381–394.

[22] KALLAHALLA, M., RIEDEL, E., SWAMINATHAN, R., WANG,
Q., AND FU, K. Plutus: Scalable secure file sharing on untrusted
storage. In Proc. USENIX Conference on File and Storage Tech-
nologies (San Francisco, CA, December 2003).

[23] KARLOF, C., SASTRY, N., AND WAGNER, D. TinySec: A
link layer security architecture for wireless sensor networks. In
Proceedings of the Second ACM Conference on Embedded Net-
worked Sensor Systems (SenSys) (November 2004).

[24] MATHUR, G., DESNOYERS, P., GANESAN, D., AND SHENOY,
P. CAPSULE: An energy-optimized object storage system for
memory-constrained sensor devices. In Proceedings of the Fourth
ACM Conference on Embedded Networked Sensor Systems (Sen-
Sys) (November 2006).

[25] PERRIG, A., SZEWCZYK, R., WEN, V., CULLER, D., AND TY-
GAR, J. D. SPINS: Security protocols for sensor networks. Wire-
less Networks 8, 5 (Sept. 2002), 521–534.

[26] RANSFORD, B., CLARK, S., SALAJEGHEH, M., AND FU, K.
Getting things done on computational RFIDs with energy-aware
checkpointing and voltage-aware scheduling. In Proceedings
of USENIX Workshop on Power Aware Computing and Systems
(HotPower) (December 2008).

[27] RANSFORD, B., AND FU, K. Mementos: A secure platform for
batteryless pervasive computing, August 2008. USENIX Security
Works-in-Progress Presentation.

[28] RIVEST, R. L. The RC5 encryption algorithm. Dr Dobb’s
Journal—Software Tools for the Professional Programmer 20, 1
(1995), 146–149.

[29] SAMPLE, A. P., YEAGER, D. J., POWLEDGE, P. S., MAMI-
SHEV, A. V., AND SMITH, J. R. Design of an RFID-based
battery-free programmable sensing platform. In IEEE Transac-
tions on Instrumentation and Measurement (2008).

[30] SCHNEIER, B. Applied cryptography (2nd ed.): protocols, al-
gorithms, and source code in C. John Wiley & Sons, Inc., New
York, NY, USA, 1995.

[31] SHAMIR, A. SQUASH—a new MAC with provable security
properties for highly constrained devices such as RFID tags. In
Proceedings of the 15th International Workshop on Fast Software
Encryption (FSE) (2008), Springer-Verlag, pp. 144–157.

[32] TEXAS INSTRUMENTS INCORPORATED.
http://www.ti.com/rfid/shtml/news-releases-11-12-07.shtml.

[33] Trusted computing group. http://www.trustedcomputinggroup.org.
[34] YEAGER, D., POWLEDGE, P., PRASAD, R., WETHERALL, D.,

AND SMITH, J. Wirelessly-Charged UHF Tags for Sensor Data
Collection. In IEEE International Conference on RFID (2008),
pp. 320–327.



USENIX Association 	 18th USENIX Security Symposium	 231

Jamming-resistant Broadcast Communication without Shared Keys

Christina Pöpper
System Security Group

ETH Zurich, Switzerland
poepperc@inf.ethz.ch

Mario Strasser
Communication Systems Group

ETH Zurich, Switzerland
strasser@tik.ee.ethz.ch

Srdjan Čapkun
System Security Group

ETH Zurich, Switzerland
capkuns@inf.ethz.ch

Abstract

Jamming-resistant broadcast communication is crucial
for safety-critical applications such as emergency alert
broadcasts or the dissemination of navigation signals in
adversarial settings. These applications share the need
for guaranteed authenticity and availability of messages
which are broadcasted by base stations to a large and
unknown number of (potentially untrusted) receivers.
Common techniques to counter jamming attacks such
as Direct-Sequence Spread Spectrum (DSSS) and Fre-
quency Hopping are based on secrets that need to be
shared between the sender and the receivers before the
start of the communication. However, broadcast anti-
jamming communication that relies on either secret pair-
wise or group keys is likely to be subject to scalabil-
ity and key-setup problems or provides weak jamming-
resistance, respectively. In this work, we therefore pro-
pose a solution called Uncoordinated DSSS (UDSSS)
that enables spread-spectrum anti-jamming broadcast
communication without the requirement of shared se-
crets. It is applicable to broadcast scenarios in which
receivers hold an authentic public key of the sender but
do not share a secret key with it. UDSSS can handle an
unlimited amount of receivers while being secure against
malicious receivers. We analyze the security and latency
of UDSSS and complete our work with an experimental
evaluation on a prototype implementation.

1 Introduction

Due to the shared use of the communication medium,
wireless radio communication is not only vulnerable to
traditional attacks such as eavesdropping and message
synthesis but also to active jamming attacks [2, 20]. In
a signal jamming attack, the attacker emits a jamming
signal while the legitimate transmission is taking place,
thus achieving a denial-of-service (DoS) by blocking,
modifying, annihilating, or overwriting the original sig-

nal. Well-known, effective countermeasures against sig-
nal jamming attacks are spread-spectrum techniques, in
particular Direct-Sequence Spread Spectrum (DSSS) and
Frequency Hopping Spread Spectrum (FHSS) [23]. For
these techniques to work, the receivers are required to
share secret keys with the sender prior to their anti-
jamming communication; these keys enable them to de-
rive identical spreading codes or hopping sequences.
Shared secrets are also the basis of proposed anti-
jamming broadcast schemes [6, 8].

The requirement of pre-shared secret keys, however,
imposes limits on the use of common spread-spectrum
techniques for anti-jamming communication in scenarios
where such secret keys cannot be pre-shared (but which
instead rely on, e.g., public-key certificates). This prob-
lem (i.e., the lack of techniques for jamming resistance
without shared secret keys) was recently observed in [4]
and [24] in the context of pairwise communication.

In this work, we focus on a related but different prob-
lem for broadcast communication: How to enable ro-
bust anti-jamming broadcast without shared secret keys?
Typical broadcast applications share the need for authen-
ticity and availability of messages that are transmitted by
base stations (senders) to a large, unknown number of
potentially untrusted (malicious or selfish) receivers. In
such settings, a sender communicates to a dynamic set of
trusted receivers (i.e., the nodes are honest but may be
unknown to the sender due to receiver dynamics) or to
untrusted receivers (which might be interested in obtain-
ing the information themselves but depriving others of
it). In both cases, basing the anti-jamming communica-
tion on pre-shared keys is not an option because (honest)
nodes join the setting after the key deployment or be-
cause malicious nodes may misuse shared keys for jam-
ming. We can best illustrate this by an example:

A governmental authority needs to inform the public
about the threat of an imminent attack. For disseminat-
ing information about the risk, a message could contain
the level of risk, a timestamp, the physical area of risk,



232	 18th USENIX Security Symposium	 USENIX Association

and the signature of the central authority (CA). Note that
if DSSS was used with a (public) spreading code that
is known to the attacker or if no spreading was used at
all for the transmission, the attacker could easily disrupt
the transmission of the message by jamming, thus block-
ing the propagation of the warning within her transmis-
sion radius. The information transferred in this setting
is not secret, hence eavesdropping is not considered a
risk. What is crucial is the dissemination (broadcast) of
authentic information to as many receivers as possible
within a reasonable timeframe (seconds to few minutes).

As a solution to the described problem, we propose
a scheme called Uncoordinated DSSS (UDSSS) that en-
ables authentic spread-spectrum anti-jamming broadcast
without the requirement of shared secrets. UDSSS fol-
lows a similar approach as DSSS, it differs, however,
in the following aspect: the spreading code is not pre-
defined but chosen by the sender randomly out of a set
of publicly available codes. Since no receiver can pre-
dict the choice of the sender, UDSSS prevents dishon-
est receivers from interfering with the communication (to
other receivers) while it enables them to obtain the infor-
mation themselves. After a certain time, every receiver
will succeed in identifying the correct spreading code
and its synchronization, thus despreading the signal. The
required despreading time depends on the coding strat-
egy, the size of the spreading code set, and on the re-
ceivers’ processing capabilities; we analyze this in detail.
Although UDSSS is inherently less efficient than DSSS,
it enables broadcast anti-jamming communication in sce-
narios in which DSSS cannot be used. Besides the exam-
ple described above, an important application of UDSSS
is the jamming-resilient dissemination of navigation sig-
nals. As we will show in Section 7, UDSSS enables not
only anti-jamming localization for broadcast navigation
systems (GPS or similar systems), but it also inherently
protects them against a wide range of location-spoofing
attacks. We will also show that UDSSS can achieve the
same performance as DSSS in the absence of jamming.

In summary, the main contributions of this work are:
• We identify anti-jamming broadcast without shared

keys as a relevant problem and we show that it can
be addressed using uncoordinated spread-spectrum
techniques.

• We propose a scheme called Uncoordinated DSSS
that supports broadcast anti-jamming communica-
tion without shared keys and enables communica-
tion in scenarios in which DSSS cannot be used.

• We analyze the performance of UDSSS. We show
that a performance comparable to DSSS can be
achieved in the absence of jamming and that the ex-
pected time for a message transmission to ten re-
ceivers takes less than 30 s on state-of-the-art sys-
tems under high jamming-probabilities.

• We demonstrate the feasibility of UDSSS by a pro-
totype implementation on a software-defined radio
platform [10]; the reception of a typical message
takes well below 20 s for 21 dB processing gain on
this system. We note that this time can further be
significantly reduced on a purpose-built platform
(e.g., like the ones used for GPS receivers).

The remainder of the paper is organized as follows:
We give background information on DSSS in Section 2
and describe the system and attacker models in Section 3.
In Section 4, we present our UDSSS scheme. We analyze
its security in Section 5 and its performance in Section 6,
including the presentation of our implementation results.
In Section 7, we discuss possible applications of UDSSS.
Finally, in Section 8, we describe related work and we
conclude our paper in Section 9.

2 Background: DSSS

In DSSS, the data signal is modulated with a continu-
ous, pre-defined spreading signal of a higher frequency,
also called the chipping sequence. During the modula-
tion, the data signal gets spread in the frequency domain
and thus becomes resistant against (narrow-band) inter-
ference. The resulting signal is modulated (e.g., using
phase-shift keying) and – given a sufficiently high fre-
quency of the spreading signal – becomes hidden in the
noise of the wireless channel. The processing gain of the
communication system (indicating the ratio by which in-
terference can be suppressed relative to the original sig-
nal) defines the required length N of the DSSS spread-
ing code, determining the spreading signal. More pre-
cisely, given a certain data bit time Tb and a target pro-
cessing gain defined as 10 log10

Tb

Tc
in decibel (dB), we

get N = Tb/Tc, where Tc is the time of a modulated sig-
nal chip (a low signal-to-noise ratio requires Tc  Tb).
A typical processing gain of spread-spectrum systems is
between 20 dB and 60 dB and results from a chip length
N ∈ {100, . . . , 106}.

In anti-jamming applications, the DSSS spreading sig-
nal is secret and shared only by the sender and legit-
imate receivers. This can be achieved by a shared se-
cret key that is used to seed a pseudo-random generator
at the sender and the receivers. The generator outputs
a (pseudo-random) chipping sequence which is used to
spread the message. In order to despread the signal, the
receivers apply a symmetric operation and correlate the
received signal with a synchronized replica of the spread-
ing code. Except for the secret code, all other commu-
nication parameters (modulation, frequency band, etc.)
are public. For the discussion of DSSS we assume that
the receivers are synchronized to the sender (later, we
will show how we remove this assumption in UDSSS).
The synchronization includes both bit and chip time syn-



USENIX Association 	 18th USENIX Security Symposium	 233

chronization to the sent signal as well as synchronization
with respect to the used spreading code, i.e., the receivers
know which code to apply at which point in time in or-
der to despread the received signal. We refer to related
literature for a comprehensive discussion of efficient syn-
chronization techniques [2, 20, 23].

In more details, for spreading a message M , the sender
uses a spreading sequence c0 = (c0,1, c0,2, . . . , c0,)
composed of  binary NRZ (non-return to zero) spread-
ing codes, |c0,i| = N . Typical spreading codes used
for DSSS are pseudo-randomly created sequences [23]
and codes with well-defined properties such as Walsh-
Hadamard [11] or Gold-codes [20]. The sender spreads
M by applying code c0,1 to the first b bits of M , c0,2

to the second b bits and so forth, where b denotes the
repetition factor in the use of the spreading codes. By
expressing the codes in the time domain, we can define
a function c0(t) = c0,i[j] for i = t/bTb mod N and
j = t/Tc mod N , where Tb (Tc) is the data bit (chip)
time. The spreading operation can then be written as
d(t) · c0(t), where d(t) is the data signal that carries the
message. The sender modulates and transmits the result.

Upon signal reception, each receiver demodulates the
signal and samples it (sampling rate Rs ≥ 2/Tc). It
stores the samples in a cyclic buffer which has the ca-
pacity to store samples of several message bits, (i.e., for
the duration of Ts = kTb, k > 1 ∈ N). Then, the re-
ceiver despreads the data stored in the buffer by comput-
ing s :=

TbRs

i=0 s[i]c0(ti) for each data bit, where s[i]
denotes the i-th value in the buffer and ti the time when
it was sampled. Finally, the result of the bit integration
s is used to determine the received bit d̂i. We assume
a simple bit decoder that outputs 1 (0) if the integration
yields a value greater (lower) than 0 (i.e., d̂i = s). Fi-
nally, after all data bits have been despread, the correct-
ness of the despreading operation is verified by means of
the message decoding.

3 System and Attacker Models

3.1 System Model
Our system consists of a sender A and a set of receivers.
The goal of the sender is to enable anti-jamming broad-
cast to the receivers in the presence of communication
jamming. We assume that each device is equipped with
a radio frontend with transmission and reception capa-
bilities in a corresponding frequency band and that the
receivers are computationally capable of efficiently per-
forming (e.g., ECC-based) public-key operations. In ad-
dition, each receiver holds an authentic public key of the
sender or of the central authority (CA) that can certify
the sender’s public key. The CA may be off-line at the
time of communication.

In our model, PA denotes the strength of A’s signal
arriving at a receiver B; PA depends on the strength of
the signal sent by A, on the distance between the sender
and the receiver as well as on large- and small-scale fad-
ing and interference effects [25,26]. We denote by Pt the
minimal required signal strength at the receiver B such
that B can successfully decode the signal. In this context,
the transmission between A and B in a setting without
(active) interference will be successful if i) PA ≥ Pt, if
ii) A and B use the same spreading code, and if iii) B
uses the correct synchronization in its despreading oper-
ation (code time and carrier frequency synchronization).

3.2 Attacker Model

We adopt the attacker model from [24] and consider an
omnipresent but computationally bounded adversary J
with unlimited power supply that is able to eavesdrop
and insert messages arbitrarily but can only alter or erase
messages by adding her own (energy-limited) signals to
the wireless medium; that is, she cannot disable the com-
munication channel by blocking the propagation of sig-
nals (e.g., by placing a Faraday cage around a node).
The goal of the attacker is to prevent all communication
between the sender A and all or some of the receivers.
In order to achieve this, the attacker is not restricted to
message jamming but can also modify existing or insert
new messages. More precisely, the attacker can choose
among the following actions:
• She can jam messages by transmitting high-power

signals that cause the original signal to become un-
readable by the receiver. The fraction of the mes-
sage that the attacker has to interfere with to suc-
cessfully jam depends on the used coding scheme
(e.g., 13% of the message size [16]).

• She can modify messages by either flipping single
message bits or by entirely overshadowing original
messages. In either case, in this attack the messages
remain readable by the receiver.

• She can insert messages that she generated herself
or reuse previously overheard messages. Depend-
ing on the signal strength and used spreading codes,
the inserted messages might interfere with regular
transmissions.

In addition to these types of attacks, we follow previ-
ous classifications [20] and distinguish different types of
attackers: static, sweep, random, and reactive jammers.
Static, sweep, and random jammers do not sense for on-
going transmissions but jam the channel permanently;
they only differ in the regularity of their jamming sig-
nals. Reactive jammers initially solely sense for ongoing
transmissions and start jamming only after the detection
of a message transfer; we express the strength of reac-
tive jammers by their despreading performance ΛB(N),



234	 18th USENIX Security Symposium	 USENIX Association

denoting the number of spreading codes the attacker can
apply and check per time unit. Repeater jammers [12] are
a subclass of reactive jammers that intercept the signal,
low-noise amplify, filter and re-radiate it without requir-
ing or getting knowledge of the used spreading codes.
Hybrid jammers are a combination of the above types
that jam while searching for message transmissions.

For all attacker types, we assume a finite maximal
transmission power and bandwidth. We denote by PJ

the maximal signal strength that the attacker is able to
achieve at a receiver B; the attacker can split PJ over an
arbitrary number of parallel signal transmissions. Given
PA, the strength of A’s signal at B, we denote by Pj and
Po the minimal required strength of the attacker’s sig-
nal at B in order to jam or overshadow a message sent
from A to B, respectively, provided that the attacker is
aware of the used code sequence and its synchroniza-
tion. We assume Pt ≤ PA and Pj < Po. We further
assume that PJ < µPt, where µ denotes the number of
possible transmissions, i.e., the attacker is not capable
of jamming all possible transmissions in parallel; µ de-
pends on the number of available spreading codes and on
the attacker’s bit and chip synchronization.

4 Jamming-Resistant Broadcast: UDSSS

In this section, we introduce our UDSSS (Uncoordinated
DSSS) scheme. UDSSS is an anti-jamming modulation
technique based on the concept of DSSS, however, it
does not rely on pre-shared spreading sequences. In con-
trast to anti-jamming DSSS communication, where the
spreading sequence is secret and shared exclusively by
the communication partners, in UDSSS, a public set C
of spreading sequences is used by the sender and the re-
ceivers. C is not secret and may be known to the at-
tacker. To transmit a message, the sender randomly se-
lects a spreading sequence from the code set and spreads
the message with this sequence. The receivers record the
signal on the channel and despread the message by ap-
plying sequences from C using a trial-and-error method.

The receivers using UDSSS are not time-synchronized
to the sender with respect to the spread signal, i.e., they
do not know the message bit or chip synchronization.
In order to compensate for this (as well as for message
losses due to jamming), the sender sends the message
repeatedly and the receivers apply a sliding window ap-
proach to synchronize to the transmission. The efficiency
of UDSSS is therefore determined i) by the time that the
receivers need to find the right spreading code and its
synchronization (we will analyze this in detail in Sec-
tion 6) and ii) by the attacker’s jamming success (ana-
lyzed in Section 5). Given that, in UDSSS, the receivers
need to search through a set of codes and synchroniza-
tion windows in order to despread the received message,

UDSSS is inherently less efficient than DSSS. However,
it provides important advantages over DSSS:
• UDSSS enables anti-jamming communication be-

tween nodes that are within each others’ transmis-
sion ranges but do not share a secret, and

• UDSSS supports broadcast anti-jamming commu-
nication for dynamic groups of untrusted receivers.

UDSSS requires the receivers to store all chips re-
ceived and to analyze them retrospectively to find the
used spreading code. The time this takes defines the
latency of the communication. The performance and
jamming-resistance of UDSSS can be increased by using
multiple senders (in contrast to DSSS). More precisely,
we consider m ≥ 1 parallel broadcast transmissions of
the same message with different spreading codes. This
can be achieved by one sender transmitting m signals in
parallel—each spread with a different spreading code—
or by using m separate sending devices.

In what follows, we describe the details of the UDSSS
operations at the sender(s) and the receivers and discuss
suitable choices of the UDSSS spreading code set.

4.1 UDSSS Transmission

We envisage one sending device, but for generality, our
description includes one or multiple senders that trans-
mit the same message in parallel on m ≥ 1 channels us-
ing the code sets C1, . . . , Cm (not necessarily distinct).
For transmitting message M , |M | ≤ , each sender re-
peatedly selects a fresh, i.e. randomly selected, code se-
quence cs ∈ Ci, spreads M using cs, and transmits the
resulting modulated signal. For each transmission a new
code sequence is chosen; repeated messages thus get en-
coded with a different code sequence on each transmis-
sion (with high probability). All spreading codes are
chosen to be (nearly) orthogonal (strong auto- and low
cross-correlations), hence parallel transmissions of mul-
tiple senders do not (significantly) interfere with each
other; multiple transmissions using the same spreading
code and code synchronization can be excluded by agree-
ments between the senders that are, e.g., linked by wires.
Each sender repeats the spreading and sending opera-
tion either for a well-defined number of iterations (e.g.,
for emergency alert broadcasting) or continuously (for
longer-term applications, e.g. for navigation signals).

Before the UDSSS modulation, each sender applies
the following techniques: In order to achieve message
authentication, sender A signs the message using its pri-
vate key SKA. The sender may also include a times-
tamp or sequence number in the message in order to
achieve replay protection. In order to resist transmission
errors, the sender then error-encodes the message before
the spreading operation; error-coding makes a message
resistant to a certain number of bit errors (e.g., up to 13%



USENIX Association 	 18th USENIX Security Symposium	 235

...

...

...

...

fail

...

sequences
n code

ci : ci,1 ci,2 ... ci,

despread
message

1 0 0 1

ci : ci,1 ci,2 ... ci,

demodulation
& sampling

despread

signature verification

101101000100...

message M

channel

message M

signing

modulation

M |SKA(M)

1 0 0 1

(a) UDSSS Sender (b) UDSSS Receiver

spreadingencoding
error

1011101101000011...

cs : 10110100...

success

success

> τ?

timeout
until

data bits

randomly
select

k codes ci,j

 codes per code sequence

error decoding &
order
arbitrary
select in

Figure 1: (a) UDSSS transmission. Sender A signs and error-encodes the message M . Then it repeatedly spreads
the signed and error-encoded data using a freshly selected spreading sequence cs in each repetition and transmits the
modulated signal. (b) UDSSS reception. Receiver B demodulates and samples the radio channel. Then B repeatedly
selects a spreading sequence ci ∈ C, picks k codes ci,j from ci and tries to despread one data bit (using the integration
threshold τ ). On success, B despreads the entire message. A failure during the error-encoding check or signature
verification restarts the despreading process.

for concatenated Reed-Solomon codes [16]). In combi-
nation with bit interleaving, error-encoding increases the
resistance of a message to targeted jamming attacks. The
entire sending process is displayed in Figure 1a.

There are two reasons why the UDSSS transmission
requires message repetitions: i) to enable the receivers
that are not synchronized to the beginning of the trans-
mission to receive the message and ii) due to the risk
that the attacker guesses the used code sequence and thus
jams the transmission (this risk is also present in DSSS
anti-jamming systems). UDSSS receivers will there-
fore not try to decode all received signals but only those
signals that are received in the time intervals when the
sender is expected to transmit. For this, the sender ei-
ther needs to have a (public) transmission schedule (and
the receivers need to be precisely time-synchronized to
the sender) or the sender has to repeat the transmission
of each message such that, when the receivers fill their
reception buffers, they will receive the message (Fig. 2).

4.2 UDSSS Reception

In UDSSS, each receiver samples the radio channel
(sampling rate Rs ≥ q/Tc, q ≥ 2, sample resolution
bs bits) during the sampling period Ts = sTM , and stores
the samples in a buffer; TM denotes the message trans-
mission time and s ≥ 2 is the number of messages that
can be stored in the buffer; given a continuous message
transmission, for s ≥ 2, the signal stored in the buffer
will always contain an entire message. After the buffer
has been filled, the receiver will reject all signals arriving
to its interface (Figure 2) until the message in the buffer
is successfully despread and its authenticity is verified.

After the sampling, the receiver tries to decode the
data in the buffer by applying a sliding-window pro-

B
M1 M2

decoding (Td)sampling (sTm)

A
M1 M2 M2 M2 M2M1 M1 M1 M1

t

t

buffer buffer

Figure 2: UDSSS message sampling and decoding. A’s
repeated transmissions ensure that each receiver B can
sample an entire message. After the sampling, B de-
codes the message M1 contained in the buffer. During
the decoding, B disregards all further samples.

tocol in which the current window is shifted in inter-
vals of Tc/q; a complete run of the despreading opera-
tion is denoted as one decoding. For this purpose, the
receiver chooses k spreading codes ci,j (1 ≤ i ≤ n
and 1 ≤ j ≤ ) from each code sequence ci ∈ C
(see Figure 3) and uses them to despread k data bits,
as sketched in Figure 1b. We check each spreading se-
quence on multiple (k > 1) data bits in order to com-
pensate for transmission or decoding errors. If, during
this process and while applying codes from cr, the ab-
solute value of a bit integration exceeds a threshold τ ,
i.e. s :=

TbRs

i=0 s[i]cr,j(ti) ≥ τ , the receiver uses the
code sequence cr for despreading the entire message,
now benefiting from the identified chip synchronization.
τ can be derived from the cross-correlation properties of
the used codes and depends on the code length (see Sec-
tion 4.3). Depending on the available hardware, the de-
spreading operation can partially be performed in paral-
lel or using a multi-stage solution [20].

The bits resulting from this trial-and-error approach
are disinterleaved and verified by means of the error-
encoding of the message. The receiver accepts those



236	 18th USENIX Security Symposium	 USENIX Association

N chips per code
n code
sequen-
ces

MM [1] M [2]

cs,1

cs

c1

c2

cs,

M []

 codes per code sequence

cn,1 cn,

cs,1 cs,2

c2,2

c1,2 c1,

cn

c1,1

c2,1

cs,

c2,

cn,2

Figure 3: The set C of code sequences. Each se-
quence ci ∈ C is composed of  spreading codes: ci =
(ci,1, . . . , ci,), where |ci,j | = N . A message M is then
spread using a randomly selected code sequence cs ∈ C;
M [i] denotes the i-th bit of M .

messages that pass the error-encoding check and hands
them on to the signature verification. Due to possible
message insertions by an attacker, the receiver does not
stop analyzing the buffer after having successfully de-
spread a message with valid error-encoding, but contin-
ues scanning the buffer using the remaining code se-
quences (until a despread message also passes the sig-
nature verification). Thus, the receiver may detect one
or more messages per buffer, coming from the original
transmissions or from message insertions by the attacker.
In any case, the receiver will only pass those messages to
the application layer that contain a valid signature.

4.3 UDSSS Spreading Codes
As a crucial component of UDSSS, we now describe how
to generate the UDSSS spreading codes that are used by
the sender and receivers. In our description, we refer to
one code set C, however, the same applies for each code
set in the case of multiple senders. Figure 3 illustrates the
code set. Every spreading code ci,j is used to spread one
bit of the message M (repetition factor b = 1),  = |M |.

UDSSS requires the use of balanced spreading codes
that have good auto- and cross-correlation properties;
good auto-correlation properties are needed for pre-
cise synchronization at the receivers and low cross-
correlation properties have the effect that transmissions
with different spreading codes do not interfere with
each other. We thus exclude the following codes that
are typically used in DSSS systems: codes of insuffi-
cient length (e.g., Barker codes), codes with large cross-
correlation properties (e.g., Walsh-Hadamard), and un-
balanced codes resulting in high auto-correlation values
(e.g., optical orthogonal codes [7]). Codes for UDSSS
that satisfy the above properties are shift-register se-
quences, in particular Gold- and Kasami-codes1 [17],

 0

 0.1

 0.2

 0.3

 0.4

 0.5

128 256 384 512 640 768 896 1024

c
ro

s
s
-c

o
rr

e
la

ti
o
n
/N

Code length N

Distribution of normalized cross-correlations (random codes)

95.00%
4.99%
0.01%

Figure 4: Distribution of cross-correlations for 1000
pseudo-randomly created codes, depending on the code
length N . The values are normalized, i.e. divided by N
(the peak auto-correlation). The simulations allow to set
reasonable limits to the detection threshold τ .

and pseudo-random sequences [22].

Due to their straight-forward generation, we focus
on pseudo-random codes in the following. A specific
code set C is then given by a (public) seed, used as in-
put to a well-defined pseudo-random number generator.
Given a sufficiently large code length N , pseudo-random
codes have good auto- and cross-correlation proper-
ties2. Figure 4 displays the cross-correlation values of
pseudo-random codes and confirms the desired prop-
erty; for a more comprehensive analysis of the properties
of pseudo-random sequences we refer to [22]. Conse-
quently, the attacker has to use the correct code sequence
cs ∈ C in order to interfere with a transmission; using a
spreading sequence c = cs, c ∈ C will not have a rel-
evant impact on the transmission. We can calculate rea-
sonable limits of the parameter ε that specifies the qual-
ity of the correlations. Our simulations suggest that, e.g.,
for random codes of length N = 512 (27 dB), ε  150
(Figure 4). This enables us to set τ used as integration
threshold by the receiver: τ = aε, a ∈ R ≥ 1. We refer
to Section 6.4 for details on the parameter choices.

Furthermore, the probability that any two random
codes of length N from a set of n codes agree is ap-
prox. 1− e−(n)2/2(N+1)

(cf. birthday paradox). For typ-
ical values of N , n, and  (i.e., N ≥ 64 and n ≤ 220)
this probability is negligible. Hence, each code sequence
ci is uniquely identified by any of its codes ci,j . While
this is beneficial for the legitimate receivers, the attacker
will likewise know the entire code sequence if she can
successfully identify the code that was used for spread-
ing any particular message bit and might thus be able to
jam the remainder of the message. This will be taken
into account for the analysis of the attacker’s decoding
strength (Section 5.2). Section 6.5 will further display
the impact of n and N on the system performance.



USENIX Association 	 18th USENIX Security Symposium	 237

5 Security Evaluation of UDSSS

In this section, we analyze the points of attack on UDSSS
communication and, for various attacker types, derive the
probability that a message is jammed during its transmis-
sion. As we will show, UDSSS provides resistance even
to reactive attackers, a very strong type of attacker.

5.1 Jamming Attacks on UDSSS

An attacker has the following options for performing a
code-based jamming attack on UDSSS communication:
i) she can guess the spreading code and try to jam the
signal using this code, ii) she can repeat the recorded
signal, thus trying to create a collision with the origi-
nal transmission, and iii) she can try to find the code
by despreading (part of) the spread signal and then use
the identified spreading sequence for jamming the rest of
the message during its transmission. In the first case, the
attacker’s jamming signal is independent of the transmis-
sion she is trying to jam (representing a static, sweep, or
random attacker); in the latter two cases, the attacker is
reactive and bases her jamming signal on the detection
(and analysis) of the spread signal. In the following we
refer to reactive jammers that simply repeat the recorded
signal as repeater jammers and to reactive jammers that
aim at finding the used spreading code as decoding jam-
mers. A hybrid jammer can combine non-reactive and
reactive actions.

For non-reactive (static, sweep or random) attackers
(case i), the attacker’s success probability depends on the
number of codes that she chooses from for composing
her jamming signal and on the accuracy of her synchro-
nization to the spread signal. Although (U)DSSS sig-
nals are usually hidden in noise, they can be detected
by means of energy detectors or by their modulation-
specific characteristics [9,20]. Depending on the strength
of the attacker and the processing gain achieved by the
modulation, the attacker might therefore be able to re-
cover a message transmission and its chip synchroniza-
tion without having to decode a message; however the
attacker still needs to guess the used spreading code in
order to jam the signal. In all cases, the jamming suc-
cess probability of a non-reactive attacker depends on
the number of codes in the code set; this probability is
further decreased if the attacker cannot detect the chip
synchronization (Sec. 5.2).

The purpose of using a different spreading code for
each message bit (b = 1) is to prevent successful re-
play attacks from repeater jammers [12] (case ii). Due
to the low auto-correlation properties of the codes, the
attacker’s repeated signal would have to arrive at the re-
ceiver within one chip length Tc in order to affect the
transmission; this requires the attacker to have an (al-

tJ

tB t2t1

tA

t3

Propagation delay

M [1]

Despreading time Td (B)

Td̂Ta Tj

TM

Tp

tj

Figure 5: UDSSS attack scenario for reactive (decoding)
jammers. Sender A sends message M with transmission
time TM . Receiver B and a reactive jammer J start to
despread the (same) signal samples after having recorded
the first chips. J’s jamming attack may only succeed if
tj < t2, i.e., if the attacker succeeds to compose and send
its jamming signal such that it reaches B before B has
received the entire message M ; otherwise the jamming
fails and B will despread the message at time t3. The
main advantage for the receiver over the attacker comes
from the fact that the attacker only has very short time
(< TM ) to despread the message, whereas the receiver
can despread the message long after having recorded it
(within the latency that the application can tolerate).

most) zero processing delay (e.g., for signal inversion)
and to be positioned very close to the signal’s path of
travel (e.g., within a typical Tc = 10ns, the signal trav-
els less than 3m). More details are provided in Sec. 5.2.

Although decoding-based attacks (case iii) are con-
sidered infeasible in DSSS, the probability of such an at-
tack is non-negligible for UDSSS communication due to
the restricted number of possible spreading codes. Fig-
ure 5 displays the attack scenario for decoding attackers.
A decoding attacker needs time to acquire the signal, to
detect the spreading code used by the sender, and to ex-
ploit this knowledge to compose and transmit the jam-
ming signal. Her reaction time is limited by the message
transmission time (TM ) and the fraction that needs to be
jammed (TM ). More precisely, the attacker’s response
time (with effect at the receiver) is composed of:
Ta time for signal acquisition (min. number of chips)
Td̂ expected time for detecting the spreading code
Tj time for jamming signal generation & transmission
Tp propagation time difference via the attacker (see

Figure 6).
Ta and Tj are mainly determined by the attacker’s de-
vice, Td̂ by her computational capabilities (Figure 7),
and Tp is given by the attacker’s position relative to the
sender and receiver. A reactive attacker can be success-
ful with her jamming attack only if Ta +Td̂ +Tt +Tp <
TM − TM .

For this reason, the success probability of a decoding



238	 18th USENIX Security Symposium	 USENIX Association

B
Tp1

Tp2 J Tp3

A

Figure 6: Propagation delay of the jamming signal (for
reactive jammers). The displayed times represent propa-
gation delays. Tp = Tp2 + Tp3 − Tp1 is the time that the
attacker’s signal will be delayed at the receiver B due
to propagation delay; Tp = 0 if J is positioned on the
signal path between A and B.

attacker depends on the time that she needs to identify
the used spreading code and its synchronization with re-
spect to the received signal. The code set must limit the
search space for the receiver (smaller C is better), while
it must still be sufficiently large to prevent the attacker
from guessing or systematically finding an effective jam-
ming signal within the message transmission time TM .
Although this might appear as a strong gain in favor of
a well-equipped attacker, we stress that the time that the
attacker has to find the missing spreading code and its
synchronization is small (i.e., limited by TM , in the or-
der of hundred µs for small messages) while the time
for the receiver to despread the recorded message is long
(only limited by the application requirements, O(s)). In
Section 6, we study how the size of the code set impacts
the communication performance of UDSSS.

5.2 Jamming Performance of the Attacker

We now derive the jamming probability for different
types of attackers. We use the maximal signal strength
PJ that the attacker is able to achieve at the receiver if she
transmits with maximal transmission power (Sec. 3.2).
Since PJ can be distributed over an arbitrary number
of simultaneously transmitted signals, the attacker is al-
lowed to freely choose how much of this power she will
use to insert, jam, or overshadow messages as long as the
overall signal strength received at B does not exceed PJ .
Consequently, given the minimal required signal strength
at B such that a message is successfully received (Pt),
jammed (Pj), or overshadowed (Po) (Sec. 3.2), we can
derive ni := PJ

Pt
, nj := PJ

Pj
, and no := PJ

Po
 as up-

per bounds for the number of messages that the attacker
can insert, jam, and overshadow in parallel.

Static, Sweep, and Random Jamming

We now consider an attacker that tries to guess the used
spreading sequence. Let TM be the minimum jamming
period during which the attacker has to interfere with
the transmission of a message M such that it cannot

be decoded by the receiver. The length of this period
depends on the used coding scheme: the more bit er-
rors it can tolerate, the longer is TM . We next compute
the probability pj that a message is jammed for static,
sweep, and random jammers (Section 3.2). Sweep and
random jammers switch their jamming signal (i.e., the
set of code sequences Cj ⊆ C that is jammed) after
a duration of TM whereas static jammers use the same
signal for a time t  TM . Moreover, sweep jammers
do not reuse a code sequence until all sequences from
C have been used once, whereas random jammers al-
ways choose the set Cj at random and might thus se-
lect the same code sequences more than once in sub-
sequent jamming attempts. For both the sweep and
the random jammer, the number of jamming attempts
per message is TM/TM . Hence, the probability that a
message is successfully jammed by a static jammer is
pj(nj) ≤ nj

n|M |N ; for sweep jammers the jamming prob-

ability is pj(nj) ≤ min{ nj

n|M |N
TM

T
M

, 1}, and for random

jammers it is pj(nj) ≤ 1 − (1 − nj

n|M |N )TM /T
M . Note

that the attacker has to hit both the right code sequence
(out of n sequences) and chip synchronization (N |M |).

Reactive and Hybrid Jamming

A reactive decoding jammer tries to find the sender’s
spreading sequence by performing a search over C.
When successful, the attacker knows both the sender’s
spreading sequence cs as well as its synchronization and
uses this knowledge to jam the remainder of the mes-
sage M . Throughout this analysis, we make the (worst
case) assumption that successfully decoding a single bit
of M reveals to the attacker the code sequence that the
sender used to spread M (Sec. 4.3). The attacker’s abil-
ity to jam a message is thus determined by the time that
the attacker needs to identify the sender’s code sequence
and by the time that she then has left to (partially) jam
the same message. Let ΛJ(N) denote the number of bits
that the attacker can despread per second (possibly ben-
efiting from hardware parallelization). The number of
code sequences that the attacker is able to verify during
the transmission of M such that she detects M ’s spread-
ing sequence early enough to be able to successfully jam
the message is then ≤ (TM − TM )ΛJ(N). Thus, the
probability that a message transmission is detected and
jammed is

pj(nj) ≤ min


(TM − TM )ΛJ(N)
n|M |N

, 1


.

The despreading performance of a decoding (reactive)
attacker is exemplified in Figure 7; in Section 6, we will
compare it to the receiver’s message decoding perfor-
mance. Figure 7 shows the expected time that a decoding



USENIX Association 	 18th USENIX Security Symposium	 239

10
-6

10
-3

10
0

10
3

10
6

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
14

10
15

decoding performance (IPS)

Time to detect a message of |M| = 2000 bits length (in sec)

N

R

= 100
= 2.4⋅10

9

T
M

 for |M| = 2000

n = 10
n = 100
n = 1000

Figure 7: Message detection performance of a decoding
attacker as a function of her computing power. This plot
depicts the decoding capabilities of a perfect decoding
jammer that is able to identify the used spreading code
after decoding a single bit (i.e., k = 1). The effective im-
pact of the attacker’s computing power on the jamming
resistance of a message depends on the message trans-
mission time TM . For a given code set size of n = 10
code sequences, in this example, the attacker can block
a message of |M | = 2000 bits if her computing power
exceeds approx. 2 · 1013 IPS (2 · 1015 IPS for n = 1000).

attacker (using the receivers’ trial-and-error approach)
will need to identify the used spreading code sequence;
hardware parallelization in the decoding operation can be
mapped to a higher decoding performance. The attacker
can only be successful if her time to identify the right
code sequence is shorter than the message transmission
time (intersection with TM ). We point out that even if the
attacker uses more elaborate correlation or deconvolution
algorithms, her decoding strength can still be expressed
by the expected number of bit decodings per second that
her algorithm achieves.

Hybrid jammers are a combination of non-reactive and
reactive jammers: while searching for the right spreading
code, they simultaneously emit a jamming signal. For the
most powerful hybrid jammer type, the reactive-sweep
jammer [24], the probability that a message is success-
fully jammed is

pj(nj) ≤
η

n|M |N
+


1− η

n|M |N


min


(TM − TM )ΛJ(N)

(n− η)|M |N
, 1


,

where η = min{njTM/TM , n}.

Message Overshadowing: Following the above analy-
sis we can also derive the probability that the transmis-
sion of a message is overshadowed by the attacker by
substituting nj with no in the above expressions for pj .

dAB = 15 m

A B

x

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  2  4  6  8  10

T
c
 (in µs)

Signal transmission (in m) during T
c

2xx

(b)

Figure 8: Position of repeater jammers. (a) Area within
which a repeater jammer needs to be located in order
to successfully jam the communication from A to B
(based on signal transmission times). The ellipse is de-
fined by major diameter dAB + 2x and minor diameter
2
√

x2 + xdAB around A and B; 2x is the distance that
the signal travels during the chip time Tc (2x = 3 m for
Tc = 10−8 s). (b) Transmission delay (2x) of the signal
path via the attacker. The smaller Tc, the smaller the area
will be in which a repeater jammer needs to be located in
order to jam successfully.

Repeater Jammers

As a special case of reactive jammers, repeater jammers
have pj > 0 only if their signal acquisition, processing,
transmission, and propagation delay via the attacker is
less than the chip time (i.e., Ta + Tpr + Tj + Tp < Tc);
otherwise the jamming signal will not interfere with the
legitimate transmission due to the auto-correlation prop-
erties of the spreading codes. For a sample chip rate of
100 Mb/s, the signal travels around 3 m during the trans-
mission of one chip (Tc = 10−8 s). This requires the
attacker to be positioned within an ellipse with major di-
ameter dAB + 3 m around the sender and the receiver in
order to jam their communication successfully, see Fig-
ure 8. Note that this example considers only the trans-
mission delay of a chip; the attacker’s position is even
more restricted for Ta + Tpr + Tj > 0. Hence, repeater
jamming implies stringent conditions both on the at-
tacker’s position and on her hardware reaction times. Ad-
ditionally, repeater jamming affects coordinated DSSS
and UDSSS equally and we therefore focus on (UDSSS-
specific) decoding jammers in the following evaluation.

6 Performance Evaluation of UDSSS

We next evaluate the performance of UDSSS. For sim-
plicity, we first evaluate the scheme for one receiver only
and then generalize the results to multiple receivers (Fig-
ure 9 displays their decoding performances). We start
by analyzing the original UDSSS scheme in the absence
of jamming and from that we derive the entire analy-
sis. We will show in Section 6.4 how—in the absence of



240	 18th USENIX Security Symposium	 USENIX Association

jamming—UDSSS can easily be enhanced to yield the
same performance as DSSS.

6.1 Communication without an Attacker

In the absence of malicious interference, we can expect
that a UDSSS receiver will (on average) successfully de-
code a message once it has tried a fraction of 1

m+1 of all
codes, where m is the number of parallel transmissions
that each use different codes. The expected time for mes-
sage recovery at the receiver is therefore

Tr ≈ Ts+Td =
s|M |N

R
+


n

m+1Nkq + 1

|M |(s− 1)

ΛB(N)
,

(1)
where Ts = sTM is the sampling period, TM := |M |N

R
is the time to transmit a message, Td is the time to de-
code a message, R := 1/Tc is the chip rate, q is the
number of samples per chip, ΛB(N) is the number of bit
despreading operations that the receiver B can perform
per second (despreading one bit requires Nq additions
and multiplications), and k is the number of bits that are
despread in order to decide whether the code sequence
and synchronization are correct. Thus, the throughput of
UDSSS is

L =
|M |
Tr

=
|M |

s|M |N
R + ( n

m+1Nkq+1)|M |(s−1)
ΛB(N)

≈ 2ΛB(N)
nNkq(s− 1)

. (2)

The approximation holds if Ts  Td, that is, if
s|M |N  R and 1  nN . For a state-of-the-art system
that can execute about 1010 IPS, the time Td to decode a
message is in the order of seconds, whereas the time TM
to transmit a message is in the order of hundred µs. In
the same setting, DSSS—where the used spreading code
and synchronization are known to the receiver—would
achieve a throughput of |M |TM

= R
N , which is about one or-

der of magnitude higher than that of UDSSS. However,
UDSSS is only used when (coordinated) DSSS cannot
be applied for broadcast anti-jamming communication
(e.g., due to lack of shared keys). The low throughput of
UDSSS should therefore be compared to zero throughput
of DSSS. Furthermore, since ΛB(N) = O(N−1) we get
Tr = O(|M |N2n) and L = O(N−2n−1), showing that
increasing the processing gain (i.e., N ) is more harm-
ful to the latency/throughput than increasing the code
set (i.e., n). Thus, by raising n, an increase of the at-
tacker’s processing power can be counteracted with less
impact on the message latency than an increase of the
attacker’s bandwidth and jamming power (which would
require raising N ).

6.2 Communication in the Presence of an
Attacker

We now analyze the impact of message insertion, jam-
ming, and overshadowing on the performance of UDSSS
by using the probability pj (po) that a message is jammed
(overshadowed), as derived in Section 5.2. Attacker’s
messages whose signal strengths at the receiver are less
than Pj have no impact on regular messages. Conse-
quently, the attacker can insert only up to nj := PJPj 
messages that will interfere with regular message trans-
missions, provided that they use the same spreading code
sequence and synchronization as the sender. The prob-
ability that a message inserted by the attacker prevents
the successful decoding of a regular message is thus
≤ nj/(n|M |N). Since we assume that all messages
are authenticated and integrity-protected with a signa-
ture and that the attacker is unable to forge signatures,
partially modified messages will be recognized and ig-
nored by the receivers. The only way for the attacker to
effectively modify a message is thus to replace it (e.g.,
by replaying an overheard message).

Let ρi, ρj , and ρo such that 0 ≤ ρi, ρj , ρo ≤ PJ and
ρi + ρj + ρo ≤ PJ be the power at the receiver that the
attacker uses to insert, jam, and overshadow messages,
respectively. The expected time to receive a message is
then Tr ≤ T ( ρiPt , 

ρj
Pj
,  ρoPo ), where

T (ni, nj , no) =
∞
i=0

p(s−1)ie (Ts + Td) =
Ts + Td

1− ps−1e

=


sN

R
+

nNkq(s− 1) + sni
ΛB(N)


|M |

1− ps−1e

≈ Nkq|M |(s− 1)
ΛB(N)

n

1− ps−1e

, (3)

where Ts is the sampling time, Td the time to decode
a message if all codes are tried, and pe := (pj(nj) +
po(no))m; the last approximation holds if sni ≤ sn 
nNkq(s− 1) and s|M |N  R.

Theorem 1 (Optimal Choice of the Sampling Buffer
Size). Assuming that the sender is continuously broad-
casting the same message, in order to capture the mes-
sage, the receiver needs to have a buffer capacity of
s = Ts/TM ≥ 2 messages. In other words, after the
sampling, the buffer must contain an entire message for
the despreading. Provided that Nkq  1, a buffer ca-
pacity of s = 2 messages is optimal with respect to the
expected time to receive a message.

Proof. Let, by contradiction, s∗ > 2 be the op-
timal capacity for the buffer. Hence, from Equa-
tion 3, (s∗−1)nNkq|M |

ΛB(N)(1−ps
∗−1
e )

< nNkq|M |
ΛB(N)(1−pe) must hold, i.e.,

1−ps
∗−1
e

1−pe > s∗ − 1. However, for s∗ ≥ 2 we have



USENIX Association 	 18th USENIX Security Symposium	 241

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50

number of message decodings (i)

Probability that a message is received 
 by all l = 100 receivers

m = 1

pj = 0.0
pj = 0.2
pj = 0.5
pj = 0.8

(a)

 0

 10

 20

 30

 40

 50

 60

 1  10  100  1000

number of receivers (l)

Time (in sec) after which all l receivers 
 have decoded the message

Td = 2s
m  = 1

pj = 0.0
pj = 0.2
pj = 0.5
pj = 0.8

(b)

 0

 10

 20

 30

 40

 50

 60

 1  10  100  1000

number of receivers (l)

Time (in sec) after which all l receivers 
 have decoded the message

Td = 2s
pj  = 0.8

m = 1
m = 2
m = 5
m = 10

(c)

Figure 9: (a) Probability that a UDSSS message has been successfully received by all receivers as a function of the
number of message decodings. (b) Expected time to disseminate a message as a function of the number of receivers;
the decoding time Td of the receivers is assumed to be 2 s. (c) Expected time to disseminate a message as a function of
the number of parallel message transmissions for a decoding time Td of 2 s. For (a) – (c), the lines show the expected
result according to our analytical analyses, the points and σ-confidence intervals display simulation results.

1−ps∗−1
e

1−pe
≤ limpe→1

1−ps∗−1
e

1−pe
= s∗ − 1, leading to a

contradiction.

Theorem 2 (Optimal Attacker Strategy). Given that
Nk  1, the optimal attacker strategy against UDSSS
by which the attacker maximizes the message latency
is jamming. That is, for all ρi, ρj , and ρo such that
0 ≤ ρi, ρj , ρo ≤ PJ and ρi + ρj + ρo ≤ PJ :
T ( ρi

Pt
,  ρj

Pj
,  ρo

Po
) ≤ T (0, PJ

Pj
, 0).

Proof. Since Pj < Po and by definition of pj and po
∀α1, α2 ≥ 0 : po(α1) ≤ pj(α1) and pj(α1) +
pj(α2) ≤ pj(α1 + α2) it holds that pe = pj( ρj

Pj
) +

po( ρo

Po
) ≤ pj( ρj

Pj
) + pj( ρo

Pj
) ≤ pj(ρj+ρo

Pj
).

Hence, T ( ρi

Pt
,  ρj

Pj
,  ρo

Po
) ≤ T (0, ρi+ρj+ρo

Pj
, 0) ≤

T (0, PJ

Pj
, 0); i.e., spending all power on jamming is op-

timal for the attacker.

6.3 Generalization for Multiple Receivers

If two receivers are synchronized (i.e., sample the same
message transmissions) and are positioned appropriately,
they will encounter the same attacker-caused errors and
require the same amount of time to receive the message
(here we assume that the attacker is strong enough to jam
all receivers with the same probability, regardless of their
relative position to the sender). Moreover, the expected
duration Tr(2) until both receivers have successfully re-
ceived the message equals the single receiver scenario
(i.e., Tr(2) = Tr). Thus, without loss of generality, any
group of receivers that sample the same message trans-
missions can be regarded as a single receiver.

Now, let l be the number of receivers that sample
message transmissions independently (e.g., due to asyn-
chronous sampling schedules, different propagation con-
ditions, or differing distances from the attacker). The
probability that at least one of the receivers has not yet
successfully received the message once each receiver has
sampled i transmissions is 1− (1− pie)

l. Hence, the ex-
pected duration Tr(l) until all l receivers have received
the message is Tr(l) ≤ T (ni, nj , no, l), where

T (ni, nj , no, l) =
∞
i=0


1−

�
1− pie

l
(Ts + Td)

≈ nNkq|M |
ΛB(N)

∞
i=0


1−

�
1− pie

l
.

(4)

The impact of the number of receivers on the number
of required message decodings and on the time to dis-
seminate a message by UDSSS is depicted in Figures 9a
and 9b. We observe that even for a high jamming proba-
bility of 80%, all receivers have received a message with
probability ≥ 90% after about 30 message decodings.
Furthermore, the time for all l receivers to receive and de-
code a message is logarithmic in the number of receivers.

6.4 Optimization and Discussion
One limitation of the UDSSS scheme proposed in Sec-
tion 4 is its inflexibility to the attacker’s strength so that
the latency will be high even if no attacker is present.
In the following, we analyze techniques to improve the
performance of UDSSS. We will show i) that selecting a
uniform code distribution is optimal and ii) that stopping



242	 18th USENIX Security Symposium	 USENIX Association

the decoding process once a valid message was found
decreases the message latency. We also show that iii)
splitting a large code set into smaller, distinct sets for
multiple senders does not decrease the message latency
in general. For simplicity, we consider one receiver only
but the results also hold for multiple receivers.

Theorem 3 (Optimal Code Distribution). Let p(ci) de-
note the probability with which code sequence ci ∈ C
is selected by the sender. Without loss of generality, let
further 1 ≥ p(c1) ≥ p(c2) ≥ . . . ≥ p(cn) ≥ 0 and

s p(cs) = m. Selecting ci under a uniform distribu-
tion from a set of n∗ codes (i.e., p(ci) = m/n∗ for 1 ≤
i ≤ n∗ and p(ci) = 0 for n∗ < i ≤ n) is optimal with
respect to the expected time Tr to receive a message.

Proof. The best strategy for the attacker is to focus
her jamming on those codes that are the most likely
to be used. Given a code distribution function p(·),n

i=1 p(ci) = m, and ñj = npj(nj) as the expected
number of codes that the attacker can use in parallel to
effectively block ongoing transmissions, we get pe :=n

i=ñj+1(1 − p(ci)). It follows from Eq. 3 that Tr is
minimized if pe is minimized, that is, if p(ci) = m/n∗

for 1 ≤ i ≤ n∗ and p(ci) = 0 for n∗ < i ≤ n; the op-
timal number n∗ of codes can (numerically) be derived
from (3) once p(ci) and ñj are given.

Early Termination at the Receiver. The expected
time to receive a message can be reduced if the receiver
stops the despreading process once it verified a valid
message. Here,

Tr ≤
∞

i=1

pmi
e (Ts + Td) +

Nkq|M |
ΛB(N)

m−1
i=0

pi
e

n

m + 1

≈ Nkq|M |
ΛB(N)


npm

e

1− pm
e

+
n

m + 1
1− pm

e

1− pe


, (5)

where the first term accounts for the number of unsuc-
cessful transmission rounds and the second term is the
expected time for the decoding in the last, successful
round. Figure 10 compares the expected despreading
times of the original UDSSS scheme and the scheme
with early termination for multiple senders depending on
the jamming probability.

Theorem 4 (Multiple Code Sets). Consider m sending
devices with code sets C1, . . . , Cm, where Ci ∩ Cj = ∅
for i = j, |C1| ≤ |C2| ≤ · · · ≤ |Cm|, and


i |Ci| = n,

which are broadcasting messages in parallel; the proba-
bility for each code sequence cj ∈ Ci to be used in the
current transmission is p(cj) = 1

|Ci| . The expected time
Tr to receive a message is equal to the case where the m
messages are chosen from one common set C of size n
such that p(cj) = m

n .

 0

 1

 2

 3

 4

 5

 6

 0  20  40  60  80  100

number of codes that the attacker can effectively block (nj)

Expected time (in sec) to decode a message

n
m
N
k

q
|M|
Λ(N)

= 100
= 5
= 100
= 10

= 3
= 2000
= 10

7

~

original scheme
optimized scheme
optimal scheme

Figure 10: Expected time to disseminate one of the mes-
sages from five senders to one receiver. Shown are the
original scheme (Equation 3) and the optimization using
early termination of the despreading (Equation 5); the
optimal scheme uses n∗. We observe that the optimized
scheme is close to optimal for ñj < n/2 and optimal if
ñj ≥ n/2.

Par. Definition Value Range
N spreading code size ≥ 128 chips (21 dB)
n #code sequences up to performance limits
l #codes per spr. sequence |M |
k #despread data bits 2 ≤ k ≤ #bits the error-

per spreading sequence encoding can correct
s buffer size sTM 2
τ integration threshold N/2 or 2ε

Table 1: UDSSS parameter settings. The larger N and n
are, the more jamming-resistant the scheme is. k, s, and
τ do not affect the jamming resistance but the decoding
performance. A rough, but good estimate for τ is N/2;
more precise values can be determined by simulations
(see Fig. 4), e.g., τ = 90 (200) for N = 256 (1024).

Proof. Let ai denote the number of codes the attacker
blocks from the set Ci. The attacker’s optimal strategy
is to select each ai such that she maximizes the proba-
bility p̃e =

m
i=1

ai

|Ci| that all m messages are blocked,
under the constraints

m
i=1 ai ≤ ñj and ai ≤ |Ci|

∀i ∈ {1, ..,m}. Hence, p̃e is maximized if ai

|Ci| = aj

|Cj | ,
i.e., if the attacker jams each code set with the same prob-
ability. Then, |Ci| = n

m (Th. 3) and ai = ñj

m , thus
p̃e =

m
i=1(

ñjm
nm ) = ( ñj

n )m. This probability is equal
to the probability pe = pj(nj)m = ( ñj

n )m that m mes-
sages are blocked if the codes are chosen out of a set of
size n where the attacker can block ñj codes.

Although splitting a large code set into smaller sets
for multiple senders is not beneficial for the latency in
general, we can achieve the same message latency as
(non-synchronized) DSSS in the absence of jamming by



USENIX Association 	 18th USENIX Security Symposium	 243

Figure 11: Experimental hardware setup of the UDSSS
implementation, consisting of a Universal Software Ra-
dio Peripheral (USRP) and a Lenovo T61 ThinkPad.

choosing m = 2 with C1 = {c1}, p(c1) = 1, and
p(c2) = 1

|C2| . In the absence of jamming, the first code
c1 ∈ C1 used by the receiver will succeed.

Parameter Selection. The exact UDSSS parameter
values depend on the hardware in use and on the as-
sumed attacker strength. The values presented in Table 1
may therefore vary depending on the hardware and ap-
plication. In general, the product nN |M | represents the
security parameter of UDSSS and should at least be in
the order of 106; the smaller |M | is the more jamming-
resistant the scheme is.

6.5 Implementation Results
In this section, we demonstrate the feasibility of our
UDSSS scheme by means of a prototype implementation
based on Universal Software Radio Peripherals (USRPs)
[10] and GnuRadio [1] (see Figure 11). The USRPs in-
clude a A/D (D/A) converter that provides an input (out-
put) sampling rate of 64 Mb/s (128 Mb/s) and an input
(output) sample resolution of 12 bits (14 bits); the em-
ployed RFX2400 daughterboards were configured to use
a carrier frequency of 2.4 GHz. In our experiments, two
USRPs (one being used as a UDSSS sender, the other as
a UDSSS receiver) were each connected via a 480 Mbps
USB 2.0 link to a Lenovo T61 ThinkPad (Intel Core 2
Duo CPU @ 2.20 GHz) running Linux (kernel 2.6.27)
and GnuRadio (version 3.0.3). For performance reasons
and for ease of deployment, our UDSSS sender and re-
ceiver applications were written entirely in C++, which
required porting some GnuRadio libraries from Python
to C++. A schematic scheme of our implementation is
given in Figure 12.

The sender first encodes the message with a (8,4)
Hamming code and scrambles (interleaves) the bits ac-
cording to a public pseudo-random permutation. Next
the sender chooses a spreading code sequence uniform at
random, spreads the (encoded and scrambled) message
with this code, and sends the resulting chip sequence
to the USRP using a differential encoding: the current

USRP

usrp sink

bit scrambling

usrp source

bit despreading

bit unscrambling

USRP

ECC encoding

message sender message receiver

ECC decoding

bit spreading

Figure 12: Schematic description of our UDSSS sender
and receiver application.

phase of the baseband signal remains unchanged for a +1
and its phase is shifted by 180◦ for a −1. This step (i.e.,
choosing a code, spreading, and sending the message) is
repeated until the sender stops the message transmission.

The receiver samples the channel for a duration of
2TM , where TM is the transmission time of a message,
decodes the samples into a chip sequence, and stores the
sequence into a FIFO buffer. A second thread reads the
sequences from the FIFO buffer, decodes all possibly in-
cluded messages by trying all n code sequences on all
N |M | positions. To decide whether a code and posi-
tion pair is valid, a two-level test is used: The sender
first despreads two randomly selected bits. If the abso-
lute value of the code-bit correlation for at least one of
the bits is ≥ N/2, it decodes (i.e., despreads, unscram-
bles, and error-corrects) the first 8 bytes of the message.
If these 8 bytes are also valid, the whole message is de-
coded and the included signature verified.

In our experiments, we positioned the UDSSS sender
and receiver indoors at a distance of about 5 m and per-
formed a series of message transfers using UDSSS from
the sender to the receiver. The size of the transmitted
messages was 256, 512, 1024, 1536, and 2048 bit. The
code sets contained up to 500 pseudo-random code se-
quences and the length of these codes was in the range
from 32 to 512 chips. Figures 13a and 13b display the
decoding times as a function of the message size |M |,
code length N , and code set size n. We observe that the
decoding time increases linearly with the message size
and code set size but quadratic with the code length; this
observation is in line with our analytical model. The
results further show that, even with this non-optimized
(software-based) system, the expected time to receive
and decode a typical message (|M | ≤ 2048 bit) is well
below 20 s (for a processing gain of 21 dB and n = 100).

We point out that the main purpose of this USRP/CPU-
based system is to demonstrate the feasibility of UDSSS.
The achieved decoding times should thus not be consid-
ered as performance benchmarks. As the operations to
decode a bit can easily be executed in parallel, decoding a
bit is typically a single-step operation on hardware-based



244	 18th USENIX Security Symposium	 USENIX Association

 0

 20

 40

 60

 80

 100

 120

 140

 0  100  200  300  400  500

code length N per bit

Duration (in sec) to receive and decode a message

n

IPS
= 100
= 4.7⋅10

8

|M| = 256
|M| = 512
|M| = 1024
|M| = 1536
|M| = 2048

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 0  100  200  300  400  500

number of code sequences n

Duration (in sec) to receive and decode a message

N

IPS
= 256
= 4.7⋅10

8

|M| = 256
|M| = 512
|M| = 1024
|M| = 1536
|M| = 2048

(b)

Figure 13: Implementation Results. The plots show the time to receive and decode a message with our UDSSS
implementation as a function of the message size |M |, code length N , and code set size n. The points and σ-confidence
intervals represent the measurements results, the lines the analytical results for a processing speed of about 470 MIPS.
We observe that the decoding time increases linear with the message size and code set size but quadratic with the
code length. Even with this non-optimized (software-based) system, the expected time to receive and decode a typical
message (|M | ≤ 2048 bit) is well below 20 s (for a processing gain of 21 dB and n = 100). On hardware-based DSSS
transceivers, bit decoding operations are usually executed in parallel. Purpose-built UDSSS receivers are thus likely to
achieve decoding times that are about O(N) times (i.e., 10-1000 times) lower than the times presented in this figure.

DSSS receivers. Realistic decoding times of purpose-
built UDSSS transceivers will thus be O(N) times (i.e.,
10-1000 times) lower than what we achieve with the pre-
sented implementation. As a next step, we intend to op-
timize our implementation by adding Streaming SIMD
Extensions (SSE) support to the core despreading func-
tions and by offloading some of the work to the GPU of
the graphic card.

7 Outline of UDSSS Applications

In this section, we present applications for UDSSS
broadcasts. The scenarios we will describe share a risk of
jamming and of potentially malicious users; in these set-
tings, DSSS communication would either be infeasible or
could easily be disrupted by jammers. We demonstrate
that the delays which are introduced by the UDSSS trial-
and-error reception still enable practical and security-
relevant applications.

We consider one or multiple senders that want to dis-
seminate information by broadcasting messages to a set
of receivers in a jammed environment. Each receiver
holds the authentic public key of the sender but does not
share a secret key with it. Such a situation can occur if
the sender wants to communicate to a set of untrusted re-
ceivers that may want to deprive other receivers from ob-
taining the information broadcasted by the sender, or if a
set of trusted receivers is dynamic, unknown, or even un-
predictable (hence, authentic secret keys between sender
and receivers cannot be established beforehand).

Examples for such settings are i) emergency notifica-
tion (pager) systems (e.g., Plectron [19]) used to activate
emergency response personnel and disaster warning sys-
tems or ii) central (governmental) authorities that need
to inform the public about the threat of an imminent
or ongoing (terrorist) attack. The danger that attackers
jam the alert transmission needs to be minimized. In-
formation dissemination in this setting is clearly time-
critical, however, being able to distribute the information
within seconds to few minutes is clearly preferred over
not being able to disseminate any information at all un-
der jamming. We further argue that, in the absence of
jamming, UDSSS permits delays as short as DSSS does
(see Section 6.4) and that, once the information has been
received by some devices, other communication means
(e.g., speech or landline) may additionally support its
dissemination to more people concerned.

Another notedly well-suited application for UDSSS
is the broadcast of navigation signals which are fore-
most used for time synchronization and localization. Ex-
amples of navigation systems include satellite naviga-
tion (e.g., GPS [27]) and terrestrial systems such as Lo-
ran [13] (based on TDoA) and DME-VOR [5] (based on
distance/angle measurements). Localization and time-
synchronization systems require the reception of navi-
gation signals from multiple base stations; in general, at
least three or four different signals are necessary for most
localization methods [5]. The broadcast stations are pre-
cisely time-synchronized (e.g., via wired links) and lo-
cated at static or predetermined positions. Each broad-



USENIX Association 	 18th USENIX Security Symposium	 245

Receiver

buffer

UDSSS

J

A4
A1

A2
A3

t2, pos2

t3, pos3

t1, pos1

t, pos

t4, pos4

(a)

noise
level

re
ce

iv
ed

 p
o
w

er

broadband recording

UDSSS
signals

t
tr tr + Tr

(b)

Figure 14: (a) Possible application of UDSSS: jamming- (and spoofing-)resistant reception of navigation signals used
for positioning (pos) and/or time-synchronization (t). The receiver records the signals of multiple senders which
were spread using randomly selected spreading sequences and uses UDSSS decoding to retrieve the sent messages
and compute its position and/or local time. (b) UDSSS signals are highly resistant against narrow-band jamming
attacks (by jammer J) because they are sent entirely below noise level. UDSSS likewise prevents signal-delay attacks,
because the attacker can only delay individual navigation signals after her decoding, i.e., after having identified the
used spreading sequences.

cast station transmits navigation signals either continu-
ously due to a fixed schedule (GPS, Loran-C) or sends
replies to individual localization requests (DME-VOR,
WLAN-localization), based on which the localized de-
vice determines its position.

Without appropriate protection, navigation signals are
vulnerable to signal spoofing, synthesis, and jamming
attacks [14, 21]. E.g., while current civilian imple-
mentations using GPS satellite signals [27] or terrestrial
WLAN signals [3] (based on the 802.11b standard) ap-
ply spreading to make the transmissions resistant to unin-
tentional interference, they do not provide any means to
counteract targeted Denial-of-Service (DoS) attacks be-
cause their spreading codes are public and can thus be
misused for jamming.

UDSSS offers an enhancement to the dissemination of
navigation signals that counters targeted jamming. Navi-
gation messages are typically in the order of several hun-
dred bits (e.g., 1.5 kb for GPS messages [18]) and will—
even comprising authentication credentials—fit into the
considered UDSSS message lengths (in our evaluation
in Section 6, the messages were up to 2048 bits long).
Each base station uses randomly selected code sequences
to spread the messages using UDSSS. The property of
the wireless channel enables the receivers to record sam-
ples of several navigation signals in parallel in one buffer
(same principle as multi-user CDMA). The receivers can
then use UDSSS decoding in order to extract three (or
more) individual messages (along with their precise ar-
rival times) in one decoding, verify their authenticity,
and therefrom derive position and/or time information
(see Figure 14a). Unlike DSSS, UDSSS cannot decode
navigation signals in real time, but decodes them with
a delay Tr, which is largely determined by the process-

ing speed of the receiver. Depending on the implemen-
tation and underlying hardware, this delay may vary up
to several seconds. However, even if UDSSS causes a
delay, the computed position and time are accurate since
UDSSS still enables the receiver to record the exact ar-
rival times of the signals it receives.

The delay introduced by the UDSSS decoding is of
little importance for pure time-synchronization because
time represents a rather stable property of a device: Once
it is accurately determined, time may slowly degrade by
clock drift depending on the clock quality, but it is usu-
ally not reset as abruptly as a new position for a mobile
device. In this case, after the decoding and processing of
the navigation signals, the local time t of the device will
be set to t = ts+ dp+ Tr, where ts is the timestamp de-
rived from the base station signals, dp is the aggregated
signal propagation delay (estimated or calculated using
the position information, around 30µs for 10 km), and
Tr is the local time needed for decoding and processing
at the receiver (measured time between the first bit filled
into the buffer and the moment the time is reset).

So far, we have only discussed the implications of
UDSSS on navigation signals in terms of anti-jamming.
We now further show that UDSSS equally helps to se-
cure navigation against spoofing attacks. In [14], Kuhn
showed that time-of-arrival-based navigation systems
(like GPS) can be secured against signal-synthesis and
selective-replay attacks in which the attacker inserts nav-
igation signals as they would be received at the spoofed
location. Without protection, an attacker can manipulate
the (nanosecond) relative arrival times by pulse-delaying
or replaying of (individual) navigation signals with a de-
lay of∆, which results in a distance error c(δ +∆) with
respect to the true location (where c is the speed of light



246	 18th USENIX Security Symposium	 USENIX Association

and δ accounts for synchronization imprecisions). The
asymmetric scheme proposed in [14] is made resistant
against these kinds of attacks by decoupling the time-
critical signal transmission from a delayed disclosure
of the applied spreading code; the first signal is spread
and hidden below noise level whereas the second signal
(spreading code along with time and position informa-
tion) is transmitted above the noise level after a delay ρ.
A replay attack can now be performed only with a delay
> ρ. By choosing ρ large enough (e.g., several seconds),
even receivers with a low-quality clock can discover the
delay in the received timestamps.

UDSSS achieves a similar anti-spoofing protection as
the scheme in [14]. Due to the steganographic proper-
ties of the UDSSS signal, the attacker can only extract
and delay individual navigation signals after having suc-
cessfully identified the used spreading sequences. Due
to a comparison of the received timestamp with the lo-
cal time, the receiver can identify signal delays that ex-
ceed a certain accepted threshold; the threshold basically
depends on the accuracy of the receiver’s clock. This
(probabilistic) approach secures against attacks in which
the attacker’s decoding takes longer than this threshold.

In contrast to the scheme in [14], which is susceptible
to DoS-attacks since data and code are disclosed above
noise level, UDSSS provides resistance against jamming
because the entire navigation signals are sent with (tem-
porarily) unknown code sequences below noise level (see
Figure 14b).

8 Related Work

The impact and detectability of jammers according to
their capabilities (e.g., broad- or narrowband) and be-
havior (e.g., constant, random, reactive) has been widely
studied [2, 15, 20, 28]. Spread-spectrum techniques such
as DSSS and FHSS are common jamming countermea-
sures [2, 20]. In [6, 8], the respective authors address
broadcast jamming mitigation based on spread-spectrum
communication. Additionally, the use of specific cod-
ing and interleaving strategies [16] can strengthen the
jamming resistance of transmitted messages. Common
to these countermeasures is that they all rely on secret
keys, shared between the sender and receiver(s) prior to
their communication. As argued in prior work [24], pre-
loading keys on devices in ad-hoc settings for subsequent
jamming-resistant communication suffers from scalabil-
ity and receiver dynamics problems. Furthermore, if
some of the receivers are not trustworthy, relying on pre-
shared keys allows malicious receivers to obtain mes-
sages themselves while withholding them for others [14].

Recent observations [4, 24] identify the lack of
methods for jamming-resistant communication without
shared secrets and propose solutions to this problem. The

solution proposed by Baird et al. [4] uses concurrent
codes in combination with UWB pulse transmissions.
The jamming resistance achieved by their scheme is
not one-to-one comparable to common spread-spectrum-
based techniques: While the attacker of spread-spectrum
techniques must have enough transmission power to
overcome the processing gain, in [4] the limiting factor
is the number of pulses that the attacker can insert, i.e.,
her energy. The solution previously proposed based on
Uncoordinated Frequency Hopping (UFH) [24] chooses
the frequencies of packet transmissions at random from
a fixed frequency band. UFH and UDSSS differ signif-
icantly in the following aspects: UDSSS is determin-
istic (apart from the randomness introduced by the at-
tacker) and its performance (the transmission latency)
mainly depends on the receiver’s processing capabilities.
UFH, in contrast, is probabilistic (even in the absence
of jamming) and its performance depends on the num-
ber of hopping channels (determined by the processing
gain). Unlike UFH, UDSSS decouples the processing
gain from the spreading uncertainty and allows to fine-
tune the scheme (without complex message fragmenta-
tions). Finally, due to the unpredictability in the message
reception, UFH is unsuitable for applications that require
accurate time-stamping of signals, as it is required for
many navigation systems.

In [29], an algorithm to estimate the code sequence
of a direct spread-spectrum sequence in non-cooperative
communication systems is proposed. This algorithm,
however, does not leverage the knowledge of the code set
used and further assumes that the same code sequence is
used repetitively. This approach is therefore not suitable
to counter targeted jamming attacks because the commu-
nication will no longer be protected once the code se-
quence has been identified by the attacker.

9 Conclusion

In this paper, we elaborated the problem of broad-
cast anti-jamming communication without shared se-
crets, which can, e.g., be used to secure navigation
systems. As a solution to this problem we proposed
a scheme called Uncoordinated DSSS (UDSSS) that
enables DSSS-based broadcast communication without
pre-shared keys. UDSSS leverages the fact that the
sender can transmit a certain amount of spread (hidden)
data to the receivers before a (reactive) jammer is able to
identify the used code and to jam the transmission. We
evaluated the performance and jamming resistance of our
DSSS scheme analytically, through a prototype imple-
mentation, and by means of simulations for single and
multiple receivers. For a state-of-the-art system (about
6000 MIPS), the expected time for a message transfer to
a group of 10 receivers takes less than 30 s for a high jam-



USENIX Association 	 18th USENIX Security Symposium	 247

ming probability of 80%. We accent that this time is rea-
sonably short, given that with common (key-dependent)
anti-jamming techniques the devices would not be able
to broadcast jamming-resistant messages at all.

10 Acknowledgments

We are grateful to Fabian Monrose for his valuable input.
We also thank the anonymous reviewers for their sugges-
tions. The work presented in this paper was partially sup-
ported by the Swiss National Science Foundation under
Grant 200021-116444.

References
[1] GNU Radio Software. http://gnuradio.org/trac.

[2] ADAMY, D. A first course in electronic warfare. Artech House,
2001.

[3] BAHL, P., AND PADMANABHAN, V. N. RADAR: An In-
Building RF-Based User Location and Tracking System. In Pro-
ceedings of the IEEE Conference on Computer Communications
(InfoCom) (2000), vol. 2, pp. 775–784.

[4] BAIRD, L. C., BAHN, W. L., COLLINS, M. D., CARLISLE,
M. C., AND BUTLER, S. C. Keyless Jam Resistance. In Pro-
ceedings of the IEEE Information Assurance and Security Work-
shop (June 2007), pp. 143–150.

[5] BENSKY, A. Wireless Positioning Technologies and Applica-
tions. GNSS Technology and Applications Series. Artech House,
2008.

[6] CHIANG, J., AND HU, Y.-C. Dynamic jamming mitigation for
wireless broadcast networks. In Proceedings of the IEEE Confer-
ence on Computer Communications (InfoCom) (2008).

[7] CHUNG, F. R. K., SALEHI, J. A., AND WEI, V. K. Optical or-
thogonal codes: Design, analysis and applications. IEEE Trans-
actions on Information Theory 35, 3 (1989), 595–604.

[8] DESMEDT, Y., SAFAVI-NAINI, R., WANG, H., CHARNES, C.,
AND PIEPRZYK, J. Broadcast anti-jamming systems. In Proceed-
ings of the IEEE International Conference on Networks (ICON)
(1999).

[9] DILLARD, R. A., AND DILLARD, G. M. Detectability of
Spread-spectrum Signals. Artech House Publishers, 1989.

[10] ETTUS. USRP – Universal Software Radio Peripheral.
http://www.ettus.com.

[11] GOLDSMITH, A. Wireless communications. Cambridge Univer-
sity Press, 2005.

[12] HANG, W., ZANJI, W., AND JINGBO, G. Performance of DSSS
against repeater jamming. In Proceedings of the IEEE Interna-
tional Conference on Electronics, Circuits, and Systems (ICECS)
(2006), pp. 858–861.

[13] INTERNATIONAL LORAN ASSOCIATION. LORAN: LOng
Range Aid to Navigation. http://www.loran.org.

[14] KUHN, M. G. An asymmetric security mechanism for naviga-
tion signals. In Proceedings of the Information Hiding Workshop
(2004), pp. 239–252.

[15] LI, M., KOUTSOPOULOS, I., AND POOVENDRAN, R. Optimal
jamming attacks and network defense policies in wireless sensor
networks. In Proceedings of the IEEE Conference on Computer
Communications (InfoCom) (2007), pp. 1307–1315.

[16] LIN, G., AND NOUBIR, G. On link layer denial of service in data
wireless LANs: Research articles. Wireless Communications &
Mobile Computing 5, 3 (2005), 273–284.

[17] NATARAJAN, B., DAS, S., AND STEVENS, D. An evolutionary
approach to designing complex spreading codes for DS-CDMA.
IEEE Transactions on Wireless Communications 4, 5 (2005),
2051–2056.

[18] NAVSTAR SPACE AND MISSILE SYSTEMS CENTER. Navstar
Global Positioning System: Interface Specification IS-GPS-200.
http://www.losangeles.af.mil, 2006.

[19] PARNASS, B. Plectron R-700 Monitor Receivers. Monitoring
Times Magazine (October 1999).

[20] POISEL, R. A. Modern Communications Jamming Principles
and Techniques. Artech House Publishers, 2006.

[21] RASMUSSEN, K. B., ČAPKUN, S., AND ČAGALJ, M. SecNav:
secure broadcast localization and time synchronization in wire-
less networks. In Proceedings of the ACM International Confer-
ence on Mobile Computing and Networking (MobiCom) (2007),
pp. 310–313.

[22] SARWATE, D. V., AND PURSLEY, M. B. Crosscorrelation prop-
erties of pseudo-random and related sequences. In Proceedings
of the IEEE (May 1980), vol. 68, pp. 593–619.

[23] SKLAR, B. Digital communications: fundamentals and applica-
tions. Prentice-Hall, 2001.

[24] STRASSER, M., PÖPPER, C., ČAPKUN, S., AND ČAGALJ, M.
Jamming-resistant key establishment using uncoordinated fre-
quency hopping. In Proceedings of the IEEE Symposium on Se-
curity and Privacy (2008), pp. 64–78.

[25] TJHUNG, T. T., AND CHAI, C. C. Multitone Jamming of
FH/BFSK in Rician Channels. IEEE Transactions on Commu-
nications 47, 7 (July 1999).

[26] TSE, D., AND VISWANATH, P. Fundamentals of Wireless Com-
munication. Cambridge University Press, 2005.

[27] U.S. GOVERNMENT. Global positioning system.
http://www.gps.gov, March 2008.

[28] XU, W., TRAPPE, W., ZHANG, Y., AND WOOD, T. The feasi-
bility of launching and detecting jamming attacks in wireless net-
works. In Proceedings of the ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc) (2005),
pp. 46–57.

[29] ZHAN, Y., CAO, Z., AND LU, J. Spread-spectrum sequence
estimation for DSSS signal in non-cooperative communication
systems. In IEE Proceedings Communications Magazine, IEEE
(Aug. 2005).

Notes
1Gold- and Kasami-codes have the same correlation properties and

both approach the Welch lower bound in their cross-correlation val-
ues. However, Gold- and Kasami-codes differ in the number of codes
that can be created. While the number of Gold-codes of length N that
can be constructed is N + 2 (e.g., 257 for N = 255 and 1025 for
N = 1023), the number of Kasami-codes of length N (in the large
set) is considerably higher: ≈ 2

3
2 log2(N+1) (e.g., 4112 for N = 255

and 32800 for N = 1023) [17]. Kasami-codes are therefore more ap-
propriate for UDSSS, although even Kasami codes may have to reoccur
in multiple code sequences (if n > 2

3
2 log2(N+1)).

2∀ci,j ∈ C, ∀t ∈ {0, 1, . . . , N − 1}, and a small ε  N , the
auto-correlation of the codes is

N−1

q=0
ci,j [q]ci,j [q + tmodN ] ≈

N if t = 0 and ≤ ε else, where ci,j [q] ∈ {−1,+1} denotes the
q-th value of the spreading code ci,j and ε indicates the quality of the
auto-correlation (the less the better). Similarly, ∀ci,j , ci,j ∈ C, t ∈
{0, 1, . . . , N − 1} the cross-correlation is

N−1

q=0
ci,j [q]ci,j [q +

tmodN ] ≤ ε.




