
USENIX Association 	 18th USENIX Security Symposium	 151

GATEKEEPER: Mostly Static Enforcement of Security and
Reliability Policies for JavaScript Code

Salvatore Guarnieri
University of Washington
sammyg@cs.washington.edu

Benjamin Livshits
Microsoft Research
livshits@microsoft.com

Abstract

The advent of Web 2.0 has lead to the proliferation of
client-side code that is typically written in JavaScript.
This code is often combined — or mashed-up — with
other code and content from disparate, mutually untrust-
ing parties, leading to undesirable security and reliability
consequences.

This paper proposes GATEKEEPER, a mostly static ap-
proach for soundly enforcing security and reliability poli-
cies for JavaScript programs. GATEKEEPER is a highly
extensible system with a rich, expressive policy language,
allowing the hosting site administrator to formulate their
policies as succinct Datalog queries.

The primary application of GATEKEEPER this paper ex-
plores is in reasoning about JavaScript widgets such as
those hosted by widget portals Live.com and Google/IG.
Widgets submitted to these sites can be either malicious
or just buggy and poorly written, and the hosting site has
the authority to reject the submission of widgets that do
not meet the site’s security policies.

To show the practicality of our approach, we de-
scribe nine representative security and reliability policies.
Statically checking these policies results in 1,341 verified
warnings in 684 widgets, no false negatives, due to the
soundness of our analysis, and false positives affecting
only two widgets.

1 Introduction

JavaScript is increasingly becoming the lingua franca of
the Web, used both for large monolithic applications and
small widgets that are typically combined with other code
from mutually untrusting parties. At the same time, many
programming language purists consider JavaScript to be
an atrocious language, forever spoiled by hard-to-analyze
dynamic constructs such as eval and the lack of static
typing. This perception has lead to a situation where code
instrumentation and not static program analysis has been
the weapon of choice when it comes to enforcing security

policies of JavaScript code [20, 25, 29, 35].
As a recent report from Finjan Security shows, widget-

based attacks are on the rise [17], making widget secu-
rity an increasingly important problem to address. The
report also describes well-publicised vulnerabilities in the
Vista sidebar, Live.com, and Yahoo! widgets. The pri-
mary focus of this paper is on statically enforcing secu-
rity and reliability policies for JavaScript code. These
policies include restricting widget capabilities, making
sure built-in objects are not modified, preventing code in-
jection attempts, redirect and cross-site scripting detec-
tion, preventing global namespace pollution, taint check-
ing, etc. Soundly enforcing security policies is harder
that one might think at first. For instance, if we
want to ensure a widget cannot call document.write
because this construct allows arbitrary code injection,
we need to either analyze or disallow tricky con-
structs like eval("document" + ".write(’...’)"),
or var a = document[’wri’ + ’te’]; a(’...’);
which use reflection or even

var a = document;
var b = a.write;
b.call(this, ’...’)

which uses aliasing to confuse a potential enforcement
tool. A naı̈ve unsound analysis can easily miss these
constructs. Given the availability of JavaScript obfusca-
tors [19], a malicious widget may easily masquerade its
intent. Even for this very simple policy, grep is far from
an adequate solution.

JavaScript relies on heap-based allocation for the ob-
jects it creates. Because of the problem of object alias-
ing alluded to above in the document.write example
where multiple variable names refer to the same heap
object, to be able to soundly enforce the policies men-
tioned above, GATEKEEPER needs to statically reason
about the program heap. To this end, this paper proposes
the first points-to analysis for JavaScript. The program-
ming language community has long recognized pointer
analysis to be a key building block for reasoning about
object-oriented programs. As a result, pointer analy-

152	 18th USENIX Security Symposium	 USENIX Association

submit widget
GATEKEEPER

policy checks
pass ?

yes: deploy

no: reject and output detailed warnings

user widget host developer

Figure 1: GATEKEEPER deployment. The three principals are: the user, the widget host, and the widget developer.

ses have been developed for commonly used languages
such as C and Java, but nothing has been proposed for
JavaScript thus far. However, a sound and precise points-
to analysis of the full JavaScript language is very hard
to construct. Therefore, we propose a pointer analysis
for JavaScriptSAFE, a realistic subset that includes proto-
types and reflective language constructs. To handle pro-
grams outside of the JavaScriptSAFE subset, GATEKEEPER
inserts runtime checks to preclude dynamic code intro-
duction. Both the pointer analysis and nine policies we
formulate on top of the points-to results are written on top
of the same expressive Datalog-based declarative analysis
framework. As a consequence, the hosting site interested
in enforcing a security policy can program their policy in
several lines of Datalog and apply it to all newly submit-
ted widgets.

In this paper we demonstrate that, in fact, JavaScript
programs are far more amenable to analysis than previ-
ously believed. To justify our design choices, we have
evaluated over 8,000 JavaScript widgets, from sources
such as Live.com, Google, and the Vista Sidebar. Unlike
some previous proposals [35], JavaScriptSAFE is entirely
pragmatic, driven by what is found in real-life JavaScript
widgets. Encouragingly, we have discovered that the use
of with, Function and other “difficult” constructs [12]
is similarly rare. In fact, eval, a reflective construct
that usually foils static analysis, is only used in 6% of
our benchmarks. However, statically unknown field ref-
erences such a[index], dangerous because these can be
used to get to eval through this[’eval’], etc., and
innerHTML assignments, dangerous because these can be
used to inject JavaScript into the DOM, are more prevalent
than previously thought. Since these features are quite
common, to prevent runtime code introduction and main-
tain the soundness of our approach, GATEKEEPER inserts
dynamic checks around statically unresolved field refer-
ences and innerHTML assignments.

This paper contains a comprehensive large-scale exper-
imental evaluation. To show the practicality of GATE-
KEEPER, we present nine representative policies for se-
curity and reliability. Our policies include restricting
widgets capabilities to prevent calls to alert and the

use of the XmlHttpRequest object, looking for global
namespace pollution, detecting browser redirects lead-
ing to cross-site scripting, preventing code injection, taint
checking, etc. We experimented on 8,379 widgets, out of
which 6,541 are analyzable by GATEKEEPER 1. Checking
our nine policies resulted in us discovering a total of 1,341
verified warnings that affect 684, with only 113 false pos-
itives affecting only two widgets.

1.1 Contributions

This paper makes the following contributions:

• We propose the first points-to analysis for JavaScript
programs. Our analysis is the first to handle a
prototype-based language such as JavaScript. We
also identify JavaScriptSAFE, a statically analyzable
subset of the JavaScript language and propose light-
weight instrumentation that restricts runtime code in-
troduction to handle many more programs outside of
the JavaScriptSAFE subset.

• On the basis of points-to information, we demon-
strate the utility of our approach by describing nine
representative security and reliability policies that
are soundly checked by GATEKEEPER, meaning no
false negatives are introduced. These policies are ex-
pressed in the form of succinct declarative Datalog
queries. The system is highly extensible and easy
to use: each policy we present is only several lines
of Datalog. Policies we describe include restricting
widget capabilities, making sure built-in objects are
not modified, preventing code injection attempts, etc.

• Our experimental evaluation involves in excess of
eight thousand publicly available JavaScript widgets
from Live.com, the Vista Sidebar, and Google. We
flag a total of 1,341 policy violations spanning 684
widgets, with 113 false positives affecting only two
widgets.

1Because we cannot ensure soundness for the remaining 1,845 wid-
gets, we reject them without further policy checking.

USENIX Association 	 18th USENIX Security Symposium	 153

1.2 Paper Organization
The rest of the paper is organized as follows. Section 2
gives an overview of our approach and summarizes the
most significant analysis challenges. Section 3 provides
a deep dive into the details of our analysis; a reader in-
terested in learning about the security policies may skip
this section on the first reading. Section 4 describes nine
static checkers we have developed for checking security
policies of JavaScript widgets. Section 5 summarizes the
experimental results. Finally, Sections 6 and 7 describe
related work and conclude.

2 Overview

As a recent report from Finjan Security shows, widget-
based attacks are on the rise [17]. Exploits such as those
in a Vista sidebar contacts widget, a Live.com RSS wid-
get, and a Yahoo! contact widget [17, 27] not only affect
unsuspecting users, they also reflect poorly on the hosting
site. In a way, widgets are like operating system drivers:
their quality directly affects the perceived quality of the
underlying OS. While driver reliability and security has
been subject of much work [7], widget security has re-
ceived relatively little attention. Just like with drivers,
however, widgets can run in the same page (analogous
to an OS process) as the rest of the hosting site. Because
widget flaws can negatively impact the rest of the site, it
is out aim to develop tools to ensure widget security and
reliability.

While our proposed static analysis techniques are much
more general and can be used for purposes as diverse as
program optimization, concrete type inference, and bug
finding, the focus of this paper is on soundly enforcing se-
curity and reliability policies of JavaScript widgets. There
are three principals that emerge in that scenario: the wid-
get hosting site such as Live.com, the developer submit-
ting a particular widget, and the user on whose computer
the widget is ultimately executed. The relationship of
these principals is shown in Figure 1. We are primarily in-
terested in helping the widget host ensure that their users
are protected.

2.1 Deployment
We envision GATEKEEPER being deployed and run by the
widget hosting provider as a mandatory checking step in
the online submission process, required before a widget
is accepted from a widget developer. Many hosts already
use captchas to ensure that the submitter is human. How-
ever, captchas say nothing about the quality and intent of
the code being submitted. Using GATEKEEPER will en-
sure that the widget being submitted complies with the
policies chosen by the host. A hosting provider has the

authority to reject some of the submitted widgets, instruct-
ing widgets authors to change their code until it passes the
policy checker, not unlike tools like the static driver veri-
fier for Windows drivers [24]. Our policy checker outputs
detailed information about why a particular widget fails,
annotated with line numbers, which allows the widget de-
veloper to fix their code and resubmit.

2.2 Designing Static Language Restrictions
To enable sound analysis, we first restrict the input to be
a subset of JavaScript as defined by the EcmaScript-262
language standard. Unlike previous proposals that sig-
nificantly hamper language expressiveness for the sake
of safety [13], our restrictions are relatively minor. In
particular, we disallow the eval construct and its close
cousin, the Function object constructor as well as func-
tions setTimeout and setInterval. All of these con-
structs take a string and execute it as JavaScript code.
The fundamental problem with these constructs is that
they introduce new code at runtime that is unseen — and
therefore cannot be reasoned about — by the static ana-
lyzer. These reflective constructs have the same expres-
sive power: allowing one of them is enough to have the
possibility of arbitrary code introduction.

We also disallow the use of with, a language feature
that allows to dynamically substitute the symbol lookup
scope, a feature that has few legitimate uses and signif-
icantly complicates static reasoning about the code. As
our treatment of prototypes shows, it is in fact possible
to handle with, but it is only used in 8% of our bench-
marks. Finally, while these restrictions might seem dra-
conian at first, they are very similar to what a recently
proposed strict mode for JavaScript enforces [14].

We do allow reflective constructs Function.call,
Function.apply, and the arguments array. Indeed,
Function.call, the construct that allows the caller of a
function to set the callee’s this parameter, is used in 99%
of Live widgets and can be analyzed statically with rela-
tive ease, so we handle this language feature. The preva-
lence of Function.call can be explained by a common
coding pattern for implementing a form of inheritance,
which is encouraged by Live.com widget documentation,
and is found pretty much verbatim in most widgets.

In other words, our analysis choices are driven by the
statistics we collect from 8,379 real-world widgets and not
hypothetical considerations. More information about the
relative prevalence of “dangerous” language features can
be found in Figure 3. The most common “unsafe” features
we have to address are .innerHTML assignments and sta-
tically unresolved field references. Because they are so
common, we cannot simply disallow them, so we check
them at runtime instead.

To implement restrictions on the allowed input, in

154	 18th USENIX Security Symposium	 USENIX Association

Program
AST

yes
Points-to

analysis rules

no

yes

JavaScriptSAFE ?

Instrument unresolved
array accesses and
.innerHtml stores

no

Policy #1

Policy #2

Policy #3

JAVASCRIPTGK?

+ =
Policy violationsPolicy violations

Figure 2: GATEKEEPER analysis architecture.

Sidebar Windows Live Google

JavaScript Construct Affected % Affected % Affected %

Non-Const Index 1,736 38.6% 176 6.5% 192 16.4%
with 422 9.4% 2 .1% 2 .2%
arguments 175 3.9% 6 .2% 3 .3%
setTimeout 824 18.3% 49 1.8% 65 5.6%
setInterval 377 8.4% 16 .6% 13 1.1%
eval 353 7.8% 10 .4% 55 4.7%

apply 173 3.8% 29 1.1% 6 .5%
call 151 3.4% 2,687 99.0% 4 .3%
Function 142 3.2% 4 .1% 21 1.8%
document.write 102 2.3% 1 0% 108 9.2%
.innerHTML 1,535 34.1% 2,053 75.6% 288 24.6%

Figure 3: Statistics for 4,501 widgets from Sidebar and 2,714 widgets from Live, and 1,171 widgets from Google.

our JavaScript parser we flag the use of lexer tokens
eval, Function, and with, as well as setTimeout, and
setInterval. We need to disallow all of these con-
structs because letting one of them through is enough
for arbitrary code introduction. The feature we can-
not handle simply using lexer token blacklisting is
document.write. We first optimistically assume that no
calls to document.write are present and then proceed to
verify this assumption as described in Section 4.3. This
way our analysis remains sound.

We consider two subsets of the JavaScript language,
JavaScriptSAFE and JavaScriptGK. The two subsets are com-
pared in Figure 4. If the program passes the checks
above and lacks statically unresolved array accesses
and innerHTML assignments, it is declared to be in
JavaScriptSAFE. Otherwise, these dangerous accesses are
instrumented and it is declared in the JavaScriptGK lan-
guage subset. To resolve field accesses, we run a local
dataflow constant propagation analysis [1] to identify the
use of constants as field names. In other words, in the
following code snippet

var fieldName = ’f’;

a[fieldName] = 3;

the second line will be correctly converted into a.f = 3.

2.3 Analysis Stages

The analysis process is summarized in Figure 2. If the
program is outside of JavaScriptGK, we reject it right away.
Otherwise, we first traverse the program representation
and output a database of facts, expressed in Datalog nota-
tion. This is basically a declarative database representing
what we need to know about the input JavaScript pro-
gram. We next combine these facts with a representa-
tion of the native environment of the browser discussed
in Section 3.4 and the points-to analysis rules. All three
are represented in Datalog and can be easily combined.
We pass the result to bddbddb, an off-the-shelf declara-
tive solver [33], to produce policy violations. This pro-
vides for a very agile experience, as changing the policy
usually only involves editing several lines of Datalog.

2.4 Analyzing the JavaScriptSAFE Subset

For a JavaScriptSAFE program, we normalize each function
to a set of statements shown in Figure 5. Note that the
JavaScriptSAFE language, which we shall extend in Sec-
tion 3 is very much Java-like and is therefore amenable to
inclusion-based points-to analysis [33]. What is not made
explicit by the syntax is that JavaScriptSAFE is a prototype-
based language, not a class-based one. This means that
objects do not belong to explicitly declared classes. In-
stead, a object creation can be based on a function, which
becomes that object’s prototype. Furthermore, we support
a restricted form of reflection including Function.call,

USENIX Association 	 18th USENIX Security Symposium	 155

Feature JavaScriptSAFE JavaScriptGK

UNCONTROLLED CODE INJECTION

Unrestricted eval  

Function constructor  

setTimeout, setInterval  

with  

document.write  

Stores to code-injecting fields
innerHTML, onclick, etc.

 

CONTROLLED REFLECTION

Function.call  
Function.apply  
arguments array  

INSTRUMENTATION POINTS

Non-static field stores  
innerHTML assignments  

Figure 4: Support for different dynamic EcmaScript-262 language features in JavaScriptSAFE and JavaScriptGK language subsets.

s ::=
 | [EMPTY]
s; s | [SEQUENCE]
v1 = v2 | [ASSIGNMENT]
v = ⊥ | [PRIMASSIGNMENT]
return v; | [RETURN]
v = new v0(v1, ..., vn); | [CONSTRUCTOR]
v = v0(vthis , v1, v2, . . . , vn); | [CALL]

v1 = v2.f ; | [LOAD]
v1.f = v2; | [STORE]

v = function(v1, ..., vn) {s; }; [FUNCTIONDECL]

Figure 5: JavaScriptSAFE statement syntax in BNF.

Function.apply, and the arguments array. The details
of pointer analysis are shown in the Datalog rules Figure 8
and discussed in detail in Section 3.

One key distinction of our approach with Java is that
there is basically no distinction of heap-allocation objects
and function closures in the way the analysis treats them.
In other words, at a call site, if the base of a call “points
to” an allocation site that corresponds to a function decla-
ration, we statically conclude that that function might be
called. While it may be possible to recover portions of the
call graph through local analysis, we interleave call graph
and points-to analysis in our approach.

We are primarily concerned with analyzing objects or
references to them in the JavaScript heap and not primi-
tive values such as integers and strings. We therefore do
not attempt to faithfully model primitive value manipu-

CALLS(i : I, h : H) indicates when call site i in-
vokes method h

FORMAL(h : H, z : Z, v : V) records formal arguments of a
function

METHODRET(h : H, v : V) records the return value of a
method

ACTUAL(i : I, z : Z, v : V) records actual arguments of a
function call

CALLRET(i : I, v : V) records the return value for a
call site

ASSIGN(v1 : V, v2 : V) records variable assignments

LOAD(v1 : V, v2 : V, f : F) represents field loads

STORE(v1 : V, f : F, v2 : V) represents field stores

PTSTO(v : V, h : H) represents a points-to relation
for variables

HEAPPTSTO(h1 : H, f : F, h2 : H) represents a points-to relations
for heap objects

PROTOTYPE(h1 : H, h2 : H) records object prototypes

Figure 6: Datalog relations used for program representation.

lation, lumping primitive values into PRIMASSIGNMENT
statements.

2.5 Analysis Soundness

The core static analysis implemented by GATEKEEPER is
sound, meaning that we statically provide a conservative
approximation of the runtime program behavior. Achiev-
ing this for JavaScript with all its dynamic features is far
from easy. As a consequence, we extend our soundness
guarantees to programs utilizing a smaller subset of the
language. For programs within JavaScriptSAFE, our analy-

156	 18th USENIX Security Symposium	 USENIX Association

v1 = v2 ASSIGN(v1, v2). [ASSIGNMENT]
v = ⊥ [BOTASSIGNMENT]
return v CALLRET(v). [RETURN]

v = new v0(v1, v2, ..., vn) PTSTO(v, dfresh).
PROTOTYPE(dfresh , h) : – PTSTO(v0, m),

HEAPPTSTO(m,"prototype", h).
for z ∈ {1..n}, generate ACTUAL(i, z, vz).
CALLRET(i, v).

[CONSTRUCTOR]

v = v0(vthis , v1, v2, . . . , vn) for z ∈ {1..n, this}, generate ACTUAL(i, z, vz).
CALLRET(i, v).

[CALL]

v1 = v2.f LOAD(v1, v2, f). [LOAD]
v1.f = v2 STORE(v1, f, v2). [STORE]

v = function(v1, ..., vn) {s} PTSTO(v, dfresh).
HEAPPTSTO(dfresh ,"prototype", pfresh).
FUNCDECL(dfresh). PROTOTYPE(pfresh , hFP).
for z ∈ {1..n}, generate FORMAL(dfresh , z, vz).
METHODRET(dfresh , v).

[FUNCTIONDECL]

Figure 7: Datalog facts generated for each JavaScriptSAFE statement.

sis is sound. For programs within GATEKEEPER, our
analysis is sound as long as no code introduction is de-
tected with the runtime instrumentation we inject. This is
very similar to saying that, for instance, a Java program
is not going to access outside the boundaries of an array
as long as no ArrayOutOfBoundsException is thrown.
Details of runtime instrumentation are presented in Sec-
tion 3.2. The implications of soundness is that GATE-
KEEPER is guaranteed to flag all policy violations, at the
cost of potential false positives.

We should also point out that the GATEKEEPER analy-
sis is inherently a whole-program analysis, not a modu-
lar one. The need to statically have access to the entire
program is why we work so hard to limit language fea-
tures that allow dynamic code loading or injection. We
also generally model the runtime — or native — envi-
ronment in which the JavaScript code executes. Our ap-
proach is sound, assuming that our native environment
model is conservative. This last claim is similar to as-
serting that a static analysis for Java is sound, as long
as native functions and libraries are modeled conserv-
atively, a commonly used assumption. We also assume
that the runtime instrumentation we insert is able to han-
dle the relevant corner cases a deliberately malicious wid-
get might try to exploit, admittedly a challenging task, as
further explained in Section 3.2.

3 Analysis Details

This section is organized as follows. Section 3.1 talks
about pointer analysis in detail2. Section 3.2 discusses the
runtime instrumentation inserted by GATEKEEPER. Sec-
tion 3.3 talks about how we normalize JavaScript AST to
fit into our intermediate representation. Section 3.4 talks
about how we model the native JavaScript environment.

3.1 Pointer Analysis
In this paper, we describe how to implement a form
of inclusion-based Andersen-style flow- and context-
sensitive analysis [3] for JavaScript. It remains to be
seen whether flow and context sensitivity significantly im-
prove analysis precision; our experience with the policies
in Section 4 has not shown that to be the case. We use al-
location sites to approximate runtime heap objects. A key
distinction of our approach in the lack of a call graph to
start with: our technique allows call graph inference and
points-to analysis to be interleaved. As advocated else-
where [21], the analysis itself is expressed declaratively:
we convert the program into a set of facts, to which we

2We refer the interested reader to a companion technical report [22]
that discusses handling of reflective constructs Function.call,
Function.apply, and arguments.

USENIX Association 	 18th USENIX Security Symposium	 157

% Basic rules
PTSTO(v, h) : – ALLOC(v, h).
PTSTO(v, h) : – FUNCDECL(v, h).
PTSTO(v1, h) : – PTSTO(v2, h), ASSIGN(v1, v2).

DIRECTHEAPSTORESTO(h1, f, h2) : – STORE(v1, f, v2), PTSTO(v1, h1), PTSTO(v2, h2).
DIRECTHEAPPOINTSTO(h1, f, h2) : – DIRECTHEAPSTORESTO(h1, f, h2).
PTSTO(v2, h2) : – LOAD(v2, v1, f), PTSTO(v1, h1), HEAPPTSTO(h1, f, h2).
HEAPPTSTO(h1, f, h2) : – DIRECTHEAPPOINTSTO(h1, f, h2).

% Call graph
CALLS(i, m) : – ACTUAL(i, 0, c), PTSTO(c, m).

% Interprocedural assignments
ASSIGN(v1, v2) : – CALLS(i, m), FORMAL(m, z, v1), ACTUAL(i, z, v2), z > 0.
ASSIGN(v2, v1) : – CALLS(i, m), METHODRET(m, v1), CALLRET(i, v2).

% Prototype handling
HEAPPTSTO(h1, f, h2) : – PROTOTYPE(h1, h), HEAPPTSTO(h, f, h2).

Figure 8: Pointer analysis inference rules for JavaScriptSAFE expressed in Datalog.

apply inference rules to arrive at the final call graph and
points-to information.

Program representation. We define the following do-
mains for the points-to analysis GATEKEEPER performs:
heap-allocated objects and functions H , program vari-
ables V , call sites I , fields F , and integers Z. The analysis
operates on a number of relations of fixed arity and type,
as summarized in Figure 6.

Analysis stages. Starting with a set of initial input re-
lation, the analysis follows inference rules, updating in-
termediate relation values until a fixed point is reached.
Details of the declarative analysis and BDD-based repre-
sentation can be found in [32]. The analysis proceeds in
stages. In the first analysis stage, we traverse the nor-
malized representation for JavaScriptSAFE shown in Fig-
ure 5. The basic facts that are produced for every state-
ment in the JavaScriptSAFE program are summarized in
Figure 7. As part of this traversal, we fill in relations
ASSIGN, FORMAL, ACTUAL, METHODRET, CALLRET, etc. This
is a relatively standard way to represent information about
the program in the form of a database of facts. The sec-
ond stage applies Datalog inference rules to the initial set
of facts. The analysis rules are summarized in Figure 8.
In the rest of this section, we discuss different aspects of
the pointer analysis.

3.1.1 Call Graph Construction

As we mentioned earlier, call graph construction in
JavaScript presents a number of challenges. First, unlike
a language with function pointers like C, or a language
with a fixed class hierarchy like Java, JavaScript does not

have any initial call graph to start with. Aside from lo-
cal analysis, the only conservative default we have to fall
back to when doing static analysis is “any call site calls
every declared function,” which is too imprecise.

Instead, we chose to combine points-to and call graph
constraints into a single Datalog constraint system and re-
solve them at once. Informally, intraprocedural data flow
constraints lead to new edges in the call graph. These in
turn lead to new data flow edges when we introduce con-
straints between newly discovered arguments and return
values. In a sense, function declarations and object allo-
cation sites are treated very much the same in our analysis.
If a variable v ∈ V may point to function declaration f ,
this implies that call v() may invoke function f . Alloca-
tion sites and function declarations flow into the points-to
relation PTSTO through relations ALLOC and FUNCDECL.

3.1.2 Prototype Treatment

The JavaScript language defines two lookup chains. The
first is the lexical (or static) lookup chain common to
all closure-based languages. The second is the prototype
chain. To resolve o.f, we follow o’s prototype, o’s proto-
type’s prototype, etc. to locate the first object associated
with field f.

Note that the object prototype (sometimes denoted as
[[Prototype]] in the ECMA standard) is different from
the prototype field available on any object. We model
[[Prototype]] through the PROTOTYPE relation in our sta-
tic analysis. When PROTOTYPE(h1, h2) holds, h1’s internal
[[Prototype]] may be h2

3.

3We follow the EcmaScript-262 standard; Firefox makes

158	 18th USENIX Security Symposium	 USENIX Association

Two rules in Figure 7 are particularly relevant for proto-
type handling: [CONSTRUCTOR] and [FUNCTIONDECL]. In
the case of a constructor call, we allocate a new heap vari-
able dfresh and make the return result of the call v point to
it. For (every) function m the constructor call invokes,
we make sure that m’s prototype field is connected
with dfresh through the PROTOTYPE relation. We also set up
ACTUAL and CALLRET values appropriately, for z ∈ {1..n}.
In the regular [CALL] case, we also treat the this para-
meter as an extra actual parameter.

In the case of a [FUNCTIONDECL], we create two
fresh allocation site, dfresh for the function and pfresh

for the newly create prototype field for that func-
tion. We use shorthand notion hFP to denote object
Function.prototype and create a PROTOTYPE relation
between pfresh and hFP . We also set up HEAPPTSTO re-
lation between dfresh and pfresh objects. Finally, we set
up relations FORMAL and METHODRET, for z ∈ {1..n}.

Example 1. The example in Figure 9 illustrates the in-
tricacies of prototype manipulation. Allocation site a1 is
created on line 2. Every declaration creates a declaration
object and a prototype object, such as dT and pT . Rules
in Figure 10 are output as this code is processed, anno-
tated with the line number they come from. To resolve the
call on line 4, we need to determine what t.bar points to.
Given PTSTO(t, a1) on line 2, this resolves to the following
Datalog query:

HEAPPTSTO(a1,"bar", X)?

Since there is nothing dT points to directly by follow-
ing the bar field, the PROTOTYPE relation is consulted.
PROTOTYPE(a1, pT) comes from line 2. Because we have
HEAPPTSTO(pT ,"bar", dbar) on line 3, we resolve X to
be dbar. As a result, the call on line 4 may correctly in-
voke function bar. Note that our rules do not try to keep
track of the order of objects in the prototype chain. 

3.2 Programs Outside JavaScriptSAFE

The focus of this section is on runtime instrumenta-
tion for programs outside JavaScriptSAFE, but within the
JavaScriptGK JavaScript subset that is designed to prevent
runtime code introduction.

3.2.1 Rewriting .innerHTML Assignments

innerHTML assignments are a common dangerous lan-
guage feature that may prevent GATEKEEPER from stati-
cally seeing all the code. We disallow it in JavaScriptSAFE,
but because it is so common, we still allow it in the
JavaScriptGK language subset. While in many cases the
right-hand side of .innerHTML assignments is a constant,

[[Prototype]] accessible through a non-standard field proto .

there is an unfortunate coding pattern encouraged by Live
widgets that makes static analysis difficult, as shown in
Figure 11. The url value, which is the result concatenat-
ing of a constant URL and widgetURL is being used on
the right-hand side and could be used for code injection.
An assignment v1.innerHTML = v2 is rewritten as

if (__IsUnsafe(v2)) {

alert("Disguised eval attempt at <file>:<line>");

} else {

v1.innerHTML = v2;

}

where IsUnsafe disallows all but very simple HTML.
Currently, IsUnsafe is implemented as follows:

function __IsUnsafe(data)) {

return (toStaticHTML(data)===data);

}

toStaticHTML, a built-in function supported in newer
versions of Internet Explorer, removes attempts to intro-
duce script from a piece of HTML. An alternative is to
provide a parser that allows a subset of HTML, an ap-
proach that is used in WebSandbox [25]. The call to
alert is optional — it is only needed if we want to warn
the user. Otherwise, we may just omit the statement in
question.

3.2.2 Rewriting Unresolved Heap Loads and Stores

That syntax for JavaScriptGK supported by GATEKEEPER
has an extra variant of LOAD and STORE rules for associa-
tive arrays, which introduce Datalog facts shown below:

v1 = v2[∗] LOAD(v1, v2,_) [ARRAYLOAD]
v1[∗] = v2 STORE(v1,_, v2) [ARRAYSTORE]

When the indices of an associative array operation cannot
be determined statically, we have to be conservative. This
means that any field that may be reached can be accessed.
This also means that to be conservative, we must consider
the possibility that any field may be affected as well: the
field parameter is unconstrained, as indicated by an _ in
the Datalog rules above.

Example 2. Consider the following motivating example:

1. var a = {

2. ’f’ : function(){...},

3. ’g’ : function(){...}, ...};

5. a[x + y] = function(){...};

6. a.f();

If we cannot statically decide which field of object a is be-
ing written to on line 5, we have to conservatively assume

USENIX Association 	 18th USENIX Security Symposium	 159

1. function T(){ this.foo = function(){ return 0}}; dT , pT

2. var t = new T(); a1

3. T.prototype.bar = function(){ return 1; }; dbar, pbar
4. t.bar(); // return 1

Figure 9: Prototype manipulation example.

1. PTSTO(T, dT). HEAPPTSTO(dT ,"prototype", pT). PROTOTYPE(pT , hFP).
2. PTSTO(t, a1). PROTOTYPE(a1, pT).
3. HEAPPTSTO(pT ,"bar", dbar). HEAPPTSTO(dbar,"prototype", pbar). PROTOTYPE(pbar, hFP).

Figure 10: Rules created for the prototype manipulation example in Figure 9.

that the assignment could be to field f. This can affect
which function is called on line 6. 

Moreover, any statically unresolved store may intro-
duce additional code through writing to the innerHTML
field that will be never seen by static analysis. We rewrite
statically unsafe stores v1[i] = v2 by blacklisting fields
that may lead to code introduction:

if (i==="onclick" || i==="onkeypress" || ...) {

alert("Disguised eval attempt at <file>:<line>");

} else

if(i==="innerHTML" && __IsUnsafe(v2)){

alert("Unsafe innerHTML at <file>:<line>");

} else {

v1[i] = v2;

}

Note that we use === instead of == because the lat-
ter form will try to coarse i to a string, which is not our
intention. Also note that it’s impossible to introduce a
TOCTOU vulnerability of having v2 change “underneath
us” after the safety check because of the single-threaded
nature of JavaScript.

Similarly, statically unsafe loads of the form v1 = v2[i]
can be restricted as follows:

if (i==="eval" || i==="setInterval" ||

i==="setTimeout" || i==="Function" ||...)

{

alert("Disguised eval attempt at <file>:<line>");

} else {

v1 = v2[i];

}

Note that we have to check for unsafe functions such as
eval, setInterval, etc. While we reject them as tokens
for JavaScriptSAFE, they may still creep in through stati-
cally unresolved array accesses. Note that to preserve the
soundness of our analysis, care must be taken to keep the
blacklist comprehensive.

While we currently use a blacklist and do our best to
keep it as complete as we can, ideally blacklist design and
browser runtime design would go hand-in-hand. We re-
ally could benefit from a browser-specified form of run-
time safety, as illustrated by the use strict pragma [14].
A conceptually safer, albeit more restrictive, approach is
to resort to a whitelist of allowed fields.

3.3 Normalization Details

In this section we discuss several aspects of normalizing
the JavaScript AST. Note that certain tricky control flow
and reflective constructs like for...in are omitted here be-
cause our analysis is flow-insensitive.

Handling the global object. We treat the global object
explicitly by introducing a variable global and then as-
signing to its fields. One interesting detail is that global
variable reads and writes become loads and stores to fields
of the global object, respectively.

Handling of this argument in function calls. One
curious feature of JavaScript is its treatment of the
this keyword, which is described in section 10.2 of
the EcmaScript-262 standard. For calls of the form
f(x, y, ...), the this value is set by the runtime to the
global object. This is a pretty surprising design choice, so
we translate syntactic forms f(x, y, ...) and o.f(x, y, ...)
differently, passing the global object in place of this in
the former case.

3.4 Native Environment

The browser embedding of the JavaScript engine has
a large number of pre-defined objects. In addition to
Array, Date, String, and other objects defined by the
EcmaScript-262 standard, the browser defines objects
such as Window and Document.

Native environment construction. Because we are do-
ing whole-program analysis, we need to create stubs for

160	 18th USENIX Security Symposium	 USENIX Association

this.writeWidget = function(widgetURL) {
var url = "http://widgets.clearspring.com/csproduct/web/show/flash?

opt=-MAX/1/-PUR/http%253A%252F%252Fwww.microsoft.com&url="+widgetURL;

var myFrame = document.createElement("div");
myFrame.innerHTML = ’<iframe id="widgetIFrame" scrolling="no"

frameborder="0" style="width:100%;height:100%;border:0px" src="’+
url+’"></iframe>’;

...
}

Figure 11: innerHTML assignment example

the native environment so that calls to built-in methods re-
solve to actual functions. We recursively traverse the na-
tive embedding. For every function we encounter, we pro-
vide a default stub function(){return undefined; }.
The resulting set of declarations looks as follows:

var global = new Object();
// this references in the global namespace refer to global
var this = global;
global.Array = new Object();
global.Array.constructor = new function(){return undefined;}
global.Array.join = new function(){return undefined;}
...

Note that we use an explicit global object to host a
namespace for our declarations instead of the implicit
this object that JavaScript uses. In most browser im-
plementations, the global this object is aliased with
the window object, leading to the following declaration:
global.window = global;.

Soundness. However, as it turns out, creation of a sound
native environment is more difficult than that. Indeed, the
approach above assumes that the built-in functions return
objects that are never aliased. This fallacy is most obvi-
ously demonstrated by the following code:

var parent_div = document.getElementById(’header’);
var child_div = document.createElement(’div’);
parent_div.appendChild(child_div);
var child_div2 = parent_div.childNodes[0];

In this case, child div and child div2 are aliases for
the same DIV element. if we pretend they are not, we
will miss an existing alias. We therefore model operations
such as appendChild, etc. in JavaScript code, effectively
creating mock-ups instead of native browser-provided im-
plementations.

In our implementation, we have done our best to ensure
the soundness of the environment we produce by starting
with an automatically generated collection of stubs and
augmenting them by hand to match what we believe the
proper browser semantics to be. This is similar to mod-
eling memcpy in a static analysis of C code or native
methods in a static analysis for Java. However, as with
two instance of foreign function interface (FFI) model-
ing above, this form of manual involvement is often error-

prone. It many also unfortunately compromise the sound-
ness of the overall approach, both because of implemen-
tation mistakes and because of browser incompatibilities.
A potential alternative to our current approach and part
of our future work is to consider a standards-compliant
browser that that implements some of its library code in
JavaScript, such as Chrome. With such an approach, be-
cause libraries become amenable to analysis, the need for
manually constructed stubs would be diminished.

When modeling the native environment, when in doubt,
we tried to err on the side of caution. For instance, we do
not attempt to model the DOM very precisely, assuming
initially that any DOM-manipulating method may return
any DOM node (effectively all DOM nodes are statically
modeled as a single allocation site). Since our policies in
Section 4 do not focus on the DOM, this imprecise, but
sound modeling does not result in false positives.

4 Security and Reliability Policies

This section is organized as follows. Sections 4.1–4.4 talk
about six policies that apply to widgets from all widgets
hosts we use in this paper (Live, Sidebar, and Google).
Section 4.5 talks about host-specific policies, where we
present two policies specific to Live and one specific to
Sidebar widgets. Along with each policy, we present the
Datalog query that is designed to find policy violations.
We have run these queries on our set of 8,379 benchmark
widgets. A detailed discussion of our experimental find-
ings can be found in Section 5.

4.1 Restricting Widget Capabilities
Perhaps the most common requirement for a system that
reasons about widgets is the ability to restrict code capa-
bilities, such as disallowing calling a particular function,
using a particular object or namespace, etc. The Live
Widget Developer Checklist provides many such exam-
ples [34]. This is also what systems like Caja and Web-
Sandbox aim to accomplish [25, 29]. We can achieve the
same goal statically.

Pop-up boxes represent a major annoyance when using

USENIX Association 	 18th USENIX Security Symposium	 161

web sites. Widgets that bring up popup boxes, achieved
by calling function alert in JavaScript, can be used for
denial-of-service against the user. In fact, the alert box
prevention example below comes from a widget sample
that asynchronously spawns new alert boxes; this wid-
get is distributed with WebSandbox [26]. The following
query ensures that the alert routine is never called:

Query output: AlertCalls(i : I)

GlobalSym(m, h) : – PTSTO("global", g),
HEAPPTSTO(g, m, h).

AlertCalls(i) : – GlobalSym("alert", h),
CALLS(i, h).

To define AlertCalls , we first define an auxiliary query
GlobalSym : F ×H used for looking up global functions
such as alert. On the right-hand side, g ∈ H is the
explicitly represented global object pointed to by vari-
able global. Following field m takes us to the heap ob-
ject h of interest. AlertCalls instantiates this query for
field alert. Note that there are several references to it in
the default browser environment such as window.alert
and document.alert. Since they all are aliases for the
same function, the query above will spot all calls, inde-
pendently of the the reference being used.

4.2 Detecting Writes to Frozen Objects
We disallow changing properties of built-in objects such
as Boolean, Array, Date, Function, Math, Document,
Window, etc. to prevent environment pollution at-
tacks such as prototype hijacking [9]. This is simi-
lar to frozen objects proposed in EcmaScript 4. The
query in Figure 12 looks for attempts to add or up-
date properties of JavaScript built-in objects specified by
the auxiliary query BuiltInObject , including attempts to
change their prototypes: The rules above handle the case
of assigning to properties of these built-in objects di-
rectly. Often, however, a widget might attempt to as-
sign properties of the prototype of an object as in
Function.prototype.apply = function(){...}. We
can prevent this by first defining a recursive heap reacha-
bility relation Reaches:

Reaches(h1, h2) : – HEAPPTSTO(h1,_, h2).
Reaches(h1, h2) : – HEAPPTSTO(h1,_, h),

Reaches(h, h2).

and then adding to the FrozenViolation definition:

FrozenViolation(v) : – STORE(v,_,_),
PTSTO(v, h),
BuiltInObject(h),
Reaches(h, h).

An example of a typical policy violation from our exper-
iments is shown below:

Array.prototype.feed = function(o, s){

if(!s){s=o;o={};}

var k,p=s.split(":");

while(typeof(k=p.shift())!="undefined")

o[k]=this.shift();

return o;

}

4.3 Detecting Code Injection
As discussed above, document.write is a routine that
allows the developer to output arbitrary HTML, thus al-
lowing code injection through the use of <script> tags.
While verbatim calls to document.write can be found
using grep, it is easy to disguise them through the use of
aliasing:

var x = document;

var y = x.write;

y("<script>alert(’hi’);</script>");

The query below showcases the power of points-to analy-
sis. In addition to finding the direct calls, the query be-
low will correctly determine that the call to y invokes
document.write.

Query output: DocumentWrite(i : I)

DocumentWrite(i) : – GlobalSym("document", d),
HEAPPTSTO(d,"write", m),
CALLS(i, h).

DocumentWrite(i) : – GlobalSym("document", d),
HEAPPTSTO(d,"writeln", m),
CALLS(i, h).

4.4 Redirecting the Browser
JavaScript in the browser has write access to the current
page’s location, which may be used to redirect the user
to a malicious site. Google widget Google Calculator
performing such redirection is shown below:

window.location =

"http://e-r.se/google-calculator/index.htm"

Allowing such redirect not only opens the door to phish-
ing widgets luring users to malicious sites, redirects
within an iframe also open the possibility of running
code that has not been adequately checked by the host-
ing site, potentially circumventing policy checking en-
tirely. Another concern is cross-site scripting attacks
that involve stealing cookies: a cross-site scripting at-
tack may be mounted by assigning a location of the form
"http : //www.evil.com/" + document.cookie. Of

162	 18th USENIX Security Symposium	 USENIX Association

Query output: FrozenViolation(v : V)

BuiltInObject(h) : –GlobalSym("Boolean", h). BuiltInObject(h) : –GlobalSym("Array", h).
BuiltInObject(h) : –GlobalSym("Date", h). BuiltInObject(h) : –GlobalSym("Function", h).
BuiltInObject(h) : –GlobalSym("Math", h). BuiltInObject(h) : –GlobalSym("Document", h).
BuiltInObject(h) : –GlobalSym("Window", h).

FrozenViolation(v) : – STORE(v,_,_), PTSTO(v, h),BuiltInObject(h).

Figure 12: FrozenViolations query

course, grep is not an adequate tool for spotting redi-
rects, both because of the aliasing issue described above
and because read access to window.location is in fact
allowed. Moreover, redirects can take many forms, which
we capture through the queries below. Direct location
assignment are found by the following query:

Query output: LocationAssign(v : V)

LocationAssign(v) : – GlobalSym("window", h),
PTSTO(v, h),
STORE(_,"location", v).

LocationAssign(v) : – GlobalSym("document", h),
PTSTO(v, h),
STORE(_,"location", v).

LocationAssign(v) : – PTSTO("global", h),
PTSTO(v, h),
STORE(_,"location", v).

Storing to location object’s properties are found by the
following query:

LocationAssign(v) : – GlobalSym(h,"location"),
PTSTO(v, h),
STORE(v,_,_).

Calling methods on the location object are found by the
following query:

Query output: LocationChange(i : I)

LocationChange(i) : – LocationObject(h),
HEAPPTSTO(h,"assign", h),
CALLS(i, h).

LocationChange(i) : – LocationObject(h),
HEAPPTSTO(h,"reload", h),
CALLS(i, h).

LocationChange(i) : – LocationObject(h),
HEAPPTSTO(h,"replace", h),
CALLS(i, h).

var SearchTag = new String ("Home");
var SearchTagStr = new String(

"meta%3ASearch.tag%28%22beginTag+" +
SearchTag +"endTag%22%29");

var QnaURL = new String(
SearchHostPath /*+ SearchQstateStr */+
SearchTagStr +"&format=rss") ;

// define the constructor for your Gadget
Microsoft.LiveQnA.RssGadget =

function(p_elSource, p_args, p_namespace) { ... }

Figure 13: Example of a global namespace pollution violation
(Section 4.5.2) in a Live widget.

Function window.open is another form of redirects, as the
following query shows:

Query output: WindowOpen(i : I)

WindowOpen(i) : – WindowObject(h),
HEAPPTSTO(h,"open", h),
CALLS(i, h).

4.5 Host-specific Policies

The policies we have discussed thus far have been rela-
tively generic. In this section, we give examples of poli-
cies that are specific to the host site they reside on.

4.5.1 No XMLHttpRequest Use in Live Widgets

The first policy of this sort comes directly from the Live
Web Widget Developer Checklist [34]. Among other
rules, they disallow the use of XMLHttpRequest object
in favor of function Web.Network.createRequest. The
latter makes sure that the network requests are properly
proxied so they can work cross-domain:

Query output: XMLHttpRequest(i : I)

XMLHttpRequest(i) : –GlobalSym("XMLHttpRequest", h),
CALLS(i, h).

USENIX Association 	 18th USENIX Security Symposium	 163

Query output: ActiveXExecute(i : I)

ActiveXObjectCalls(i) : – GlobalSym("ActiveXObject", h), CALLS(i, h).

ShellExecuteCalls(i) : – PTSTO("global", h1), HEAPPTSTO(h1,"System", h2),
HEAPPTSTO(h2,"Shell", h3), HEAPPTSTO(h3,"execute", h4), CALLS(i, h4).

ActiveXExecute(i) : – ActiveXObjectCalls(i), CALLRET(i, v), PTSTO(v, h),
HEAPPTSTO(h,_, m), CALLS(i, m), CALLRET(i, r), PTSTO(r, h),
ShellExecuteCalls(i), ACTUAL(i,_, v), PTSTO(v, h).

Figure 14: Query for finding information flow violations in Vista Sidebar widgets.

4.5.2 Global Namespace Pollution in Live Widgets

Because web widgets can be deployed on a page with
other widgets running within the same JavaScript inter-
preter, polluting the global namespace, leading to name
clashes and unpredictable behavior. This is why hosting
providers such as Facebook, Yahoo!, Live, etc. strongly
discourage pollution of the global namespace, favoring a
module or a namespace approach instead [11] that avoids
name collision. We can easily prevent stores to the global
scope:

Query output: GlobalStore(h : H)

GlobalStore(h) : – PTSTO("global", g),
HEAPPTSTO(g,_, h).

An example of a violation of this policy from a
Live.com widget is shown in Figure 13. Because the
same widget can be deployed twice within the same in-
terpreter scope with different values of SearchTag, this
can lead to a data race on the globally declared variable
SearchTagStr.

Note that our analysis approach is radically different
from proposals that advocate language restrictions such
as AdSafe or Cajita [12, 13, 29] to protect access to the
global object. The difficulty those techniques have to
overcome is that the this identifier in the global scope
will point to the global object. However, disallowing
this completely makes object-oriented programming dif-
ficult. With the whole-program analysis GATEKEEPER
implements, we do not have this problem. We are able
to distinguish references to this that point to the global
object (aliased with the global variable) from a local ref-
erence to this within a function.

4.5.3 Tainting Data in Sidebar Widgets

This policy ensures that data from ActiveX controls that
may be instantiated by a Sidebar widget does not get
passed into System.Shell.execute for direct execution on
the user’s machine. This is because it is common for Ac-
tiveX controls to retrieve unsanitized network data, which

is how a published RSS Sidebar exploit operates [27].
There, data obtained from an ActiveX-based RSS control
was assigned directly to the innerHTML field withing a
widget, allowing a cross-site scripting exploit. What we
are looking for is demonstrated by the pattern:

var o = new ActiveXObject();
var x = o.m();
System.Shell.Execute(x);

The Datalog query in Figure 14 looks for instances where
the tainted result of a call to method m on an ActiveX ob-
ject is directly passed as an argument to the “sink” func-
tion System.Shell.Execute.

Auxiliary queries ActiveXObjectCalls and
ShellExecuteCalls look for source and sink calls
and ShellExecuteCalls ties all the constraints together,
effectively matching the call pattern described above.
As previously shown for the case of Java information
flow [23], similar queries may be used to find information
flow violations that involve cookie stealing and location
resetting, as described in Chugh et al. [10].

5 Experimental Results
For our experiments, we have downloaded a large num-
ber of widgets from widget hosting sites’ widget galleries.
As mentioned before, we have experimented with widgets
from Live.com, the Vista Sidebar, and Google. We auto-
mated the download process to save widgets locally for
analysis. Once downloaded, we parsed through each wid-
get’s manifesto to determine where the relevant JavaScript
code resides. This process was slightly different across
the widget hosts. In particular, Google widgets tended to
embed their JavaScript in HTML, which required us to
develop a limited-purpose HTML parser. In the Sidebar
case, we had to extract the relevant JavaScript code out of
an archive. At the end of this process, we ended up with a
total of 8,379 JavaScript files to analyze.

Figure 15 provides aggregate statistics for the wid-
gets we used as benchmarks. For each widget source,

164	 18th USENIX Security Symposium	 USENIX Association

Avg. Widget counts
Widget Source LOC Count JavaScriptGK JavaScriptSAFE

Live.com 105 2,707 2,643 97% 643 23%
Vista sidebar 261 4,501 2,946 65% 1,767 39%
Google.com/ig 137 1,171 962 82% 768 65%

Figure 15: Aggregate statistics for widgets from Live por-
tal, Windows Sidebar, and Google portal widget repositories
(columns 2–3). Information about widget distribution for dif-
ferent JavaScript language subsets (columns 4–7).

p

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 More

Analysis time (seconds) Cumulative %

nu
m

be
r

of
 w

id
ge

ts

analysis time, in seconds

Figure 17: Histogram showing GATEKEEPER processing times.

we specify the total number of widgets we managed
to obtain in column 2. Column 3 shows the average
lines-of-code count for every widget. In general, Side-
bar widgets tend to be longer and more involved than
their Web counterparts, as reflected in the average line
of code metric. Note that in addition to every widget’s
code, at the time of policy checking, we also prepend
the native environment constructed as described in Sec-
tion 3.4. The native environment constitutes 270 lines of
non-comment JavaScript code (127 for specifying the the
browser embedding and 143 for specifying built-in ob-
jects such as Array and Date).

5.1 Result Summary

A summary of our experimental results in presented in
Figure 16. For each policy described in Section 4, we
show the the total number of violations across 8,379
benchmarks, and the number of violating benchmarks.
The latter two may be different because there could be
several violations of a particular query per widget. We
also show the percentage of benchmarks for which we find
policy violations. As can be seen from the table, overall,
policy violations are quite uncommon, with only several
percent of widgets affected in each case. Overall, a total
of 1,341 policy violations are reported.

As explained in Section 4.5, we only ran those policies
on the appropriate subset of widgets, leaving other table

function MM_preloadImages() {

var d=m_Doc;

if(d.images){

if(!d.MM_p) d.MM_p=new Array();

var i,j=d.MM_p.length,

a=MM_preloadImages.arguments;

for(i=0; i<a.length; i++)

if (a[i].indexOf("#")!=0){

d.MM_p[j]=new Image;

d.MM_p[j++].src=a[i];

}

}

}

Figure 18: False positives in common.js from JustMusic.FM.

cells blank. To validate the precision of our analysis, we
have examined all violations reported by our policies. For
examination, GATEKEEPER output was cross-referenced
with widget sources. Luckily for us, most of our query re-
sults were easy to spot-check by looking at one or two
lines of corresponding source code, which made result
checking a relatively quick task. Encouragingly, for most
inputs, GATEKEEPER was quite precise.

5.2 False Positives
We should point out that a conservative analysis such as
GATEKEEPER is inherently imprecise. Two main sources
of false positives in our formulation are prototype han-
dling and arrays. Only two widgets out of over 6,000 ana-
lyzed files in the JavaScriptGK subset lead to false positives
in our experiments. Almost all false positive reports come
from the Sidebar widget, JustMusic.FM, file common.js.
Because of our handling of arrays, the analysis conserv-
atively concludes that certain heap-allocated objects can
reach many others by following any element of array a,
as shown in Figure 18. In fact, this example is contains a
number of features that are difficult to analyze statically:
array aliasing, the use of arguments array, as well as ar-
ray element loads and stores, so it is not entirely surprising
that their combination leads to imprecision.

It is common for a single imprecision within static
analysis to create numerous “cascading” false positive
reports. This is the case here as well. Luckily, it is
possible to group cascading reports together in order to
avoid overwhelming the user with false positives caused
by a single imprecision. This imprecision in turn affects
FrozenViolation and LocationAssign queries leading to
many very similar reports. A total of 113 false positives
are reported, but luckily they affect only two widgets.

5.3 Analysis Running Times
Our implementation uses a publicly available declarative
analysis engine provided by bddbddb [32]. This is a

USENIX Association 	 18th USENIX Security Symposium	 165

LIVE WIDGETS VISTA SIDEBAR GOOGLE WIDGETS

Query Section Viol. Affected % FP Affected Viol. Affected % FP Affected Viol. Affected % FP Affected

AlertCalls(i : I) 4.1 54 29 1.1 0 0 161 84 2.9 0 0 57 35 3.6 0 0

FrozenViolation(v : V) 4.2 3 3 0.1 0 0 143 52 1.5 94 1 1 1 0.1 0 0

DocumentWrite(i : I) 4.3 5 1 0.0 0 0 175 75 1.7 0 0 158 88 8.1 0 0

LocationAssign(v : V) 4.4 3 3 0.1 2 1 157 109 3.8 15 1 9 9 0.7 0 0

LocationChange(i : I) 4.4 3 3 0.1 0 0 21 20 0.7 1 1 3 3 0.3 0 0

WindowOpen(i : I) 4.4 50 22 0.9 0 0 182 87 3.0 1 1 19 14 1.5 0 0

XMLHttpRequest(i : I) 4.5 1 1 0.0 0 0 — — — — — — — — — —

GlobalStore(v : V) 4.5 136 45 1.7 0 0 — — — — — — — — — —

ActiveXExecute(i : I) 4.5 — — — — — 0 0 0 0 0 — — — — —

Figure 16: Experimental result summary for nine policies described in Section 4. Because some policies are host-specific, we only
run them on a subset of widgets. “—” indicates experiments that are not applicable.

Live Sidebar Google

Number of instrumented files 2,000 1,179 194

Instrumentation points per file 1.74 8.86 5.63

Estimated overhead 40% 65% 73%

Figure 19: Instrumentation statistics.

highly optimized BDD-based solver for Datalog queries
used for static analysis in the past. Because repeatedly
starting bddbddb is inefficient we perform both the points-
to analysis and run our Datalog queries corresponding to
the policies in Section 4 as part of one run for each widget.

Our analysis is quite scalable in practice, as shown in
Figure 17. This histogram shows the distribution of analy-
sis time, in seconds. These results were obtained on a
Pentium Core 2 duo 3 GHz machine with 4 GB of mem-
ory, running Microsoft Vista SP1. Note that the analysis
time includes the JavaScript parsing time, the normaliza-
tion time, the points-to analysis time, and the time to run
all nine policies. For the vast majority of widgets, the
analysis time is under 4 seconds, as shown by the cumula-
tive percentage curve in the figure. The bddbddb-based
approach has been shown to scale to much larger pro-
grams — up to 500,000 lines of code — in the past [32], so
we are confident that we should be able to scale to larger
codebases in GATEKEEPER as well.

5.4 Runtime Instrumentation
Programs outside of the JavaScriptSAFE language subset
but within the JavaScriptGK language subset require instru-
mentation. Figure 19 summarizes data on the number of
instrumentation points required, both as an absolute num-
ber and in proportion of the number of widgets that re-
quired instrumentation.

We plan to fully assess our runtime overhead as part of
future work. However, we do not anticipate it to be pro-

hibitively high. The number of instrumentation points per
instrumented widget ranges roughly in proportion to the
size and complexity of the widget. However, it is gen-
erally difficult to perform large-scale overhead measure-
ments for a number of highly interactive widgets.

Instead we have devised an experiment to approximate
the overheads. Note that we can discern the average den-
sity of checks from the numbers in Figure 19: for instance,
for Live.com, the number of instrumentation points per
file is 1.74, with an average file being 105 lines, as shown
in Figure 15. This yields about 2% of all lines being in-
strumentated, on average.

To mimic this runtime check density, we generate a test
script shown in Figure 20 with 100 fields stores, where the
first two stores require runtime checking and the other 98
are statically known. For Sidebar and Google widgets,
we construct similar test scripts with a different density
of checks. As shown below, we use index innerHTML
for one out of two rewritten cases for Live. We use it
for 2 out of 3 cases for Sidebase, and 2 out of 4 cases
for Google. This represents a pretty high frequency of
innerHTML assignments.

We wrap this code in a loop that we run 1,000 times to
be able to measure the overheads reliably and then take
the median over several runs to account for noise. The
baseline is the same test with no index or right-hand side
checks. We observe overheads ranging between 40–73%
across the different instrumentation densities, as shown in
Figure 19. It appears that calls to toStaticHTML result in
a pretty substantial runtime penalty. This is likely because
the relatively heavy-weight HTML parser of the browser
needs to be invoked on every HTML snippet.

Note that this experiment provides an approximate
measure of overhead that real programs are likely to expe-
rience. However, these numbers are encouraging, as they
are significantly smaller overheads on the order of 6–40x
that tools like Caja may induce [28].

166	 18th USENIX Security Symposium	 USENIX Association

console.log(new Date().getTime());

var v1 = new Array();

var v2 = "<div onclick=’alert(38);’>" +

"<h2>Hello<script>alert(38)</script></div>";

for(var iter = 0; iter < 1000; iter++){

// first store: check

var i = ’innerHTML’;

if (i==="onclick" || i==="onkeypress" || ...) {

alert("Disguised eval at <file>:<line>");

} else

if(i==="innerHTML" && __IsUnsafe(v2)){

alert("Unsafe innerHTML at <file>:<line>");

} else {

v1[i] = v2;

}

// second store: check

i = ’onclick’;

if (i==="onclick" || i==="onkeypress" || ...) {

alert("Disguised eval at <file>:<line>");

} else

if(i==="innerHTML" && __IsUnsafe(v2)){

alert("Unsafe innerHTML at <file>:<line>");

} else {

v1[i] = v2;

}

// all other stores are unchecked

v1[i] = 2;

v1[i] = 3;

...

v1[i] = 100;

}

console.log(new Date().getTime());

Figure 20: Measuring the overhead of GATEKEEPER checking.

6 Related Work

Much of the work related to this paper focuses on limit-
ing various attack vectors that exist in JavaScript. They
do this through the use of type systems, language restric-
tions, and modifications to the browser or the runtime. We
describe these strategies in turn below.

6.1 Static Safety Checks

JavaScript is a highly dynamic language which makes it
difficult to reason about programs written in it. However,
with certain expressiveness restrictions, desirable secu-
rity properties can be achieved. ADSafe and Facebook
both implement a form of static checking to ensure a form
of safety in JavaScript code. ADSafe [13] disallows dy-
namic content, such as eval, and performs static check-
ing to ensure the JavaScript in question is safe. Facebook
takes an approach similar to ours in rewriting statically
unresolved field stores, however, it appears that, unlike
GATEKEEPER, they do not try to do local static analysis
of field names. Facebook uses a JavaScript language vari-
ant called FBJS [15], that is like JavaScript in many ways,

but DOM access is restricted and all variable names are
prefixed with a unique identifier to prevent name clashes
with other FBJS programs on the same page.

In many ways, however, designing a safe language sub-
set is a tricky business. Until recently, is was difficult to
write anything but most simple applications in AdSafe be-
cause of its static restrictions, at least in our personal ex-
perience. More recently, AdSafe was updated with APIs
to lift some of initial restrictions and allow DOM access,
etc., as well as several illustrative sample widgets. Over-
all, these changes to allow compelling widgets to be writ-
ten are an encouraging sign. While quite expressive, FBJS
has been the subject of several well-publicised attacks
that circumvent the isolation of the global object offered
through Facebook sandbox rewriting [2]. This demon-
strates that while easy to implement, reasoning about what
static language restrictions accomplish is tricky.

GATEKEEPER largely sidesteps the problem of proper
language subset design, opting for whole program analy-
sis instead. We do no try to prove that JavaScriptSAFE pro-
grams cannot pollute the global namespace for all pro-
grams, for example. Instead, we take the entire program
and a representation of its environment and use our static
analysis machinery to check if this may happen for the in-
put program in question. The use of static and points-to
analysis for finding and vulnerabilities and ensuring se-
curity properties has been previously explored for other
languages such as C [6] and Java [23].

An interesting recent development in JavaScript
language standards committees is the strict mode
(use strict) for JavaScript [14], page 223, which is be-
ing proposed around the time of this writing. Strict mode
accomplishes many of the goals that JavaScriptSAFE is de-
signed to accomplish: eval is largely prohibited, bad
coding practices such as assigning to the arguments ar-
ray are prevented, with is no longer allowed, etc. Since
the strict mode supports customization capabilities, going
forward we hope to be able to express JavaScriptSAFE and
JavaScriptGK restrictions in a standards-compliant way, so
that future off-the-shelf JavaScript interpreters would be
able to enforce them.

6.2 Rewriting and Instrumentation
A practical alternative to static language restrictions is
instrumentation. Caja [29] is one such attempt at limit-
ing capabilities of JavaScript programs and enforcing this
through the use of runtime checks. WebSandbox is an-
other project with similar goals that also attempts to en-
force reliability and resource restrictions in addition to se-
curity properties [25].

Yu et al. traverse the JavaScript document and rewrite
based on a security policy [35]. Unlike Caja and Web-
Sandbox, they prove the correctness of their rewriting

USENIX Association 	 18th USENIX Security Symposium	 167

with operational semantics for a subset of JavaScript
called CoreScript. BrowserShield [30] similarly uses dy-
namic and recursive rewriting to ensure that JavaScript
and HTML are safe, for a chosen version of safety, and
all content generated by the JavaScript and HTML is
also safe. Instrumentation can be used for more than
just enforcing security policies. AjaxScope [20] rewrites
JavaScript to insert instrumentation that sends runtime in-
formation, such as error reporting and memory leak de-
tection, back to the content provider.

Compared to these techniques, GATEKEEPER has two
main advantages. First, as a mostly static analysis, GATE-
KEEPER places little runtime overhead burden on the user.
While we are not aware of a comprehensive overhead
evaluation that has been published, it appears that the run-
time overhead of Caja and WebSandbox may be high, de-
pending on the level of rewriting. For instance, a Caja au-
thors’ report suggest that the overhead of various subsets
that are part of Caja are 6–40x [28]. Second, as evidenced
by the Facebook exploits mentioned above [2], it is chal-
lenging to reason about whether source-level rewriting
provides complete isolation. We feel that sound static
analysis may provide a more systematic way to reason
about what code can do, especially in the long run, as it
pertains to issues of security, reliability, and performance.
While the soundness of the native environment and ex-
haustiveness of our runtime checks might be weak points
of our approach, we feel that we can address these chal-
lenges as part of future work.

6.3 Runtime and Browser Support

Current browser infrastructure and the HTML standard re-
quire a page to fully trust foreign JavaScript if they want
the foreign JavaScript to interact with their site. The al-
ternative is to place foreign JavaScript in an isolated en-
vironment, which disallows any interaction with the host-
ing page. This leads to web sites trusting untrustworthy
JavaScript code in order to provide a richer web site. One
solution to get around this all-or-nothing trust problem is
to modify browsers and the HTML standard to include
a richer security model that allows untrusted JavaScript
controlled access to the hosting page.

MashupOS [18] proposes a new browser that is mod-
eled after an OS and modifies the HTML standard to pro-
vide new tags that make use of new browser functional-
ity. They provide rich isolation between execution en-
vironments, including resource sharing and communica-
tion across instances. In a more lightweight modification
to the browser and HTML, Felt et al. [16] add a new
HTML tag that labels a div element as untrusted and lim-
its the actions that any JavaScript inside of it can take.
This would allow content providers to create a sand box
in which to place untrusted JavaScript. Integrating GATE-

KEEPER techniques into the browser itself, without rely-
ing on server-side analysis, and making them fast enough
for daily use, is part of future work.

6.4 Typing and Analysis of JavaScript
A more useful type system in JavaScript could prevent er-
rors or safety violations. Since JavaScript does not have a
rich type system to begin with, the work here is devising
a correct type system for JavaScript and then building on
the proposed type system. Soft typing [8] might be one of
the more logical first steps in a type system for JavaScript.
Much like dynamic rewriters insert code that must be ex-
ecuted to ensure safety, soft typing must insert runtime
checks to ensure type safety.

Other work has been done to devise a static type system
that describes the JavaScript language [4, 5, 31]. These
works focus on a subset of JavaScript and provide sound
type systems and semantics for their restricted subests
of JavaScript. As far as we can tell, none of these ap-
proaches have been applied to realistic bodies of code.
GATEKEEPER uses a pointer analysis to reason about the
JavaScript program in contrast to the type systems and
analyses of these works. We feel that the ability to reason
about pointers and the program call graph allows us to ex-
press more interesting security policies than we would be
able otherwise.

A contemporaneous project by Chugh et al. focuses on
staged analysis of JavaScript and finding information flow
violations in client-side code [10]. Chugh et al. focus
on information flow properties such as reading document
cookies and changing the locations, not unlike the loca-
tion policy described in Section 4.4. A valuable feature of
that work is its support for dynamically loaded and gener-
ated JavaScript in the context of what is generally thought
of as whole-program analysis.

7 Conclusions

This paper presents GATEKEEPER, a mostly static sound
policy enforcement tool for JavaScript programs. GATE-
KEEPER is built on top of what to our knowledge is the
first pointer analysis developed for JavaScript. To show
the practicality of our approach, we describe nine rep-
resentative security and reliability policies for JavaScript
widgets. Statically checking these policies results in 1,341
verified warnings in 684 widgets, with 113 false positives
affecting only two widgets.

We feel that static analysis of JavaScript is a key build-
ing block for enabling an environment in which code from
different parties can safely co-exist and interact. The abil-
ity to analyze a programming language using automatic
tools is a valuable one for long-term language success.

168	 18th USENIX Security Symposium	 USENIX Association

It is therefore our hope that our experience with ana-
lyzable JavaScript language subsets will inform the de-
sign of language restrictions build into future versions of
the JavaScript language, as illustrated by the JavaScript
use strict mode.

While in this paper our focus is on policy enforcement,
the techniques outlines here are generally useful for any
task that involves reasoning about code such as code op-
timization, rewriting, program understanding tools, bug
finding tools, etc. Moreover, we hope that GATEKEEPER
paves the way for centrally-hosted software repositories
such as the iPhone application store, Windows Market-
place, or Android Market to ensure the security and qual-
ity of software contributed by third parties.

Acknowledgments

We are grateful to Trishul Chilimbi, David Evans, Karthik
Pattabiraman, Nikhil Swamy, and the anonymous review-
ers for their feedback on this paper. We appreciate John
Whaley’s help with bddbddb.

References

[1] A. V. Aho, M. Lam, R. Sethi, and J. D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley, 2007.

[2] Ajaxian. Facebook JavaScript and security. http://ajaxian.com/
archives/facebook-javascript-and-security, Aug. 2007.

[3] L. O. Andersen. Program analysis and specialization for the C pro-
gramming language. Technical report, University of Copenhagen,
1994.

[4] C. Anderson and P. Giannini. Type checking for JavaScript.
In In WOOD 04, volume WOOD of ENTCS. Elsevier, 2004.
http://www.binarylord.com/ work/js0wood.pdf, 2004.

[5] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type in-
ference for JavaScript. In In Proceedings of the European Con-
ference on Object-Oriented Programming, pages 429–452, July
2005.

[6] D. Avots, M. Dalton, B. Livshits, and M. S. Lam. Improving soft-
ware security with a C pointer analysis. In Proceedings of the In-
ternational Conference on Software Engineering, pages 332–341,
May 2005.

[7] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. Mc-
Garvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner. Thorough
static analysis of device drivers. In European Conference on Com-
puter Systems, pages 73–85, 2006.

[8] R. Cartwright and M. Fagan. Soft typing. ACM SIGPLAN Notices,
39(4):412–428, 2004.

[9] B. Chess, Y. T. O’Neil, and J. West. JavaScript hi-
jacking. www.fortifysoftware.com/servlet/downloads/public/

JavaScript Hijacking.pdf, Mar. 2007.
[10] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged infor-

mation flow for JavaScript. In Proceedings of the Conference on
Programming Language Design and Implementation, June 2009.

[11] D. Crockford. Globals are evil. http://yuiblog.com/blog/2006/

06/01/global-domination/, June 2006.
[12] D. Crockford. JavaScript: the good parts. 2008.
[13] D. Crockford. AdSafe: Making JavaScript safe for advertising.

http://www.adsafe.org, 2009.

[14] ECMA. Ecma-262: Ecma/tc39/2009/025, 5th edition, fi-
nal draft. http://www.ecma-international.org/publications/

files/drafts/tc39-2009-025.pdf, Apr. 2009.
[15] Facebook, Inc. Fbjs. http://wiki.developers.facebook.com/

index.php/FBJS, 2007.
[16] A. Felt, P. Hooimeijer, D. Evans, and W. Weimer. Talking to

strangers without taking their candy: isolating proxied content. In
Proceedings of the Workshop on Social Network Systems, pages
25–30, 2008.

[17] Finjan Inc. Web security trends report. http://www.finjan.com/

GetObject.aspx?ObjId=506.
[18] J. Howell, C. Jackson, H. J. Wang, and X. Fan. MashupOS: Op-

erating system abstractions for client mashups. In Proceedings of
the Workshop on Hot Topics in Operating Systems, May 2007.

[19] javascript-reference.info. JavaScript obfusca-
tors review. http://javascript-reference.info/

javascript-obfuscators-review.htm, 2008.
[20] E. Kıcıman and B. Livshits. AjaxScope: a platform for remotely

monitoring the client-side behavior of Web 2.0 applications. In
Proceedings of Symposium on Operating Systems Principles, Oct.
2007.

[21] M. S. Lam, J. Whaley, B. Livshits, M. C. Martin, D. Avots,
M. Carbin, and C. Unkel. Context-sensitive program analysis as
database queries. In Proceedings of the Symposium on Principles
of Database Systems, June 2005.

[22] B. Livshits and S. Guarnieri. Gatekeeper: Mostly static enforce-
ment of security and reliability policies for JavaScript code. Tech-
nical Report MSR-TR-2009-43, Microsoft Research, Feb. 2009.

[23] B. Livshits and M. S. Lam. Finding security errors in Java pro-
grams with static analysis. In Proceedings of the Usenix Security
Symposium, pages 271–286, Aug. 2005.

[24] Microsoft Corporation. Static driver verifier. http://www.

microsoft.com/whdc/devtools/tools/SDV.mspx, 2005.
[25] Microsoft Live Labs. Live Labs Websandbox. http://

websandbox.org, 2008.
[26] Microsoft Live Labs. Quality of service (QoS) protec-

tions. http://websandbox.livelabs.com/documentation/use

qos.aspx, 2008.
[27] Microsoft Security Bulletin. Vulnerabilities in Windows gadgets

could allow remote code execution (938123). http://www.

microsoft.com/technet/security/Bulletin/MS07-048.mspx,
2007.

[28] M. S. Miller. Is it possible to mix ExtJS and google-caja to
enhance security. http://extjs.com/forum/showthread.php?p=

268731#post268731, Jan. 2009.
[29] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja:

Safe active content in sanitized JavaScript. http://google-caja.

googlecode.com/files/caja-2007.pdf, 2007.
[30] C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and S. Esmeir.

BrowserShield: Vulnerability-driven filtering of dynamic HTML.
In Proceedings of the Symposium on Operating Systems Design
and Implementation, 2006.

[31] P. Thiemann. Towards a type system for analyzing JavaScript pro-
grams. 2005.

[32] J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using Datalog
and binary decision diagrams for program analysis. In Proceedings
of the Asian Symposium on Programming Languages and Systems,
Nov. 2005.

[33] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. In Proceedings of
the Conference on Programming Language Design and Implemen-
tation, pages 131–144, June 2004.

[34] Windows Live. Windows live gadget developer checklist. http:

//dev.live.com/gadgets/sdk/docs/checklist.htm, 2008.
[35] D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript instru-

mentation for browser security. In Proceedings of Conference on
Principles of Programming Languages, Jan. 2007.

USENIX Association 	 18th USENIX Security Symposium	 169

NOZZLE: A Defense Against
Heap-spraying Code Injection Attacks

Paruj Ratanaworabhan
Cornell University
paruj@csl.cornell.edu

Benjamin Livshits
Microsoft Research
livshits@microsoft.com

Benjamin Zorn
Microsoft Research

zorn@microsoft.com

Abstract
Heap spraying is a security attack that increases the ex-
ploitability of memory corruption errors in type-unsafe
applications. In a heap-spraying attack, an attacker co-
erces an application to allocate many objects containing
malicious code in the heap, increasing the success rate of
an exploit that jumps to a location within the heap. Be-
cause heap layout randomization necessitates new forms
of attack, spraying has been used in many recent security
exploits. Spraying is especially effective in web browsers,
where the attacker can easily allocate the malicious ob-
jects using JavaScript embedded in a web page. In this
paper, we describe NOZZLE, a runtime heap-spraying de-
tector. NOZZLE examines individual objects in the heap,
interpreting them as code and performing a static analysis
on that code to detect malicious intent. To reduce false
positives, we aggregate measurements across all heap ob-
jects and define a global heap health metric.

We measure the effectiveness of NOZZLE by demon-
strating that it successfully detects 12 published and 2,000
synthetically generated heap-spraying exploits. We also
show that even with a detection threshold set six times
lower than is required to detect published malicious
attacks, NOZZLE reports no false positives when run
over 150 popular Internet sites. Using sampling and con-
current scanning to reduce overhead, we show that the
performance overhead of NOZZLE is less than 7% on av-
erage. While NOZZLE currently targets heap-based spray-
ing attacks, its techniques can be applied to any attack that
attempts to fill the address space with malicious code ob-
jects (e.g., stack spraying [42]).

1 Introduction
In recent years, security improvements have made it in-
creasingly difficult for attackers to compromise systems.
Successful prevention measures in runtime environments
and operating systems include stack protection [10], im-
proved heap allocation layouts [7, 20], address space lay-
out randomization [8, 36], and data execution preven-

tion [21]. As a result, attacks that focus on exploiting
memory corruptions in the heap are now popular [28].

Heap spraying, first described in 2004 by
SkyLined [38], is an attack that allocates many objects
containing the attacker’s exploit code in an application’s
heap. Heap spraying is a vehicle for many high profile
attacks, including a much publicized exploit in Internet
Explorer in December 2008 [23] and a 2009 exploit of
Adobe Reader using JavaScript embedded in malicious
PDF documents [26].

Heap spraying requires that an attacker use another se-
curity exploit to trigger an attack, but the act of spraying
greatly simplifies the attack and increases its likelihood
of success because the exact addresses of objects in the
heap do not need to be known. To perform heap spray-
ing, attackers have to be able to allocate objects whose
contents they control in an application’s heap. The most
common method used by attackers to achieve this goal
is to target an application, such as a web browser, which
executes an interpreter as part of its operation. By pro-
viding a web page with embedded JavaScript, an attacker
can induce the interpreter to allocate their objects, allow-
ing the spraying to occur. While this form of spraying at-
tack is the most common, and the one we specifically con-
sider in this paper, the techniques we describe apply to all
forms of heap spraying. A number of variants of spraying
attacks have recently been proposed including sprays in-
volving compiled bytecode, ANI cursors [22], and thread
stacks [42].

In this paper, we describe NOZZLE, a detector of heap
spraying attacks that monitors heap activity and reports
spraying attempts as they occur. To detect heap spray-
ing attacks, NOZZLE has two complementary compo-
nents. First, NOZZLE scans individual objects looking
for signs of malicious intent. Malicious code commonly
includes a landing pad of instructions (a so-called NOP
sled) whose execution will lead to dangerous shellcode.
NOZZLE focuses on detecting a sled through an analysis
of its control flow. We show that prior work on sled de-
tection [4, 16, 31, 43] has a high false positive rate when
applied to objects in heap-spraying attacks (partly due to

170	 18th USENIX Security Symposium	 USENIX Association

the opcode density of the x86 instruction set). NOZZLE
interprets individual objects as code and performs a static
analysis, going beyond prior sled detection work by rea-
soning about code reachability. We define an attack sur-
face metric that approximately answers the question: “If I
were to jump randomly into this object (or heap), what is
the likelihood that I would end up executing shellcode?”

In addition to local object detection, NOZZLE aggre-
gates information about malicious objects across the en-
tire heap, taking advantage of the fact that heap spraying
requires large-scale changes to the contents of the heap.
We develop a general notion of global “heap health” based
on the measured attack surface of the applicatoin heap
contents, and use this metric to reduce NOZZLE’s false
positive rates.

Because NOZZLE only examines object contents and
requires no changes to the object or heap structure, it can
easily be integrated into both native and garbage-collected
heaps. In this paper, we implement NOZZLE by inter-
cepting calls to the memory manager in the Mozilla Fire-
fox browser (version 2.0.0.16). Because browsers are the
most popular target of heap spray attacks, it is crucial for
a successful spray detector to both provide high success-
ful detection rates and low false positive rates. While the
focus of this paper is on low-overhead online detection
of heap spraying, NOZZLE can be easily used for offline
scanning to find malicious sites in the wild [45]. For of-
fline scanning, we can combine our spraying detector with
other checkers such as those that match signatures against
the exploit code, etc.

1.1 Contributions
This paper makes the following contributions:

• We propose the first effective technique for detect-
ing heap-spraying attacks through runtime interpre-
tation and static analysis. We introduce the concept
of attack surface area for both individual objects and
the entire heap. Because directing program control
to shellcode is a fundamental property of NOP sleds,
the attacker cannot hide that intent from our analysis.

• We show that existing published sled detection tech-
niques [4, 16, 31, 43] have high false positive rates
when applied to heap objects. We describe new tech-
niques that dramatically lower the false positive rate
in this context.

• We measure Firefox interacting with popular web
sites and published heap-spraying attacks, we show
that NOZZLE successfully detects 100% of 12
published and 2,000 synthetically generated heap-
spraying exploits. We also show that even with a
detection threshold set six times lower than is re-
quired to detect known malicious attacks, NOZZLE

reports no false positives when tested on 150 popular
Alexa.com sites.

• We measure the overhead of NOZZLE, showing
that without sampling, examining every heap object
slows execution 2–14 times. Using sampling and
concurrent scanning, we show that the performance
overhead of NOZZLE is less than 7% on average.

• We provide the results of applying NOZZLE to
Adobe Reader to prevent a recent heap spraying ex-
ploit embedded in PDF documents. NOZZLE suc-
ceeds at stopping this attack without any modifica-
tions, with a runtime overhead of 8%.

1.2 Paper Organization
The rest of the paper is organized as follows. Section 2
provides background on heap spraying attacks. Section 3
provides an overview of NOZZLE and Section 4 goes into
the technical details of our implementation. Section 5
summarizes our experimental results. While NOZZLE is
the first published heap spraying detection technique, our
approach has several limitations, which we describe fully
in Section 6. Finally, Section 7 describes related work and
Section 8 concludes.

2 Background
Heap spraying has much in common with existing stack
and heap-based code injection attacks. In particular, the
attacker attempts to inject code somewhere in the address
space of the target program, and through a memory cor-
ruption exploit, coerce the program to jump to that code.
Because the success of stack-based exploits has been re-
duced by the introduction of numerous security measures,
heap-based attacks are now common. Injecting and ex-
ploiting code in the heap is more difficult for an attacker
than placing code on the stack because the addresses of
heap objects are less predictable than those of stack ob-
jects. Techniques such as address space layout random-
ization [8, 36] further reduce the predictability of objects
on the heap. Attackers have adopted several strategies for
overcoming this uncertainty [41], with heap spraying the
most successful approach.

Figure 1 illustrates a common method of implementing
a heap-spraying attack. Heap spraying requires a memory
corruption exploit, as in our example, where an attacker
has corrupted a vtable method pointer to point to an in-
correct address of their choosing. At the same time, we
assume that the attacker has been able, through entirely
legal methods, to allocate objects with contents of their
choosing on the heap. Heap spraying relies on populating
the heap with a large number of objects containing the at-
tacker’s code, assigning the vtable exploit to jump to an

USENIX Association 	 18th USENIX Security Symposium	 171

sprayed heap area

0x0d0d0d

object of type T

vtable for T

Indirect call to sprayed heap

method m1

method m2

Figure 1: Schematic of a heap spraying attack.

1. <SCRIPT language="text/javascript">

2. shellcode = unescape("%u4343%u4343%...");

3. oneblock = unescape("%u0D0D%u0D0D");

4.

5. var fullblock = oneblock;

6. while (fullblock.length<0x40000) {

7. fullblock += fullblock;

8. }

9.

10. sprayContainer = new Array();

11. for (i=0; i<1000; i++) {

12. sprayContainer[i] = fullblock + shellcode;

13. }

14. </SCRIPT>

Figure 2: A typical JavaScript heap spray.

arbitrary address in the heap, and relying on luck that the
jump will land inside one of their objects. To increase the
likelihood that the attack will succeed, attackers usually
structure their objects to contain an initial NOP sled (in-
dicated in white) followed by the code that implements
the exploit (commonly referred to as shellcode, indicated
with shading). Any jump that lands in the NOP sled will
eventually transfer control to the shellcode. Increasing the
size of the NOP sled and the number of sprayed objects in-
creases the probability that the attack will be successful.

Heap spraying requires that the attacker control the
contents of the heap in the process they are attacking.
There are numerous ways to accomplish this goal, in-
cluding providing data (such as a document or image)
that when read into memory creates objects with the de-
sired properties. An easier approach is to take advantage
of scripting languages to allocate these objects directly.
Browsers are particularly vulnerable to heap spraying be-
cause JavaScript embedded in a web page authored by the
attacker greatly simplifies such attacks.

The example shown in Figure 2 is modelled after a pre-
viously published heap-spraying exploit [44]. While we

are only showing the JavaScript portion of the page, this
payload would be typically embedded within an HTML
page on the web. Once a victim visits the page, the Java-
Script payload is automatically executed. Lines 2 allo-
cates the shellcode into a string, while lines 3–8 of the
JavaScript code are responsible for setting up the spray-
ing NOP sled. Lines 10–13 create JavaScript objects each
of which is the result of combining the sled with the shell-
code. It is quite typical for published exploits to contain a
long sled (256 KB in this case). Similarly, to increase the
effectiveness of the attack, a large number of JavaScript
objects are allocated on the heap, 1,000 in this case. Fig-
ure 10 in Section 5 provides more information on previ-
ously published exploits.

3 Overview

While type-safe languages such as Java, C#, and Java-
Script reduce the opportunity for malicious attacks, heap-
spraying attacks demonstrate that even a type-safe pro-
gram can be manipulated to an attacker’s advantage.
Unfortunately, traditional signature-based pattern match-
ing approaches used in the intrusion detection literature
are not very effective when applied to detecting heap-
spraying attacks. This is because in a language as flexi-
ble as JavaScript it is easy to hide the attack code by ei-
ther using encodings or making it polymorphic; in fact,
most JavaScript worms observed in the wild use some
form of encoding to disguise themselves [19, 34]. As
a result, effective detection techniques typically are not
syntactic. They are performed at runtime and employ
some level of semantic analysis or runtime interpretation.
Hardware support has even been provided to address this
problem, with widely used architectures supporting a “no-
execute bit”, which prevents a process from executing
code on specific pages in its address space [21]. We dis-

172	 18th USENIX Security Symposium	 USENIX Association

Browser process

Browser heapbrowser threads Nozzle detector

A
llo

ca
tio

n
hi

so
ry

NOZZLE threads

Figure 3: NOZZLE system architecture.

cuss how NOZZLE complements existing hardware solu-
tions in Section 7. In this paper, we consider systems that
use the x86 instruction set architecture (ISA) running the
Windows operating system, a ubiquitous platform that is
a popular target for attackers.

3.1 Lightweight Interpretation

Unlike previous security attacks, a successful heap-
spraying attack has the property that the attack influences
the contents of a large fraction of the heap. We propose
a two-level approach to detecting such attacks: scanning
objects locally while at the same time maintaining heap
health metrics globally.

At the individual object level, NOZZLE performs light-
weight interpretation of heap-allocated objects, treating
them as though they were code. This allows us to rec-
ognize potentially unsafe code by interpreting it within a
safe environment, looking for malicious intent.

The NOZZLE lightweight emulator scans heap objects
to identify valid x86 code sequences, disassembling the
code and building a control flow graph [35]. Our analysis
focuses on detecting the NOP sled, which is somewhat of
a misnomer. The sled can be composed of arbitrary in-
structions (not just NOPs) as long as the effect they have
on registers, memory, and the rest of the machine state do
not terminate execution or interfere with the actions of the
shellcode. Because the code in the sled is intended to be
the target of a misdirected jump, and thus has to be exe-
cutable, the attacker cannot hide the sled with encryption
or any means that would prevent the code from execut-
ing. In our analysis, we exploit the fundamental nature of
the sled, which is to direct control flow specifically to the
shellcode, and use this property as a means of detecting
it. Furthermore, our method does not require detecting or

assume there exists a definite partition between the shell-
code and the NOP sled.

Because the attack jump target cannot be precisely con-
trolled, the emulator follows control flow to identify ba-
sic blocks that are likely to be reached through jumps
from multiple offsets into the object. Our local detec-
tion process has elements in common with published
methods for sled detection in network packet process-
ing [4, 16, 31, 43]. Unfortunately, the density of the x86
instruction set makes the contents of many objects look
like executable code, and as a result, published methods
lead to high false positive rates, as demonstrated in Sec-
tion 5.1.

We have developed a novel approach to mitigate this
problem using global heap health metrics, which effec-
tively distinguishes benign allocation behavior from ma-
licious attacks. Fortunately, an inherent property of heap-
spraying attacks is that such attacks affect the heap glob-
ally. Consequently, NOZZLE exploits this property to
drastically reduce the false positive rate.

3.2 Threat Model

We assume that the attacker has access to memory vulner-
abilities for commonly used browsers and also can lure
users to a web site whose content they control. This pro-
vides a delivery mechanism for heap spraying exploits.
We assume that the attacker does not have further access
to the victim’s machine and the machine is otherwise un-
compromised. However, the attacker does not control the
precise location of any heap object.

We also assume that the attacker knows about the NOZ-
ZLE techniques and will try to avoid detection. They
may have access to the browser code and possess detailed
knowledge of system-specific memory layout properties

USENIX Association 	 18th USENIX Security Symposium	 173

such as object alignment. There are specific potential
weaknesses that NOZZLE has due to the nature of its run-
time, statistical approach. These include time-of-check
to time-of-use vulnerabilities, the ability of the attacker
to target their attack under NOZZLE’s thresholds, and the
approach of inserting junk bytes at the start of objects to
avoid detection. We consider these vulnerabilities care-
fully in Section 6, after we have presented our solution in
detail.

4 Design and Implementation
In this section, we formalize the problem of heap spray
detection, provide improved algorithms for detecting sus-
picious heap objects, and describe the implementation of
NOZZLE.

4.1 Formalization
This section formalizes our detection scheme informally
described in Section 3.1, culminating in the notion of a
normalized attack surface, a heap-global metric that re-
flects the overall heap exploitability and is used by NOZ-
ZLE to flag potential attacks.

Definition 1. A sequence of bytes is legitimate, if it can
be decoded as a sequence of valid x86 instructions. In a
variable length ISA this implies that the processor must be
able to decode every instruction of the sequence. Specif-
ically, for each instruction, the byte sequence consists of
a valid opcode and the correct number of arguments for
that instruction.

Unfortunately, the x86 instruction set is quite dense,
and as a result, much of the heap data can be inter-
preted as legitimate x86 instructions. In our experiments,
about 80% of objects allocated by Mozilla Firefox contain
byte sequences that can be interpreted as x86 instructions.

Definition 2. A valid instruction sequence is a legitimate
instruction sequence that does not include instructions in
the following categories:

• I/O or system calls (in, outs, etc)
• interrupts (int)
• privileged instructions (hlt, ltr)
• jumps outside of the current object address range.

These instructions either divert control flow out of the
object’s implied control flow graph or generate exceptions
and terminate (privileged instructions). If they appear in
a path of the NOP sled, they prevent control flow from
reaching the shellcode via that path. When these instruc-
tions appear in the shellcode, they do not hamper the con-
trol flow in the NOP sled leading to that shellcode in any
way.

Semi-lattice L bitvectors of length N
Top  1̄
Initial value init(Bi) 0̄
Transfer function T F (Bi) 0 . . . 010 . . . 0 (ith bit set)
Meet operator ∧(x, y) x ∨ y (bitwise or)
Direction forward

Figure 4: Dataflow problem parametrization for comput-
ing the surface area (see Aho et al.).

Previous work on NOP sled detection focuses on exam-
ining possible attacks for properties like valid instruction
sequences [4, 43]. We use this definition as a basic ob-
ject filter, with results presented in Section 5.1. Using this
approach as the sole technique for detecting attacks leads
to an unacceptable number of false positives, and more
selective techniques are necessary.

To improve our selectivity, NOZZLE attempts to dis-
cover objects in which control flow through the object (the
NOP sled) frequently reaches the same basic block(s) (the
shellcode, indicated in Figure 1), the assumption being
that an attacker wants to arrange it so that a random jump
into the object will reach the shellcode with the greatest
probability.

Our algorithm constructs a control flow graph (CFG) by
interpreting the data in an object at offset∆ as an instruc-
tion stream. For now, we consider this offset to be zero
and discuss the implications of malicious code injected at
a different starting offset in Section 6. As part of the con-
struction process, we mark the basic blocks in the CFG
as valid and invalid instruction sequences, and we modify
the definition of a basic block so that it terminates when
an invalid instruction is encountered. A block so termi-
nated is considered an invalid instruction sequence. For
every basic block within the CFG we compute the sur-
face area, a proxy for the likelihood of control flow pass-
ing through the basic block, should the attacker jump to a
random memory address within the object.

Algorithm 1. Surface area computation.
Inputs: Control flow graph C consisting of

• Basic blocks B1, . . . , BN

• Basic block weights, W̄ , a single-column vector of
size N where element Wi indicates the size of block
Bi in bytes

• A validity bitvector V̄ , a single-row bitvector whose
ith element is set to one only when block Bi contains
a valid instruction sequence and set to zero other-
wise.

• MASK1, . . . ,MASKN , where MASKi is a
single-row bitvector of size N where all the bits are
one except at the ith position where the bit is zero.

174	 18th USENIX Security Symposium	 USENIX Association

111111

111110 111101 111011 011111

111100 111010 110110

T

...

110111 101111

110110 110110

Figure 5: Semi-lattice used in Example 1.

Outputs: Surface area for each basic block
SA(Bi), Bi ∈ C.

Solution: We define a parameterized dataflow problem
using the terminology in Aho et al. [2], as shown in
Figure 4. We also relax the definition of a conventional
basic block; whenever an invalid instruction is encoun-
tered, the block prematurely terminates. The goal of the
dataflow analysis is to compute the reachability between
basic blocks in the control graph inferred from the con-
tents of the object. Specifically, we want to determine
whether control flow could possibly pass through a given
basic block if control starts at each of the other N − 1
blocks. Intuitively, if control reaches a basic block from
many of the other blocks in the object (demonstrating a
“funnel” effect), then that object exhibits behavior consis-
tent with having a NOP sled and is suspicious.

Dataflow analysis details: The dataflow solution com-
putes out(Bi) for every basic block Bi ∈ C. out(Bi) is a
bitvector of length N, with one bit for each basic block in
the control flow graph. The meaning of the bits in out(Bi)
are as follows: the bit at position j, where j = i indicates
whether a possible control path exists starting at block j
and ending at block i. The bit at position i in Bi is always
one. For example, in Figure 6, a path exists between block
1 and 2 (a fallthrough), and so the first bit of out(B2) is
set to 1. Likewise, there is no path from block 6 to block
1, so the sixth bit of out(B1) is zero.

The dataflow algorithm computes out(Bi) for each Bi

by initializing them, computing the contribution that each
basic block makes to out(Bi), and propagating interme-
diate results from each basic block to its successors (be-
cause this is a forward dataflow computation). When re-
sults from two predecessors need to be combined at a join
point, the meet operator is used (in this case a simple
bitwise or). The dataflow algorithm iterates the forward
propagation until the results computed for each Bi do not
change further. When no further changes occur, the final
values of out(Bi) have been computed. The iterative al-
gorithm for this forward dataflow problem is guaranteed
to terminate in no more than the number of steps equal to
the product of the semi-lattice height and the number of
basic blocks in the control flow graph [2].

Figure 6: The control flow graph for Example 1.

Having calculated out(Bi), we are now ready to com-
pute the surface area of the basic block Bi. The surface
area of a given block is a metric that indicates how likely
the block will be reached given a random control flow
landing on this object. The surface area of basic block
Bi, SA(Bi), is computed as follows:

SA(Bi) = (out(Bi) ∧ V̄ ∧MASKi) · W̄

where out(Bi) is represented by a bitvector whose val-
ues are computed using the iterative dataflow algorithm
above. V̄ , W̄ , and MASKi are the algorithm’s inputs. V̄
is determined using the validity criteria mentioned above,
while W̄ is the size of each basic block in bytes. MASKi

is used to mask out the contribution of Bi’s weight to its
own surface area. The intuition is that we discard the con-
tribution from the block itself as well as other basic blocks
that are not valid instruction sequences by logically bit-
wise ANDing out(Bi), V̄ , and MASKi. Because the
shellcode block does not contribute to actual attack sur-
face (since a jump inside the shellcode is not likely to re-
sult in a successful exploit), we do not include the weight
of Bi as part of the attack surface. Finally, we perform
vector multiplication to account for the weight each basic
block contributes—or does not—to the surface area of Bi.

In summary, the surface area computation based on the
dataflow framework we described accounts for the contri-
bution each basic block, through its weight and validity,

USENIX Association 	 18th USENIX Security Symposium	 175

has on every other blocks reachable by it. Our computa-
tion method can handle code with complex control flow
involving arbitrary nested loops. It also allows for the dis-
covery of malicious objects even if the object has no clear
partition between the NOP sled and the shellcode itself.

Complexity analysis. The standard iterative algorithm
for solving dataflow problems computes out(Bi) values
with an average complexity bound of O(N). The only
complication is that doing the lattice meet operation on
bitvectors of length N is generally an O(N) and not
a constant time operation. Luckily, for the majority of
CFGs that arise in practice — 99.08% in the case of
Mozilla Firefox opened and interacted on www.google.
com — the number of basic blocks is fewer than 64, which
allows us to represent dataflow values as long integers
on 64-bit hardware. For those rare CFGs that contain
over 64 basic blocks, a generic bitvector implementation
is needed.

Example 1 Consider the CFG in Figure 6. The semi-
lattice for this CFG of size 6 is partially shown in Fig-
ure 5. Instructions in the CFG are color-coded by instruc-
tion type. In particular, system calls and I/O instructions
interrupt the normal control flow. For simplicity, we show
W̄i as the number of instructions in each block, instead
of the number of bytes. The values used and produced by
the algorithm are summarized in Figure 7. The out(Bi)
column shows the intermediate results for dataflow calcu-
lation after the first pass. The final solution is shown in
the out(Bi) column. 

Given the surface area of individual blocks, we com-
pute the attack surface area of object o as:

SA(o) = max(SA(Bi), Bi ∈ C)

For the entire heap, we accumulate the attack surface of
the individual objects.

Definition 3. The attack surface area of heap H , SA(H),
containing objects o1, . . . , on is defined as follows:


i=1,...,n

SA(oi)

Definition 4. The normalized attack surface area of
heap H , denoted asNSA(H), is defined as: SA(H)/|H|.

The normalized attack surface area metric reflects the
overall heap “health” and also allows us to adjust the fre-
quency with which NOZZLE runs, thereby reducing the
runtime overhead, as explained below.

4.2 Nozzle Implementation
NOZZLE needs to periodically scan heap object content in
a way that is analogous to a garbage collector mark phase.

By instrumenting allocation and deallocation routines, we
maintain a table of live objects that are later scanned asyn-
chronously, on a different NOZZLE thread.

We adopt garbage collection terminology in our de-
scription because the techniques are similar. For exam-
ple, we refer to the threads allocating and freeing objects
as the mutator threads, while we call the NOZZLE threads
scanning threads. While there are similarities, there are
also key differences. For example, NOZZLE works on an
unmanaged, type-unsafe heap. If we had garbage collec-
tor write barriers, it would improve our ability to address
the TOCTTOU (time-of-check to time-of-use) issue dis-
cussed in Section 6.

4.2.1 Detouring Memory Management Routines

We use a binary rewriting infrastructure called De-
tours [14] to intercept functions calls that allocate and
free memory. Within Mozilla Firefox these routines
are malloc, calloc, realloc, and free, defined in
MOZCRT19.dll. To compute the surface area, we main-
tain information about the heap including the total size of
allocated objects.

NOZZLE maintains a hash table that maps the addresses
of currently allocated objects to information including
size, which is used to track the current size and contents of
the heap. When objects are freed, we remove them from
the hash table and update the size of the heap accordingly.
Note that if NOZZLE were more closely integrated into the
heap allocator itself, this hash table would be unnecessary.

NOZZLE maintains an ordered work queue that serves
two purposes. First, it is used by the scanning thread as a
source of objects that need to be scanned. Second, NOZ-
ZLE waits for objects to mature before they are scanned,
and this queue serves that purpose. Nozzle only considers
objects of size greater than 32 bytes to be put in the work
queue as the size of any harmful shellcode is usually larger
than this

To reduce the runtime overhead of NOZZLE, we ran-
domly sample a subset of heap objects, with the goal of
covering a fixed fraction of the total heap. Our current
sampling technique is based on sampling by object, but as
our results show, an improved technique would base sam-
pling frequency on bytes allocated, as some of the pub-
lished attacks allocate a relatively small number of large
objects.

4.2.2 Concurrent Object Scanning

We can reduce the performance impact of object scanning,
especially on multicore hardware, with the help of multi-
ple scanning threads. As part of program detouring, we
rewrite the main function to allocate a pool of N scan-
ning threads to be used by NOZZLE, as shown in Figure 2.

176	 18th USENIX Security Symposium	 USENIX Association

Bi TF (Bi) V̄i W̄i out(Bi) out(Bi) out(Bi) ∧ V̄ ∧ MASKi SA(Bi)

1 100000 1 4 100000 111110 011010 8
2 010000 1 2 110000 111110 101010 10
3 001000 1 4 111000 111110 110010 8
4 000100 0 3 110100 111110 111010 12
5 000010 1 2 111110 111110 111000 10
6 000001 0 2 111111 111111 111010 12

Figure 7: Dataflow values for Example 1.

This way, a mutator only blocks long enough when allo-
cating and freeing objects to add or remove objects from
a per-thread work queue.

The task of object scanning is subdivided among the
scanning threads the following way: for an object at ad-
dress a, thread number

(a>>p) % N

is responsible for both maintaining information about that
object and scanning it, where p is the number of bits re-
quired to encode the operating system page size (typi-
cally 12 on Windows). In other words, to preserve the spa-
tial locality of heap access, we are distributing the task of
scanning individual pages among the N threads. Instead
of maintaining a global hash table, each thread maintains
a local table keeping track of the sizes for the objects it
handles.

Object scanning can be triggered by a variety of events.
Our current implementation scans objects once, after a
fixed delay of one object allocation (i.e., we scan the pre-
viously allocated object when we see the next object al-
located). This choice works well for JavaScript, where
string objects are immutable, and hence initialized imme-
diately after they are allocated. Alternately, if there are
extra cores available, scanning threads could pro-actively
rescan objects without impacting browser performance
and reducing TOCTTOU vulnerabilities (see Section 6).

4.3 Detection and Reporting
NOZZLE maintains the values NSA(H) and SA(H) for
the currently allocated heap H . The criteria we use to
conclude that there is an attack in progress combines an
absolute and a relative threshold:

(NSA(H) > thnorm) ∧ (SA(H) > thabs)

When this condition is satisfied, we warn the user about
a potential security attack in progress and allow them to
kill the browser process. An alternative would be to take
advantage of the error reporting infrastructure built into
modern browsers to notify the browser vendor.

Figure 8: Global normalized attack surface for
economist.com versus a published exploit (612).

These thresholds are defined based on a comparison of
benign and malicious web pages (Section 5.1). The guid-
ing principle behind the threshold determination is that for
the attacker to succeed, the exploit needs to be effective
with reasonable probability. For the absolute threshold,
we choose five megabytes, which is roughly the size of
the Firefox heap when opening a blank page. A real attack
would need to fill the heap with at least as many malicious
objects, assuming the attacker wanted the ratio of mali-
cious to non-malicious objects to be greater than 50%.

5 Evaluation
The bulk of our evaluation focuses on applying NOZZLE
to the Firefox web browser. Section 5.5 talks about using
NOZZLE to protect Adobe Acrobat Reader.

We begin our evaluation by showing what a heap-
spraying attack looks like as measured using our nor-
malized attack surface metric. Figure 8 shows the at-
tack surface area of the heap for two web sites: a benign
site (economist.com), and a site with a published heap-
spraying attack, similar to the one presented in Figure 2.
Figure 8 illustrates how distinctive a heap-spraying attack

USENIX Association 	 18th USENIX Security Symposium	 177

is when viewed through the normalized attack surface fil-
ter. The success of NOZZLE depends on its ability to dis-
tinguish between these two kinds of behavior. After see-
ing Figure 8, one might conclude that we can detect heap
spraying activity based on how rapidly the heap grows.
Unfortunately, benign web sites as economist.com can
possess as high a heap growth rate as a rogue page per-
forming heap spraying. Moreover, unhurried attackers
may avoid such detection by moderating the heap growth
rate of their spray. In this section, we present the false pos-
itive and false negative rate of NOZZLE, as well as its per-
formance overhead, demonstrating that it can effectively
distinguish benign from malicious sites.

For our evaluations, we collected 10 heavily-used be-
nign web sites with a variety of content and levels of
scripting, which we summarize in Figure 9. We use
these 10 sites to measure the false positive rate and also
the impact of NOZZLE on browser performance, dis-
cussed in Section 5.3. In our measurements, when visit-
ing these sites, we interacted with the site as a normal user
would, finding a location on a map, requesting driving di-
rections, etc. Because such interaction is hard to script
and reproduce, we also studied the false positive rate of
NOZZLE using a total of 150 benign web sites, chosen
from the most visited sites as ranked by Alexa [5]1. For
these sites, we simply loaded the first page of the site and
measured the heap activity caused by that page alone.

To evaluates NOZZLE’s ability to detect malicious at-
tacks, we gathered 12 published heap-spraying exploits,
summarized in Figure 10. We also created 2,000 syn-
thetically generated exploits using the Metasploit frame-
work [12]. Metasploit allows us to create many malicious
code sequences with a wide variety of NOP sled and shell-
code contents, so that we can evaluate the ability of our
algorithms to detect such attacks. Metasploit is parame-
terizable, and as a result, we can create attacks that contain
NOP sleds alone, or NOP sleds plus shellcode. In creat-
ing our Metasploit exploits, we set the ratio of NOP sled
to shellcode at 9:1, which is quite a low ratio for a real
attack but nevertheless presents no problems for NOZZLE
detection.

5.1 False Positives

To evaluate the false positive rate, we first consider using
NOZZLE as a global detector determining whether a heap
is under attack, and then consider the false-positive rate
of NOZZLE as a local detector that is attempting to detect
individual malicious objects. In our evaluation, we com-
pare NOZZLE and STRIDE [4], a recently published local
detector.

1Our tech report lists the full set of sites used [32].

Download JavaScript Load time
Site URL (kilobytes) (kilobytes) (seconds)

economist.com 613 112 12.6
cnn.com 885 299 22.6
yahoo.com 268 145 6.6
google.com 25 0 0.9
amazon.com 500 22 14.8
ebay.com 362 52 5.5
facebook.com 77 22 4.9
youtube.com 820 160 16.5
maps.google.com 285 0 14.2
maps.live.com 3000 2000 13.6

Figure 9: Summary of 10 benign web sites we used as
NOZZLE benchmarks.

Date Browser Description milw0rm

11/2004 IE IFRAME Tag BO 612
04/2005 IE DHTML Objects Corruption 930
01/2005 IE .ANI Remote Stack BO 753
07/2005 IE javaprxy.dll COM Object 1079
03/2006 IE createTextRang RE 1606
09/2006 IE VML Remote BO 2408
03/2007 IE ADODB Double Free 3577
09/2006 IE WebViewFolderIcon setSlice 2448

09/2005 FF 0xAD Remote Heap BO 1224
12/2005 FF compareTo() RE 1369
07/2006 FF Navigator Object RE 2082

07/2008 Safari Quicktime Content-Type BO 6013

Figure 10: Summary of information about 12 published
heap-spraying exploits. BO stands for “buffer overruns”
and RE stands for “remote execution.”

5.1.1 Global False Positive Rate

Figure 11 shows the maximum normalized attack surface
measured by NOZZLE for our 10 benchmark sites (top)
as well as the top 150 sites reported by Alexa (bottom).
From the figure, we see that the maximum normalized
attack surface remains around 6% for most of the sites,
with a single outlier from the 150 sites at 12%. In prac-
tice, the median attack surface is typically much lower
than this, with the maximum often occurring early in the
rendering of the page when the heap is relatively small.
The economist.com line in Figure 8 illustrates this ef-
fect. By setting the spray detection threshold at 15% or
above, we would observe no false positives in any of the
sites measured.

5.1.2 Local False Positive Rate

In addition to being used as a heap-spray detector, NOZ-
ZLE can also be used locally as a malicious object de-
tector. In this use, as with existing NOP and shellcode
detectors such as STRIDE [4], a tool would report an ob-
ject as potentially malicious if it contained data that could
be interpreted as code, and had other suspicious proper-
ties. Previous work in this area focused on detection of
malware in network packets and URIs, whose content is
very different than heap objects. We evaluated NOZZLE

178	 18th USENIX Security Symposium	 USENIX Association

Figure 11: Global normalized attack surface for 10 benign
benchmark web sites and 150 additional top Alexa sites,
sorted by increasing surface. Each element of the X-axis
represents a different web site.

Figure 12: Local false positive rate for 10 benchmark web
sites using NOZZLE and STRIDE. Improved STRIDE is a
version of STRIDE that uses additional instruction-level
filters, also used in NOZZLE, to reduce the false positive
rate.

and STRIDE algorithm, to see how effective they are at
classifying benign heap objects.

Figure 12 indicates the false positive rate of two vari-
ants of STRIDE and a simplified variant of NOZZLE. This
simplified version of NOZZLE only scans a given heap ob-
ject and attempts to disassemble and build a control flow
graph from its contents. If it succeeds in doing this, it
considers the object suspect. This version does not in-
clude any attack surface computation. The figure shows
that, unlike previously reported work where the false pos-
itive rate for URIs was extremely low, the false positive
rate for heap objects is quite high, sometimes above 40%.
An improved variant of STRIDE that uses more informa-
tion about the x86 instruction set (also used in NOZZLE)
reduces this rate, but not below 10% in any case. We con-

Figure 13: Distribution of filtered object surface area
for each of 10 benchmark web sites (benign) plus 2,000
synthetic exploits (see Section 5.2). Objects measured
are only those that were considered valid instruction se-
quences by NOZZLE (indicated as false positives in Fig-
ure 12.

clude that, unlike URIs or the content of network pack-
ets, heap objects often have contents that can be entirely
interpreted as code on the x86 architecture. As a result,
existing methods of sled detection do not directly apply to
heap objects. We also show that even NOZZLE, without
incorporating our surface area computation, would have
an unacceptably high false positive rate.

To increase the precision of a local detector based on
NOZZLE, we incorporate the surface area calculation de-
scribed in Section 4. Figure 13 indicates the distribution
of measured surface areas for the roughly 10% of objects
in Figure 12 that our simplified version of NOZZLE was
not able to filter. We see from the figure that many of those
objects have a relatively small surface area, with less that
10% having surface areas from 80-100% of the size of
the object (the top part of each bar). Thus, roughly 1%
of objects allocated by our benchmark web sites qualify
as suspicious by a local NOZZLE detector, compared to
roughly 20% using methods reported in prior work. Even
at 1%, the false positive rate of a local NOZZLE detector
is too high to raise an alarm whenever a single instance
of a suspicious object is observed, which motivated the
development of our global heap health metric.

5.2 False Negatives
As with the false positive evaluation, we can consider
NOZZLE both as a local detector (evaluating if NOZZLE
is capable of classifying a known malicious object cor-
rectly), and as a global detector, evaluating whether it cor-
rectly detects web pages that attempt to spray many copies
of malicious objects in the heap.

Figure 14 evaluates how effective NOZZLE is at avoid-

USENIX Association 	 18th USENIX Security Symposium	 179

Configuration min mean std

Local, NOP w/o shellcode 0.994 0.997 0.002
Local, NOP with shellcode 0.902 0.949 0.027

Figure 14: Local attack surface metrics for 2,000 gener-
ated samples from Metasploit with and without shellcode.

Configuration min mean std

Global, published exploits 0.892 0.966 0.028
Global, Metasploit exploits 0.729 0.760 0.016

Figure 15: Global attack surface metrics for 12 published
attacks and 2,000 Metasploit attacks integrated into web
pages as heap sprays.

ing local false negatives using our Metasploit exploits.
The figure indicates the mean and standard deviation of
the object surface area over the collection of 2,000 ex-
ploits, both when shellcode is included with the NOP sled
and when the NOP sled is measured alone. The figure
shows that NOZZLE computes a very high attack surface
in both cases, effectively detecting all the Metasploit ex-
ploits both with and without shellcode.

Figure 15 shows the attack surface statistics when using
NOZZLE as a global detector when the real and synthetic
exploits are embedded into a web page as a heap-spraying
attack. For the Metasploit exploits which were not specif-
ically generated to be heap-spraying attacks, we wrote our
own JavaScript code to spray the objects in the heap. The
figure shows that the published exploits are more aggres-
sive than our synthetic exploits, resulting in a mean global
attack surface of 97%. For our synthetic use of spraying,
which was more conservative, we still measured a mean
global attack surface of 76%. Note that if we set the NOP
sled to shellcode at a ratio lower than 9:1, we will observe
a correspondingly smaller value for the mean global at-
tack surface. All attacks would be detected by NOZZLE
with a relatively modest threshold setting of 50%. We
note that these exploits have global attack surface metrics
6–8 times larger than the maximum measured attack sur-
face of a benign web site.

5.3 Performance

To measure the performance overhead of NOZZLE, we
cached a typical page for each of our 10 benchmark sites.
We then instrument the start and the end of the page with
the JavaScript newDate().getTime() routine and com-
pute the delta between the two. This value gives us how
long it takes to load a page in milliseconds. We collect
our measurements running Firefox version 2.0.0.16 on a
2.4 GHz Intel Core2 E6600 CPU running Windows XP

Figure 16: Relative execution overhead of using NOZZLE
in rendering a typical page of 10 benchmark web sites as
a function of sampling frequency.

Service Pack 3 with 2 gigabytes of main memory. To min-
imize the effect of timing due to cold start disk I/O, we
first load a page and discard the timing measurement. Af-
ter this first trial, we take three measurements and present
the median of the three values. The experiments were per-
formed on an otherwise quiescent machine and the vari-
ance between runs was not significant.

In the first measurement, we measured the overhead of
NOZZLE without leveraging an additional core, i.e., run-
ning NOZZLE as a single thread and, hence, blocking Fire-
fox every time a memory allocation occurs. The resulting
overhead is shown in Figure 16, both with and without
sampling. The overhead is prohibitively large when no
sampling is applied. On average, the no sampling ap-
proach incurs about 4X slowdown with as much as 13X
slowdown for maps.live.com. To reduce this overhead,
we consider the sampling approach. For these results,
we sample based on object counts; for example, sam-
pling at 5% indicates that one in twenty objects is sam-
pled. Because a heap-spraying attack has global impact
on the heap, sampling is unlikely to significantly reduce
our false positive and false negative rates, as we show in
the next section. As we reduce the sampling frequency,
the overhead becomes more manageable. We see an aver-
age slowdown of about 60%, 20% and 10% for sampling
frequency of 25%, 10% and 5%, respectively, for the 10
selected sites.

For the second measurement, taking advantage of the
second core of our dual core machine, we configured
NOZZLE to use one additional thread for scanning, hence,
unblocking Firefox when it performs memory allocation.
Figure 17 shows the performance overhead of NOZZLE
with parallel scanning. From the Figure, we see that with
no sampling, the overhead of using NOZZLE ranges from
30% to almost a factor of six, with a geometric mean of

180	 18th USENIX Security Symposium	 USENIX Association

Figure 17: Overhead of using NOZZLE on a dual-core ma-
chine.

Figure 18: Average error rate due to sampling of the com-
puted average surface area for 10 benign benchmark web
sites.

two times slowdown. This is a significant improvement
over the serial version. When we further reduce the sam-
pling rate, we see further performance improvement as
with the first measurement. Reducing the sampling rate
to 25%, the mean overhead drops to 45%, while with a
sampling rate of 5%, the performance overhead is only
6.4%.

5.4 Impact of Sampling on Detection

In this section, we show the impact of sampling on the
amount of error in the computation of the attack surface
metric for both benign and malicious inputs.

Figure 18 shows the error rate caused by different
levels of sampling averaged across the 10 benign web
sites. We compute the error rate E = |Sampled −
Unsampled|/Unsampled. The figure shows that for
sample rates of 0.1% or above the error rate is less than
30%. To make this concrete, for a benign website, instead
of calculating the normalized attack surface correctly as
5%, with a 0.1% sampling rate, we would instead calcu-

Sampling Rate
100% 25% 10% 5% 1%

12 Published 0 0 0 0 50%
2,000 Metasploit 0 0 0 0 0

Figure 19: False negative rate for 12 real and 2,000 Metas-
ploit attacks given different object sampling rates.

late the normalized attack surface as 6.5%, still far below
any threshold we might use for signaling an attack. Not-
ing that the malicious pages have attack surfaces that are
6–8 times larger than benign web pages, we conclude that
sampling even at 5% is unlikely to result in significant
numbers of false positives.

In Figure 19, we show the impact of sampling on the
number of false negatives for our published and synthetic
exploits. Because existing exploits involve generating the
heap spray in a loop, the only way sampling will miss such
an attack is to sample at such a low rate that the objects
allocated in the loop escape notice. The figure illustrates
that for published attacks sampling even at 5% results in
no false negatives. At 1%, because several of the pub-
lished exploits only create on the order of tens of copies of
very large spray objects, sampling based on object count
can miss these objects, and we observe a 50% (6/12) false
negative rate. Sampling based on bytes allocated instead
of objects allocated would reduce this false negative rate
to zero.

5.5 Case Study: Adobe Reader Exploit
In February 2009, a remote code execution vulnerability
was discovered in Adobe Acrobat and Adobe Reader [26].
The attack, which is still active on the Internet as of the
time of this writing, exploited an integer overflow error
and was facilitated by a JavaScript heap spray. With-
out making any modifications to NOZZLE, we used De-
tours to instrument the commercially-distributed binary of
Adobe Reader 9.1.0 (acrord32.exe) with NOZZLE. The
instrumentation allowed us to monitor the memory allo-
cations being performed by the embedded JavaScript en-
gine and detect possible spraying attacks. To test whether
NOZZLE would detect this new attack, we embedded the
heap spraying part of the published attack [6], disabling
the JavaScript that caused the integer overflow exploit.

NOZZLE correctly detected this heap spraying attack,
determining that the attack surface of the heap was greater
than 94% by the time the heap spray was finished. No
modifications were made either to the NOZZLE imple-
mentation or the surface area calculation to enable NOZ-
ZLE to detect this attack, which gives us confidence that
NOZZLE is capable of protecting a wide range of soft-
ware, going well beyond just web browsers.

USENIX Association 	 18th USENIX Security Symposium	 181

To facilitate overhead measurements, we created a large
document by concatenating six copies of the ECMA 262
standard — a 188-page PDF document [11] — with it-
self. The resulting document was 1,128 pages long and
took 4,207 kilobytes of disk space. We added scripting
code to the document to force Adobe Reader to “scroll”
through this large document, rendering every page se-
quentially. We believe this workload to be representa-
tive of typical Adobe Reader usage, where the user pages
through the document, one page at a time.

We measured the overhead of NOZZLE running in
Adobe Reader on an Intel Core 2 2.4 GHz computer
with 4 GB of memory running Windows Vista SP1. We
measured elapsed time for Adobe Reader with and with-
out NOZZLE on a lightly loaded computer and averaged
five measurements with little observed variation. With-
out NOZZLE, Adobe Reader took an average of 18.7 sec-
onds to render all the pages, and had a private working
set of 18,772 kilobytes as measured with the Windows
Task Manager. With a sampling rate set to 10% and mul-
tiprocessor scanning disabled, Adobe Reader with NOZ-
ZLE took an average of 20.2 seconds to render the pages,
an average CPU overhead of 8%. The working set of
Adobe Reader with NOZZLE average 31,849 kilobytes,
an average memory overhead of 69%. While the mem-
ory overhead is high, as mentioned, we anticipate that this
overhead could easily be reduced by integrating NOZZLE
more closely with the underlying memory manager.

6 Limitations of NOZZLE

This section discusses assumptions and limitations of the
current version of NOZZLE. In summary, assuming that
the attackers are fully aware of the NOZZLE internals,
there are a number of ways to evade its detection.

• As NOZZLE scans objects at specific times, an
attacker could determine that an object has been
scanned and arrange to put malicious content into the
object only after it has been scanned (a TOCTTOU
vulnerability).

• As NOZZLE currently starts scanning each object at
offset zero, attackers can avoid detection by writing
the first few bytes of the malicious object with a se-
ries of uninterpretable opcodes.

• Since NOZZLE relies on the use of a threshold for
detection, attackers can populate the heap with fewer
malicious objects to stay just under the detection
threshold.

• Attackers can find ways to inject the heap with sprays
that do not require large NOP sleds. For example,
sprays with jump targets that are at fixed offsets in
every sprayed page of memory are possible [39].

• Attackers can confuse NOZZLE’s surface area mea-
surement by designing attacks that embed multiple
shellcodes within the same object or contain cross-
object jumps.

Below we discuss these issues, their implications, and
possible ways to address them.

6.1 Time-of-check to Time-of-use
Because NOZZLE examines object contents only at spe-
cific times, this leads to a potential time-of-check to time-
of-use (TOCTTOU) vulnerability. An attacker aware that
NOZZLE was being used could allocate a benign object,
wait until NOZZLE scans it, and then rapidly change the
object into a malicious one before executing the attack.

With JavaScript-based attacks, since JavaScript
Strings are immutable, this is generally only possible
using JavaScript Arrays. Further, because NOZZLE
may not know when objects are completely initialized, it
may scan them prematurely, creating another TOCTTOU
window. To address this issue, NOZZLE scans objects
once they mature on the assumption that most objects
are written once when initialized, soon after they are
allocated. In the future, we intend to investigate other
ways to reduce this vulnerability, including periodically
rescanning objects. Rescans could be triggered when
NOZZLE observes a significant number of heap stores,
perhaps by reading hardware performance counters.

Moreover, in the case of a garbage-collected language
such as JavaScript or Java, NOZZLE can be integrated di-
rectly with the garbage collector. In this case, changes
observed via GC write barriers [29] may be used to trig-
ger NOZZLE scanning.

6.2 Interpretation Start Offset
In our discussion so far, we have interpreted the contents
of objects as instructions starting at offset zero in the ob-
ject, which allows NOZZLE to detect the current genera-
tion of heap-spraying exploits. However, if attackers are
aware that NOZZLE is being used, they could arrange to
fool NOZZLE by inserting junk bytes at the start of ob-
jects. There are several reasons that such techniques will
not be as successful as one might think. To counter the
most simplistic such attack, if there are invalid or illegal
instructions at the beginning of the object, NOZZLE skips
bytes until it finds the first valid instruction.

Note that while it may seem that the attacker has much
flexibility to engineer the offset of the start of the mali-
cious code, the attacker is constrained in several important
ways. First, we know that it is likely that the attacker is
trying to maximize the probability that the attack will suc-
ceed. Second, recall that the attacker has to corrupt a con-
trol transfer but does not know the specific address in an

182	 18th USENIX Security Symposium	 USENIX Association

object where the jump will land. If the jump lands on an
invalid or illegal instruction, then the attack will fail. As a
result, the attacker may seek to make a control transfer to
every address in the malicious object result in an exploit.
If this is the case, then NOZZLE will correctly detect the
malicious code. Finally, if the attacker knows that NOZ-
ZLE will start interpreting the data as instructions starting
at a particular offset, then the attacker might intentionally
construct the sled in such a way that the induced instruc-
tions starting at one offset look benign, while the induced
instructions starting at a different offset are malicious. For
example, the simplist form of this kind of attack would
have uniform 4-byte benign instructions starting at byte
offset 0 and uniform malicious 4-byte instructions start-
ing at byte offset 2. Note also that these overlapped se-
quences cannot share any instruction boundaries because
if they did, then processing instructions starting at the be-
nign offset would eventually discover malicious instruc-
tions at the point where the two sequences merged.

While the current version of NOZZLE does not address
this specific simple case, NOZZLE could be modified to
handle it by generating multiple control flow graphs at
multiple starting offsets. Furthermore, because x86 in-
structions are typically short, most induced instruction se-
quences starting at different offsets do not have many pos-
sible interpretations before they share a common instruc-
tion boundary and merge. While it is theoretically possi-
ble for a determined attacker to create a non-regular, non-
overlapping sequence of benign and malicious instruc-
tions, it is not obvious that the malicious sequence could
not be discovered by performing object scans at a small
number of offsets into the object. We leave an analysis of
such techniques for future work.

6.3 Threshold Setting

The success of heap spraying is directly proportional to
the density of dangerous objects in the program heap,
which is approximated by NOZZLE’s normalized attack
surface metric. Increasing the number of sprayed mali-
cious objects increases the attacker’s likelihood of suc-
cess, but at the same time, more sprayed objects will in-
crease the likelihood that NOZZLE will detect the attack.
What is worse for the attacker, failing attacks often re-
sult in program crashes. In the browser context, these
are recorded on the user’s machine and sent to browser
vendors using a crash agent such as Mozilla Crash report-
ing [24] for per-site bucketing and analysis.

What is interesting about attacks against browsers is
that from a purely financial standpoint, the attacker has
a strong incentive to produce exploits with a high likeli-
hood of success. Indeed, assuming the attacker is the one
discovering the vulnerability such as a dangling pointer
or buffer overrun enabling the heap-spraying attack, they

can sell their finding directly to the browser maker. For
instance, the Mozilla Foundation, the makers of Firefox,
offers a cash reward of $500 for every exploitable vulner-
ability [25]. This represents a conservative estimate of the
financial value of such an exploit, given that Mozilla is
a non-profit and commercial browser makes are likely to
pay more [15]. A key realization is that in many cases
heap spraying is used for direct financial gain. A typical
way to monetize a heap-spraying attack is to take over a
number of unsuspecting users’ computers and have them
join a botnet. A large-scale botnet can be sold on the black
market to be used for spamming or DDOS attacks.

According to some reports, to cost of a large-scale bot-
net is about $.10 per machine [40, 18]. So, to break even,
the attacker has to take over at least 5,000 computers. For
a success rate α, in addition to 5,000 successfully com-
promised machines, there are 5, 000 × (1 − α)/α failed
attacks. Even a success rate as high as 90%, the attack
campaign will produce failures for 555 users. Assuming
these result in crashes reported by the crash agent, this
many reports from a single web site may attract atten-
tion of the browser maker. For a success rate of 50%,
the browser make is likely to receive 5,000 crash reports,
which should lead to rapid detection of the exploit!

As discussed in Section 5, in practice we use the rela-
tive threshold of 50% with Nozzle. We do not believe that
a much lower success rate is financially viable from the
standpoint of the attacker.

6.4 Targeted Jumps into Pages
One approach to circumventing NOZZLE detection is
for the attacker to eliminate the large NOP sled that
heap sprays typically use. This may be accomplished
by allocating page-size chunks of memory (or multiples
thereof) and placing the shellcode at fixed offsets on every
page [39]. While our spraying detection technique cur-
rently will not discover such attacks, it is possible that the
presence of possible shellcode at fixed offsets on a large
number of user-allocated pages can be detected by extend-
ing NOZZLE, which we will consider in future work.

6.5 Confusing Control Flow Patterns
NOZZLE attempts to find basic blocks that act as sinks
for random jumps into objects. One approach that will
confuse NOZZLE is to include a large number of copies
of shellcode in an object such that no one of them has a
high surface area. Such an approach would still require
that a high percentage of random jumps into objects result
in non-terminating control flow, which might also be used
as a trigger for our detector.

Even more problematic is an attack where the attacker
includes inter-object jumps, under the assumption that,

USENIX Association 	 18th USENIX Security Symposium	 183

probabilistically, there will be a high density of malicious
objects and hence jumps outside of the current object will
still land in another malicious object. NOZZLE currently
assumes that jumps outside of the current object will re-
sult in termination. We anticipate that our control flow
analysis can be augmented to detect groupings of objects
with possible inter-object control flow, but we leave this
problem for future work.

6.6 Summary
In summary, there are a number of ways that clever at-
tackers can defeat NOZZLE’s current analysis techniques.
Nevertheless, we consider NOZZLE an important first step
to detecting heap spraying attacks and we believe that im-
provements to our techniques are possible and will be im-
plemented, just as attackers will implement some of the
possible exploits described above.

The argument for using NOZZLE, despite the fact that
hackers will find ways to confound it, is the same rea-
son that virus scanners are installed almost ubiquitously
on computer systems today: it will detect and prevent
many known attacks, and as new forms of attacks de-
velop, there are ways to improve its defenses as well. Ul-
timately, NOZZLE, just like existing virus detectors, is just
one layer of a defense in depth.

7 Related Work
This section discusses exploit detection and memory at-
tack prevention.

7.1 Exploit Detection
As discussed, a code injection exploit consists of at least
two parts: the NOP sled and shellcode. Detection tech-
niques target either or both of these parts. Signature-based
techniques, such as Snort [33], use pattern matching, in-
cluding possibly regular expressions, to identify attacks
that match known attacks in their database. A disadvan-
tage of this approach is that it will fail to detect attacks that
are not already in the database. Furthermore, polymorphic
malware potentially vary its shellcode on every infection
attempt, reducing the effectiveness of pattern-based tech-
niques. Statistical techniques, such as Polygraph [27], ad-
dress this problem by using improbable properties of the
shellcode to identify an attack.

The work most closely related to NOZZLE is Abstract
Payload Execution (APE), by Toth and Kruegel [43], and
STRIDE, by Akritidis et al. [4, 30], both of which present
methods for NOP sled detection in network traffic. APE
examines sequences of bytes using a technique they call
abstract execution where the bytes are considered valid

and correct if they represent processor instructions with
legal memory operands. APE identifies sleds by comput-
ing the execution length of valid and correct sequences,
distinguishing attacks by identifying sufficiently long se-
quences.

The authors of STRIDE observe that by employing
jumps, NOP sleds can be effective even with relatively
short valid and correct sequences. To address this prob-
lem, they consider all possible subsequences of length n,
and detect an attack only when all such subsequences are
considered valid. They demonstrate that STRIDE handles
attacks that APE does not, showing also that tested over a
large corpus or URIs, their method has an extremely low
false positive rate. One weakness of this approach, ac-
knowledged by the authors is that “...a worm writer could
blind STRIDE by adding invalid instruction sequences at
suitable locations...” ([30], p. 105).

NOZZLE also identifies NOP sleds, but it does so in
ways that go beyond previous work. First, prior work
has not considered the specific problem of sled detection
in heap objects or the general problem of heap spraying,
which we do. Our results show that applying previous
techniques to heap object results in high false positive
rates. Second, because we target heap spraying specifi-
cally, our technique leverages properties of the entire heap
and not just individual objects. Finally, we introduce the
concept of surface area as a method for prioritizing the
potential threat of an object, thus addressing the STRIDE
weakness mentioned above.

7.2 Memory Attack Prevention

While NOZZLE focuses on detecting heap spraying based
on object and heap properties, other techniques take dif-
ferent approaches. Recall that heap spraying requires an
additional memory corruption exploit, and one method of
preventing a heap-spraying attack is to ignore the spray
altogether and prevent or detect the initial corruption er-
ror. Techniques such as control flow integrity [1], write
integrity testing [3], data flow integrity [9], and program
shepherding [17] take this approach. Detecting all such
possible exploits is difficult and, while these techniques
are promising, their overhead has currently prevented
their widespread use.

Some existing operating systems also support mech-
anisms, such as Data Execution Prevention (DEP) [21],
which prevent a process from executing code on specific
pages in its address space. Implemented in either soft-
ware or hardware (via the no-execute or “NX” bit), exe-
cution protection can be applied to vulnerable parts of an
address space, including the stack and heap. With DEP
turned on, code injections in the heap cannot execute.

While DEP will prevent many attacks, we believe that
NOZZLE is complementary to DEP for the following rea-

184	 18th USENIX Security Symposium	 USENIX Association

sons. First, security benefits from defense-in-depth. For
example, attacks that first turn off DEP have been pub-
lished, thereby circumventing its protection [37]. Second,
compatibility issues can prevent DEP from being used.
Despite the presence of NX hardware and DEP in modern
operating systems, existing commercial browsers, such as
Internet Explorer 7, still ship with DEP disabled by de-
fault [13]. Third, runtime systems that perform just-in-
time (JIT) compilation may allocate JITed code in the
heap, requiring the heap to be executable. Finally, code
injection spraying attacks have recently been reported in
areas other than the heap where DEP cannot be used.
Sotirov and Dowd describe spraying attacks that introduce
exploit code into a process address space via embedded
.NET User Controls [42]. The attack, which is disguised
as one or more .NET managed code fragments, is loaded
in the process text segment, preventing the use of DEP.
In future work, we intend to show that NOZZLE can be
effective in detecting such attacks as well.

8 Conclusions

We have presented NOZZLE, a runtime system for detect-
ing and preventing heap-spraying security attacks. Heap
spraying has the property that the actions taken by the at-
tacker in the spraying part of the attack are legal and type
safe, allowing such attacks to be initiated in JavaScript,
Java, or C#. Attacks using heap spraying are on the rise
because security mitigations have reduced the effective-
ness of previous stack and heap-based approaches.

NOZZLE is the first system specifically targeted at de-
tecting and preventing heap-spraying attacks. NOZZLE
uses lightweight runtime interpretation to identify specific
suspicious objects in the heap and maintains a global heap
health metric to achieve low false positive and false neg-
ative rates, as measured using 12 published heap spray-
ing attacks, 2,000 synthetic malicious exploits, and 150
highly-visited benign web sites. We show that with sam-
pling, the performance overhead of NOZZLE can be re-
duced to 7%, while maintaining low false positive and
false negative rates. Similar overheads are observed when
NOZZLE is applied to Adobe Acrobat Reader, a recent
target of heap spraying attacks. The fact that NOZZLE
was able to thwart a real published exploit when applied
to the Adobe Reader binary, without requiring any modi-
fications to our instrumentation techniques, demonstrates
the generality of our approach.

While we have focused our experimental evaluation on
heap-spraying attacks exclusively, we believe that the our
techniques are more general. In particular, in future work,
we intend to investigate using our approach to detect a
variety of exploits that use code masquarading as data,
such as images, compiled bytecode, etc. [42].

In the future, we intend to further improve the selectiv-
ity of the NOZZLE local detector, demonstrate NOZZLE’s
effectiveness for attacks beyond heap spraying, and fur-
ther tune NOZZLE’s performance. Because heap-spraying
attacks can be initiated in type-safe languages, we would
like to evaluate the cost and effectiveness of incorpo-
rating NOZZLE in a garbage-collected runtime. We are
also interested in extending NOZZLE from detecting heap-
spraying attacks to tolerating them as well.

Acknowledgements

We thank Emery Berger, Martin Burtscher, Silviu
Calinoiu, Trishul Chilimbi, Tal Garfinkel, Ted Hart,
Karthik Pattabiraman, Patrick Stratton, and Berend-Jan
“SkyLined” Wever for their valuable feedback during the
development of this work. We also thank our anonymous
reviewers for their comments.

References

[1] M. Abadi, M. Budiu, Úlfar Erlingsson, and J. Ligatti.
Control-flow integrity. In Proceedings of the Conference
on Computer and Communications Security, pages 340–
353, 2005.

[2] A. V. Aho, M. Lam, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, 2007.

[3] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Cas-
tro. Preventing memory error exploits with WIT. In Pro-
ceedings of the IEEE Symposium on Security and Privacy,
pages 263–277, 2008.

[4] P. Akritidis, E. P. Markatos, M. Polychronakis, and
K. G. Anagnostakis. STRIDE: Polymorphic sled detec-
tion through instruction sequence analysis. In R. Sasaki,
S. Qing, E. Okamoto, and H. Yoshiura, editors, Proceed-
ings of Security and Privacy in the Age of Ubiquitous Com-
puting, pages 375–392. Springer, 2005.

[5] Alexa Inc. Global top sites. http://www.alexa.com/

site/ds/top sites, 2008.
[6] Arr1val. Exploit made by Arr1val proved in Adobe 9.1 and

8.1.4 on Linux. http://downloads.securityfocus.

com/vulnerabilities/exploits/34736.txt, Feb.
2009.

[7] E. D. Berger and B. G. Zorn. DieHard: probabilistic mem-
ory safety for unsafe languages. In Proceedings of the Con-
ference on Programming Language Design and Implemen-
tation, pages 158–168, 2006.

[8] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address ob-
fuscation: An efficient approach to combat a broad range
of memory error exploits. In Proceedings of the 12th
USENIX Security Symposium, pages 105–120. USENIX,
Aug. 2003.

USENIX Association 	 18th USENIX Security Symposium	 185

[9] M. Castro, M. Costa, and T. Harris. Securing software by
enforcing data-flow integrity. In Proceedings of the Sym-
posium on Operating Systems Design and Implementation,
pages 147–160, 2006.

[10] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole.
Buffer overflows: attacks and defenses for the vulnerabil-
ity of the decade. Foundations of Intrusion Tolerant Sys-
tems, pages 227–237, 2003.

[11] ECMA. ECMAScript language specification. http:

//www.ecma-international.org/publications/

files/ECMA-ST/Ecma-262.pdf, 1999.
[12] J. C. Foster. Metasploit Toolkit for Penetration Testing, Ex-

ploit Development, and Vulnerability Research. Syngress
Publishing, 2007.

[13] M. Howard. Update on Internet Explorer 7, DEP,
and Adobe software. http://blogs.msdn.com/

michael howard/archive/2006/12/12/update-

on-internet-explorer-7-dep-and-adobe-

software.aspx, 2006.
[14] G. Hunt and D. Brubacher. Detours: Binary interception of

Win32 functions. In In Proceedings of the USENIX Win-
dows NT Symposium, pages 135–143, 1999.

[15] iDefense Labs. Annual vulnerability challenge. http:

//labs.idefense.com/vcp/challenge.php, 2007.
[16] I.-K. Kim, K. Kang, Y. Choi, D. Kim, J. Oh, and K. Han.

A practical approach for detecting executable codes in net-
work traffic. In S. Ata and C. S. Hong, editors, Proceed-
ings of Managing Next Generation Networks and Services,
volume 4773 of Lecture Notes in Computer Science, pages
354–363. Springer, 2007.

[17] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure
execution via program shepherding. In Proceedings of the
USENIX Security Symposium, pages 191–206, 2002.

[18] J. Leyden. Phatbot arrest throws open trade in zombie
PCs. http://www.theregister.co.uk/2004/05/12/
phatbot zombie trade, May 2004.

[19] B. Livshits and W. Cui. Spectator: Detection and contain-
ment of JavaScript worms. In Proceedings of the USENIX
Annual Technical Conference, pages 335–348, June 2008.

[20] A. Marinescu. Windows Vista heap management enhance-
ments. In BlackHat US, 2006.

[21] Microsoft Corporation. Data execution preven-
tion. http://technet.microsoft.com/en-

us/library/cc738483.aspx, 2003.
[22] Microsoft Corporation. Microsoft Security Bulletin

MS07-017. http://www.microsoft.com/technet/

security/Bulletin/MS07-017.mspx, Apr. 2007.
[23] Microsoft Corporation. Microsoft Security Advisory

(961051). http://www.microsoft.com/technet/

security/advisory/961051.mspx, Dec. 2008.
[24] Mozilla Developer Center. Crash reporting page. https:

//developer.mozilla.org/En/Crash reporting,
2008.

[25] Mozilla Security Group. Mozilla security bug bounty
program. http://www.mozilla.org/security/bug-

bounty.html, 2004.
[26] Multi-State Information Sharing and Analysis Center. Vul-

nerability in Adobe Reader and Adobe Acrobat could al-
low remote code execution. http://www.msisac.org/

advisories/2009/2009-008.cfm, Feb. 2009.
[27] J. Newsome, B. Karp, and D. Song. Polygraph: Automat-

ically generating signatures for polymorphic worms. In
Proceedings of the IEEE Symposium on Security and Pri-
vacy, pages 226–241, 2005.

[28] J. D. Pincus and B. Baker. Beyond stack smashing: Recent
advances in exploiting buffer overruns. IEEE Security and
Privacy, 2(4):20–27, 2004.

[29] P. P. Pirinen. Barrier techniques for incremental tracing. In
Proceedings of the International Symposium on Memory
Management, pages 20–25, 1998.

[30] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos.
Emulation-based detection of non-self-contained polymor-
phic shellcode. In Proceedings of Symposium on Recent
Advances in Intrusion Detection, pages 87–106, 2007.

[31] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos.
Network-level polymorphic shellcode detection using em-
ulation. Journal in Computer Virology, 2(4):257–274,
2007.

[32] P. Ratanaworabhan, B. Livshits, and B. Zorn. Noz-
zle: A defense against heap-spraying code injection at-
tacks. Technical Report MSR-TR-2008-176, Microsoft
Research, Nov. 2008.

[33] M. Roesch. Snort - lightweight intrusion detection for net-
works. In Proceedings of the USENIX conference on Sys-
tem administration, pages 229–238, 1999.

[34] Samy. The Samy worm. http://namb.la/popular/,
Oct. 2005.

[35] B. Schwarz, S. Debray, and G. Andrews. Disassembly
of executable code revisited. Reverse Engineering, 2002.
Proceedings. Ninth Working Conference on, pages 45–54,
2002.

[36] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu,
and D. Boneh. On the effectiveness of address-space
randomization. In Proceedings of the Conference on
Computer and Communications Security, pages 298–307,
2004.

[37] Skape and Skywing. Bypassing windows hardware-
enforced DEP. Uninformed Journal, 2(4), Sept. 2005.

[38] SkyLined. Internet Explorer IFRAME src&name pa-
rameter BoF remote compromise. http://skypher.

com/wiki/index.php?title=Www.edup.tudelft.

nl/∼bjwever/advisory/ iframe.html.php, 2004.
[39] SkyLined. Personal communication, 2009.
[40] Sophos Inc. Stopping zombies, botnets and

other email- and web-borne threats. http:

//blogs.piercelaw.edu/tradesecretsblog/

SophosZombies072507.pdf, 12 2006.
[41] A. Sotirov. Heap feng shui in JavaScript. In Proceedings

of Blackhat Europe, 2007.
[42] A. Sotirov and M. Dowd. Bypassing browser memory pro-

186	 18th USENIX Security Symposium	 USENIX Association

tections. In Proceedings of BlackHat, 2008.
[43] T. Toth and C. Krügel. Accurate buffer overflow detection

via abstract payload execution. In Proceedings of Sym-
posium on Recent Advances in Intrusion Detection, pages
274–291, 2002.

[44] R. van den Heetkamp. Heap spraying. http://www.

0x000000.com/index.php?i=412&bin=110011100,
Aug. 2007.

[45] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski,
S. Chen, and S. King. Automated web patrol with Strider
HoneyMonkeys: Finding web sites that exploit browser
vulnerabilities. In Proceedings of the Symposium on Net-
work and Distributed Systems Security (NDSS 2006), Feb.
2006.

USENIX Association 	 18th USENIX Security Symposium	 187

Cross-Origin JavaScript Capability Leaks:
Detection, Exploitation, and Defense

Adam Barth
UC Berkeley

abarth@eecs.berkeley.edu

Joel Weinberger
UC Berkeley

jww@cs.berkeley.edu

Dawn Song
UC Berkeley

dawnsong@cs.berkeley.edu

Abstract
We identify a class of Web browser implementation
vulnerabilities, cross-origin JavaScript capability leaks,
which occur when the browser leaks a JavaScript pointer
from one security origin to another. We devise an algo-
rithm for detecting these vulnerabilities by monitoring
the “points-to” relation of the JavaScript heap. Our algo-
rithm finds a number of new vulnerabilities in the open-
source WebKit browser engine used by Safari. We pro-
pose an approach to mitigate this class of vulnerabilities
by adding access control checks to browser JavaScript
engines. These access control checks are backwards-
compatible because they do not alter semantics of the
Web platform. Through an application of the inline
cache, we implement these checks with an overhead of
1–2% on industry-standard benchmarks.

1 Introduction
In this paper, we identify a class of Web browser im-
plementation vulnerabilities, which we refer to as cross-
origin JavaScript capabilities leaks, and develop sys-
tematic techniques for detecting, exploiting, and defend-
ing against these vulnerabilities. An attacker who ex-
ploits a cross-origin JavaScript capability leak can in-
ject a malicious script into an honest Web site’s secu-
rity origin. These attacks are more severe than cross-
site scripting (XSS) attacks because they affect all Web
sites, including those free of XSS vulnerabilities. Once
an attacker can run script in an arbitrary security origin,
the attacker can, for example, issue transactions on the
user’s bank account, regardless of any SSL encryption,
cross-site scripting filter, or Web application firewall.

We observe that these cross-origin JavaScript capa-
bility leaks are caused by an architectural flaw shared
by most modern Web browsers: the Document Object
Model (DOM) and the JavaScript engine enforce the
same-origin policy using two different security models.
The DOM uses an access control model, whereas the
JavaScript engine uses object-capabilities.

• Access Control. The DOM enforces the same-
origin policy using a reference monitor that pre-
vents one Web site from accessing resources allo-
cated to another Web site. For example, whenever

a script attempts to access the cookie database, the
DOM checks whether the script’s security origin
has sufficient privileges to access the cookies.

• Object-Capabilities. The JavaScript engine en-
forces the same-origin policy using an object-
capability discipline that prevents one Web site
from obtaining JavaScript pointers to sensitive ob-
jects that belong to a foreign security origin. With-
out JavaScript pointers to sensitive objects in for-
eign security origins, malicious scripts are unable
to interfere with those objects.

Most modern Web browsers, including Internet Ex-
plorer, Firefox, Safari, Google Chrome, and Opera, use
this design. However, the design’s mismatch in en-
forcement paradigms leads to vulnerabilities whenever
the browser leaks a JavaScript pointer from one secu-
rity origin to another. Once a malicious script gets a
JavaScript pointer to an honest JavaScript object, the at-
tacker can leverage the object-capability security model
of the JavaScript engine to escalate its DOM privileges.
With escalated DOM privileges, the attacker can com-
pletely compromise the honest security origin by inject-
ing a malicious script into the honest security origin.

To study this class of vulnerabilities, we devise an al-
gorithm for detecting individual cross-origin JavaScript
capability leaks. Using this algorithm, we uncover new
instances of cross-origin JavaScript capability leaks in
the WebKit browser engine used by Safari. We then il-
lustrate how an attack can abuse these leaked JavaScript
pointers by constructing proof-of-concept exploits. We
propose defending against cross-origin JavaScript capa-
bility leaks by harmonizing the security models used by
the DOM and the JavaScript engine.

• Leak Detection. We design an algorithm for au-
tomatically detecting cross-origin JavaScript ca-
pability leaks by monitoring the “points-to” rela-
tion among JavaScript objects in the heap. From
this relation, we define the security origin of each
JavaScript object by tracing its “prototype chain.”
We then search the graph for edges that connect ob-
jects in one security origin with objects in another
security origin. These suspicious edges likely rep-
resent cross-origin JavaScript capability leaks.

188	 18th USENIX Security Symposium	 USENIX Association

• Vulnerabilities and Exploitation. We implement
our leak detection algorithm and find two new high-
severity cross-origin JavaScript capability leaks in
WebKit. Although these vulnerabilities are imple-
mentation errors in WebKit, the presence of the
bugs illustrates the fragility of the general architec-
ture. (Other browsers have historically had similar
vulnerabilities [17, 18, 19].) We detail these vulner-
abilities and construct proof-of-concept exploits to
demonstrate how an attacker can leverage a leaked
JavaScript pointer to inject a malicious script into
an honest security origin.

• Defense. We propose that browser vendors proac-
tively defend against cross-origin JavaScript capa-
bility leaks by implementing access control checks
throughout the JavaScript engine instead of reac-
tively plugging each leak. Adding access control
checks to the JavaScript engine addresses the root
cause of these vulnerabilities (the mismatch be-
tween the security models used by the DOM and
by the JavaScript engine) and provides defense-in-
depth in the sense that both an object-capability
and an access control failure are required to create
an exploitable vulnerability. This defense is per-
fectly backwards-compatible because these access
checks do not alter the semantics of the Web plat-
form. Our implementation of these access control
checks in WebKit incurs an overhead of only 1–2%
on industry-standard benchmarks.

Contributions. We make the following contributions:

• We identify a class of Web browser implementa-
tion vulnerabilities: cross-origin JavaScript capa-
bility leaks. These vulnerabilities arise when the
browser leaks a JavaScript pointer from one secu-
rity origin to another security origin.

• We introduce an algorithm for detecting cross-
origin JavaScript capability leaks by monitoring the
“points-to” relation of the JavaScript heap. Our al-
gorithm uses a graph-based definition of the secu-
rity origin of a JavaScript object.

• We reveal cross-origin JavaScript capability leaks
and demonstrate techniques for exploiting these
vulnerabilities. These exploits rely on the mis-
match between the DOM’s access control security
model and the JavaScript engine’s object-capability
security model.

• We propose that browsers defend against cross-
origin JavaScript capability leaks by implement-
ing access control checks in the JavaScript engine.
This defense is perfectly backwards-compatible
and achieves a low overhead of 1–2%.

Organization. This paper is organized as follows.
Section 2 identifies cross-origin JavaScript capability

leaks as a class of vulnerabilities. Section 3 presents our
algorithm for detecting cross-origin JavaScript capabil-
ity leaks. Section 4 details the individual vulnerabili-
ties we uncover with our algorithm and outlines tech-
niques for exploiting these vulnerabilities. Section 5
proposes defending against cross-origin JavaScript ca-
pability leaks by adding access control checks to the
JavaScript engine. Section 6 relates our work to the lit-
erature. Section 7 concludes.

2 JavaScript Capability Leaks
In this section, we describe our interpretation of
JavaScript pointers as object-capabilities and identify
cross-origin JavaScript capability leaks as a class of im-
plementation vulnerabilities in browsers. We then sketch
how these vulnerabilities are exploited and the conse-
quences of a successful exploit.

2.1 Object-Capabilities
In modern Web browsers, the JavaScript engine en-
forces the browser’s same-origin policy using an object-
capability discipline: a script can obtain pointers only
to JavaScript objects created by documents in its se-
curity origin. A script can obtain JavaScript point-
ers to JavaScript objects either by accessing prop-
erties of JavaScript object to which the script al-
ready has a JavaScript pointer or by conjuring cer-
tain built-in objects such as the global object and
Object.prototype [14]. As in other object-
capability systems, the ability to influence an object is
tied to the ability to designate the object. In browsers,
a script can manipulate a JavaScript object only if the
script has a pointer to the object. Without a pointer to
an object in a foreign security origin, a malicious script
cannot influence honest JavaScript objects and cannot
interfere with honest security origins.

One exception to this object-capability discipline is
the JavaScript global object. According to the HTML 5
specification [10], the global object (also known as the
window object) is visible to foreign security origins.
There are a number of APIs for obtaining pointers to
global objects from foreign security origins. For exam-
ple, the contentWindow property of an <iframe>
element is the global object of the document contained
in the frame. Unlike most JavaScript objects, the global
object is also a DOM object (called window) and is
equipped with a reference monitor that prevents scripts
in foreign security origins from getting or setting arbi-
trary properties of the object. This reference monitor
does not forbid all accesses because some are desirable.
For example, the postMessage method [10] is ex-
posed across origins to facilitate mashups [1]. These
exposed properties complicate the enforcement of the
same-origin policy, which can lead to vulnerabilities.

USENIX Association 	 18th USENIX Security Symposium	 189

2.2 Capability Leaks
Browsers occasionally contain bugs that leak JavaScript
pointers from one security origin to another. These
vulnerabilities are easy for developers to introduce
into browsers because the DOM contains pointers to
JavaScript objects in multiple security origins and de-
velopers can easily select the wrong pointer to disclose
to a script. We identify these vulnerabilities as a class,
which we call cross-origin JavaScript capabilities leaks,
because they follow a common pattern. Identifying this
class lets us analyze the concepts common to these vul-
nerabilities in all browsers.

The JavaScript language makes pointer leaks particu-
larly devastating for security because JavaScript objects
inherit many of their properties from a prototype ob-
ject. When a script accesses a property of an object, the
JavaScript engine uses the following algorithm to look
up the property:

• If the object has the property, return its value.
• Otherwise, look up the property on the ob-

ject’s prototype (designated by the current object’s
__proto__ property).

These prototype objects, in turn, inherit many of
their properties from their prototypes in a chain that
leads back to the Object.prototype object, whose
__proto__ property is null. All the objects associ-
ated with a given document have a prototype chain that
leads back to that document’s Object.prototype
object. Given a JavaScript pointer to an object, a script
can traverse this prototype chain by accessing the ob-
ject’s __proto__ property. In particular, if an at-
tacker obtains a pointer to an honest object, the at-
tacker can obtain a pointer to the honest document’s
Object.prototype object and can influence the be-
havior of all the other JavaScript objects associated with
the honest document.

2.3 Laundries
Once the attacker has obtained a pointer to the
Object.prototype of an honest document, the at-
tacker has several avenues for compromising the hon-
est security origin. One approach is to abuse pow-
erful functions reachable from Object.prototype,
which we refer to as laundries because they let the at-
tacker “wash away” his or her agency (analogous to
laundering money). These functions often call one or
more DOM APIs, letting the attacker call these APIs in-
directly. Because these functions are defined by the hon-
est document, the DOM’s reference monitor allows the
access [10]. However, if the attacker calls these func-
tions with unexpected arguments, the functions might
become confused deputies [9] and inadvertently perform
the attacker’s misdeeds.

Most Web sites contains innumerable laundries. We
illustrate how an attacker can abuse a laundry by ex-
amining a representative laundry from the Prototype
JavaScript library [22]: invoke. The invoke method
is used to call a method, specified by name, on each
object contained in an array. The attacker can use this
function to trick the honest page into calling a univer-
sal DOM method, such as setTimeout. Suppose
the attacker has a JavaScript pointer to an array named
honest_array from an honest document that uses
the Prototype library (for how this might occur, see Sec-
tion 4.3) and that honest_window is the honest docu-
ment’s global object. The attacker can inject a malicious
script into the honest security origin as follows:

honest_array.push(honest_window);
honest_array.invoke("setTimeout",

"... malicious script ...", 0);

The attacker first adds the honest_window object
to the array and then asks the honest principal to call
the setTimeout method of the honest_window.
When the JavaScript engine attempts to call the
setTimeout DOM API, the DOM permits the call be-
cause the honest invoke method (acting as a confused
deputy) issued the call. The DOM then runs the mali-
cious script supplied by the attacker in the honest secu-
rity origin.

2.4 Consequences
Once the attacker is able to run a malicious script in the
honest security origin, all the browser’s cross-origin se-
curity protections evaporate. The situation is as if every
Web site contained a cross-site scripting vulnerability:
the attacker can steal the user’s authentication cookie or
password, learn confidential information present on the
Web site (e.g., read email messages on a webmail site),
and issue transactions on behalf of the user (e.g., trans-
fer money out of the user’s bank account). Because these
cross-origin JavaScript capability leaks are browser vul-
nerabilities, there is little a Web site can do to defend
itself against these attacks.

3 JavaScript Capability Leak Detection
In this section, we describe the design and implementa-
tion of an algorithm for detecting cross-origin JavaScript
capability leaks. Although the algorithm has a modest
overhead, our instrumented browser performs compara-
bly to Safari 3.1, letting us analyze complex Web appli-
cations.

3.1 Design
Assigning Security Origins. To detect cross-origin
JavaScript capability leaks, we monitor the heap graph,
the “points-to” relation between JavaScript objects in the

190	 18th USENIX Security Symposium	 USENIX Association

JavaScript heap (see Section 3.2 for details about the
“points-to” relation). We annotate each JavaScript ob-
ject in the heap graph with a security origin indicating
which security origin “owns” the object. We compute
the security origin of each object directly from the “is-
prototype-of” relation in the heap graph using the fol-
lowing algorithm:

1. Let obj be the JavaScript object in question.
2. If obj was created with a non-null prototype, as-

sign obj the same origin as its prototype.
3. Otherwise, obj must be the object prototype for

some document d. In that case, assign obj the se-
curity origin of d (i.e., the scheme, host, and port of
that d’s URL).

This algorithm is unambiguous because, when created,
each JavaScript object has a unique prototype, identi-
fied by its __proto__ property. Although an object’s
__proto__ can change over time, we fix the security
origin of an object at creation-time.

Minimal Capabilities. This algorithm for assigning
security origins to objects is well-suited to analyzing
leaks of JavaScript pointers for two reasons. First,
the algorithm is defined largely without reference to
the DOM, letting us catch bugs in the DOM. Second,
the algorithm reflects an object-capability perspective
in that each JavaScript object is a strictly more pow-
erful object-capability than the Object.prototype
object that terminates its prototype chain. An attacker
with a JavaScript pointer to the object can follow the
object’s prototype chain by repeatedly dereferencing the
object’s __proto__ property and eventually obtain a
JavaScript pointer to the Object.prototype object.
In these terms, we view the Object.prototype ob-
ject as the “minimal object-capability” of an origin.

Suspicious Edges. After annotating the heap graph
with the security origin of each object, we detect a
leaked JavaScript pointer as an edge from an object in
one security origin to an object in another security ori-
gin. These suspicious edges represent failures of the
JavaScript engine to segregate JavaScript objects into
distinct security origins. Not all of these suspicious
edges are actually security vulnerabilities because the
HTML specification requires some JavaScript objects,
such as the global object, be visible to foreign security
origins. To prevent exploits, browsers equip these ob-
jects with a reference monitor that prevents foreign se-
curity origins from getting or setting arbitrary properties
of the object. In addition to the global object, a hand-
ful of other JavaScript objects required to be visible to
foreign security origins. These objects are annotated in
WebKit’s Interface Description Language (IDL) with the
attribute DoNotCheckDomainSecurity.

3.2 The “Points-To” Relation
In our heap graph, we include two kinds of points in
the “points-to” relation: explicit pointers that are stored
as properties of JavaScript objects and implicit pointers
that are stored internally by the JavaScript engine.

Explicit Pointers. A script can alter the properties of
an object using the get, set, and delete operations.

• get looks up the value of an object property.
• set alters the value of an object property.
• delete removes a property from an object.

To monitor the “points-to” relation between JavaScript
objects in the JavaScript heap, we instrument the set
operation. Whenever the JavaScript engine invokes the
set operation to store a JavaScript object in a prop-
erty of another JavaScript object, we add an edge be-
tween the two objects in our representation of the heap
graph. If the set operation overwrites an existing prop-
erty, we remove the obsolete edge from the graph. To
improve performance, we ignore JavaScript values be-
cause JavaScript values cannot hold JavaScript pointers
and therefore are leaves in the heap graph. We remove
JavaScript objects from the heap graph when the objects
are deleted by the JavaScript garbage collector.

Implicit Pointers. The above instrumentation does
not give us a complete picture of the “points-to” relation
in the JavaScript heap because the operational seman-
tics of the JavaScript language [14] rely on a number of
implicit JavaScript pointers, which are not represented
explicitly as properties of a JavaScript object. For exam-
ple, consider the following script:

var x = ...
function f() {

var y = ...
function g() {

var z = ...
function h() { ... }

}
}

Function h can obtain the JavaScript pointers stored in
variables x, y, and z even though there are no JavaScript
pointers between h and these objects. The function h
can obtain these JavaScript pointers because the algo-
rithm for resolving variable names makes use of an im-
plicit “next” pointer that connects h’s scope object to
the scope objects of g, f, and the global scope. Instead
of being stored as properties of JavaScript objects, these
implicit pointers are stored as member variables of na-
tive objects in the JavaScript engine. To improve the
completeness of our heap graph, we include these im-
plicit JavaScript pointers explicitly as edges between the
JavaScript scope objects.

USENIX Association 	 18th USENIX Security Symposium	 191

Window Shell - 1c700000

object - 1c700020

__proto__

object prototype - 1c7000a0

__proto__

object - 1c700aa0

constructor

object - 1c700240

__defineGetter__

object - 1c700280

__defineSetter__

object - 1c7002c0

__lookupGetter__

object - 1c700300

__lookupSetter__

object - 1c700180

hasOwnProperty

object - 1c700200

isPrototypeOf

object - 1c7001c0

propertyIsEnumerable

object - 1c700100

toLocaleString

object - 1c7000c0

toString

object - 1c700140

valueOf

Global Object - 1c700040

window window@SCOPECHAIN GLOBAL

__proto__

object - 1c700b20

Array

object - 1c700be0

Boolean

object - 1c700c60

Date

object - 1c700da0

Error

object - 1c700de0

EvalError

object - 1c700ae0

Function

object - 1c700c20

Number

Object

object - 1c700e20

RangeError

object - 1c700e60

ReferenceError

object - 1c700d60

RegExp

object - 1c700b60

String

object - 1c700ea0

SyntaxError

object - 1c700ee0

TypeError

object - 1c700f20

URIError object - 1c701140

decodeURI

object - 1c701180

decodeURIComponent

object - 1c701240

dumpHeap

object - 1c7011c0

encodeURI

object - 1c701200

encodeURIComponent

object - 1c7010c0

escape

object - 1c700f80

eval

object - 1c701080

isFinite

object - 1c701040

isNaN

object - 1c701280

kjsprintobject - 1c701340

documentdocument local - document

object - 1c701000

parseFloat

object - 1c700fc0

parseInt

object - 1c701100

unescape

object - 1c700f60

Math Math

1c710090

NaN NaN

a

undefined undefined

1c7100a0

Infinity Infinity

function prototype - 1c700060

__proto__

array prototype - 1c700400

prototype

__proto__

boolean prototype - 1c700440

prototype

__proto__

date prototype - 1c700680

prototype

object - 1c700ce0

UTC

object - 1c700d20

now

object - 1c700ca0

parse

__proto__

error prototype - 1c7007c0

prototype

__proto__

object - 1c700860

prototype

__proto__ prototype

__proto__

number prototype - 1c7004e0

prototype

prototype

__proto__

__proto__

object - 1c7008c0

prototype

__proto__

object - 1c700920

prototype

__proto__

regExp prototype - 1c7006a0

prototype

__proto__

string prototype - 1c700420

prototype

object - 1c700ba0

fromCharCode

__proto__

object - 1c700980

prototype

__proto__

object - 1c7009e0

prototype

__proto__

object - 1c700a40

prototype

__proto__

__proto__

__proto__

__proto__

__proto__

__proto__

__proto__

__proto__

__proto__

__proto__

object - 1c701320

__proto__

__proto__

__proto__

__proto__

constructor

object - 1c700380

apply

object - 1c7003c0

call

object - 1c700340

toString__proto__ __proto__ __proto__

__proto__ __proto__ __proto__ __proto__ __proto__ __proto__ __proto____proto__ __proto__ __proto__

__proto__

constructor

__proto__

constructor

__proto__

constructor

object - 1c700460

toString

object - 1c7004a0

valueOf

__proto__ __proto__

__proto__

constructor

object - 1c700600

toExponential

object - 1c7005c0

toFixed

object - 1c700540

toLocaleString

object - 1c700640

toPrecision

object - 1c700500

toString

object - 1c700580

valueOf

__proto__ __proto__ __proto__ __proto__ __proto____proto__

__proto__

constructor

__proto__

constructor

object - 1c7006c0

compile

object - 1c700700

exec

object - 1c700740

test

object - 1c700780

toString

__proto____proto__ __proto__ __proto__

__proto__

constructor

object - 1c700820

toString

__proto__

constructor

__proto__

constructor

__proto__

constructor

__proto__

constructor

__proto__

constructor

__proto__

constructor

__proto__

__proto____proto____proto__ __proto__

__proto__

object - 1c7012c0

__proto__

object - 1c7012e0

__proto__

object - 1c701300

__proto__

__proto__

Figure 1: The heap graph of an empty document.

3.3 Implementation
We implemented our leak detection algorithm in a 1,393
line patch to WebKit’s Nitro JavaScript engine. Our al-
gorithm can construct heap graphs of complex Web ap-
plications, such as Gmail or the Apple Store. For exam-
ple, one heap graph of a Gmail inbox contains 54,140
nodes and 130,995 edges. These graphs are often vi-
sually complex and difficult to interpret manually. Fig-
ure 1 illustrates the nature of these graphs by depicting
the heap graph of an empty document. Although our in-
strumentation slows down the browser, the instrumented
browser is still faster than Safari 3.1, demonstrating that
our algorithm scales to complex Web applications.

4 Vulnerabilities and Exploitation
In this section, we use our leak detector to detect cross-
origin JavaScript capability leaks in WebKit. After
discovering two new vulnerabilities, we illuminate the
vulnerabilities by constructing proof-of-concept exploits
using three different techniques. In addition, we apply
our understanding of JavaScript pointers to breaking the
Subspace [11] mashup design.

4.1 Test Suite
To find example cross-origin JavaScript capability leaks,
we run our instrumented browser through a test suite.
Ideally, to reduce the number of false negatives, we
would use a test suite with high coverage. Because our
goal is to find example vulnerabilities, we use the We-
bKit project’s regression test suite. This test suite exer-
cises a variety of browser security features and tests for
the non-existence of past security vulnerabilities. Using
this test suite, our instrumentation found two new high-
severity cross-origin JavaScript capability leaks. Instead
of attempting to discover and patch all these leaks, we
recommend a more comprehensive defense, detailed in
Section 5.

WebKit’s regression test suite uses a JavaScript ob-
ject named layoutTestController to facilitate its
tests. For example, each tests notifies the testing harness
that the test is complete by calling the notifyDone
method of the layoutTestController. We mod-
ified this notifyDone method to store the JavaScript
heap graph in the file system after each test completes.

Attacker Global Object@0x1a9e1420

object@0x1a9e3c20

document

Victim Global Object@0x1a9e2940

document

object@0x1a9e3380

Object

Object Prototype@0x1a9e2980

object@0x1a9e3c00

__proto__

object@0x1a9e3be0

__proto__

object@0x1a9e3bc0

__proto__

object@0x1a9e3ba0

__proto__

__proto__

prototype

Figure 2: Selected nodes from a heap graph showing a
cross-origin JavaScript capability leak of the document
object, object@0x1a9e3c20, after a navigation.

The layoutTestController contains a number of
objects that are shared between all security origins. Our
instrumentation flags JavaScript pointers to these objects
as suspicious, and, in fact, these pointers are exploitable
in the test configuration of the browser. However, these
pointers are not present in the release configuration of
the browser because the layoutTestController
itself is present only during testing. We white listed
these objects as visible to multiple security origins.

4.2 Navigation and Document

Vulnerability. When the browser navigates a window
from one Web page to another, the browser replaces the
document originally displayed in the window with a new
document retrieved from the network. Our instrumen-
tation found that WebKit leaks a JavaScript pointer to
the new document object every time a window navi-
gates because the DOM updates the document prop-
erty of the old global object to point to the new doc-
ument occupying the frame. This leak is visible in
the heap graph (see Figure 2) as a dashed line from
Attacker Global Object@0x1a9e1420 to the
honest document object, object@0x1a9e3c20.

192	 18th USENIX Security Symposium	 USENIX Association

Exploit. Crafting an exploit for this vulnerability is
subtle. An attacker cannot simply hold a JavaScript
pointer to the old global object and access its
document property because all JavaScript pointers to
global objects are updated to the new global object when
a frame is navigated navigation [10]. However, the prop-
erties of the old global object are still visible to func-
tions defined by the old document via the scope chain
as global variables. In particular, an attacker can exploit
this vulnerability as follows:

1. Create an <iframe> to http://attacker.
com/iframe.html, which defines the following
function in a malicious document:

function exploit() {
var elmt = document.

createElement("script");
elmt.src =

"http://attacker.com/atk.js";
document.body.appendChild(elmt);

}

Notice that the exploit function refers to
the document as a global variable, document,
and not as a property of the global object,
window.document.

2. In the parent frame, store a pointer to the exploit
function by running the following JavaScript:

window.f = frames[0].exploit;

3. Navigate the frame to http://example.com/.
4. Call the function: window.f().

After the attacker navigates the child frame to http://
example.com/, the DOM changes the document
variable in the function exploit to point to the honest
document object instead of the attacker’s document ob-
ject. The exploit function can inject arbitrary script
into the honest document using a number of standard
DOM APIs. Once the attacker has injected script into
the honest document, the attacker can impersonate the
honest security origin to the browser.

4.3 Lazy Location and History
Vulnerability. For performance, WebKit instantiates
the window.location and window.history ob-
jects lazily the first time they are accessed. When instan-
tiating these objects, the browser constructs their proto-
type chains. In some situations, WebKit constructs an
incorrect prototype chain that connects these objects to
the Object.prototype of a foreign security origin,
creating a vulnerability if, for example, a document uses
the following script to “frame bust” [12] in order to avoid
clickjacking [7] attacks:

top.location.href =
"http://example.com/";

Attacker Global Object@0x1c1d0040

object@0x1c1d2720

location

object@0x1c1d2700

__proto__

Object Prototype@0x1c1d1420

__proto__

Victim Global Object@0x1c1d13e0

object@0x1c1d2740

location

object@0x1c1d1e20

Object

__proto__

prototype

Figure 3: Selected nodes from a heap graph showing
a cross-origin JavaScript capability leak of the location
prototype, object@0x1c1d2700, to the attacker af-
ter the victim attempts to frame bust.

This line of JavaScript changes the location of the top-
most frame, navigating that frame to a trusted Web site.
The browser permits cross-origin access to a frame’s
location object to allow navigation [1]. If this script
is the first script to access the location object of the
top frame, then WebKit will mistakenly connect the
top frame’s newly constructed location object to the
Object.prototype of the child frame (instead of
to the Object.prototype of the top frame) because
the child frame is currently in scope lexically.

Exploit. To exploit this cross-origin JavaScript capa-
bility leak, the attacker proceeds in two phases: (1)
the attacker obtains a JavaScript pointer to the hon-
est Object.prototype, and (2) the attacker abuses
the honest Object.prototype to inject a malicious
script into the honest security origin. To obtain a
JavaScript pointer to the honest Object.prototype,
the attacker create an <iframe> to an honest document
that frame busts and runs the following script in response
to the beforeunload event:

var location_prototype =
window.location.__proto__;

var honest_object_prototype =
location_prototype.__proto__;

Because the beforeunload event handler runs af-
ter the child frame has attempted to frame bust, the at-
tacker’s location object has been instantiated by the hon-
est document and is mistakenly attached to the honest
Object.prototype (see Figure 3). The attacker ob-
tains a pointer to the honest Object.prototype by
traversing this prototype chain.

Once the attacker has obtained a JavaScript pointer
to the honest Object.prototype, there are a num-
ber of techniques the attacker can use to compromise the
honest security origin completely. We describe two rep-
resentative examples:

1. Many Web sites use JavaScript libraries to smooth
over incompatibilities between browsers and reuse

USENIX Association 	 18th USENIX Security Symposium	 193

common code. One of the more popular JavaScript
libraries is the Prototype library [22], which is used
by CNN, Apple, Yelp, Digg, Twitter, and many oth-
ers. If the honest page uses the Prototype library,
the attacker can inject arbitrary script into the hon-
est page by abusing the powerful invoke function
defined by the Prototype library. For example, the
attacker can use the follow script:

var honest_function =
honest_object_prototype.
__defineGetter__;

var honest_array =
honest_function.
argumentNames();

honest_array.push(frames[0]);
honest_array.invoke("setTimeout",

"... malicious script ...");

In the Prototype library, arrays contain a method
named invoke that calls the method named
by its first argument on each element of its ar-
ray, passing the remaining arguments to the in-
voked method. To abuse this method, the at-
tacker first obtains a pointer to an honest ar-
ray object by calling the argumentNames
method of an honest function reachable from
the honest_object_prototype object. The
attacker then pushes the global object of the
child frame onto the array and calls the honest
document’s setTimeout method via invoke.
The honest global object has a reference mon-
itor that prevents the attacker from accessing
setTimeout directly, but the reference monitor
allows invoke to access setTimeout because
invoke is defined by the honest document.

2. Even if the honest Web page does not use a complex
JavaScript library, the attacker can often find a snip-
pet of honest script to trick. For example, suppose
the attacker installs a “setter” function for the foo
property of the honest Object.prototype as
follows:

function evil(x) {
x.innerHTML =

’<img src="about:blank"’ +
’ onerror="... script ...">’;

});
honest_object_prototype.

__defineSetter__(’foo’, evil);

Now, if the honest script stores a DOM node in a
property of an object as follows:

var obj = new Object();
obj.foo = honest_dom_node;

The JavaScript engine will call the attacker’s setter
function instead of storing honest_dom_node
into the foo property of obj, causing the
variable x to contain a JavaScript pointer to
honest_dom_node. Once the attacker’s func-
tion is called with a pointer to the honest DOM
node, the attacker can inject malicious script into
the honest document using the innerHTML API.

4.4 Capability Leaks in Subspace
The Subspace mashup design [11] lets a trusted integra-
tor communicate with an untrusted gadget by passing a
JavaScript pointer from the integrator to the gadget:

A Subspace JavaScript object is created in
the top frame and passed to the mediator
frame... The mediator frame still has access to
the Subspace object it obtained from the top
frame, and passes this object to the untrusted
frame. [11]

Unfortunately, the Subspace design relies on leaking
a JavaScript pointer from a trusted security origin to
an untrusted security origin, creating a cross-origin
JavaScript capability leak. By leaking the communica-
tion object, Subspace also leaks a pointer to the trusted
Object.prototype via the prototype chain of the
communication object.

To verify this attack, we examined CrossSafe [25], a
public implementation of Subspace. We ran a Cross-
Safe tutorial in our instrumented browser and examined
the resulting heap graph. Our detector found a cross-
origin JavaScript capability leak: the channel object
is leaked from the integrator to the gadget. By repeat-
edly dereferencing the __proto__ property, the un-
trusted gadget can obtain a JavaScript pointer to the
trusted Object.prototype object. The untrusted
gadget can then inject a malicious script into the trusted
integrator using one of the techniques described in Sec-
tion 4.3.

5 Defense
In this section, we propose a principled defense for
cross-origin JavaScript capability leaks. Our defense ad-
dresses the root cause of these vulnerabilities and incurs
a minor performance overhead.

5.1 Approach
Currently, browser vendors defend against cross-origin
JavaScript capability leaks by patching each individual
leak after the leak is discovered. We recommend an-
other approach for defending against these vulnerabili-
ties: add access control checks throughout the JavaScript
engine. We recommend this principled approach over
ad-hoc leak plugging for two reasons:

194	 18th USENIX Security Symposium	 USENIX Association

• This approach addresses the core design issue un-
derlying cross-origin JavaScript capability leak vul-
nerabilities: the mismatch between the DOM’s ac-
cess control security model and the JavaScript en-
gine’s object-capability security model.

• This approach provides a second layer of defense:
if the browser is leak-free, all the access con-
trol checks will be redundant and pass, but if the
browser contains a leak, the access control checks
prevent the attacker from exploiting the leak.

In a correctly implemented browser, Web content will be
unable to determine whether the browser implements the
access control checks we recommend. The additional
access control checks enhance the mechanism used to
enforce the same-origin policy but do not alter the policy
itself, resulting in zero compatibility impact.

Another plausible approach to mitigating these vul-
nerabilities is to adopt an object-capability discipline
throughout the DOM. This approach mitigates the sever-
ity of cross-origin JavaScript capability leaks by limiting
the damage an attacker can wreak with the leaked capa-
bility. For example, if the browser leaks an honest his-
tory object to the attacker, the attacker would be able to
manipulate the history object, but would not be able to
alter the document object. Conceptually, either adding
access control checks to the JavaScript engine or adopt-
ing an object-capability discipline throughout the DOM
resolves the underlying architectural security issue, but
we recommend adopting the access control paradigm for
two main reasons:

• Adopting an object-capability discipline through-
out the DOM requires “taming” [15] the DOM API.
The current DOM API imbues every DOM node
with the full authority of the node’s security origin
because the API exposes a number of “universal”
methods, such as innerHTML that can be used
to run arbitrary script. Other researchers have de-
signed capability-based DOM APIs [4], but taming
the DOM API requires a number of non-backwards
compatible changes. A browser that makes these
changes will be unpopular because the browser will
be unable to display a large fraction of Web sites.

• The JavaScript language itself has a number of fea-
tures that make enforcing an object-capability dis-
cipline challenging. For example, every JavaScript
object has a prototype chain that eventually leads
back to the Object.prototype, making it dif-
ficult to create a weaker object-capability than
the Object.prototype. Unfortunately, the
Object.prototype itself represents a power-
ful object-capability with the ability to interfere
with the properties of every other object from the
same document (e.g., the exploit in Section 4.3.)

Although we recommend that browsers adopt the access
control paradigm for Web content, other projects, such
as Caja [16] and ADsafe [3], take the opposite approach
and elect to enforce an object-capability discipline on
the DOM. These projects succeed with this approach be-
cause the preceding considerations do not apply: these
projects target new code (freeing themselves from back-
wards compatibility constraints) that is written in a sub-
set of JavaScript (freeing themselves from problematic
language features). For further discussion, see Section 6.

5.2 Design
We propose adding access control checks to the
JavaScript engine by inserting a reference monitor into
each JavaScript object. The reference monitor interposes
on each get and set operation (described in Section 3)
and performs the following access control check:

1. Let the active origin be the origin of the document
that defined the currently executing script.

2. Let the target origin be the origin that “owns” the
JavaScript object being accessed, as computed by
the algorithm in Section 3.1.

3. Allow the access if the browser considers the active
origin and the target origin to be the same origin
(i.e., if their scheme, hosts, and ports match).

4. Otherwise, deny access.

If the access is denied, the JavaScript engine returns the
value undefined for get operations and simply ig-
nores set operations. In addition to adding these ac-
cess control checks, we record the security origin of each
JavaScript object when the object is created. Our imple-
mentation does not currently insert access control checks
for delete operations, but these checks could be added
at a minor performance cost. Some JavaScript objects,
such as the global object, are visible across origins. For
these objects, our reference monitor defers to the refer-
ence monitors that already protect these objects.

5.3 Inline Cache
The main disadvantage of performing an access control
check for every JavaScript property access is the run-
time overhead of performing the checks. Sophisticated
Web applications access JavaScript properties an enor-
mous number of times per second, and browser vendors
have heavily optimized these code paths. However, we
observe that the proposed access checks are largely re-
dundant and amenable to optimization because scripts
virtually always access objects from the same origin.

Cutting-edge JavaScript engines, including Sa-
fari 4’s Nitro JavaScript Engine, Google Chrome’s
V8 JavaScript engine, Firefox 3.5’s TraceMonkey
JavaScript engine, and Opera 11’s Carakan JavaScript
engine, optimize JavaScript property accesses using an

USENIX Association 	 18th USENIX Security Symposium	 195

inline cache [24]. (Of the major browser vendors, only
Microsoft has yet to announce plans to implement this
optimization.) These JavaScript engines group together
JavaScript objects with the same “structure” (i.e., whose
properties are laid out the same order in memory). When
a script accesses a property of an object, the engine
caches the object’s group and the memory offset of the
property inline in the compiled script. The next time
that compiled script accesses a property of an object, the
inline cache checks whether the current object has the
same structure as the original object. If the two objects
have the same structure, a cache hit, the engine uses the
memory offset stored in the cache to access the prop-
erty. Otherwise, a cache miss, the engine accesses the
property using the normal algorithm.

Notice that two objects share the same structure only
if their prototypes share the same structure. Addi-
tionally, the Nitro JavaScript engine initializes each
Object.prototype with a unique structure identi-
fier, preventing two object from different security ori-
gins (as defined by our prototype-based algorithm) from
being be grouped together as sharing the same structure.
(Other JavaScript engines, such as V8, do contain struc-
ture groups that span security origins, but this design
is not necessary for performance.) Whenever the inline
cache has a hit, we observe the following:

• The current object is from the same security origin
as the original object that created the cache entry
because the two objects share the same structure.

• The script has the same security origin as when the
cache entry was created because the cache is inlined
into the script and the security origin of the script is
fixed at compile time.

Taken together, these properties imply that the current
access control check will return the same result as the
original check because both of the origins involved in the
check are unchanged. Therefore, we need not perform
an access control check during a cache hit, greatly reduc-
ing the performance overhead of adding access control
checks to the JavaScript engine.

5.4 Evaluation
To evaluate performance overhead of our defense,
we added access control checks to Safari 4’s Nitro
JavaScript engine in a 394 line patch. We verified that
our access control checks actually defeat the proof-of-
concept exploits we construct in Section 4. To speed up
the access control checks, we represented each security
origin by a pointer, letting us allow the vast majority of
accesses using a simple pointer comparison. In some
rare cases, including to deny access, our implementation
performs a more involved access check. The majority of
performance overhead in our implementation is caused

������� ��	������ ��������
����

����

����

����

����

����

����

��	������

�
��
�
�
�
�
	

Figure 4: Overhead for access control checks as measure
by industry-standard JavaScript benchmarks (average of
10 runs, 95% confidence).

���������	�� ������������	��

���

��

��

��

��

��

���

���

�
��
�
�
�
�
�

���� ��������� �����

Figure 5: Overhead for reading and writing properties of
JavaScript objects both with and without an inline cache
as measured by microbenchmarks (average of 10 runs,
95% confidence).

by computing the currently active origin from the lexical
scope, which can be reduced with further engineering.

Overall Performance. Our implementation incurs a
small overhead on industry-standard JavaScript bench-
marks (see Figure 4). On Mozilla’s Dromaeo bench-
mark, we observed a 0.57% slowdown for access con-
trol versus an unmodified browser (average of 10 runs,
±0.58%, 95% confidence). On Apple’s SunSpider
benchmark, we observed a 1.16% slowdown (average
of 10 runs, ±0.45%, 95% confidence). On Google’s V8
benchmark, we observed a 1.94% slowdown (average of
10 runs, ±0.61, 95% confidence). We hypothesize that
the variation in slowdown between these benchmarks is
due to the differing balance between arithmetic opera-
tions and property accesses in the different benchmarks.
Note that these overhead numbers are tiny in comparison
with the 338% speedup of Safari 4 over Safari 3.1 [24].

196	 18th USENIX Security Symposium	 USENIX Association

Benefits of Inline Cache. We attribute much of the
performance of our access checks to the inline cache,
which lets our implementation skip redundant access
control checks for repeated property accesses. To evalu-
ate the performance benefits of the inline cache, we cre-
ated two microbenchmarks, “read” and “write.” In the
read benchmark, we repeatedly performed a get opera-
tion on one property of a JavaScript object in a loop. In
the write benchmark, we repeatedly performed a set
operation on one property of a JavaScript object in a
loop. We then measured the slowdown incurred by the
access control checks both with the inline cache enabled
and with the inline cache disabled (see Figure 5). With
the inline cache enabled, we observed a −0.08% slow-
down (average of 50 runs, ±0.22%, 95% confidence)
on the read benchmark and a 0.55% slowdown (aver-
age of 50 runs, ±0.74%, 95% confidence) on the write
benchmark. By contrast, with the inline cache disabled,
we observed a 9.41% slowdown (average of 50 runs,
±1.11%, 95% confidence) on the read benchmark and
a 10.25% slowdown (average of 50 runs, ±1.00%, 95%
confidence) on the write benchmark.

From these observations we conclude that browser
vendors can implement access control checks for ev-
ery get and set operation with a performance over-
head of less than 1–2%. To reap these security bene-
fits with minimal overhead, the JavaScript engine should
employ an inline cache to optimize repeated property
accesses, and the inline cache should group structurally
similar JavaScript objects only if those objects are from
the same security origin.

6 Related Work
The operating system literature has a rich history
of work on access control and object-capability sys-
tems [13, 21, 23, 8]. In this section, we focus on com-
paring our work to related work on access control and
object-capability systems in Web browsers.

FBJS, Caja, and ADsafe. Facebook, Yahoo!, and
Google have developed JavaScript subsets, called
FBJS [5], ADsafe [3], and Caja [16], respectively,
that enforce an object-capability discipline by remov-
ing problematic JavaScript features (such as prototypes)
and DOM APIs (such as innerHTML). These projects
take the opposite approach from this paper: they extend
the JavaScript engine’s object-capability security model
to the DOM instead of extending the DOM’s access
control security model to the JavaScript engine. These
projects choose this alternative design point for two rea-
sons: (1) the projects target new social networking gad-
gets and advertisements that are free from compatibil-
ity constraints and (2) these projects are unable to al-
ter legacy browsers because they must work in existing

browsers. We face the opposite constraints: we cannot
alter legacy content but we can change the browser. For
these reasons, we recommend the opposite design point.

Opus Palladianum. The Opus Palladianum (OP) Web
browser [6] isolates security origins into separate sand-
boxed components. This component-based browser
architecture makes it easier to reason about cross-
origin JavaScript capability leaks because these capa-
bility leaks must occur between browser components
instead of within a single JavaScript heap. We can
view the sandbox as a coarse-grained reference mon-
itor. Unfortunately, the sandbox alone is too coarse-
grained to implement standard browser features such
as postMessage. To support these features, the
OP browser must allow inter-component references, but
without a public implementation, we are unable to eval-
uate whether these inter-component references give rise
to cross-origin JavaScript capability leaks.

Script Accenting. Script accenting [2] is a technique
for adding defense-in-depth to the browser’s enforce-
ment of the same-origin policy. To mitigate mistaken
script execution, the browser encrypts script source code
with a key specific to the security origin of the script.
Whenever the browser attempts to run a script in a secu-
rity origin, the browser first decrypts the script with the
security origin’s key. If decryption fails, likely because
of a vulnerability, the browser refuses to execute the
script. Script accenting similarly encrypts the names of
JavaScript properties ostensibly preventing a script from
manipulating properties of objects from another origin.
Unfortunately, this approach is not expressive enough to
represent the same-origin policy (e.g., this design does
not support document.domain). In addition, script
accenting requires XOR encryption to achieve sufficient
performance, but XOR encryption lacks the integrity
protection required to make the scheme secure.

Cross-Origin Wrappers. Firefox 3 uses cross-origin
wrappers [20] to mitigate security vulnerabilities caused
by cross-origin JavaScript capability leaks. Instead of
exposing JavaScript objects directly to foreign security
origins, Firefox exposes a “wrapper” object that me-
diates access to the wrapped object with a reference
monitor. Implementing cross-origin wrappers correctly
is significantly more complex than implementing ac-
cess control correctly because the cross-origin wrappers
must wrap and unwrap objects at the appropriate times
in addition to implementing all the same access con-
trol checks. Our access control design can be viewed
as a high-performance technique for reducing this com-
plexity (and the attendant bugs) by adding the reference
monitor to every object.

USENIX Association 	 18th USENIX Security Symposium	 197

7 Conclusions
In this paper, we identify a class of vulnerabilities, cross-
origin JavaScript capability leaks, that arise when the
browser leaks a JavaScript pointer from one security
origin to another. These vulnerabilities undermine the
same-origin policy and prevent Web sites from secur-
ing themselves against Web attackers. We present an
algorithm for detecting cross-origin JavaScript capabil-
ity leaks by monitoring the “points-to” relation between
JavaScript objects in the JavaScript heap. We imple-
ment our detection algorithm in WebKit and use it to
find new cross-origin JavaScript capability leaks by run-
ning the WebKit regression test suite in our instrumented
browser. Having discovered these leaked pointers, we
turn our attention to exploiting these vulnerabilities. We
construct exploits to illustrate the vulnerabilities and find
that the root cause of the these vulnerabilities is the
mismatch in security models between the DOM, which
uses access control, and the JavaScript engine, which
uses object-capabilities. Instead of patching each leak,
we recommend that browser vendors repair the under-
lying architectural issue by implementing access con-
trol checks throughout the JavaScript engine. Although
a straight-forward implementation that performed these
checks for every access would have a prohibitive over-
head, we demonstrate that a JavaScript engine optimiza-
tion, the inline cache, reduces this overhead to 1–2%.

Acknowledgements. We thank Chris Karloff, Oliver
Hunt, Collin Jackson, John C. Mitchell, Rachel Parke-
Houben, and Sam Weinig for their helpful suggestions
and feedback. This material is based upon work par-
tially supported by the National Science Foundation un-
der Grants No. 0311808, No. 0448452, No. 0627511,
and CCF-0424422, and by the Air Force Office of Scien-
tific Research under MURI Grant No. 22178970-4170.
Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the
Air Force Office of Scientific Research, or the National
Science Foundation.

References
[1] Adam Barth, Collin Jackson, and John C. Mitchell.

Securing frame communication in browsers. In
Proceedings of the 17th USENIX Security Sympo-
sium, 2008.

[2] Shuo Chen, David Ross, and Yi-Min Wang. An
analysis of browser domain-isolation bugs and a
light-weight transparent defense mechanism. In
CCS ’07: Proceedings of the 14th ACM conference
on Computer and communications security, pages
2–11, New York, NY, USA, 2007. ACM.

[3] Douglas Crockford. ADsafe.

[4] Douglas Crockford. ADsafe DOM API.

[5] Facebook. Facebook Markup Language (FBML).

[6] Chris Grier, Shuo Tang, and Samuel T. King. Se-
cure web browsing with the OP web browser. In
IEEE Symposium on Security and Privacy, 2008.

[7] Jeremiah Grossman. Clickjacking: Web pages can
see and hear you, October 2008.

[8] Norm Hardy. The keykos architecture. Operating
Systems Review, 1985.

[9] Norm Hardy. The confused deputy: (or why capa-
bilities might have been invented). SIGOPS Oper.
Syst. Rev., 22(4):36–38, 1988.

[10] Ian Hickson et al. HTML 5 Working Draft.

[11] Collin Jackson and Helen J. Wang. Sub-
space: Secure cross-domain communication for
web mashups. In Proceedings of the 16th Interna-
tional World Wide Web Conference. (WWW), 2007.

[12] Peter-Paul Koch. Frame busting, 2004.
http://www.quirksmode.org/js/
framebust.html.

[13] Butler Lampson. Protection and access control in
operating systems. Operating Systems: Infotech
State of the Art Report, 14:309–326, 1972.

[14] Sergio Maffeis, John C. Mitchell, and Ankur Taly.
An operational semantics for JavaScript. In Pro-
ceedings of the 6th Asian Programming Language
Symposium (APLAS), December 2008.

[15] Mark Miller. A theory of taming.

[16] Mark Miller. Caja, 2007.

[17] Mitre. CVE-2008-4058.

[18] Mitre. CVE-2008-4059.

[19] Mitre. CVE-2008-5512.

[20] Mozilla. XPConnect wrappers.
http://developer.mozilla.org/en/
docs/XPConnect_wrappers.

[21] Sape J. Mullender, Guido van Rossum, Andrew
Tannenbaum, Robbert van Renesse, and Hans van
Staveren. Amoeba: A distributed operating system
for the 1990s. Computer, 23(5):44–53, 1990.

[22] Prototype JavaScript framework.
http://www.prototypejs.org/.

[23] Jonathan S. Shapiro, Jonathan M. Smith, and
David J. Farber. Eros: a fast capability system. In
17th ACM Symposium on Operating System Prin-
ciples, New York, NY, USA, 1999. ACM.

[24] Maciej Stachowiak. Introducing SquirrelFish Ex-
treme, 2008.

[25] Kris Zyp. CrossSafe.

