
USENIX Association 18th USENIX Security Symposium 299

Vanish: Increasing Data Privacy with Self-Destructing Data

Roxana Geambasu Tadayoshi Kohno Amit A. Levy Henry M. Levy

University of Washington
{roxana, yoshi, levya, levy}@cs.washington.edu

Abstract
Today’s technical and legal landscape presents
formidable challenges to personal data privacy. First,
our increasing reliance on Web services causes personal
data to be cached, copied, and archived by third parties,
often without our knowledge or control. Second, the
disclosure of private data has become commonplace due
to carelessness, theft, or legal actions.

Our research seeks to protect the privacy of past,
archived data — such as copies of emails maintained
by an email provider — against accidental, malicious,
and legal attacks. Specifically, we wish to ensure that
all copies of certain data become unreadable after a user-
specified time, without any specific action on the part of
a user, and even if an attacker obtains both a cached copy
of that data and the user’s cryptographic keys and pass-
words.

This paper presents Vanish, a system that meets this
challenge through a novel integration of cryptographic
techniques with global-scale, P2P, distributed hash ta-
bles (DHTs). We implemented a proof-of-concept Van-
ish prototype to use both the million-plus-node Vuze Bit-
Torrent DHT and the restricted-membership OpenDHT.
We evaluate experimentally and analytically the func-
tionality, security, and performance properties of Vanish,
demonstrating that it is practical to use and meets the
privacy-preserving goals described above. We also de-
scribe two applications that we prototyped on Vanish: a
Firefox plugin for Gmail and other Web sites and a Van-
ishing File application.

1 Introduction

We target the goal of creating data that self-destructs or
vanishes automatically after it is no longer useful. More-
over, it should do so without any explicit action by the
users or any party storing or archiving that data, in such
a way that all copies of the data vanish simultaneously
from all storage sites, online or offline.

Numerous applications could benefit from such self-
destructing data. As one example, consider the case
of email. Emails are frequently cached, stored, or
archived by email providers (e.g., Gmail, or Hotmail),
local backup systems, ISPs, etc. Such emails may cease
to have value to the sender and receiver after a short pe-
riod of time. Nevertheless, many of these emails are pri-
vate, and the act of storing them indefinitely at interme-
diate locations creates a potential privacy risk. For ex-
ample, imagine that Ann sends an email to her friend
discussing a sensitive topic, such as her relationship with
her husband, the possibility of a divorce, or how to ward
off a spurious lawsuit (see Figure 1(a)). This email
has no value as soon as her friend reads it, and Ann
would like that all copies of this email — regardless of
where stored or cached — be automatically destroyed af-
ter a certain period of time, rather than risk exposure in
the future as part of a data breach, email provider mis-
management [41], or a legal action. In fact, Ann would
prefer that these emails disappear early — and not be
read by her friend — rather than risk disclosure to unin-
tended parties. Both individuals and corporations could
benefit from self-destructing emails.

More generally, self-destructing data is broadly appli-
cable in today’s Web-centered world, where users’ sen-
sitive data can persist “in the cloud” indefinitely (some-
times even after the user’s account termination [61]).
With self-destructing data, users can regain control over
the lifetimes of their Web objects, such as private mes-
sages on Facebook, documents on Google Docs, or pri-
vate photos on Flickr.

Numerous other applications could also benefit from
self-destructing data. For example, while we do not con-
done their actions, the high-profile cases of several politi-
cians [4, 62] highlight the relevance for self-destructing
SMS and MMS text messages. The need for self-
destructing text messages extends to the average user as
well [42, 45]. As a news article states, “don’t ever say
anything on e-mail or text messaging that you don’t want

300 18th USENIX Security Symposium USENIX Association

��� �����

��	���� �����

����������������

��	����

���������

��������	
����

(a) Example Scenario.

����������	����������������������������������

����	����	����������	���
���	����	������	�����������

������������

(b) Vanishing Emails plugin for Gmail.

Figure 1: Example Scenario and Vanish Email Screenshot. (a) Ann wants to discuss her marital relationship with her friend,
Carla, but does not want copies stored by intermediate services to be used in a potential child dispute trial in the future. (b) The
screenshot shows how Carla reads a vanishing email that Ann has already sent to her using our Vanish Email Firefox plugin for
Gmail.

to come back and bite you [42].” Some have even argued
that the right and ability to destroy data are essential to
protect fundamental societal goals like privacy and lib-
erty [34, 44].

As yet another example, from a data sanitation per-
spective, many users would benefit from self-destructing
trash bins on their desktops. These trash bins would pre-
serve deleted files for a certain period of time, but af-
ter a timeout the files would self-destruct, becoming un-
available even to a forensic examiner (or anyone else,
including the user). Moreover, the unavailability of these
files would be guaranteed even if the forensic exam-
iner is given a pristine copy of the hard drive from be-
fore the files self-destructed (e.g., because the machines
were confiscated as part of a raid). Note that employ-
ing a whole disk encryption scheme is not sufficient, as
the forensic examiner might be able to obtain the user’s
encryption passwords and associated cryptographic keys
through legal means. Other time-limited temporary files,
like those that Microsoft Word periodically produces in
order to recover from a crash [17], could similarly benefit
from self-destructing mechanisms.

Observation and Goals. A key observation in these ex-
amples is that users need to keep certain data for only
a limited period of time. After that time, access to that
data should be revoked for everyone — including the le-
gitimate users of that data, the known or unknown enti-
ties holding copies of it, and the attackers. This mech-
anism will not be universally applicable to all users or
data types; instead, we focus in particular on sensitive
data that a user would prefer to see destroyed early rather
than fall into the wrong hands.

Motivated by the above examples, as well as our ob-
servation above, we ask whether it is possible to create a
system that can permanently delete data after a timeout:

1. even if an attacker can retroactively obtain a pristine
copy of that data and any relevant persistent crypto-
graphic keys and passphrases from before that time-
out, perhaps from stored or archived copies;

2. without the use of any explicit delete action by the
user or the parties storing that data;

3. without needing to modify any of the stored or
archived copies of that data;

4. without the use of secure hardware; and
5. without relying on the introduction of any new

external services that would need to be deployed
(whether trusted or not).

A system achieving these goals would be broadly ap-
plicable in the modern digital world as we’ve previously
noted, e.g., for files, private blog posts, on-line docu-
ments, Facebook entries, content-sharing sites, emails,
messages, etc. In fact, the privacy of any digital content
could potentially be enhanced with self-deleting data.

However, implementing a system that achieves this
goal set is challenging. Section 2 describes many natural
approaches that one might attempt and how they all fall
short. In this paper we focus on a specific self-deleting
data scheme that we have implemented, using email as
an example application.

Our Approach. The key insight behind our approach
and the corresponding system, called Vanish, is to lever-
age the services provided by decentralized, global-scale
P2P infrastructures and, in particular, Distributed Hash
Tables (DHTs). As the name implies, DHTs are designed

USENIX Association 18th USENIX Security Symposium 301

to implement a robust index-value database on a col-
lection of P2P nodes [64]. Intuitively, Vanish encrypts
a user’s data locally with a random encryption key not
known to the user, destroys the local copy of the key, and
then sprinkles bits (Shamir secret shares [49]) of the key
across random indices (thus random nodes) in the DHT.

Our choice of DHTs as storage systems for Vanish
stems from three unique DHT properties that make them
attractive for our data destruction goals. First, their huge
scale (over 1 million nodes for the Vuze DHT [28]),
geographical distribution of nodes across many coun-
tries, and complete decentralization make them robust
to powerful and legally influential adversaries. Second,
DHTs are designed to provide reliable distributed stor-
age [35, 56, 64]; we leverage this property to ensure that
the protected data remains available to the user for a de-
sired interval of time. Last but not least, DHTs have an
inherent property that we leverage in a unique and non-
standard way: the fact that the DHT is constantly chang-
ing means that the sprinkled information will naturally
disappear (vanish) as the DHT nodes churn or internally
cleanse themselves, thereby rendering the protected data
permanently unavailable over time. In fact, it may be
impossible to determine retroactively which nodes were
responsible for storing a given value in the past.

Implementation and Evaluation. To demonstrate the
viability of our approach, we implemented a proof-of-
concept Vanish prototype, which is capable of using ei-
ther Bittorrent’s Vuze DHT client [3] or the PlanetLab-
hosted OpenDHT [54]. The Vuze-based system can sup-
port 8-hour timeouts in the basic Vanish usage model
and the OpenDHT-based system can support timeouts
up to one week.1 We built two applications on top of
the Vanish core — a Firefox plugin for Gmail and other
Web sites, and a self-destructing file management appli-
cation — and we intend to distribute all of these as open
source packages in the near future. While prototyping on
existing DHT infrastructures not designed for our pur-
pose has limitations, it allows us to experiment at scale,
have users benefit immediately from our Vanish appli-
cations, and allow others to build upon the Vanish core.
Figure 1(b) shows how a user can decapsulate a vanish-
ing email from her friend using our Gmail plugin (com-
plete explanation of the interface and interactions is pro-
vided in Section 5). Our performance evaluation shows
that simple, Vanish-local optimizations can support even
latency-sensitive applications, such as our Gmail plugin,
with acceptable user-visible execution times.

Security is critical for our system and hence we con-
sider it in depth. Vanish targets post-facto, retroactive at-
tacks; that is, it defends the user against future attacks on

1We have an external mechanism to extend Vuze timeouts beyond
8 hours, which we describe later.

old, forgotten, or unreachable copies of her data. For ex-
ample, consider the subpoena of Ann’s email conversa-
tion with her friend in the event of a divorce. In this con-
text, the attacker does not know what specific content to
attack until after that content has expired. As a result the
attacker’s job is very difficult, since he must develop an
infrastructure capable of attacking all users at all times.
We leverage this observation to estimate the cost for such
an attacker, which we deem too high to justify a viable
threat. While we target no formal security proofs, we
evaluate the security of our system both analytically and
experimentally. For our experimental attacks, we lever-
age Amazon’s EC2 cloud service to create a Vuze de-
ployment and to emulate attacks against medium-scale
DHTs.

Contributions. While the basic idea of our approach is
simple conceptually, care must be taken in handling and
evaluating the mechanisms employed to ensure its secu-
rity, practicality, and performance. Looking ahead, and
after briefly considering other tempting approaches for
creating self-destructing data (Section 2), the key contri-
butions of this work are to:

• identify the principal requirements and goals for
self-destructing data (Section 3);

• propose a novel method for achieving these goals
that combines cryptography with decentralized,
global-scale DHTs (Section 4);

• demonstrate that our prototype system and appli-
cations are deployable today using existing DHTs,
while achieving acceptable performance, and exam-
ine the tensions between security and availability
for such deployments (Section 5);

• experimentally and analytically evaluate the
privacy-preservation capabilities of our DHT-based
system (Section 6).

Together, these contributions provide the foundation
for empowering users with greater control over the life-
times of private data scattered across the Internet.

2 Candidate Approaches

A number of existing and seemingly natural approaches
may appear applicable to achieving our objectives. Upon
deeper investigation, however, we find that none of these
approaches are sufficient to achieve the goals enumerated
in Section 1. We consider these strawman approaches
here and use them to further motivate our design con-
straints in Section 3.

The most obvious approach would require users to ex-
plicitly and manually delete their data or install a cron
job to do that. However, because Web-mails and other
Web data are stored, cached, or backed up at numer-
ous places throughout the Internet or on Web servers,

302 18th USENIX Security Symposium USENIX Association

this approach does not seem plausible. Even for a self-
destructing trash bin, requiring the user to explicitly
delete data is incompatible with our goals. For example,
suppose that the hard disk fails and is returned for repairs
or thrown out [15]; or imagine that a laptop is stolen and
the thief uses a cold-boot [32] attack to recover its pri-
mary whole-disk decryption keys (if any). We wish to
ensure data destruction even in cases such as these.

Another tempting approach might be to use a stan-
dard public key or symmetric encryption scheme, as pro-
vided by systems like PGP and its open source counter-
part, GPG. However, traditional encryption schemes are
insufficient for our goals, as they are designed to pro-
tect against adversaries without access to the decryption
keys. Under our model, though, we assume that the at-
tacker will be able to obtain access to the decryption
keys, e.g., through a court order or subpoena.2

A potential alternative to standard encryption might be
to use forward-secure encryption [6, 13], yet our goal
is strictly stronger than forward secrecy. Forward se-
crecy means that if an attacker learns the state of the
user’s cryptographic keys at some point in time, they
should not be able to decrypt data encrypted at an earlier
time. However, due to caching, backup archives, and the
threat of subpoenas or other court orders, we allow the at-
tacker to either view past cryptographic state or force the
user to decrypt his data, thereby violating the model for
forward-secure encryption. For similar reasons, plus our
desire to avoid introducing new trusted agents or secure
hardware, we do not use other cryptographic approaches
like key-insulated [5, 23] and intrusion-resilient [21, 22]
cryptography. Finally, while exposure-resilient cryptog-
raphy [11, 24, 25] allows an attacker to view parts of a
key, we must allow an attacker to view all of the key.

Another approach might be to use steganography [48],
deniable encryption [12], or a deniable file system [17].
The idea is that one could hide, deny the contents of, or
deny the existence of private historical data, rather than
destroying it. These approaches are also attractive but
hard to scale and automate for many applications, e.g.,
generating plausible cover texts for emails and photos. In
addition to the problems observed with deniable file sys-
tems in [17] and [38], deniable file systems would also
create additional user hassles for a trash bin application,
whereas our approach could be made invisible to the user.

For online, interactive communications systems, an
ephemeral key exchange process can protect derived
symmetric keys from future disclosures of asymmetric
private keys. A system like OTR [1, 10] is particularly at-

2U.S. courts are debating whether citizens are required to disclose
private keys, although the ultimate verdict is unclear. We thus target
technologies robust against a verdict in either direction [29, 40]. Other
countries such as the U.K. [43] require release of keys, and coercion or
force may be an issue in yet other countries.

tractive, but as the original OTR paper observes, this ap-
proach is not directly suited for less-interactive email ap-
plications, and similar arguments can be made for OTR’s
unsuitability for the other above-mentioned applications
as well.

An approach with goals similar to ours (except for
the goal of allowing users to create self-destructing ob-
jects without having to establish asymmetric keys or
passphrases) is the Ephemerizer family of solutions [39,
46, 47]. These approaches require the introduction of
one or more (possibly thresholded) trusted third parties
which (informally) escrow information necessary to ac-
cess the protected contents. These third parties destroy
this extra data after a specified timeout. The biggest risks
with such centralized solutions are that they may either
not be trustworthy, or that even if they are trustworthy,
users may still not trust them, hence limiting their adop-
tion. Indeed, many users may be wary to the use of dedi-
cated, centralized trusted third-party services after it was
revealed that the Hushmail email encryption service was
offering the cleartext contents of encrypted messages to
the federal government [59]. This challenge calls for
a decentralized approach with fewer real risks and per-
ceived risks.

A second lesson can be learned from the Ephemer-
izer solutions in that, despite their introduction several
years ago, these approaches have yet to see widespread
adoption. This may in part be due to the perceived trust
issues mentioned above, but an additional issue is that
these solutions require the creation of new, supported and
maintained services. We theorize that solutions that re-
quire new infrastructures have a greater barrier to adop-
tion than solutions that can “parasitically” leverage exist-
ing infrastructures. A variant of this observation leads us
to pursue approaches that do not require secure hardware
or other dedicated services.

3 Goals and Assumptions

To support our target applications (self-destructing
emails, Facebook messages, text messages, trash bins,
etc.), we introduce the notion of a vanishing data ob-
ject (VDO). A VDO encapsulates the user’s data (such
as a file or message) and prevents its contents from per-
sisting indefinitely and becoming a source of retroactive
information leakage. Regardless of whether the VDO is
copied, transmitted, or stored in the Internet, it becomes
unreadable after a predefined period of time even if an
attacker retroactively obtains both a pristine copy of the
VDO from before its expiration, and all of the user’s
past persistent cryptographic keys and passwords. Fig-
ure 2 illustrates the above properties of VDOs by show-
ing the timeline for a typical usage of and attack against
a VDO. We crystallize the assumptions underlying our

USENIX Association 18th USENIX Security Symposium 303

� �

��������

���	���

����

�������
�		���

��������

��	����

��	���

�������� ����

�����������

���� ���� ���� �����������������������

�������������������������	����������
����������	�������������

������������	�������������	����

����������� ���!���!����������� ��
�����������������

����������� �����������	��������
��������������	�����"�������������
��������#�������	�����#����!����

Figure 2: Timeline for VDO usage and attack.

VDO model and the central aspects of the threat model
below.

Assumptions. Our VDO abstraction and Vanish system
make several key assumptions:

1. Time-limited value. The VDO will be used to en-
capsulate data that is only of value to the user for a
limited period of time.

2. Known timeout. When a user encapsulates data in a
VDO, she knows the approximate lifetime that she
wants for her VDO.

3. Internet connectivity. Users are connected to the In-
ternet when interacting with VDOs.

4. Dispensability under attack. Rather than risk expo-
sure to an adversary, the user prefers the VDO to be
destroyed, even if prematurely.

We consider encapsulation of data that only needs to
be available for hours or days; e.g., certain emails, Web
objects, SMSs, trash bin files, and others fall into this
category. Internet connectivity is obviously required for
many of our applications already, such as sending and
receiving emails. More generally, the promise of ubiqui-
tous connectivity makes this assumption reasonable for
many other applications as well. Internet connectivity is
not required for deletion, i.e., a VDO will become un-
readable even if connectivity is removed from its storage
site (or if that storage site is offline). Finally, Vanish is
designed for use with data that is private, but whose per-
sistence is not critical. That is, while the user prefers that
the data remain accessible until the specified timeout, its
premature destruction is preferable to its disclosure.

Goals. Having stated these assumptions, we target the
following functional goals and properties for Vanish:

1. Destruction after timeout. A VDO must expire au-
tomatically and without any explicit action on the
part of its users or any party storing a copy of the
VDO. Once expired, the VDO must also be inac-
cessible to any party who obtains a pristine copy of
the VDO from prior to its expiration.

2. Accessible until timeout. During its lifetime, a
VDO’s contents should be available to legitimate
users.

3. Leverage existing infrastructures. The system must
leverage existing infrastructures. It must not rely on
external, special-purpose dedicated services.

4. No secure hardware. The system must not require
the use of dedicated secure hardware.

5. No new privacy risks. The system should not intro-
duce new privacy risks to the users.

A corollary of goal (1) is that the VDO will become
unavailable to the legitimate users after the timeout,
which is compatible with our applications and assump-
tion of time-limited value.

Our desire to leverage existing infrastructure (goal (3))
stems from our belief that special-purpose services may
hinder adoption. As noted previously, Hushmail’s dis-
closure of the contents of users’ encrypted emails to the
federal government [59] suggests that, even if the cen-
tralized service or a threshold subset of a collection of
centralized services is trustworthy, users may still be un-
willing to trust them.

As an example of goal (5), assume that Ann sends
Carla an email without using Vanish, and then another
email using Vanish. If an attacker cannot compromise
the privacy of the first email, then we require that the
same attacker — regardless of how powerful — cannot
compromise the privacy of the second email.

In addition to these goals, we also seek to keep the
VDO abstraction as generic as possible. In Vanish, the
process of encapsulating data in a VDO does not require
users to set or remember passwords or manage crypto-
graphic keys. However, to ensure privacy under stronger
threat models, Vanish applications may compose VDOs
with traditional encryption systems like PGP and GPG.
In this case, the user will naturally need to manipulate
the PGP/GPG keys and passphrases.

Threat Models. The above list enumerates the intended
properties of the system without the presence of an ad-
versary. We now consider the various classes of poten-
tial adversaries against the Vanish system, as well as the
desired behavior of our system in the presence of such
adversaries.

The central security goal of Vanish is to ensure the
destruction of data after a timeout, despite potential ad-
versaries who might attempt to access that data after its
timeout. Obviously, care must be taken in defining what
a plausible adversary is, and we do that below and in Sec-
tion 6. But we also stress that we explicitly do not seek
to preserve goal (2) — accessible prior to a timeout —
in the presence of adversaries. As previously noted, we
believe that users would prefer to sacrifice availability
pre-timeout in favor of assured destruction for the types
of data we are protecting. For example, we do not defend
against denial of service attacks that could prevent read-
ing of the data during its lifetime. Making this assump-
tion allows us to focus on the primary novel insights in
this work: methods for leveraging decentralized, large-
scale P2P networks in order to make data vanish over
time.

304 18th USENIX Security Symposium USENIX Association

We therefore focus our threat model and subsequent
analyses on attackers who wish to compromise data pri-
vacy. Two key properties of our threat model are:

1. Trusted data owners. Users with legitimate access
to the same VDOs trust each other.

2. Retroactive attacks on privacy. Attackers do not
know which VDOs they wish to access until after
the VDOs expire.

The former aspect of the threat model is straightforward,
and in fact is a shared assumption with traditional en-
cryption schemes: it would be impossible for our sys-
tem to protect against a user who chooses to leak or
permanently preserve the cleartext contents of a VDO-
encapsulated file through out-of-band means. For exam-
ple, if Ann sends Carla a VDO-encapsulated email, Ann
must trust Carla not to print and store a hard-copy of the
email in cleartext.

The latter aspect of the threat model — that the at-
tacker does not know the identity of a specific VDO of
interest until after its expiration — was discussed briefly
in Section 1. For example, email or SMS subpoenas typi-
cally come long after the user sends a particular sensitive
email. Therefore, our system defends the user against
future attacks against old copies of private data.

Given the retroactive restriction, an adversary would
have to do some precomputation prior to the VDO’s ex-
piration. The precise form of precomputation will de-
pend on the adversary in question. The classes of ad-
versaries we consider include: the user’s employer, the
user’s ISP, the user’s web mail provider, and unrelated
malicious nodes on the Internet. For example, foreshad-
owing to Section 6, we consider an ISP that might spy
on the connections a user makes to the Vuze DHT on
the off chance that the ISP will later be asked to assist
in the retroactive decapsulation of the user’s VDO. Sim-
ilarly, we consider the potential for an email service to
proactively try to violate the privacy of VDOs prior to
expiration, for the same reason. Although we deem both
situations unlikely because of public perception issues
and lack of incentives, respectively, we can also provide
defenses against such adversaries.

Finally, we stress that we do not seek to provide pri-
vacy against an adversary who gets a warrant to intercept
future emails. Indeed, such an attacker would have an ar-
senal of attack vectors at his disposal, including not only
a priori access to sensitive emails but also keyloggers
and other forensic tools [37].

4 The Vanish Architecture

We designed and implemented Vanish, a system capa-
ble of satisfying all of the goals listed in Section 3. A
key contribution of our work is to leverage existing, de-
centralized, large-scale Distributed Hash Tables (DHTs).

After providing a brief overview of DHTs and introduc-
ing the insights that underlie our solution, we present our
system’s architecture and components.

Overview of DHTs. A DHT is a distributed, peer-to-
peer (P2P) storage network consisting of multiple partic-
ipating nodes [35, 56, 64]. The design of DHTs varies,
but DHTs like Vuze generally exhibit a put/get interface
for reading and storing data, which is implemented inter-
nally by three operations: lookup, get, and store. The
data itself consists of an (index,value) pair. Each node in
the DHT manages a part of an astronomically large index
name space (e.g., 2160 values for Vuze). To store data,
a client first performs a lookup to determine the nodes
responsible for the index; it then issues a store to the re-
sponsible node, who saves that (index,value) pair in its
local DHT database. To retrieve the value at a particular
index, the client would lookup the nodes responsible for
the index and then issue get requests to those nodes. In-
ternally, a DHT may replicate data on multiple nodes to
increase availability.

Numerous DHTs exist in the Internet, including
Vuze, Mainline, and KAD. These DHTs are commu-
nal, i.e., any client can join, although DHTs such as
OpenDHT [54] only allow authorized nodes to join.

Key DHT-related Insights. Three key properties of
DHTs make them extremely appealing for use in the con-
text of a self-destructing data system:

1. Availability. Years of research in availability in
DHTs have resulted in relatively robust properties
of today’s systems, which typically provide good
availability of data prior to a specific timeout. Time-
outs vary, e.g., Vuze has a fixed 8-hour timeout,
while OpenDHT allows clients to choose a per-data-
item timeout of up to one week.

2. Scale, geographic distribution, and decentraliza-
tion. Measurement studies of the Vuze and Main-
line DHTs estimate in excess of one million si-
multaneously active nodes in each of the two net-
works [28]. The data in [63] shows that while the
U.S. is the largest single contributor of nodes in
Vuze, a majority of the nodes lie outside the U.S.
and are distributed over 190 countries.

3. Churn. DHTs evolve naturally and dynamically
over time as new nodes constantly join and old
nodes leave. The average lifetime of a node in
the DHT varies across networks and has been mea-
sured from minutes on Kazaa [30] to hours on
Vuze/Azureus [28].

The first property provides us with solid grounds for
implementing a useful system. The second property
makes DHTs more resilient to certain types of attacks
than centralized or small-scale systems. For example,

USENIX Association 18th USENIX Security Symposium 305

�

���������

	����������

����

�����

��

����

��

��

��

���������

Figure 3: The Vanish system architecture.

while a centrally administered system can be compelled
to release data by an attacker with legal leverage [59],
obtaining subpoenas for multiple nodes storing a VDO’s
key pieces would be significantly harder, and in some
cases impossible, due to their distribution under different
administrative and political domains.

Traditionally, DHT research has tried to counter the
negative effects of churn on availability. For our pur-
poses, however, the constant churn in the DHT is an ad-
vantage, because it means that data stored in DHTs will
naturally and irreversibly disappear over time as the DHT
evolves. In many cases, trying to determine the contents
of the DHT one week in the past — let alone several
months or years — may be impossible, because many
of the nodes storing DHT data will have left or changed
their locations in the index space. For example, in Vuze,
a node changes its location in the DHT whenever its IP
address or port number changes, which typically happens
periodically for dynamic IP addresses (e.g., studies show
that over 80% of the IPs change within 7 days [65]).
This self-cleansing property of DHTs, coupled with its
scale and global decentralization, makes them a felici-
tous choice for our self-destructing data system.

Vanish. Vanish is designed to leverage one or more
DHTs. Figure 3 illustrates the high-level system archi-
tecture. At its core, Vanish takes a data object D (and
possibly an explicit timeout T), and encapsulates it into
a VDO V .

In more detail, to encapsulate the data D, Vanish picks
a random data key, K, and encrypts D with K to obtain
a ciphertext C. Not surprisingly, Vanish uses threshold
secret sharing [58] to split the data key K into N pieces
(shares) K1, . . . ,KN . A parameter of the secret sharing is
a threshold that can be set by the user or by an application
using Vanish. The threshold determines how many of the
N shares are required to reconstruct the original key. For
example, if we split the key into N = 20 shares and the
threshold is 10 keys, then we can compute the key given
any 10 of the 20 shares. In this paper we often refer to the
threshold ratio (or simply threshold) as the percentage
of the N keys required, e.g., in the example above the
threshold ratio is 50%.

Once Vanish has computed the key shares, it picks at
random an access key, L. It then uses a cryptographically
secure pseudorandom number generator [7], keyed by L,
to derive N indices into the DHT, I1, . . . , IN . Vanish then
sprinkles the N shares K1, . . . ,KN at these pseudorandom
locations throughout the DHT; specifically, for each i ∈

{1, . . . ,N}, Vanish stores the share Ki at index Ii in the
DHT. If the DHT allows a variable timeout, e.g., with
OpenDHT, Vanish will also set the user-chosen timeout
T for each share. Once more than (N−threshold) shares
are lost, the VDO becomes permanently unavailable.

The final VDO V consists of (L,C,N, threshold) and
is sent over to the email server or stored in the file system
upon encapsulation. The decapsulation of V happens in
the natural way, assuming that it has not timed out. Given
VDO V , Vanish (1) extracts the access key, L, (2) derives
the locations of the shares of K, (3) retrieves the required
number of shares as specified by the threshold, (4) recon-
structs K, and (5) decrypts C to obtain D.

Threshold Secret Sharing, Security, and Robustness.
For security we rely on the property that the shares
K1, . . . ,KN will disappear from the DHT over time,
thereby limiting a retroactive adversary’s ability to ob-
tain a sufficient number of shares, which must be ≥ the
threshold ratio. In general, we use a ratio of < 100%,
otherwise the loss of a single share would cause the loss
of the key. DHTs do lose data due to churn, and therefore
a smaller ratio is needed to provide robust storage prior
to the timeout. We consider all of these issues in more
detail later; despite the conceptual simplicity of our ap-
proach, significant care and experimental analyses must
be taken to assess the durability of our use of large-scale,
decentralized DHTs.

Extending the Lifetime of a VDO. For certain uses,
the default timeout offered by Vuze might be too lim-
iting. For such cases, Vanish provides a mechanism to
refresh VDO shares in the DHT. While it may be tempt-
ing at first to simply use Vuze’s republishing mechanism
for index-value pairs, doing so would re-push the same
pairs (I1,K1), . . . ,(IN ,KN) periodically, until the timeout.
This would, in effect, increase the exposure of those key
shares to certain attackers. Hence, our refresh mecha-
nism retrieves the original data key K before its time-
out, re-splits it, obtaining a fresh set of shares, and de-
rives new DHT indices I1, . . . , IN as a function of L and
a weakly synchronized clock. The weakly synchronized
clock splits UTC time into roughly 8-hour epochs and
uses the epoch number as part of the input to the location
function. Decapsulations then query locations generated
from both the current epoch number and the neighboring
epochs, thus allowing clocks to be weakly synchronized.

Naturally, refreshes require periodic Internet connec-
tivity. A simple home-based setup, where a broadband
connected PC serves as the user’s refreshing proxy, is in
our view and experience a very reasonable choice given
today’s highly connected, highly equipped homes. In
fact, we have been using this setup in our in-house de-
ployment of Vanish in order to achieve longer timeouts
for our emails (see Section 5).

306 18th USENIX Security Symposium USENIX Association

Using multiple or no DHTs. As an extension to the
scheme above, it is possible to store the shares of the
data key K in multiple DHTs. For example, one might
first split K into two shares K and K such that both
shares are required to reconstruct K. K is then split into
N shares and sprinkled in the Vuze DHT, while K is
split into N shares and sprinkled in OpenDHT. Such an
approach would allow us to argue about security under
different threat models, using OpenDHT’s closed access
(albeit small scale) and Vuze’s large scale (albeit com-
munal) access.

An alternate model would be to abandon DHTs and to
store the key shares on distributed but managed nodes.
This approach bears limitations similar to Ephemerizer
(Section 2). A hybrid approach might be to store shares
of K in a DHT and shares of K on managed nodes. This
way, an attacker would have to subvert both the privately
managed system and the DHT to compromise Vanish.

Forensic Trails. Although not a common feature in to-
day’s DHTs, a future DHT or managed storage system
could additionally provide a forensic trail for monitoring
accesses to protected content. A custom DHT could, for
example, record the IP addresses of the clients that query
for particular indices and make that information available
to the originator of that content. The existence of such a
forensic trail, even if probabilistic, could dissuade third
parties from accessing the contents of VDOs that they
obtain prior to timeout.

Composition. Our system is not designed to protect
against all attacks, especially those for which solutions
are already known. Rather, we designed both the sys-
tem and our applications to be composable with other
systems to support defense-in-depth. For example, our
Vanish Gmail plugin can be composed with GPG in or-
der to avoid VDO sniffing by malicious email services.
Similarly, our system can compose with Tor to ensure
anonymity and throttle targeted attacks.

5 Prototype System and Applications

We have implemented a Vanish prototype capable of in-
tegrating with both Vuze and OpenDHT. In this section,
we demonstrate that (1) by leveraging existing, unmod-
ified DHT deployments we can indeed achieve the core
functions of vanishing data, (2) the resulting system sup-
ports a variety of applications, and (3) the performance of
VDO operations is reasonable. We focus our discussions
on Vuze because its large scale and dynamic nature make
its analysis both more interesting and more challenging.
A key observation derived from our study is a tension in
setting VDO parameters (N and threshold) when target-
ing both high availability prior to the timeout and high
security. We return to this tension in Section 6.

To integrate Vanish with the Vuze DHT, we made two

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18

Pr
ob

. o
f V

D
O

 a
va

ila
bi

lit
y

Time (h)

N=1,
(no secret sharing)

N=50,
Threshold=90%

N=100,
Threshold=99%

Figure 4: VDO availability in the Vuze-based Vanish sys-
tem. The availability probability for single-key VDOs (N = 1)
and for VDOs using secret sharing, averaged over 100 runs.
Secret sharing is required to ensure pre-timeout availability and
post-timeout destruction. Using N = 50 and a threshold of 90%
achieves these goals.

minor changes (< 50 lines of code) to the existing Vuze
BitTorrent client: a security measure to prevent lookup
sniffing attacks (see Section 6.2) and several optimiza-
tions suggested by prior work [28] to achieve reasonable
performance for our applications. All these changes are
local to Vanish nodes and do not require adoption by any
other nodes in the Vuze DHT.

5.1 Vuze Background

The Vuze (a.k.a. Azureus) DHT is based on the Kadem-
lia [35] protocol. Each DHT node is assigned a “random”
160-bit ID based on its IP and port, which determines the
index ranges that it will store. To store an (index,value)
pair in the DHT, a client looks up 20 nodes with IDs clos-
est to the specified index and then sends store messages
to them. Vuze nodes republish the entries in their cache
database every 30 minutes to the other 19 nodes closest
to the value’s index in order to combat churn in the DHT.
Nodes further remove from their caches all values whose
store timestamp is more than 8 hours old. This pro-
cess has a 1-hour grace period. The originator node must
re-push its 8-hour-old (index,value) pairs if it wishes to
ensure their persistence past 8 hours.

5.2 VDO Availability and Expiration in
Vuze

We ran experiments against the real global Vuze P2P net-
work and evaluated the availability and expiration guar-
antees it provides. Our experiments pushed 1,000 VDO
shares to pseudorandom indices in the Vuze DHT and
then polled for them periodically. We repeated this ex-
periment 100 times over a 3-day period in January 2009.
Figure 4 shows the average probability that a VDO re-
mains available as a function of the time since creation,
for three different N and threshold values. For these
experiments we used the standard 8-hour Vuze timeout
(i.e., we did not use our refreshing proxy to re-push
shares).

USENIX Association 18th USENIX Security Symposium 307

� �

���������	�����

(a) Vanishing Facebook messages. (b) Google Doc with vanishing parts.

Figure 5: The Web-wide applicability of Vanish. Screenshots of two example uses of vanishing data objects on the Web. (a)
Carla is attempting to decapsulate a VDO she received from Ann in a Facebook message. (b) Ann and Carla are drafting Ann’s
divorce document using a Google Doc; they encapsulate sensitive, draft information inside VDOs until they finalize their position.

The N = 1 line shows the lifetime for a single share,
which by definition does not involve secret sharing.
The single-share VDO exhibits two problems: non-
negligible probabilities for premature destruction (≈1%
of the VDOs time out before 8 hours) and prolonged
availability (≈5% of the VDOs continue to live long after
8 hours). The cause for the former effect is churn, which
leads to early loss of the unique key for some VDOs.
While the cause for the latter effect demands more inves-
tigation, we suspect that some of the single VDO keys
are stored by DHT peers running non-default configu-
rations. These observations suggest that the naive (one
share) approach for storing the data key K in the DHT
meets neither the availability nor the destruction goals of
VDOs, thereby motivating our need for redundancy.

Secret sharing can solve the two lifetime problems
seen with N = 1. Figure 4 shows that for VDOs with
N = 50 and threshold of 90%, the probability of prema-
ture destruction and prolonged availability both become
vanishingly small (< 10−3). Other values for N ≥ 20
achieve the same effect for thresholds of 90%. However,
using very high threshold ratios leads to poor pre-timeout
availability curves: e.g., N = 100 and a threshold of 99%
leads to a VDO availability period of 4 hours because
the loss of only two shares share makes the key unre-
coverable. We will show in Section 6 that increasing the
threshold increases security. Therefore, the choice of N
and the threshold represents a tradeoff between security
and availability. We will investigate this tradeoff further
in Section 6.

5.3 Vanish Applications
We built two prototype applications that use a Van-
ish daemon running locally or remotely to ensure self-
destruction of various types of data.

FireVanish. We implemented a Firefox plugin for the
popular Gmail service that provides the option of sending
and reading self-destructing emails. Our implementa-
tion requires no server-side changes. The plugin uses the
Vanish daemon both to transform an email into a VDO
before sending it to Gmail and similarly for extracting
the contents of a VDO on the receiver side.

Our plugin is implemented as an extension of FireGPG
(an existing GPG plugin for Gmail) and adds Vanish-
related browser overlay controls and functions. Using
our FireVanish plugin, a user types the body of her email
into the Gmail text box as usual and then clicks on a
“Create a Vanishing Email” button that the plugin over-
lays atop the Gmail interface. The plugin encapsulates
the user’s typed email body into a VDO by issuing a
VDO-create request to Vanish, replaces the contents of
the Gmail text box with an encoding of the VDO, and
uploads the VDO email to Gmail for delivery. The user
can optionally wrap the VDO in GPG for increased pro-
tection against malicious services. In our current imple-
mentation, each email is encapsulated with its own VDO,
though a multi-email wrapping would also be possible
(e.g., all emails in the same thread).

When the receiving user clicks on one of his emails,
FireVanish inspects whether it is a VDO email, a PGP
email, or a regular email. Regular emails require no fur-
ther action. PGP emails are first decrypted and then in-
spected to determine whether the underlying message is a
VDO email. For VDO emails, the plugin overlays a link
“Decapsulate this email” atop Gmail’s regular interface
(shown previously in Figure 1(b)). Clicking on this link
causes the plugin to invoke Vanish to attempt to retrieve
the cleartext body from the VDO email. If the VDO has
not yet timed out, then the plugin pops up a new window
showing the email’s cleartext body; otherwise, an error
message is displayed.

308 18th USENIX Security Symposium USENIX Association

FireVanish Extension for the Web. Self-destructing
data is broadly applicable in today’s Web-oriented world,
in which users often leave permanent traces on many
Web sites [61]. Given the opportunity, many privacy-
concerned users would likely prefer that certain mes-
sages on Facebook, documents on Google Docs, or in-
stant messages on Google Talk disappear within a short
period of time.

To make Vanish broadly accessible for Web usage,
FireVanish provides a simple, generic, yet powerful, in-
terface that permits all of these applications. Once the
FireVanish plugin has been installed, a Firefox user can
select text in any Web page input box, right click on that
selected text, and cause FireVanish to replace that text in-
line with an ecapsulated VDO. Similarly, when reading a
Web page containing a VDO, a user can select that VDO
and right click to decapsulate it; in this case, FireVanish
leaves the VDO in place and displays the cleartext in a
separate popup window.

Figure 5 shows two uses of FireVanish to encapsulate
and read VDOs within Facebook and Google Docs. The
screenshots demonstrate a powerful concept: FireVanish
can be used seamlessly to empower privacy-aware users
with the ability to limit the lifetime of their data on Web
applications that are unaware of Vanish.

Vanishing Files. Finally, we have implemented a van-
ishing file application, which can be used directly or by
other applications, such as a self-destructing trash bin
or Microsoft Word’s autosave. Users can wrap sensi-
tive files into self-destructing VDOs, which expire after
a given timeout. In our prototype, the application creates
a VDO wrapping one or more files, deletes the cleartext
files from disk, and stores the VDO in their place. This
ensures that, even if an attacker copies the raw bits from
the laptop’s disks after the timeout, the data within the
VDO will be unavailable. Like traditional file encryp-
tion, Vanishing Files relies upon existing techniques for
securely shredding data stored on disks or memory.

5.4 Performance Evaluation
We measured the performance of Vanish for our applica-
tions, focusing on the times to encapsulate and decapsu-
late a VDO. Our goals were to (1) identify the system’s
performance bottlenecks and propose optimizations, and
(2) determine whether our Vuze-based prototype is fast
enough for our intended uses. Our measurements use an
Intel T2500 DUO with 2GB of RAM, Java 1.6, and a
broadband network.

To identify system bottlenecks, we executed VDO
operations and measured the times spent in the three
main runtime components: DHT operations (stor-
ing and getting shares), Shamir secret sharing opera-
tions (splitting/recomposing the data key), and encryp-

�

��

��

��

��

���

���

���

� �� ��� ��� ���

��������	�����������

�
��
�
��
�
�
�
��
��

�	�����������������

��	����������������

(a) Scalability of DHT operations.

�����������������

������������	���

���������������

��	�����������

��������������

��������������

�����
����	��

�����	��
����	��

������	�����
���

������	��������

��������������

�

(b) VDO operation execution times.

Figure 6: Performance in the Vuze-based Vanish system.
(a) The scalability of DHT operation times as a function of the
number of shares being gotten from or stored in the DHT (re-
sults are averages over 20 trials and error bars indicate stan-
dard deviations). (b) Total VDO encapsulation (with and with-
out pre-push) and decapsulation times for FireVanish for a 2KB
email, N = 50, and threshold 90%.

tion/decryption. In general, the DHT component ac-
counts for over 99% of the execution time for all Vanish
operations on small and medium-size data (up to tens of
MB, like most emails). For much larger data sizes (e.g.,
files over hundreds of MB), the encryption/decryption
becomes the dominating component.

Our experiments also revealed the importance of con-
figuring Vuze’s parameters on our latency-aware appli-
cations. With no special tuning, Vuze took 4 minutes to
store 50 shares, even using parallel stores. By employing
several Vuze optimizations we lowered the 50-share store
time by a factor of 7 (to 32 seconds). Our most effective
optimization — significantly lowering Vuze’s UDP time-
out based on suggestions from previous research [28] —
proved non-trivial, though. In particular, as we deployed
Vanish within our group, we learned that different In-
ternet providers (e.g., Qwest, Comcast) exhibited utterly
different network behaviors and latencies, making the
setting of any one efficient value for the timeout impossi-
ble. Hence, we implemented a control-loop-based mech-
anism by which Vanish automatically configures Vuze’s
UDP timeout based on current network conditions. The
optimization requires only node-local changes to Vuze.

Figure 6(a) shows how the optimized DHT operation
times scale with the number of shares (N), for a fixed
threshold of 90%, over a broadband connection (Com-
cast). Scaling with N is important in Vanish, as its se-

USENIX Association 18th USENIX Security Symposium 309

curity is highly dependent on this parameter. The graph
shows that getting DHT shares are relatively fast — un-
der 5 seconds for N = 50, which is reasonable for emails,
trash bins, etc. The cost of storing VDO shares, however,
can become quite large (about 30 seconds for N = 50),
although it grows liniarly with the number of shares. To
mask the store delays from the user, we implemented a
simple optimization, where Vanish proactively generates
data keys and pre-pushes shares into the DHT. This op-
timization leads to an unnoticeable DHT encapsulation
time of 82ms.

Combining the results in this section and Section 6,
we believe that parameters of N = 50 and a threshold of
90% provide an excellent tradeoff of security and per-
formance. With these parameters and the simple pre-
push optimization we’ve described, user-visible latency
for Vanish operations, such as creating or reading a Van-
ish email, is relatively low — just a few seconds for a
2KB email, as shown in Figure 6(b).

5.5 Anecdotal Experience with FireVanish

We have been using the FireVanish plugin within our
group for several weeks. We also provided Vanish to
several people outside of our group. Our preliminary ex-
perience has confirmed the practicality and convenience
of FireVanish. We also learned a number of lessons even
in this short period; for example, we found our minimal-
istic interface to be relatively intuitive, even for a non-CS
user to whom we gave the system, and the performance
is quite acceptable, as we noted above.

We also identified several limitations in the current im-
plementation, some that we solved and others that we
will address in the future. For example, in the begin-
ning we found it difficult to search for encrypted emails
or data, since their content is encrypted and opaque to
the Web site. For convenience, we modified FireVan-
ish to allow users to construct emails or other data by
mixing together non-sensitive cleartext blocks with self-
destructing VDOs, as illustrated in Figure 5(b). This fa-
cilitates identifying information over and above the sub-
ject line. We did find that certain types of communica-
tions indeed require timeouts longer than 8 hours. Hence,
we developed and used Vanish in a proxy setting, where
a Vanish server runs on behalf of a user at an online lo-
cation (e.g., the user’s home) and refreshes VDO shares
as required to achieve each VDO’s intended timeout in
8-hour units. The user can then freely execute the Vanish
plugin from any connection-intermittent location (e.g., a
laptop).

We are planning an open-source release of the soft-
ware in the near future and are confident that this release
will teach us significantly more about the usability, limi-
tations, and security of our system.

6 Security Analyses

To evaluate the security of Vanish, we seek to assess
two key properties: that (1) Vanish does not introduce
any new threats to privacy (goal (5) in Section 3), and
(2) Vanish is secure against adversaries attempting to
retroactively read a VDO post-expiration.

It is straightforward to see that Vanish adds no new
privacy risks. In particular, the key shares stored in the
DHT are not a function of the encapsulated data D; only
the VDO is a function of D. Hence, if an adversary
is unable to learn D when the user does not use Van-
ish, then the adversary would be unable to learn D if the
user does use Vanish. There are three caveats, however.
First, external parties, like the DHT, might infer informa-
tion about who is communicating with whom (although
the use of an anonymization system like Tor can allevi-
ate this concern). Second, given the properties of Van-
ish, users might choose to communicate information that
they might not communicate otherwise, thus amplifying
the consequences of any successful data breach. Third,
the use of Vanish might raise new legal implications. In
particular, the new “eDiscovery” rules embraced by the
U.S. may require a user to preserve emails and other data
once in anticipation of a litigious action. The exact legal
implications to Vanish are unclear; the user might need to
decapsulate and save any relevant VDOs to prevent them
from automatic expiration.

We focus the remainder of this section on attacks tar-
geted at retroactively revoking the privacy of data encap-
sulated within VDOs (this attack timeline was shown in
Figure 2). We start with a broad treatment of such attacks
and then dive deeply into attacks that integrate adversar-
ial nodes directly into the DHT.

6.1 Avoiding Retroactive Privacy Attacks

Attackers. Our motivation is to protect against retroac-
tive data disclosures, e.g., in response to a subpoena,
court order, malicious compromise of archived data, or
accidental data leakage. For some of these cases, such
as the subpoena, the party initiating the subpoena is the
obvious “attacker.” The final attacker could be a user’s
ex-husband’s lawyer, an insurance company, or a pros-
ecutor. But executing a subpoena is a complex process
involving many other actors, including potentially: the
user’s employer, the user’s ISP, the user’s email provider,
unrelated nodes on the Internet, and other actors. For our
purposes, we define all the involved actors as the “adver-
sary.”

Attack Strategies. The architecture and standard prop-
erties of the DHT cause significant challenges to an ad-
versary who does not perform any computation or data
interception prior to beginning the attack. First, the key

310 18th USENIX Security Symposium USENIX Association

shares are unlikely to remain in the DHT much after the
timeout, so the adversary will be incapable of retrieving
the shares directly from the DHT. Second, even if the ad-
versary could legally subpoena the machines that hosted
the shares in the past, the churn in Vuze makes it diffi-
cult to determine the identities of those machines; many
of the hosting nodes would have long disappeared from
the network or changed their DHT index. Finally, with
Vuze nodes scattered throughout the globe [63], gaining
legal access to those machines raises further challenges.
In fact, these are all reasons why the use of a DHT such
as Vuze for our application is compelling.

We therefore focus on what an attacker might do prior
to the expiration of a VDO, with the goal of amplifying
his ability to reveal the contents of the VDO in the future.
We consider three principal strategies for such precom-
putation.

Strategy (1): Decapsulate VDO Prior to Expiration.
An attacker might try to obtain a copy of the VDO and
revoke its privacy prior to its expiration. This strategy
makes the most sense when we consider, e.g., an email
provider that proactively decapsulates all VDO emails in
real-time in order to assist in responding to future sub-
poenas. The natural defense would be to further encap-
sulate VDOs in traditional encryption schemes, like PGP
or GPG, which we support with our FireVanish applica-
tion. The use of PGP or GPG would prevent the web-
mail provider from decapsulating the VDO prior to expi-
ration. And, by the time the user is forced to furnish her
PGP private keys, the VDO would have expired. For the
self-destructing trash bin and the Vanishing Files appli-
cation, however, the risk of this attack is minimal.

Strategy (2): Sniff User’s Internet Connection. An at-
tacker might try to intercept and preserve the data users
push into or retrieve from the DHT. An ISP or employer
would be most appropriately positioned to exploit this
vector. Two natural defenses exist for this: the first
might be to use a DHT that by default encrypts com-
munications between nodes. Adding a sufficient level
of encryption to existing DHTs would be technically
straightforward assuming that the ISP or employer were
passive and hence not expected to mount man-in-the-
middle attacks. For the encryption, Vanish could com-
pose with an ephemeral key exchange system in order to
ensure that these encrypted communications remain pri-
vate even if users’ keys are later exposed. Without mod-
ifying the DHT, the most natural solution is to compose
with Tor [19] to tunnel one’s interactions with a DHT
through remote machines. One could also use a different
exit node for each share to counter potentially malicious
Tor exit nodes [36, 66], or use Tor for only a subset of
the shares.

Strategy (3): Integrate into DHT. An attacker might try

to integrate itself into the DHT in order to: create copies
of all data that it is asked to store; intercept internal
DHT lookup procedures and then issue get requests of
his own for learned indices; mount a Sybil attack [26]
(perhaps as part of one of the other attacks); or mount an
Eclipse attack [60]. Such DHT-integrated attacks deserve
further investigation, and we provide such an analysis in
Section 6.2.

We will show from our experiments in Section 6.2 that
an adversary would need to join the 1M-node Vuze DHT
with approximately 80,000—90,000 malicious nodes to
mount a store-based attack and capture a reasonable
percentage of the VDOs (e.g., 25%). Even if possible,
sustaining such an attack for an extended period of time
would be prohibitively expensive (close to $860K/year in
Amazon EC2 computation and networking costs). The
lookup-based attacks are easy to defeat using localized
changes to Vanish clients. The Vuze DHT already in-
cludes rudimentary defenses against the Sybil attack and
a full deployment of Vanish could leverage the existing
body of works focused on hardening DHTs against Sybil
and Eclipse attacks [9, 14, 16, 26, 51].

Deployment Decisions. Given attack strategies (1) and
(2), a user of FireVanish, Vanishing Files, or any future
Vanish-based application is faced with several options:
to use the basic Vanish system or to compose Vanish with
other security mechanisms like PGP/GPG or Tor. The
specific decision is based on the threats to the user for
the application in question.

Vanish is oriented towards personal users concerned
that old emails, Facebook messages, text messages, or
files might come back to “bite” them, as eloquently put
in [42]. Under such a scenario, an ISP trying to assist in
future subpoenas seems unlikely, thus we argue that com-
posing Vanish with Tor is unnecessary for most users.
The use of Tor seems even less necessary for some of the
threats we mentioned earlier, like a thief with a stolen
laptop.

Similarly, it is reasonable to assume that email
providers will not proactively decapsulate and archive
Vanishing Emails prior to expiration. One factor is the
potential illegality of such accesses under the DMCA,
but even without the DMCA this seems unlikely. There-
fore, users can simply employ the FireVanish Gmail plu-
gin without needing to exchange public keys with their
correspondents. However, because our plugin extends
FireGPG, any user already familiar with GPG could
leverage our plugin’s GPG integration.

Data Sanitization. In addition to ensuring that Van-
ish meets its security and privacy goals, we must ver-
ify that the surrounding operating environment does not
preserve information in a non-self-destructing way. For
this reason, the system could leverage a broad set of ap-

USENIX Association 18th USENIX Security Symposium 311

proaches for sanitizing the Vanish environment, includ-
ing secure methods for overwriting data on disk [31], en-
crypting virtual memory [50], and leveraging OS support
for secure deallocation [15]. However, even absent those
approaches, forensic analysis would be difficult if at-
tempted much later than the data’s expiration for the rea-
sons we’ve previously discussed: by the time the forensic
analysis is attempted relevant data is likely to have dis-
appeared from the user’s machine, the churn in the DHT
would have made shares (and nodes) vanish irrevocably.

6.2 Privacy Against DHT-Integrated Ad-
versaries

We now examine whether an adversary who interacts
with the DHT prior to a VDO’s expiration can, in the fu-
ture, aid in retroactive attacks against the VDO’s privacy.
During such a precomputation phase, however, the at-
tacker does not know which VDOs (or even which users)
he might eventually wish to attack. While the attacker
could compile a list of worthwhile targets (e.g., politi-
cians, actors, etc.), the use of Tor would thwart such tar-
geted attacks. Hence, the principle strategy for the at-
tacker would be to create a copy of as many key shares
as possible. Moreover, the attacker must do this continu-
ously — 24x7 — thereby further amplifying the burden
on the attacker.

Such an attacker might be external to the DHT —
simply using the standard DHT interface in order to ob-
tain key shares — or internal to the DHT. While the
former may be the only available approach for DHTs
like OpenDHT, the approach is also the most limiting
to an attacker since the shares are stored at pseudoran-
domly generated and hence unpredictable indices. An at-
tacker integrating into a DHT like Vuze has significantly
more opportunities and we therefore focus on such DHT-
integrating adversaries here.

Experimental Methodology. We ran extensive exper-
iments on a private deployment of the Vuze DHT. In
each experiment, a set of honest nodes pushed VDO
shares into the DHT and retrieved them at random in-
tervals of time, while malicious nodes sniffed stores
and lookups.3 Creating our own Vuze deployment al-
lowed us to experiment with various system parameters
and workloads that we would not otherwise have been
able to manipulate. Additionally, experimenting with at-
tacks against Vuze at sufficient scale would have been
prohibitively costly for us, just as it would for an attacker.

Our experiments used 1,000, 2,000, 4,500, and 8,000-
node DHTs, which are significantly larger than those
used for previous empirical DHT studies (e.g. 1,000

3Vuze get messages do not reveal additional information about val-
ues stored in the DHT, so we do not consider them.

nodes in [53]). For the 8,000-node experiments we used
200 machine instances of Amazon’s EC2 [2] compute
cloud. For smaller experiments we used 100 of Emu-
lab’s 3GHz, 2GB machines [27]. In general, memory is
the bottleneck, as each Vuze node must run in a separate
process to act as a distinct DHT node. Approximately 50
Vuze nodes fit on a 2-GB machine.

Churn (node death and birth) is modeled by a Pois-
son distribution as in [53]. Measurements of DHT net-
works have observed different median lifetime distribu-
tions, e.g., 2.4 minutes for Kazaa [30], 60 minutes for
Gnutella [57], and 5 hours with Vuze [28] (although this
measurement may be biased towards longer-lived nodes).
We believe that these vast differences stem from different
content and application types that rely on these networks
(e.g., the difference between audio and video clips). We
chose a 2-hour median node lifetime, which provides in-
sight into the availability—security tradeoffs under high
churn.

6.2.1 The Store Sniffing Attack

We first examine a store sniffing attack in which the
adversary saves all of the index-to-value mappings it re-
ceives from peers via store messages. Such an attacker
might receive a VDO’s key shares in one of two ways: di-
rectly from the user during a VDO’s creation or refresh,
or via replication. In Vuze, nodes replicate their cached
index-to-value mappings every 30 minutes by pushing
each mapping to 20 nodes whose IDs are closest to the
mapping’s index.

Effects of VDO Parameters on Security. Our first goal
is to assess how security is affected by the VDO param-
eters N (the number of key shares distributed for each
VDO) and the key threshold (the percent of the N shares
required to decrypt a VDO). Figure 7(a) plots the prob-
ability that an attacker can capture sufficient key shares
to revoke the privacy of a given VDO as a function of
N and the threshold. This figure assumes the attacker
has compromised 5% of the nodes in a 1,000-node DHT.
Not surprisingly, as the number of shares N increases, the
attacker’s success probability drops significantly. Simi-
larly, increasing the threshold increases security (i.e., de-
creases the attacker’s success probability).

Availability is also affected by the VDO parameters
and the tradeoff is shown in Figure 7(b). Here we see the
maximum timeout (i.e., the VDO’s lifetime) as a function
of N and the threshold. The maximum VDO timeout is
the largest time at which 99% of a set of 1,000 VDOs
remained available in our experiment. The timeout is
capped by our 10-hour experimental limit. From the fig-
ure, we see that increasing N improves not only security,
but also availability. We also see that smaller thresholds
support longer timeouts, because the system can toler-

312 18th USENIX Security Symposium USENIX Association

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 50 60 70 80 90 100

Pr
ob

ab
ilit

y
of

 V
D

O
 c

om
pr

om
is

e

Key threshold (%)

N=1
N=10
N=20
N=50

N=100
N=150

(a) Parameters and security.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 50 60 70 80 90 100

M
ax

im
um

 V
D

O
 ti

m
eo

ut
 (h

)

Key threshold (%)

N=1
N=10
N=20
N=50

N=100
N=150

(b) Parameters and availability.

 0

 100

 200

 300

 400

 500

 600

 1000 2000 3000 4000 5000 6000 7000 8000

M
ax

im
um

 a
tta

ck
er

 s
iz

e
to

le
ra

te
d

DHT size

Threshold=80%
Threshold=70%
Threshold=60%
Threshold=50%

(c) Tolerated attacker sizes.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

%
 o

f s
ha

re
s

st
ill

av
ai

la
bl

e
at

 ti
m

e
T

Time T (h)

Vuze network
Lifetime=3h
Lifetime=2h
Lifetime=1h

(d) Churn effect on availability.

Figure 7: Analysis of the store sniffing attack. Fig. (a): the attacker’s success probability with increasing N and key threshold for
a 1000-node DHT with 50 malicious nodes. Larger N and high thresholds (≥ 65%) provide good security. Fig. (b): maximum VDO
timeout supported for a .99 availability level. Large N with smaller key thresholds (≤ 70%) provide useful VDO timeouts. Fig. (c):
maximum number of attacker nodes that a DHT can tolerate, while none of the 1,000 VDOs we pushed were compromised. Fig. (a),
(b), and (c) assume 2-hour churn. Fig. (d): the single-share availability decreases over time for different churn models in our private
network and for the real Vuze network.

ate more share loss. The choice of threshold thus in-
volves a tradeoff between security and availability: high
thresholds provide more security and low thresholds pro-
vide longer lifetime. For example, if a lifetime of only 4
hours is needed — which might be reasonable for certain
emails or SMSs — then choosing N = 50 and threshold
75% leads to good security and performance. If a timeout
of 8 hours is required, N = 100 and threshold of 70% is
a good tradeoff for the 2-hour churn. Thus, by tuning N
and the key threshold, we can obtain high security, good
availability, and reasonable performance in the context
of a small 1,000-node DHT and 5% attackers.

Attacker Sizes. We now consider how many attacker
nodes a DHT deployment of a given size can toler-
ate with small chance that the attacker succeeds in pre-
obtaining a sufficient number of shares for any VDO.
Figure 7(c) shows the maximum attacker sizes tolerated
by DHTs of increasing sizes, for various key thresh-
olds. The values are calculated so as to ensure that none
of the 1,000 VDOs we experimented with was compro-
mised. We computed these values from experiments us-
ing N = 150, 2-hour churn, and various attacker sizes
for each DHT size. For an 8,000-node DHT, even if 600
nodes are controlled by a store-sniffing attacker, the ad-
versary would still not obtain any of our 1,000 VDOs.

More important, Figure 7(c) suggests that the num-
ber of attackers that the DHT can tolerate grows linearly
with DHT size. Assuming this trend continues further,
we estimate that, in a 1M-node DHT, an attacker with
35,000 nodes would still have less than 10−3 probability
of recording a sufficient number of shares to compromise
a single VDO with N = 150 and a threshold of 70%.

We have also experimented with a different metric
of success: requiring an attacker to obtain enough key
shares to compromise at least 25% of all VDOs. Con-
cretely, for N = 150 and a threshold of 80%, our exper-
iment with a 8,000 node DHT required the attacker to
control over 710 nodes. This value also appears to grow

linearly in the size of the DHT; extrapolating to a 1M-
node DHT, such an attack would require at least 80,000
malicious nodes. We believe that inserting this number of
nodes into the DHT, while possible for limited amounts
of time, is too expensive to do continuously (we provide
a cost estimate below).

Finally, we note that our refresh mechanism for ex-
tending Vuze timeouts (explained in Section 4) provides
good security properties in the context of store sniffing
attacks. Given that our mechanism pushes new shares
in each epoch, an attacker who fails to capture sufficient
shares in one epoch must start anew in the next epoch
and garner the required threshold from zero.

Setting Parameters for the Vuze Network. These re-
sults provide a detailed study of the store sniffing attack
in the context of a 2-hour churn model induced on a pri-
vate Vuze network. We also ran a selected set of similar
availability and store attack experiments against a pri-
vate network with a 3-hour churn model, closer to what
has been measured for Vuze.4 The resulting availability
curve for the 3-hour churn now closely resembles the one
in the real Vuze network (see Figure 7(d)). In particular,
for both the real network and the private network with
a 3-hour churn model, a ratio of 90% and N ≥ 20 are
enough to ensure VDO availability of 7 hours with .99
probability. Thus, from an availability standpoint, the
longer lifetimes allow us to raise the threshold to 90% to
increase security.

From a security perspective, our experiments show
that for an 8,000-node DHT, 3-hour churn model, and
VDOs using N = 50 and threshold 90%, the attacker re-
quires at least 820 nodes in order to obtain ≥25% of the
VDOs. This extrapolates to a requirement of ≈87,000
nodes on Vuze to ensure attack effectiveness. Return-
ing to our cost argument, while cloud computing in a
system such as Amazon EC2 is generally deemed in-

4We used VDOs of N = 50 and thresholds of 90% for these experi-
ments.

USENIX Association 18th USENIX Security Symposium 313

expensive [18], the cost to mount a year-long 87,000-
node attack would be over $860K for processing and In-
ternet traffic alone, which is sufficiently high to thwart
an adversary’s compromise plans in the context of our
personal use targets (e.g., seeking sensitive advice from
friends over email). Of course, for larger N (e.g., 150), an
attacker would be required to integrate even more nodes
and at higher cost. Similarly, the cost of an attack would
increase as more users join the Vuze network.

Overall, to achieve good performance, security and
availability, we recommend using N = 50 and a thresh-
old of 90% for VDOs in the current Vuze network. Based
on our experiments, we conclude that under these param-
eters, an attacker would be required to compromise be-
tween 8—9% of the Vuze network in order to be effective
in his attack.

6.2.2 The Lookup Sniffing Attack

In addition to seeing store requests, a DHT-integrated
adversary also sees lookup requests. Although Vuze
only issues lookups prior to storing and getting data
objects, the lookups pass through multiple nodes and
hence provide additional exposure for VDO key shares.
In a lookup sniffing attack, whenever an attacker node re-
ceives a lookup for an index, it actively fetches the value
stored at that index, if any. While more difficult to handle
than the passive store attack, the lookup attack could
increase the adversary’s effectiveness.

Fortunately, a simple, node-local change to the Vuze
DHT thwarts this attack. Whenever a Vanish node wants
to store to or retrieve a value from an index I, the node
looks up an obfuscated index I, where I is related to but
different from I. The client then issues a store/get for
the original index I to the nodes returned in response to
the lookup for I. In this way, the retrieving node greatly
reduces the number of other nodes (and potential attack-
ers) who see the real index.

One requirement governs our simple choice of an ob-
fuscation function: the same set of replicas must be re-
sponsible for both indexes I and I. Given that Vuze has
1M nodes and that IDs are uniformly distributed (they
are obtained via hashing), all mappings stored at a cer-
tain node should share approximately the higher-order
log2(106) ≈ 20 bits with the IDs of the node. Thus,
looking up only the first 20b of the 160b of a Vuze in-
dex is enough to ensure that the nodes resulted from the
lookup are indeed those in charge of the index. The
rest of the index bits are useless in lookups and can be
randomized, and are rehabilitated only upon sending the
final get/store to the relevant node(s). We conserva-
tively choose to randomize the last 80b from every index
looked up while retrieving or storing mappings.

Lacking full index information, the attacker would

have to try retrieving all of the possible indexes starting
with the obfuscated index (280 indexes), which is impos-
sible in a timely manner. This Vuze change was trivial
(only 10 lines of modified code) and it is completely lo-
cal to Vanish nodes. That is, the change does not require
adoption by any other nodes in the DHT to be effective.

6.2.3 Standard DHT Attacks

In the previous sections we offered an in-depth analysis
of two data confidentiality attacks in DHTs (store and
lookup sniffing), which are specific in the context of our
system. However, the robustness of communal DHTs to
more general attacks has been studied profusely in the
past and such analyses, proposed defenses, and limita-
tions are relevant to Vanish, as well. Two main types
of attacks identified by previous works are the Sybil at-
tack [26] and the Eclipse (or route hijacking) attack [60].
In the Sybil attack, a few malicious nodes assume a large
number of identities in the DHT. In the Eclipse attack,
several adversarial nodes can redirect most of the traffic
issued by honest nodes toward themselves by poisoning
their routing tables with malicious node contact informa-
tion [60].

The Vuze DHT already includes a rudimentary de-
fense against Sybil attacks by constraining the identity
of a Vuze node to a function of its IP address and port
modulo 1999. While this measure might be sufficient
for the early stages of a Vanish deployment, stronger
defenses are known, e.g., certified identities [26] and
periodic cryptographic puzzles [9] for defense against
Sybil attacks and various other defenses against Eclipse
attacks [14, 51]. Given that the core Vanish system
is network-agnostic, we could easily port our system
onto more robust DHTs implementing stronger defenses.
Moreover, if Vanish-style systems become popular, it
would also be possible to consider Vanish-specific de-
fenses that could leverage, e.g., the aforementioned tight
coupling between Vanish and the identities provided by
PGP public keys. Finally, while we have focused on the
Vuze DHT — and indeed its communal model makes
analyzing security more interesting and challenging —
Vanish could also split keys across multiple DHTs, or
even DHTs and managed systems, as previously noted
(Section 4). The different trust models, properties, and
risks in those systems would present the attacker with a
much more difficult task.

7 Related Work

We have discussed a large amount of related work in
Section 2 and throughout the text. As additional re-
lated work, the Adeona system also leverages DHTs
for increased privacy, albeit with significantly different
goals [55]. Several existing companies aim to achieve

314 18th USENIX Security Symposium USENIX Association

similar goals to ours (e.g., self-destructing emails), but
with very different threat models (company servers must
be trusted) [20]. Incidents with Hushmail, however, may
lead users to question such trust models [59]. There also
exists research aimed at destroying archived data where
the data owner has the ability to explicitly and manu-
ally erase extra data maintained elsewhere, e.g., [8]; we
avoid such processes, which may not always succeed or
may be vulnerable to their own accidental copying or
disclosures. Finally, albeit with different goals and per-
spectives, Rabin proposes an information-theoretically
secure encryption system that leverages a decentralized
collection of dedicated machines that continuously serve
random pages of data [52], which is related to the lim-
ited storage model [33]. Communicants, who pre-share
symmetric keys, can download and xor specific pages to-
gether to derive a one-time pad. The commonality be-
tween our approach and Rabin’s is in the use of exter-
nal machines to assist in privacy; the model, reliance
on dedicated services, and pre-negotiation of symmetric
keys between communicants are among the central dif-
ferences.

8 Conclusions

Data privacy has become increasingly important in our
litigious and online society. This paper introduced a
new approach for protecting data privacy from attackers
who retroactively obtain, through legal or other means, a
user’s stored data and private decryption keys. A novel
aspect of our approach is the leveraging of the essen-
tial properties of modern P2P systems, including churn,
complete decentralization, and global distribution un-
der different administrative and political domains. We
demonstrated the feasibility of our approach by present-
ing Vanish, a proof-of-concept prototype based on the
Vuze global-scale DHT. Vanish causes sensitive infor-
mation, such as emails, files, or text messages, to irre-
versibly self-destruct, without any action on the user’s
part and without any centralized or trusted system. Our
measurement and experimental security analysis sheds
insight into the robustness of our approach to adversarial
attacks.

Our experience also reveals limitations of existing
DHTs for Vanish-like applications. In Vuze, for ex-
ample, the fixed data timeout and large replication fac-
tor present challenges for a self-destructing data system.
Therefore, one exciting direction of future research is to
redesign existing DHTs with our specific privacy appli-
cations in mind. Our plan to release the current Vanish
system will help to provide us with further valuable ex-
perience to inform future DHT designs for privacy appli-
cations.

9 Acknowledgements

We offer special thanks to Steve Gribble, Arvind Krish-
namurthy, Mark McGovern, Paul Ohm, Michael Piatek,
and our anonymous reviewers for their comments on the
paper. This work was supported by NSF grants NSF-
0846065, NSF-0627367, and NSF-614975, an Alfred P.
Sloan Research Fellowship, the Wissner-Slivka Chair,
and a gift from Intel Corporation.

References
[1] C. Alexander and I. Goldberg. Improved user authentication in

off-the-record messaging. In WPES, 2007.

[2] Amazon.com. Amazon elastic compute cloud (EC2). http://
aws.amazon.com/ec2/, 2008.

[3] Azureus. http://www.vuze.com/.

[4] BBC News. US mayor charged in SMS scandal. http://news.
bbc.co.uk/2/hi/americas/7311625.stm, 2008.

[5] M. Bellare and A. Palacio. Protecting against key exposure:
Strongly key-insulated encryption with optimal threshold. Appli-
cable Algebra in Engineering, Communication and Computing,
16(6), 2006.

[6] M. Bellare and B. Yee. Forward security in private key cryptog-
raphy. In M. Joye, editor, CT-RSA 2003, 2003.

[7] M. Blum and S. Micali. How to generate cryptographically strong
sequences of pseudo-random bits. In Proceedings of the 23rd
IEEE Symposium on Foundations of Computer Science (FOCS
’82), 1982.

[8] D. Boneh and R. Lipton. A revocable backup system. In USENIX
Security, 1996.

[9] N. Borisov. Computational puzzles as Sybil defenses. In Proc. of
the Intl. Conference on Peer-to-Peer Computing, 2006.

[10] N. Borisov, I. Goldberg, and E. Brewer. Off-the-record commu-
nication, or, why not to use PGP. In WPES, 2004.

[11] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai.
Exposure-resilient functions and all-or-nothing transforms. In
B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS,
pages 453–469, Bruges, Belgium, May 14–18, 2000. Springer-
Verlag, Berlin, Germany.

[12] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable en-
cryption. In B. S. K. Jr., editor, CRYPTO’97, 1997.

[13] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key
encryption scheme. In EUROCRYPT 2003, 2003.

[14] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wal-
lach. Secure routing for structured peer-to-peer overlay networks.
In Proc. of OSDI, 2002.

[15] J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum. Shredding
your garbage: Reducing data lifetime through secure dealloca-
tion. In USENIX Security, 2005.

[16] T. Condie, V. Kacholia, S. Sankararaman, J. M. Hellerstein, and
P. Maniatis. Induced churn as shelter from routing table poison-
ing. In Proc. of NDSS, 2006.

[17] A. Czeskis, D. J. S. Hilaire, K. Koscher, S. D. Gribble, T. Kohno,
and B. Schneier. Defeating encrypted and deniable file systems:
TrueCrypt v5.1a and the case of the tattling OS and applications.
In 3rd USENIX HotSec, July 2008.

[18] M. Dama. Amazon EC2 scalable processing
power. http://www.maxdama.com/2008/08/
amazon-ec2-scalable-processing-power.html, 2008.

[19] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. In USENIX Security, 2004.

[20] Disappearing Inc. Disappearing Inc. product page. http://www.
specimenbox.com/di/ab/hwdi.html, 1999.

USENIX Association 18th USENIX Security Symposium 315

[21] Y. Dodis, M. K. Franklin, J. Katz, A. Miyaji, and M. Yung.
Intrusion-resilient public-key encryption. In CT-RSA 2003, vol-
ume 2612, pages 19–32. Springer-Verlag, Berlin, Germany, 2003.

[22] Y. Dodis, M. K. Franklin, J. Katz, A. Miyaji, and M. Yung.
A generic construction for intrusion-resilient public-key encryp-
tion. In T. Okamoto, editor, CT-RSA 2004, volume 2964 of
LNCS, pages 81–98, San Francisco, CA, USA, Feb. 23–27, 2004.
Springer-Verlag, Berlin, Germany.

[23] Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-insulated public key
cryptosystems. In EUROCRYPT 2002, 2002.

[24] Y. Dodis, A. Sahai, and A. Smith. On perfect and adaptive se-
curity in exposure-resilient cryptography. In EUROCRYPT 2001,
volume 2045 of LNCS, pages 301–324. Springer-Verlag, Berlin,
Germany, 2001.

[25] Y. Dodis and M. Yung. Exposure-resilience for free: The case of
hierarchical ID-based encryption. In IEEE International Security
In Storage Workshop, 2002.

[26] J. R. Douceur. The sybil attack. In International Workshop on
Peer-to-Peer Systems, 2002.

[27] Emulab. Emulab – network emulation testbed. http://www.
emulab.net/, 2008.

[28] J. Falkner, M. Piatek, J. John, A. Krishnamurthy, and T. Ander-
son. Profiling a million user DHT. In Internet Measurement Con-
ference, 2007.

[29] D. Goodin. Your personal data just got permanently cached at
the US border. http://www.theregister.co.uk/2008/05/
01/electronic searches at us borders/, 2008.

[30] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy,
and J. Zahorjan. Measurement, modeling, and analysis of a peer-
to-peer file-sharing workload. In Proc. of SOSP, 2003.

[31] P. Gutmann. Secure deletion of data from magnetic and solid-
state memory. In USENIX Security, 1996.

[32] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum, and
E. W. Felten. Lest we remember: Cold boot attacks on encryption
keys. In USENIX Security, 2008.

[33] U. M. Maurer. Conditionally-perfect secrecy and a provably-
secure randomized cipher. Journal of Cryptology, 5:53–66, 1992.

[34] V. Mayer-Schoenberger. Useful Void: the art of forgetting in the
age of ubiquitous computing. Working Paper, John F. Kennedy
School of Government, Harvard University, 2007.

[35] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer in-
formation system based on the XOR metric. In Proc. of Peer-to-
Peer Systems, 2002.

[36] D. McCoy, K. Bauer, D. Grunwald, T. Kohno, and D. Sicker.
Shining light in dark places: Understanding the Tor network. In
Privacy Enhancing Technologies Symposium, July 2008.

[37] D. McCullagh. Feds use keylogger to thwart PGP, Hushmail.
news.cnet.com/8301-10784 3-9741357-7.html, 2008.

[38] D. McCullagh. Security guide to customs-proofing your
laptop. http://www.news.com/8301-13578 3-9892897-38.
html, 2008.

[39] S. K. Nair, M. T. Dashti, B. Crispo, and A. S. Tanenbaum. A
hybrid PKI-IBC based ephemerizer system. In International In-
formation Security Conference, 2007.

[40] E. Nakashima. Clarity sought on electronic searches.
http://www.washingtonpost.com/wp-dyn/content/
article/2008/02/06/AR2008020604763.html, 2008.

[41] New York Times. F.B.I. Gained Unauthorized Access to E-
Mail. http://www.nytimes.com/2008/02/17/washington/
17fisa.html? r=1&hp=&adxnnl=1&oref=slogin&adxnnlx=
1203255399-44ri626iqXg7QNmwzoeRkA, 2008.

[42] News 24. Think before you SMS. http://www.news24.com/
News24/Technology/News/0,,2-13-1443 1541201,00.
html, 2004.

[43] Office of Public Sector Information. Regulation of Investigatory
Powers Act (RIPA), Part III – Investigation of Electronic Data
Protected by Encryption etc. http://www.opsi.gov.uk/acts/
acts2000/ukpga 20000023 en 8, 2000.

[44] P. Ohm. The Fourth Amendment right to delete. The Harvard
Law Review, 2005.

[45] PC Magazine. Messages can be forever. http://www.pcmag.
com/article2/0,1759,1634544,00.asp, 2004.

[46] R. Perlman. The Ephemerizer: Making data disappear. Journal
of Information System Security, 1(1), 2005.

[47] R. Perlman. File system design with assured delete. In Security
in Storage Workshop (SISW), 2005.

[48] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn. Information
hiding: A survey. Proceedings of the IEEE, 87(7), 1999.

[49] B. Poettering. ”ssss: Shamir’s Secret Sharing Scheme”. http:
//point-at-infinity.org/ssss/, 2006.

[50] N. Provos. Encrypting virtual memory. In USENIX Security,
2000.

[51] K. P. N. Puttaswamy, H. Zheng, and B. Y. Zhao. Securing struc-
tured overlays against identity attacks. IEEE Transactions on Par-
allel and Distributed Systems (TPDS), 2008.

[52] M. O. Rabin. Provably unbreakable hyper-encryption in the lim-
ited access model. In IEEE Information Theory Workshop on
Theory and Practice in Information-Theoretic Security, 2005.

[53] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
churn in a DHT. In Proc. of the Annual Technical Conf., 2004.

[54] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, I. Stoica, and H. Yu. OpenDHT: A public DHT ser-
vice and its uses. In Proc. of ACM SIGCOMM, 2005.

[55] T. Ristenpart, G. Maganis, A. Krishnamurthy, and T. Kohno.
Privacy-preserving location tracking of lost or stolen devices:
Cryptographic techniques and replacing trusted third parties with
DHTs. In 17th USENIX Security Symposium, 2008.

[56] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems.
In Lecture Notes in Computer Science, 2001.

[57] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proc. of Multimedia
Computing and Networking, 2002.

[58] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–
613, 1979.

[59] R. Singel. Encrypted e-mail company Hushmail spills
to feds. http://blog.wired.com/27bstroke6/2007/11/
encrypted-e-mai.html, 2007.

[60] A. Singh, T. W. Ngan, P. Druschel, and D. S. Wallach. Eclipse
attacks on overlay networks: Threats and defenses. In Proc. of
INFOCOM, 2006.

[61] Slashdot. http://tech.slashdot.org/article.pl?sid=09/
02/17/2213251&tid=267, 2009.

[62] Spitzer criminal complaint. http://nytimes.com/packages/
pdf/nyregion/20080310spitzer-complaint.pdf, 2008.

[63] M. Steiner and E. W. Biersack. Crawling Azureus. Technical
Report RR-08-223, 2008.

[64] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proc. of ACM SIGCOMM, pages 149–160, 2001.

[65] Y. Xie, F. Yu, K. Achan, E. Gillum, M. Goldszmidt, and T. Wob-
ber. How dynamic are IP addresses? In Proc. of SIGCOMM,
2007.

[66] K. Zetter. Tor researcher who exposed embassy e-mail passwords
gets raided by Swedish FBI and CIA. http://blog.wired.
com/27bstroke6/2007/11/swedish-researc.html, 2007.

USENIX Association 18th USENIX Security Symposium 317

Efficient Data Structures for Tamper-Evident Logging
Scott A. Crosby Dan S. Wallach

scrosby@cs.rice.edu dwallach@cs.rice.edu

Department of Computer Science, Rice University

Abstract
Many real-world applications wish to collect tamper-

evident logs for forensic purposes. This paper considers
the case of an untrusted logger, serving a number of
clients who wish to store their events in the log, and
kept honest by a number of auditors who will challenge
the logger to prove its correct behavior. We propose
semantics of tamper-evident logs in terms of this auditing
process. The logger must be able to prove that individual
logged events are still present, and that the log, as seen
now, is consistent with how it was seen in the past. To
accomplish this efficiently, we describe a tree-based data
structure that can generate such proofs with logarithmic
size and space, improving over previous linear con-
structions. Where a classic hash chain might require an
800 MB trace to prove that a randomly chosen event is in
a log with 80 million events, our prototype returns a 3 KB
proof with the same semantics. We also present a flexible
mechanism for the log server to present authenticated
and tamper-evident search results for all events matching
a predicate. This can allow large-scale log servers to
selectively delete old events, in an agreed-upon fashion,
while generating efficient proofs that no inappropriate
events were deleted. We describe a prototype imple-
mentation and measure its performance on an 80 million
event syslog trace at 1,750 events per second using a
single CPU core. Performance improves to 10,500 events
per second if cryptographic signatures are offloaded,
corresponding to 1.1 TB of logging throughput per week.

1 Introduction
There are over 10,000 U.S. regulations that govern the

storage and management of data [22, 58]. Many countries
have legal, financial, medical, educational and privacy
regulations that require businesses to retain a variety of
records. Logging systems are therefore in wide use (albeit
many without much in the way of security features).

Audit logs are useful for a variety of forensic purposes,
such as tracing database tampering [59] or building a
versioned filesystem with verifiable audit trails [52].
Tamper-evident logs have also been used to build Byzan-
tine fault-tolerant systems [35] and protocols [15], as well
as to detect misbehaving hosts in distributed systems [28].

Ensuring a log’s integrity is a critical component in the
security of a larger system. Malicious users, including in-

siders with high-level access and the ability to subvert the
logging system, may want to perform unlogged activities
or tamper with the recorded history. While tamper-
resistance for such a system might be impossible, tamper-
detection should be guaranteed in a strong fashion.

A variety of hash data structures have been proposed
in the literature for storing data in a tamper-evident
fashion, such as trees [34, 49], RSA accumulators [5, 11],
skip lists [24], or general authenticated DAGs. These
structures have been used to build certificate revocation
lists [49], to build tamper-evident graph and geometric
searching [25], and authenticated responses to XML
queries [19]. All of these store static data, created by a
trusted author whose signature is used as a root-of-trust
for authenticating responses of a lookup queries.

While authenticated data structures have been adapted
for dynamic data [2], they continue to assume a trusted
author, and thus they have no need to detect inconsis-
tencies across versions. For instance, in SUNDR [36], a
trusted network filesystem is implemented on untrusted
storage. Although version vectors [16] are used to detect
when the server presents forking-inconsistent views to
clients, only trusted clients sign updates for the filesystem.

Tamper-evident logs are fundamentally different: An
untrusted logger is the sole author of the log and is respon-
sible for both building and signing it. A log is a dynamic
data structure, with the author signing a stream of commit-
ments, a new commitment each time a new event is added
to the log. Each commitment snapshots the entire log up
to that point. If each signed commitment is the root of
an authenticated data structure, well-known authenticated
dictionary techniques [62, 42, 20] can detect tampering
within each snapshot. However, without additional mech-
anisms to prevent it, an untrusted logger is free to have dif-
ferent snapshots make inconsistent claims about the past.
To be secure, a tamper-evident log system must both de-
tect tampering within each signed log and detect when
different instances of the log make inconsistent claims.

Current solutions for detecting when an untrusted
server is making inconsistent claims over time require
linear space and time. For instance, to prevent undetected
tampering, existing tamper evident logs [56, 17, 57]
which rely upon a hash chain require auditors examine
every intermediate event between snapshots. One pro-
posal [43] for a tamper-evident log was based on a skip
list. It has logarithmic lookup times, assuming the log

318 18th USENIX Security Symposium USENIX Association

is known to be internally consistent. However, proving
internal consistency requires scanning the full contents of
the log. (See Section 3.4 for further analysis of this.)

In the same manner, CATS [63], a network-storage
service with strong accountability properties, snapshots
the internal state, and only probabilistically detects
tampering by auditing a subset of objects for correctness
between snapshots. Pavlou and Snodgrass [51] show how
to integrate tamper-evidence into a relational database,
and can prove the existence of tampering, if suspected.
Auditing these systems for consistency is expensive,
requiring each auditor visit each snapshot to confirm that
any changes between snapshots are authorized.

If an untrusted logger knows that a just-added event
or returned commitment will not be audited, then any
tampering with the added event or the events fixed by that
commitment will be undiscovered, and, by definition,
the log is not tamper-evident. To prevent this, a tamper-
evident log requires frequent auditing. To this end, we
propose a tree-based history data structure, logarithmic
for all auditing and lookup operations. Events may be
added to the log, commitments generated, and audits
may be performed independently of one another and at
any time. No batching is used. Unlike past designs, we
explicitly focus on how tampering will be discovered,
through auditing, and we optimize the costs of these
audits. Our history tree allows loggers to efficiently prove
that the sequence of individual logs committed to, over
time, make consistent claims about the past.

In Section 2 we present background material and pro-
pose semantics for tamper-evident logging. In Section 3
we present the history tree. In Section 4 we describe
Merkle aggregation, a way to annotate events with
attributes which can then be used to perform tamper-
evident queries over the log and safe deletion of events,
allowing unneeded events to be removed in-place, with no
additional trusted party, while still being able to prove that
no events were improperly purged. Section 5 describes
a prototype implementation for tamper-evident logging
of syslog data traces. Section 6 discusses approaches
for scaling the logger’s performance. Related work is
presented in Section 7. Future work and conclusions
appear in Section 8.

2 Security Model
In this paper, we make the usual cryptographic assump-

tions that an attacker cannot forge digital signatures or
find collisions in cryptographic hash functions. Further-
more we are not concerned with protecting the secrecy
of the logged events; this can be addressed with external
techniques, most likely some form of encryption [50, 26,
54]. For simplicity, we assume a single monolithic log on
a single host computer. Our goal is to detect tampering.
It is impractical to prevent the destruction or alteration of

digital records that are in the custody of a Byzantine log-
ger. Replication strategies, outside the scope of this paper,
can help ensure availability of the digital records [44].

Tamper-evidence requires auditing. If the log is never
examined, then tampering cannot be detected. To this end,
we divide a logging system into three logical entities—
many clients which generate events for appending to a log
or history, managed on a centralized but totally untrusted
logger, which is ultimately audited by one or more
trusted auditors. We assume clients and auditors have
very limited storage capacity while loggers are assumed
to have unlimited storage. By auditing the published
commitments and demanding proofs, auditors can be
convinced that the log’s integrity has been maintained.
At least one auditor is assumed to be incorruptible. In
our system, we distinguish between clients and auditors,
while a single host could, in fact, perform both roles.

We must trust clients to behave correctly while they
are following the event insertion protocol, but we trust
clients nowhere else. Of course, a malicious client could
insert garbage, but we wish to ensure that an event, once
correctly inserted, cannot be undetectably hidden or mod-
ified, even if the original client is subsequently colluding
with the logger in an attempt to tamper with old data.

To ensure these semantics, an untrusted logger must
regularly prove its correct behavior to auditors and
clients. Incremental proofs, demanded of the logger,
prove that current commitment and prior commitment
make consistent claims about past events. Membership
proofs ask the logger to return a particular event from the
log along with a proof that the event is consistent with
the current commitment. Membership proofs may be
demanded by clients after adding events or by auditors
verifying that older events remain correctly stored by the
logger. These two styles of proofs are sufficient to yield
tamper-evidence. As any vanilla lookup operation may be
followed by a request for proof, the logger must behave
faithfully or risk its misbehavior being discovered.

2.1 Semantics of a tamper evident history
We now formalize our desired semantics for secure

histories. Each time an event X is sent to the logger, it
assigns an index i and appends it to the log, generating a
version-i commitment Ci that depends on all of the events
to-date, X0 . . .Xi. The commitment Ci is bound to its
version number i, signed, and published.

Although the stream of histories that a logger commits
to (C0 . . .Ci,Ci+1,Ci+2 . . .) are supposed to be mutually-
consistent, each commitment fixes an independent
history. Because histories are not known, a priori, to
be consistent with one other, we will use primes (�) to
distinguish between different histories and the events
contained within them. In other words, the events in log
Ci (i.e., those committed by commitment Ci) are X0 . . .Xi

USENIX Association 18th USENIX Security Symposium 319

and the events in log C�
j are X �

0 . . .X �
j, and we will need to

prove their correspondence.

2.1.1 Membership auditing

Membership auditing is performed both by clients,
verifying that new events are correctly inserted, and by
auditors, investigating that old events are still present
and unaltered. The logger is given an event index i and
a commitment Cj, i ≤ j and is required to return the ith
element in the log, Xi, and a proof that Cj implies Xi is
the ith event in the log.

2.1.2 Incremental auditing

While a verified membership proof shows that an event
was logged correctly in some log, represented by its
commitment Cj, additional work is necessary to verify
that the sequence of logs committed by the logger is
consistent over time. In incremental auditing, the logger
is given two commitments Cj and C�

k, where j ≤ k, and
is required to prove that the two commitments make con-
sistent claims about past events. A verified incremental
proof demonstrates that Xa = X �

a for all a ∈ [0, j]. Once
verified, the auditor knows that Cj and C�

k commit to the
same shared history, and the auditor can safely discard Cj.

A dishonest logger may attempt to tamper with its
history by rolling back the log, creating a new fork on
which it inserts new events, and abandoning the old fork.
Such tampering will be caught if the logging system
satisfies historical consistency (see Section 2.3) and by
a logger’s inability to generate an incremental proof
between commitments on different (and inconsistent)
forks when challenged.

2.2 Client insertion protocol
Once clients receive commitments from the logger af-

ter inserting an event, they must immediately redistribute
them to auditors. This prevents the clients from subse-
quently colluding with the logger to roll back or modify
their events. To this end, we need a mechanism, such as
a gossip protocol, to distribute the signed commitments
from clients to multiple auditors. It’s unnecessary for
every auditor to audit every commitment, so long as some
auditor audits every commitment. (We further discuss
tradeoffs with other auditing strategies in Section 3.1.)

In addition, in order to deal with the logger presenting
different views of the log to different auditors and clients,
auditors must obtain and reconcile commitments received
from multiple clients or auditors, perhaps with the gossip
protocol mentioned above. Alternatively the logger may
publish its commitment in a public fashion so that all
auditors receive the same commitment [27]. All that
matters is that auditors have access to a diverse collection
of commitments and demand incremental proofs to verify
that the logger is presenting a consistent view.

2.3 Definition: tamper evident history
We now define a tamper-evident history system as a

five-tuple of algorithms:

H.ADD(X) →Cj. Given an event X , appends it to the
history, returning a new commitment.

H.INCR.GEN(Ci,Cj) → P. Generates an incremental
proof between Ci and Cj, where i ≤ j.

H.MEMBERSHIP.GEN(i,Cj) → (P,Xi). Generates a
membership proof for event i from commitment Cj,
where i ≤ j. Also returns the event, Xi.

P.INCR.VF(C�
i ,Cj) →{�,⊥}. Checks that P proves that

Cj fixes every entry fixed by C�
i (where i ≤ j). Outputs

� if no divergence has been detected.

P.MEMBERSHIP.VF(i,Cj,X �
i) → {�,⊥}. Checks that P

proves that event X �
i is the i’th event in the log defined

by Cj (where i ≤ j). Outputs � if true.

The first three algorithms run on the logger and are used
to append to the log H and to generate proofs P. Auditors
or clients verify the proofs with algorithms {INCR.VF,
MEMBERSHIP.VF}. Ideally, the proof P sent to the au-
ditor is more concise than retransmitting the full history
H. Only commitments need to be signed by the log-
ger. Proofs do not require digital signatures; either they
demonstrate consistency of the commitments and the con-
tents of an event or they don’t. With these five operations,
we now define “tamper evidence” as a system satisfying:
Historical Consistency If we have a valid incremental
proof between two commitments Cj and Ck, where
j ≤ k, (P.INCR.VF(Cj,Ck) → �), and we have a valid
membership proof P� for the event X �

i , where i ≤ j, in the
log fixed byCj (i.e., P�.MEMBERSHIP.VF(i,Cj,X �

i) →�)
and a valid membership proof for X ��

i in the log fixed
by Ck (i.e., P��.MEMBERSHIP.VF(i,Ck,X ��

i) → �), then
X �

i must equal X ��
i . (In other words, if two commitments

commit consistent histories, then they must both fix the
same events for their shared past.)

2.4 Other threat models

Forward integrity Classic tamper-evident logging
uses a different threat model, forward integrity [4]. The
forward integrity threat model has two entities: clients
who are fully trusted but have limited storage, and loggers
who are assumed to be honest until suffering a Byzantine
failure. In this threat model, the logger must be prevented
from undetectably tampering with events logged prior
to the Byzantine failure, but is allowed to undetectably
tamper with events logged after the Byzantine failure.

Although we feel our threat model better characterizes
the threats faced by tamper-evident logging, our history

320 18th USENIX Security Symposium USENIX Association

tree and the semantics for tamper-evident logging are
applicable to this alternative threat model with only
minor changes. Under the semantics of forward-integrity,
membership auditing just-added events is unnecessary
because tamper-evidence only applies to events occurring
before the Byzantine failure. Auditing a just-added event
is unneeded if the Byzantine failure hasn’t happened and
irrelevant afterwards. Incremental auditing is still nec-
essary. A client must incrementally audit received com-
mitments to prevent a logger from tampering with events
occurring before a Byzantine failure by rolling back the
log and creating a new fork. Membership auditing is
required to look up and examine old events in the log.

Itkis [31] has a similar threat model. His design
exploited the fact that if a Byzantine logger attempts to
roll back its history to before the Byzantine failure, the
history must fork into two parallel histories. He proposed
a procedure that tested two commitments to detect
divergence without online interaction with the logger
and proved an O(n) lower bound on the commitment
size. We achieve a tighter bound by virtue of the logger
cooperating in the generation of these proofs.

Trusted hardware Rather than relying on auditing, an
alternative model is to rely on the logger’s hardware itself
to be tamper-resistant [58, 1]. Naturally, the security of
these systems rests on protecting the trusted hardware and
the logging system against tampering by an attacker with
complete physical access. Although our design could cer-
tainly use trusted hardware as an auditor, cryptographic
schemes like ours rest on simpler assumptions, namely
the logger can and must prove it is operating correctly.

3 History tree
We now present our new data structure for representing

a tamper-evident history. We start with a Merkle tree [46],
which has a long history of uses for authenticating static
data. In a Merkle tree, data is stored at the leaves and the
hash at the root is a tamper-evident summary of the con-
tents. Merkle trees support logarithmic path lengths from
the root to the leaves, permitting efficient random access.
Although Merkle trees are a well-known tamper-evident
data structure and our use is straightforward, the nov-
elty in our design is in using a versioned computation of
hashes over the Merkle tree to efficiently prove that differ-
ent log snapshots, represented by Merkle trees, with dis-
tinct root hashes, make consistent claims about the past.
A filled history tree of depth d is a binary Merkle

hash tree, storing 2d events on the leaves. Interior nodes,
Ii,r are identified by their index i and layer r. Each leaf
node Ii,0, at layer 0, stores event Xi. Interior node Ii,r
has left child Ii,r−1 and right child Ii+2r−1,r−1. (Figures 1
through 3 demonstrate this numbering scheme.) When
a tree is not full, subtrees containing no events are

I�0,3

I�0,2

I�0,1

X �
0 X �

1

I�2,1

X �
2

Figure 1: A version 2 history with commitment C�
2 = I�0,3.

I��0,3

I��0,2

I��0,1

X ��
0 X ��

1

I��2,1

X ��
2 X ��

3

I��4,2

I��4,1

X ��
4 X ��

5

I��6,1

X ��
6

Figure 2: A version 6 history with commitment C��
6 = I��0,3.

I0,3

I0,2

I0,1 I2,1

X2 X3

I4,2

I4,1 I6,1

X6

Figure 3: An incremental proof P between a version 2 and
version 6 commitment. Hashes for the circled nodes are
included in the proof. Other hashes can be derived from their
children. Circled nodes in Figures 1 and 2 must be shown to
be equal to the corresponding circled nodes here.

represented as �. This can be seen starting in Figure 1,
a version-2 tree having three events. Figure 2 shows a
version-6 tree, adding four additional events. Although
the trees in our figures have a depth of 3 and can store
up to 8 leaves, our design clearly extends to trees with
greater depth and more leaves.

Each node in the history tree is labeled with a crypto-
graphic hash which, like a Merkle tree, fixes the contents
of the subtree rooted at that node. For a leaf node, the label
is the hash of the event; for an interior node, the label is
the hash of the concatenation of the labels of its children.

An interesting property of the history tree is the ability
to efficiently reconstruct old versions or views of the tree.
Consider the history tree given in Figure 2. The logger
could reconstruct C��

2 analogous to the version-2 tree in
Figure 1 by pretending that nodes I��4,2 and X ��

3 were � and
then recomputing the hashes for the interior nodes and
the root. If the reconstructed C��

2 matched a previously
advertised commitment C�

2, then both trees must have the
same contents and commit the same events.

USENIX Association 18th USENIX Security Symposium 321

X0 X1 X2 X3 X4 X5 X6

Figure 4: Graphical notation for a history tree analogous to the
proof in Figure 3. Solid discs represent hashes included in the
proof. Other nodes are not included. Dots and open circles
represent values that can be recomputed from the values below
them; dots may change as new events are added while open cir-
cles will not. Grey circle nodes are unnecessary for the proof.

This forms the intuition of how the logger generates an
incremental proof P between two commitments, C�

2 and
C��

6 . Initially, the auditor only possesses commitments C�
2

and C��
6 ; it does not know the underlying Merkle trees that

these commitments fix. The logger must show that both
histories commit the same events, i.e., X ��

0 = X �
0,X

��
1 = X �

1,
and X ��

2 = X �
2. To do this, the logger sends a pruned tree

P to the auditor, shown in Figure 3. This pruned tree
includes just enough of the full history tree to compute
the commitments C2 and C6. Unnecessary subtrees are
elided out and replaced with stubs. Events can be either
included in the tree or replaced by a stub containing their
hash. Because an incremental proof involves three history
trees, the trees committed by C�

2 and C��
6 with unknown

contents and the pruned tree P, we distinguish them by
using a different number of primes (�).

From P, shown in Figure 3, we reconstruct the corre-
sponding root commitment for a version-6 tree, C6. We re-
compute the hashes of interior nodes based on the hashes
of their children until we compute the hash for node I0,3,
which will be the commitmentC6. If C��

6 =C6 then the cor-
responding nodes, circled in Figures 2 and 3, in the pruned
tree P and the implicit tree committed by C��

6 must match.

Similarly, from P, shown in Figure 3, we can recon-
struct the version-2 commitment C2 by pretending that
the nodes X3 and I4,2 are � and, as before, recomputing
the hashes for interior nodes up to the root. If C�

2 = C2,
then the corresponding nodes, circled in Figures 1 and 3,
in the pruned tree P and the implicit tree committed by
C�

2 must match, or I�0,1 = I0,1 and X �
2 = X2.

If the events committed by C�
2 and C��

6 are the same
as the events committed by P, then they must be equal;
we can then conclude that the tree committed by C��

6 is
consistent with the tree committed by C�

2. By this we
mean that the history trees committed by C�

2 and C��
6

both commit the same events, or X ��
0 = X �

0, X ��
1 = X �

1, and
X ��

2 = X �
2, even though the events X ��

0 = X �
0, X ��

1 = X �
1, X ��

4 ,
and X ��

5 are unknown to the auditor.

3.1 Is it safe to skip nodes during an audit?
In the pruned tree in Figure 3, we omit the events

fixed by I0,1, yet we still preserve the semantics of a
tamper-evident log. Even though these earlier events
may not be sent to the auditor, they are still fixed by the
unchanged hashes above them in the tree. Any attempted
tampering will be discovered in future incremental or
membership audits of the skipped events. With the
history tree, auditors only receive the portions of the
history they need to audit the events they have chosen
to audit. Skipping events makes it possible to conduct a
variety of selective audits and offers more flexibility in
designing auditing policies.
Existing tamper-evident log designs based on a classic

hash-chain have the form Ci = H(Ci−1 � Xi), C−1 = � and
do not permit events to be skipped. With a hash chain,
an incremental or membership proof between two com-
mitments or between an event and a commitment must
include every intermediate event in the log. In addition,
because intermediate events cannot be skipped, each audi-
tor, or client acting as an auditor, must eventually receive
every event in the log. Hash chaining schemes, as such,
are only feasible with low event volumes or in situations
where every auditor is already receiving every event.

When membership proofs are used to investigate old
events, the ability to skip nodes can lead to dramatic
reductions in proof size. For example, in our prototype
described in Section 5, in a log of 80 million events, our
history tree can return a complete proof for any randomly
chosen event in 3100 bytes. In a hash chain, where
intermediate events cannot be skipped, an average of 40
million hashes would be sent.

Auditing strategies In many settings, it is possible that
not every auditor will be interested in every logged event.
Clients may not be interested in auditing events inserted or
commitments received by other clients. One could easily
imagine scenarios where a single logger is shared across
many organizations, each only incentivized to audit the in-
tegrity of its own data. These organizations could run their
own auditors, focusing their attention on commitments
from their own clients, and only occasionally exchanging
commitments with other organizations to ensure no fork-
ing has occurred. One can also imagine scenarios where
independent accounting firms operate auditing systems
that run against their corporate customers’ log servers.

The log remains tamper-evident if clients gossip their
received commitments from the logger to at least one hon-
est auditor who uses it when demanding an incremental
proof. By not requiring that every commitment be audited
by every auditor, the total auditing overhead across all
auditors can be proportional to the total number of events
in the log—far cheaper than the number of events times
the number of auditors as we might otherwise require.

322 18th USENIX Security Symposium USENIX Association

Av
i,0 =

�

H(0�Xi) if v ≥ i (1)

Av
i,r =

�

H(1�Av
i,r−1��) if v < i+ 2r−1

H(1�Av
i,r−1�Av

i+2r−1,r−1) if v ≥ i+ 2r−1 (2)

Cn = An
0,d (3)

Av
i,r ≡ FHi,r whenever v ≥ i+ 2r −1 (4)

Figure 5: Recurrence for computing hashes.

Skipping nodes offers other time-security tradeoffs.
Auditors may conduct audits probabilistically, selecting
only a subset of incoming commitments for auditing. If a
logger were to regularly tamper with the log, its odds of
remaining undetected would become vanishingly small.

3.2 Construction of the history tree
Now that we have an example of how to use a tree-

based history, we will formally define its construction and
semantics. A version-n history tree stores n + 1 events,
X0 . . .Xn. Hashes are computed over the history tree in
a manner that permits the reconstruction of the hashes
of interior nodes of older versions or views. We denote
the hash on node Ii,r by Av

i,r which is parametrized by
the node’s index, layer and view being computed. A
version-v view on a version-n history tree reconstructs
the hashes on interior nodes for a version-v history tree
that only included events X0 . . .Xv. When v = n, the
reconstructed root commitment is Cn. The hashes are
computed with the recurrence defined in Figure 5.

A history tree can support arbitrary size logs by
increasing the depth when the tree fills (i.e., n = 2d − 1)
and defining d = �log2(n + 1)�. The new root, one level
up, is created with the old tree as its left child and an
empty right child where new events can be added. For
simplicity in our illustrations and proofs, we assume a
tree with fixed depth d.

Once a given subtree in the history tree is complete and
has no more slots to add events, the hash for the root node
of that subtree is frozen and will not change as future
events are added to the log. The logger caches these
frozen hashes (i.e., the hashes of frozen nodes) into FHi,r
to avoid the need to recompute them. By exploiting the
frozen hash cache, the logger can recompute Av

i,r for any
node with at most O(d) operations. In a version-n tree,
node Ii,r is frozen when n ≥ i + 2r − 1. When inserting
a new event into the log, O(1) expected case and O(d)
worse case nodes will become frozen. (In Figure 1, node
I�0,1 is frozen. If event X3 is added, nodes I�2,1 and I�0,2 will
become frozen.)
Now that we have defined the history tree, we will

describe the incremental proofs generated by the logger.
Figure 4 abstractly illustrates a pruned tree equivalent to

X0 X1 X2 X3 X4 X5 X6

Figure 6: A proof skeleton for a version-6 history tree.

the proof given in Figure 3, representing an incremental
proof from C2 to C6. Dots represent unfrozen nodes
whose hashes are computed from their children. Open
circles represent frozen nodes which are not included in
the proof because their hashes can be recomputed from
their children. Solid discs represent frozen nodes whose
inclusion is necessary by being leaves or stubs. Grayed
out nodes represent elided subtrees that are not included
in the pruned tree. From this pruned tree and equations
(1)-(4) (shown in Figure 5) we can compute C6 = A6

0,3
and a commitment from an earlier version-2 view, A2

0,3.
This pruned tree is incrementally built from a proof

skeleton, seen in Figure 6—the minimum pruned tree of a
version-6 tree consisting only of frozen nodes. The proof
skeleton for a version-n tree consists of frozen hashes for
the left siblings for the path from Xn to the root. From the
included hashes and using equations (1)-(4), this proof
skeleton suffices to computeC6 = A6

0,3.
From Figure 6 the logger incrementally builds Figure 4

by splitting frozen interior nodes. A node is split by
including its children’s hashes in the pruned tree instead
of itself. By recursively splitting nodes on the path to
a leaf, the logger can include that leaf in the pruned
tree. In this example, we split nodes I0,2 and I2,1. For
each commitment Ci that is to be reconstructable in an
incremental proof the pruned tree P must include a path
to the event Xi. The same algorithm is used to generate
the membership proof for an event Xi.
Given these constraints, we can now define the five

history operations in terms of the equations in Figure 5.

H.ADD(X) →Cn. Event is assigned the next free slot, n.
Cn is computed by equations (1)-(4).

H.INCR.GEN(Ci,Cj) → P. The pruned tree P is a
version- j proof skeleton including a path to Xi.

H.MEMBERSHIP.GEN(i,Cj) → (P,Xi). The pruned tree
P is a version- j proof skeleton including a path to Xi.

P.INCR.VF(C��
i ,C�

j) →{�,⊥}. From P apply equations
(1)-(4) to compute Ai

0,d and A j
0,d. This can only be

done if P includes a path to the leaf Xi. Return � if
C��

i = Ai
0,d and C�

j = A j
0,d .

USENIX Association 18th USENIX Security Symposium 323

P.MEMBERSHIP.VF(i,C�
j ,X �

i) →{�,⊥}. From P apply
equations (1)-(4) to compute A j

0,d . Also extract Xi from
the pruned tree P, which can only be done if P includes
a path to event Xi. Return � if C�

j = A j
0,d and Xi = X �

i .

Although incremental and membership proofs have dif-
ferent semantics, they both follow an identical tree struc-
ture and can be built and audited by a common implemen-
tation. In addition, a single pruned tree P can embed paths
to several leaves to satisfy multiple auditing requests.
What is the size of a pruned tree used as a proof? The
pruned tree necessary for satisfying a self-contained in-
cremental proof between Ci and Cj or a membership proof
for i in Cj requires that the pruned tree include a path to
nodes Xi and Xj. This resulting pruned tree contains at
most 2d frozen nodes, logarithmic in the size of the log.

In a real implementation, the log may have moved on to
a later version, k. If the auditor requested an incremental
proof between Ci and Cj, the logger would return the
latest commitment Ck, and a pruned tree of at most 3d
nodes, based around a version-k tree including paths to Xi
and Xj. More typically, we expect auditors will request
an incremental proof between a commitment Ci and the
latest commitment. The logger can reply with the latest
commitment Ck and pruned tree of at most 2d nodes that
included a path to Xi.
The frozen hash cache In our description of the
history tree, we described the full representation when we
stated that the logger stores frozen hashes for all frozen
interior nodes in the history tree. This cache is redundant
whenever a node’s hash can be recomputed from its
children. We expect that logger implementations, which
build pruned trees for audits and queries, will maintain
and use the cache to improve efficiency.

When generating membership proofs, incremental
proofs, and query lookup results, there is no need for
the resulting pruned tree to include redundant hashes on
interior nodes when they can be recomputed from their
children. We assume that pruned trees used as proofs
will use this minimum representation, containing frozen
hashes only for stubs, to reduce communication costs.
Can overheads be reduced by exploiting redundancy
between proofs? If an auditor is in regular commu-
nication with the logger, demanding incremental proofs
between the previously seen commitment and the latest
commitment, there is redundancy between the pruned
subtrees on successive queries.

If an auditor previously requested an incremental proof
between Ci and Cj and later requests an incremental proof
P between Cj and Cn, the two proofs will share hashes on
the path to leaf Xj. The logger may send a partial proof
that omits these common hashes, and only contains the
expected O(log2(n− j)) frozen hashes that are not shared

between the paths to Xj and Xn. This devolves to O(1)
if a proof is requested after every insertion. The auditor
need only cache d frozen hashes to make this work.
Tree history time-stamping service Our history
tree can be adapted to implement a round-based time-
stamping service. After every round, the logger publishes
the last commitment in public medium such as a news-
paper. Let Ci be the commitment from the prior round
and Ck be the commitment of the round a client requests
that its document Xj be timestamped. A client can
request a pruned tree including a path to leaves Xi,Xj,Xk.
The pruned tree can be verified against the published
commitments to prove that Xj was submitted in the round
and its order within that round, without the cooperation
of the logger.

If a separate history tree is built for each round, our his-
tory tree is equivalent to the threaded authentication tree
proposed by Buldas et al. [10] for time-stamping systems.

3.3 Storing the log on secondary storage
Our history tree offers a curious property: it can be

easily mapped onto write-once append-only storage.
Once nodes become frozen, they become immutable, and
are thus safe to output. This ordering is predetermined,
starting with (X0), (X1, I0,1), (X2), (X3, I2,1, I0,2), (X4)
Parentheses denote the nodes written by each ADD trans-
action. If nodes within each group are further ordered by
their layer in the tree, this order is simply a post-order
traversal of the binary tree. Data written in this linear
fashion will minimize disk seek overhead, improving
the disk’s write performance. Given this layout, and
assuming all events are the same size on disk, converting
from an (index, layer) to the byte index used to store
that node takes O(logn) arithmetic operations, permitting
efficient direct access.

In order to handle variable-length events, event data
can be stored in a separate write-once append-only value
store, while the leaves of the history tree contain offsets
into the value store where the event contents may be
found. Decoupling the history tree from the value store
also allows many choices for how events are stored, such
as databases, compressed files, or standard flat formats.

3.4 Comparing to other systems
In this section, we evaluate the time and space tradeoffs

between our history tree and earlier hash chain and skip
list structures. In all three designs, membership proofs
have the same structure and size as incremental proofs,
and proofs are generated in time proportional to their size.

Maniatis and Baker [43] present a tamper-evident log
using a deterministic variant of a skip list [53]. The skip
list history is like a hash-chain incorporating extra skip
links that hop over many nodes, allowing for logarithmic
lookups.

324 18th USENIX Security Symposium USENIX Association

Hash chain Skip list History tree
ADD Time O(1) O(1) O(log2 n)
INCR.GEN proof size to Ck O(n−k) O(n) O(log2 n)
MEMBERSHIP.GEN proof size for Xk O(n−k) O(n) O(log2 n)

Cache size - O(log2 n) O(log2 n)
INCR.GEN partial proof size - O(n− j) O(log2(n− j))
MEMBERSHIP.GEN partial proof size - O(log2 (n− i)) O(log2(n− i))

Table 1: We characterize the time to add an event to the log and the size of full and partial proofs generated in terms of n, the number of
events in the log. For partial proofs audits, j denotes the number of events in the log at the time of the last audit and i denotes the index
of the event being membership-audited.

In Table 1 we compare the three designs. All three
designs have O(1) storage per event and O(1) com-
mitment size. For skip list histories and tree histories,
which support partial proofs (described in Section 3.2),
we present the cache size and the expected proof sizes
in terms of the number of events in the log, n, and the
index, j, of the prior contact with the logger or the index
i of the event being looked up. Our tree-based history
strictly dominates both hash chains and skip lists in
proof generation time and proof sizes, particularly when
individual clients and auditors only audit a subset of the
commitments or when partial proofs are used.

Canonical representation A hash chain history and
our history tree have a canonical representation of both
the history and of proofs within the history. In particular,
from a given commitment Cn, there exists one unique path
to each event Xi. When there are multiple paths auditing
is more complex because the alternative paths must be
checked for consistency with one another, both within
a single history, and between the stream of histories
Ci,Ci+1, . . . committed by the logger. Extra paths may
improve the efficiency of looking up past events, such as
in a skip list, or offer more functionality [17], but cannot
be trusted by auditors and must be checked.

Maniatis and Baker [43] claim to support logarithmic-
sized proofs, however they suffer from this multi-path
problem. To verify internal consistency, an auditor with
no prior contact with the logger must receive every event
in the log in every incremental or membership proof.
Efficiency improves for auditors in regular contact with

the logger that use partial proofs and cache O(log2 n) state
between incremental audits. If an auditor has previously
verified the logger’s internal consistency up to Cj, the
auditor will be able to verify the logger’s internal consis-
tency up to a future commitment Cn with the receipt of
events Xj+1 . . .Xn Once an auditor knows that the skip list
is internally consistent the links that allow for logarithmic
lookups can be trusted and subsequent membership
proofs on old events will run in O(log2 n) time. Skip list
histories were designed to function in this mode, with
each auditor eventually receiving every event in the log.
Auditing is required Hash chains and skip lists only
offer a complexity advantage over the history tree when

adding new events, but this advantage is fleeting. If
the logger knows that a given commitment will never
be audited, it is free to tamper with the events fixed
by that commitment, and the log is no longer provably
tamper evident. Every commitment returned by the
logger must have a non-zero chance of being audited and
any evaluation of tamper-evident logging must include
the costs of this unavoidable auditing. With multiple
auditors, auditing overhead is further multiplied. After
inserting an event, hash chains and skip lists suffer an
O(n− j) disadvantage the moment they do incremental
audits between the returned commitment and prior
commitments. They cannot reduce this overhead by, for
example, only auditing a random subset of commitments.

Even if the threat model is weakened from our always-
untrusted logger to the forward-integrity threat model
(See Section 2.4), hash chains and skip lists are less
efficient than the history tree. Clients can forgo auditing
just-added events, but are still required to do incremental
audits to prior commitments, which are expensive with
hash chains or skip lists.

4 Merkle aggregation
Our history tree permits O(log2 n) access to arbitrary

events, given their index. In this section, we extend our
history tree to support efficient, tamper-evident content
searches through a feature we call Merkle aggregation,
which encodes auxiliary information into the history
tree. Merkle aggregation permits the logger to perform
authorized purges of the log while detecting unauthorized
deletions, a feature we call safe deletion.
As an example, imagine that a client flags certain events

in the log as “important” when it stores them. In the
history tree, the logger propagates these flags to interior
nodes, setting the flag whenever either child is flagged.
To ensure that the tagged history is tamper-evident, this
flag can be incorporated into the hash label of a node
and checked during auditing. As clients are assumed
to be trusted when inserting into the log, we assume
clients will properly annotate their events. Membership
auditing will detect if the logger incorrectly stored a leaf
with the wrong flag or improperly propagated the flag.
Incremental audits would detect tampering if any frozen

USENIX Association 18th USENIX Security Symposium 325

node had its flag altered. Now, when an auditor requests
a list of only flagged events, the logger can generate that
list along with a proof that the list is complete. If there
are relatively few “important” events, the query results
can skip over large chunks of the history.
To generate a proof that the list of flagged events is

complete, the logger traverses the full history tree H,
pruning any subtrees without the flag set, and returns
a pruned tree P containing only the visited nodes. The
auditor can ensure that no flagged nodes were omitted
in P by performing its own recursive traversal on P and
verifying that every stub is unflagged.

Figure 7 shows the pruned tree for a query against a
version-5 history with events X2 and X5 flagged. Interior
nodes in the path from X2 and X5 to the root will also be
flagged. For subtrees containing no matching events, such
as the parent of X0 and X1, we only need to retain the root
of the subtree to vouch that its children are unflagged.

4.1 General attributes
Boolean flags are only one way we may flag log

events for later queries. Rather than enumerate every
possible variation, we abstract an aggregation strategy
over attributes into a 3-tuple, (τ,⊕,Γ). τ represents the
type of attribute or attributes that an event has. ⊕ is a
deterministic function used to compute the attributes on
an interior node in the history tree by aggregating the
attributes of the node’s children. Γ is a deterministic
function that maps an event to its attributes. In our
example of client-flagged events, the aggregation strategy
is (τ := BOOL,⊕ := ∨,Γ(x) := x.isFlagged).
For example, in a banking application, an attribute

could be the dollar value of a transaction, aggregated
with the MAX function, permitting queries to find all
transactions over a particular dollar value and detect if the
logger tampers with the results. This corresponds to (τ :=
INT,⊕ := MAX,Γ(x) := x.value). Or, consider events hav-
ing internal timestamps, generated by the client, arriving
at the logger out of order. If we attribute each node in the
tree with the earliest and latest timestamp found among its
children, we can now query the logger for all nodes within
a given time range, regardless of the order of event arrival.

There are at least three different ways to implement
keyword searching across logs using Merkle aggregation.
If the number of keywords is fixed in advance, then the
attribute τ for events can be a bit-vector or sparse bit-
vector combined with ⊕ := ∨. If the number of keywords
is unknown, but likely to be small, τ can be a sorted list
of keywords, with ⊕ := ∪ (set union). If the number of
keywords is unknown and potentially unbounded, then
a Bloom filter [8] may be used to represent them, with τ
being a bit-vector and ⊕ :=∨. Of course, the Bloom filter
would then have the potential of returning false positives
to a query, but there would be no false negatives.

X0 X1 X2 X3 X4 X5

Figure 7: Demonstration of Merkle aggregation with some
events flagged as important (highlighted). Frozen nodes that
would be included in a query are represented as solid discs.

Merkle aggregation is extremely flexible because Γ
can be any deterministic computable function. However,
once a log has been created, (τ,⊕,Γ) are fixed for that
log, and the set of queries that can be made is restricted
based on the aggregation strategy chosen. In Section 5
we describe how we were able to apply these concepts to
the metadata used in Syslog logs.

4.2 Formal description
To make attributes tamper-evident in history trees, we

modify the computation of hashes over the tree to include
them. Each node now has a hash label denoted by Av

i,r.H
and an annotation denoted by Av

i,r.A for storing attributes.
Together these form the node data that is attached to each
node in the history tree. Note that the hash label of node,
Av

i,r.H, does not fix its own attributes, Av
i,r.A. Instead, we

define a subtree authenticator Av
i,r.∗ = H(Av

i,r.H � Av
i,r.A)

that fixes the attributes and hash of a node, and recursively
fixes every hash and attribute in its subtree. Frozen hashes
FHi,r.A and FHi,r.H and FHi,r.∗ are defined analogously
to the non-Merkle-aggregation case.
We could have defined this recursion in several differ-

ent ways. This representation allows us to elide unwanted
subtrees with a small stub, containing one hash and one
set of attributes, while exposing the attributes in a way
that makes it possible to locally detect if the attributes
were improperly aggregated.

Our new mechanism for computing hash and aggre-
gates for a node is given in equations (5)-(10) in Figure 8.
There is a strong correspondence between this recurrence
and the previous one in Figure 5. Equations (6) and (7)
extract the hash and attributes of an event, analogous
to equation (1). Equation (9) handles aggregation of
attributes between a node and its children. Equation (8)
computes the hash of a node in terms of the subtree
authenticators of its children.

INCR.GEN and MEMBERSHIP.GEN operate the same
as with an ordinary history tree, except that wherever
a frozen hash was included in the proof (FHi,r), we
now include both the hash of the node, FHi,r.H, and its
attributes FHi,r.A. Both are required for recomputing
Av

i,r.A and Av
i,r.H for the parent node. ADD, INCR.VF,

326 18th USENIX Security Symposium USENIX Association

Av
i,r.∗ = H(Av

i,r.H �Av
i,r.A) (5)

Av
i,0.H =

�

H(0�Xi) if v ≥ i (6)

Av
i,0.A =

�

Γ(Xi) if v ≥ i (7)

Av
i,r.H =

�

H(1�Av
i,r−1.∗��) if v < i+ 2r−1

H(1�Av
i,r−1.∗�Av

i+2r−1,r−1.∗) if v ≥ i+ 2r−1

(8)

Av
i,r.A =

�

Av
i,r−1.A if v < i+ 2r−1

Av
i,r−1.A⊕Av

i+2r−1,r−1.A if v ≥ i+ 2r−1 (9)

Cn = An
0,d.∗ (10)

Figure 8: Hash computations for Merkle aggregation

and MEMBERSHIP.VF are the same as before except for
using the equations (5)-(10) for computing hashes and
propagating attributes. Merkle aggregation inflates the
storage and proof sizes by a factor of (A + B)/A where A
is the size of a hash and B is the size of the attributes.
4.2.1 Queries over attributes

In Merkle aggregation queries, we permit query results
to contain false positives, i.e., events that do not match
the query Q. Extra false positive events in the result only
impact performance, not correctness, as they may be
filtered by the auditor. We forbid false negatives; every
event matching Q will be included in the result.

Unfortunately, Merkle aggregation queries can only
match attributes, not events. Consequently, we must
conservatively transform a query Q over events into a
predicate QΓ over attributes and require that it be stable,
with the following properties: If Q matches an event then
QΓ matches the attributes of that event (i.e., ∀x Q(x) ⇒
QΓ(Γ(x))). Furthermore, if QΓ is true for either child of a
node, it must be true for the node itself (i.e., ∀x,y QΓ(x)∨
QΓ(y)⇒ QΓ(x⊕y) and ∀x QΓ(x)∨QΓ(�)⇒ QΓ(x⊕�)).

Stable predicates can falsely match nodes or events for
two reasons: events’ attributes may match QΓ without
the events matching Q, or nodes may occur where
(QΓ(x)∨QΓ(y)) is false, but QΓ(x⊕ y) is true. We call
a predicate Q exact if there can be no false matches. This
occurs when Q(x) ⇔ QΓ(Γ(x)) and QΓ(x) ∨ QΓ(y) ⇔
QΓ(x ⊕ y). Exact queries are more efficient because a
query result does not include falsely matching events and
the corresponding pruned tree proving the correctness of
the query result does not require extra nodes.
Given these properties, we can now define the addi-

tional operations for performing authenticated queries on
the log for events matching a predicate QΓ.

H.QUERY(Cj,QΓ) → P Given a predicate QΓ over
attributes τ, returns a pruned tree where every elided

subtrees does not match QΓ.

P.QUERY.VF(C�
j,QΓ) →{�,⊥} Checks the pruned tree

P and returns � if every stub in P does not match QΓ

and the reconstructed commitment Cj is the same as C�
j.

Building a pruned tree containing all events matching
a predicate QΓ is similar to building the pruned trees
for membership or incremental auditing. The logger
starts with a proof skeleton then recursively traverses
it, splitting interior nodes when QΓ(FHi,r.A) is true.
Because the predicate QΓ is stable, no event in any elided
subtree can match the predicate. If there are t events
matching the predicate QΓ, the pruned tree is of size at
most O((1 + t) log2 n) (i.e., t leaves with log2 n interior
tree nodes on the paths to the root).

To verify that P includes all events matching QΓ, the
auditor does a recursive traversal over P. If the auditor
finds an interior stub where QΓ(FHi,r.A) is true, the ver-
ification fails because the auditor found a node that was
supposed to have been split. (Unfrozen nodes will always
be split as they compose the proof skeleton and only occur
on the path from Xj to the root.) The auditor must also
verify that pruned tree P commits the same events as the
commitment C�

j by reconstructing the root commitment
Cj using the equations (5)-(10) and checking that Cj =C�

j.
As with an ordinary history tree, a Merkle aggregating

tree requires auditing for tamper-detection. If an event is
never audited, then there is no guarantee that its attributes
have been properly included. Also, a dishonest logger
or client could deliberately insert false log entries whose
attributes are aggregated up the tree to the root, causing
garbage results to be included in queries. Even so, if Q
is stable, a malicious logger cannot hide matching events
from query results without detection.

4.3 Applications
Safe deletion Merkle aggregation can be used for
expiring old and obsolete events that do not satisfy some
predicate and prove that no other events were deleted
inappropriately. While Merkle aggregation queries prove
that no matching event is excluded from a query result,
safe deletion requires the contrapositive: proving to an
auditor that each purged event was legitimately purged
because it did not match the predicate.

Let Q(x) be a stable query that is true for all events that
the logger must keep. Let QΓ(x) be the corresponding
predicate over attributes. The logger stores a pruned tree
that includes all nodes and leaf events where QΓ(x) is
true. The remaining nodes may be elided and replaced
with stubs. When a logger cannot generate a path to a
previously deleted event Xi, it instead supplies a pruned
tree that includes a path to an ancestor node A of Xi where
QΓ(A) is false. Because Q is stable, if QΓ(A) is false,
then QΓ(Γ(Xi)) and Q(Xi) must also be false.

USENIX Association 18th USENIX Security Symposium 327

Safe deletion and auditing policies must take into
account that if a subtree containing events Xi . . .Xj is
purged, the logger is unable to generate incremental or
membership proofs involving commitments Ci . . .Cj. The
auditing policy must require that any audits using those
commitments be performed before the corresponding
events are deleted, which may be as simple as requiring
that clients periodically request an incremental proof to a
later or long-lived commitment.

Safe deletion will not save space when using the
append-only storage described in Section 3.3. However,
if data-destruction policies require destroying a subset of
events in the log, safe deletion may be used to prove that
no unauthorized log events were destroyed.

“Private” search Merkle aggregation enables a weak
variant of private information retrieval [14], permitting
clients to have privacy for the specific contents of their
events. To aggregate the attributes of an event, the logger
only needs the attributes of an event, Γ(Xi), not the event
itself. To verify that aggregation is done correctly also
only requires the attributes of an event. If clients encrypt
their events and digitally sign their public attributes,
auditors may verify that aggregation is done correctly
while clients preserve their event privacy from the logger
and other clients and auditors.
Bloom filters, in addition to providing a compact and

approximate way to represent the presence or absence
of a large number of keywords, can also enable private
indexing (see, e.g., Goh [23]). The logger has no idea
what the individual keywords are within the Bloom
filter; many keywords could map to the same bit. This
allows for private keywords that are still protected by the
integrity mechanisms of the tree.

5 Syslog prototype implementation
Syslog is the standard Unix-based logging system [38],

storing events with many attributes. To demonstrate the
effectiveness of our history tree, we built an implementa-
tion capable of storing and searching syslog events. Using
events from syslog traces, captured from our departmental
servers, we evaluated the storage and performance costs
of tamper-evident logging and secure deletion.

Each syslog event includes a timestamp, the host gener-
ating the event, one of 24 facilities or subsystem that gen-
erated the event, one of 8 logging levels, and the message.
Most events also include a tag indicating the program
generating the event. Solutions for authentication, man-
agement, and reliable delivery of syslog events over the
network have already been proposed [48] and are in the
process of being standardized [32], but none of this work
addresses the logging semantics that we wish to provide.

Our prototype implementation was written in a hybrid
of Python 2.5.2 and C++ and was benchmarked on an

Intel Core 2 Duo 2.4GHz CPU with 4GB of RAM in
64-bit mode under Linux. Our present implementation is
single-threaded, so the second CPU core is underutilized.
Our implementation uses SHA-1 hashes and 1024-bit
DSA signatures, borrowed from the OpenSSL library.

In our implementation, we use the array-based post-
order traversal representation discussed in Section 3.3.
The value store and history tree are stored in separate
write-once append-only files and mapped into memory.
Nodes in the history tree use a fixed number of bytes,
permitting direct access. Generating membership and
incremental proofs requires RAM proportional to the
size of the proof, which is logarithmic in the number of
events in the log. Merkle aggregation query result sizes
are presently limited to those which can fit in RAM,
approximately 4 million events.

The storage overheads of our tamper-evident history
tree are modest. Our prototype stores five attributes for
each event. Tags and host names are encoded as 2-of-32
bit Bloom filters. Facilities and hosts are encoded as
bit-vectors. To permit range queries to find every event
in a particular range of time, an interval is used to encode
the message timestamp. All together, there are twenty
bytes of attributes and twenty bytes for a SHA-1 hash for
each node in the history tree. Leaves have an additional
twelve bytes to store the offset and length of the event
contents in the value store.

We ran a number of simulations of our prototype to
determine the processing time and space overheads of
the history tree. To this end, we collected a trace of
four million events from thirteen of our departmental
server hosts over 106 hours. We observed 9 facilities,
6 levels, and 52 distinct tags. 88.1% of the events are
from the mail server and 11.5% are from 98,743 failed
ssh connection attempts. Only .393% of the log lines
are from other sources. In testing our history tree, we
replay this trace 20 times to insert 80 million events. Our
syslog trace, after the replay, occupies 14.0 GB, while the
history tree adds an additional 13.6 GB.

5.1 Performance of the logger
The logger is the only centralized host in our design

and may be a bottleneck. The performance of a real world
logger will depend on the auditing policy and relative
frequency between inserting events and requesting audits.
Rather than summarize the performance of the logger for
one particular auditing policy, we benchmark the costs of
the various tasks performed by the logger.

Our captured syslog traces averaged only ten events per
second. Our prototype can insert events at a rate of 1,750
events per second, including DSA signature generation.
Inserting an event requires four steps, shown in Table 2,
with the final step, signing the resulting commitment,
responsible for most of the processing time. Throughput

328 18th USENIX Security Symposium USENIX Association

Step Task % of CPU Rate
(events/sec)

A Parse syslog message 2.4% 81,000
B Insert event into log 2.6% 66,000
C Generate commitment 11.8% 15,000
D Sign commitment 83.3% 2,100

Membership proofs - 8,600
(with locality)

Membership proofs - 32
(no locality)

Table 2: Performance of the logger in each of the four steps re-
quired to insert an event and sign the resulting commitment and
in generating membership proofs. Rates are given assuming
nothing other than the specified step is being performed.

would increase to 10,500 events per second if the DSA
signatures were computed elsewhere (e.g., leveraging
multiple CPU cores). (Section 6 discusses scalability
in more detail.) This corresponds to 1.9MB/sec of
uncompressed syslog data (1.1 TB per week).

We also measured the rate at which our prototype can
generate membership and incremental proofs. The size of
an incremental proof between two commitments depends
upon the distance between the two commitments. As the
distance varies from around two to two million events,
the size of a self-contained proof varies from 1200 bytes
to 2500 bytes. The speed for generating these proofs
varies from 10,500 proofs/sec to 18,000 proofs/sec, with
shorter distances having smaller proof sizes and faster
performance than longer distances. For both incremental
and membership proofs, compressing by gzip [18] halves
the size of the proofs, but also halves the rate at which
proofs can be generated.

After inserting 80 million events into the history tree,
the history tree and value store require 27 GB, several
times larger than our test machine’s RAM capacity.
Table 2 presents our results for two membership auditing
scenarios. In our first scenario we requested membership
proofs for random events chosen among the most recent
5 million events inserted. Our prototype generated 8,600
self-contained membership proofs per second, averaging
2,400 bytes each. In this high-locality scenario, the most
recent 5 million events were already sitting in RAM. Our
second scenario examined the situation when audit re-
quests had low locality by requesting membership proofs
for random events anywhere in the log. The logger’s
performance was limited to our disk’s seek latency. Proof
size averaged 3,100 bytes and performance degraded to
32 membership proofs per second. (We discuss how this
might be overcome in Section 6.2.)

To test the scalability of the history tree, we bench-
marked insert performance and auditing performance on
our original 4 million event syslog event trace, without
replication, and the 80 million event trace after 20x
replication. Event insertion and incremental auditing are

roughly 10% slower on the larger log.

5.2 Performance of auditors and clients
The history tree places few demands upon auditors

or clients. Auditors and clients must verify the logger’s
commitment signatures and must verify the correctness
of pruned tree replies to auditing requests. Our machine
can verify 1,900 DSA-1024 signatures per second. Our
current tree parser is written in Python and is rather slow.
It can only parse 480 pruned trees per second. Once
the pruned tree has been parsed, our machine can verify
9,000 incremental or membership proofs per second.
Presently, one auditor cannot verify proofs as fast as the
logger can generate them, but auditors can clearly operate
independently of one another, in parallel, allowing for
exceptional scaling, if desired.

5.3 Merkle aggregation results
In this subsection, we describe the benefits of Merkle

aggregation in generating query results and in safe
deletion. In our experiments, due to limitations of our
implementation in generating large pruned trees, our
Merkle aggregation experiments used the smaller four
million event log.

We used 86 different predicates to investigate the
benefits of safe deletion and the overheads of Merkle
aggregation queries. We used 52 predicates, each match-
ing one tag, 13 predicates, each matching one host, 9
predicates, each matching one facility, 6 predicates, one
matching each level, and 6 predicates, each matching the
k highest logging levels.

The predicates matching tags and hosts use Bloom
filters, are inexact, and may have false positives. This
causes 34 of the 65 Bloom filter query results to include
more nodes than our “worst case” expectation for exact
predicates. By using larger Bloom filters, we reduce
the chances of spurious matches. When a 4-of-64
Bloom filter is used for tags and hostnames, pruned trees
resulting from search queries average 15% fewer nodes,
at the cost of an extra 64 bits of attributes for each node
in the history tree. In a real implementation, the exact
parameters of the Bloom filter would best be tuned to
match a sample of the events being logged.
Merkle aggregation and safe deletion Safe deletion
allows the purging of unwanted events from the log.
Auditors define a stable predicate over the attributes of
events indicating which events must be kept, and the
logger keeps a pruned tree of only those matching events.
In our first test, we simulated the deletion of all events
except those from a particular host. The pruned tree was
generated in 14 seconds, containing 1.92% of the events
in the full log and serialized to 2.29% of the size of the
full tree. Although 98.08% of the events were purged, the
logger was only able to purge 95.1% of the nodes in the

USENIX Association 18th USENIX Security Symposium 329

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

Fr
ac

tio
n

of
 a

nn
ot

at
io

ns
 k

ep
t

Fraction of events kept

Non-bloom
Bloom, 2-of-32 bits
Bloom, 4-of-64 bits

Worst Case
Best Case

Figure 9: Safe deletion overhead. For a variety of queries,
we plot the fraction of hashes and attributes kept after deletion
versus the fraction of events kept.

history tree because the logger must keep the hash label
and attributes for the root nodes of elided subtrees.

When measuring the size of a pruned history tree
generated by safe deletion, we assume the logger caches
hashes and attributes for all interior nodes in order to be
able to quickly generate proofs. For each predicate, we
measure the kept ratio, the number of interior node or
stubs in a pruned tree of all nodes matching the predicate
divided by the number of interior nodes in the full history
tree. In Figure 9 for each predicate we plot the kept ratio
versus the fraction of events matching the predicate. We
also plot the analytic best-case and worst-case bounds,
based on a continuous approximation. The minimum
overhead occurs when the matching events are contiguous
in the log. The worst-case occurs when events are max-
imally separated in the log. Our Bloom-filter queries do
worse than the “worst-case” bound because Bloom filter
matches are inexact and will thus trigger false positive
matches on interior nodes, forcing them to be kept in the
resulting pruned tree. Although many Bloom filters did
far worse than the “worst-case,” among the Bloom filters
that matched fewer than 1% of the events in the log, the
logger is still able to purge over 90% of the nodes in the
history tree and often did much better than that.

Merkle aggregation and authenticated query results
In our second test, we examine the overheads for Merkle
aggregation query lookup results. When the logger
generates the results to a query, the resulting pruned
tree will contain both matching events and history tree
overhead, in the form of hashes and attributes for any
stubs. For each predicate, we measure the query overhead
ratio—the number of stubs and interior nodes in a pruned
tree divided by the number of events in the pruned tree.
In Figure 10 we plot the query overhead ratio versus the
fraction of events matching the query for each of our 86
predicates. This plot shows, for each event matching a
predicate, proportionally how much extra overhead is in-

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

Av
er

ag
e

an
no

ta
tio

ns
 in

 p
ro

of
 p

er
 e

ve
nt

Fraction of events in the query result

Non-bloom
Bloom, 2-of-32 bits
Bloom, 4-of-64 bits

Worst case
Best case

Figure 10: Query overhead per event. We plot the ratio be-
tween the number of hashes and matching events in the result
of each query versus the fraction of events matching the query.

curred, per event, for authentication information. We also
plot the analytic best-case and worst-case bounds, based
on a continuous approximation. The minimum overhead
occurs when the matching events are contiguous in the
log. The worst-case occurs when events are maximally
separated in the log. With exact predicates, the overhead
of authenticated query results is very modest, and again,
inexact Bloom filter queries will sometimes do worse
than the “worst case.”

6 Scaling a tamper-evident log
In this section, we discuss techniques to improve the

insert throughput of the history tree by using concurrency,
and to improve the auditing throughput with replication.
We also discuss a technique to amortize the overhead of
a digital signature over several events.

6.1 Faster inserts via concurrency
Our tamper-evident log offers many opportunities to

leverage concurrency to increase throughput. Perhaps
the simplest approach is to offload signature generation.
From Table 2, signatures account for over 80% of the
runtime cost of an insert. Signatures are not included
in any other hashes and there are no interdependencies
between signature computations. Furthermore, signing
a commitment does not require knowing anything other
than the root commitment of the history tree. Conse-
quently, it’s easy to offload signature computations onto
additional CPU cores, additional hosts, or hardware
crypto accelerators to improve throughput.

It is possible for a logger to also generate commitments
concurrently. If we examine Table 2, parsing and inserting
events in the log is about two times faster than generating
commitments. Like signatures, commitments have no
interdependencies on one other; they depend only on the
history tree contents. As soon as event Xj is inserted into
the tree and O(1) frozen hashes are computed and stored,

330 18th USENIX Security Symposium USENIX Association

a new event may be immediately logged. Computing
the commitment Cj only requires read-only access to the
history tree, allowing it to be computed concurrently by
another CPU core without interfering with subsequent
events. By using shared memory and taking advantage of
the append-only write-once semantics of the history tree,
we would expect concurrency overhead to be low.
We have experimentally verified the maximum rate

at which our prototype implementation, described in
Section 5, can insert syslog events into the log at 38,000
events per second using only one CPU core on commodity
hardware. This is the maximum throughput our hardware
could potentially support. In this mode we assume that
digital signatures, commitment generation, and audit
requests are delegated to additional CPU cores or hosts.
With multiple hosts, each host must build a replica of
the history tree which can be done at least as fast as
our maximum insert rate of 38,000 events per second.
Additional CPU cores on these hosts can then be used for
generating commitments or handling audit requests.

For some applications, 38,000 events per second may
still not be fast enough. Scaling beyond this would
require fragmenting the event insertion and storage tasks
across multiple logs. To break interdependencies between
them, the fundamental history tree data structure we
presently use would need to evolve, perhaps into disjoint
logs that occasionally entangle with one another as in
timeline entanglement [43]. Designing and evaluating
such a structure is future work.

6.2 Logs larger than RAM
For exceptionally large audits or queries, where the

working set size does not fit into RAM, we observed
that throughput was limited to disk seek latency. Similar
issues occur in any database query system that uses
secondary storage, and the same software and hardware
techniques used by databases to speed up queries may
be used, including faster or higher throughput storage
systems or partitioning the data and storing it in-memory
across a cluster of machines. A single large query can
then be issued to the cluster node managing each sub-tree.
The results would then be merged before transmitting the
results to the auditor. Because each sub-tree would fit in
its host’s RAM, sub-queries would run quickly.

6.3 Signing batches of events
When large computer clusters are unavailable and the

performance cost of DSA signatures is the limiting factor
in the logger’s throughput, we may improve performance
of the logger by allowing multiple updates to be handled
with one signature computation.

Normally, when a client requests an event X to be
inserted, the logger assigns it an index i, generates the
commitment Ci, signs it, and returns the result. If the

logger has insufficient CPU to sign every commitment,
the logger could instead delay returning Ci until it has
a signature for some later commitment Cj (j ≥ i). This
later signed commitment could then be sent to the client
expecting an earlier one. To ensure that the event Xi in
the log committed by Cj was X , the client may request
a membership proof from commitment Cj to event i and
verify that Xi = X . This is safe due to the tamper-evidence
of our structure. If the logger were ever to later sign a Ci
inconsistent with Cj, it would fail an incremental proof.

In our prototype, inserting events into the log is twenty
times faster than generating and signing commitments.
The logger may amortize the costs of generating a signed
commitment over many inserted events. The number of
events per signed commitment could vary dynamically
with the load on the logger. Under light load, the logger
could sign every commitment and insert 1,750 events per
second. With increasing load, the logger might sign one in
every 16 commitments to obtain an estimated insert rate of
17,000 events per second. Clients will still receive signed
commitments within a fraction of a second, but several
clients can now receive the same commitment. Note that
this analysis only considers the maximum insert rate for
the log and does not include the costs of replying to audits.
The overall performance improvements depend on how
often clients request incremental and membership proofs.

7 Related work
There has been recent interest in creating append-only

databases for regulatory compliance. These databases
permit the ability to access old versions and trace tam-
pering [51]. A variety of different data structures are
used, including a B-tree [64] and a full text index [47].
The security of these systems depends on a write-once
semantics of the underlying storage that cannot be
independently verified by a remote auditor.

Forward-secure digital signature schemes [3] or stream
authentication [21] can be used for signing commitments
in our scheme or any other logging scheme. Entries in the
log may be encrypted by clients for privacy. Kelsey and
Schneier [57] have the logger encrypt entries with a key
destroyed after use, preventing an attacker from reading
past log entries. A hash function is iterated to generate
the encryption keys. The initial hash is sent to a trusted
auditor so that it may decrypt events. Logcrypt [29]
extends this to public key cryptography.

Ma and Tsudik [41] consider tamper-evident logs built
using forward-secure sequential aggregating signature
schemes [39, 40]. Their design is round-based. Within
each round, the logger evolves its signature, combining
a new event with the existing signature to generate a new
signature, and also evolves the authentication key. At the
end of a round, the final signature can authenticate any
event inserted.

USENIX Association 18th USENIX Security Symposium 331

Davis et. al. [17] permits keyword searching in a log
by trusting the logger to build parallel hash chains for
each keyword. Techniques have also been designed for
keyword searching encrypted logs [60, 61]. A tamper-
evident store for voting machines has been proposed,
based on append-only signatures [33], but the signature
sizes grow with the number of signed messages [6].

Many timestamping services have been proposed in
the literature. Haber and Stornetta [27] introduce a time-
stamping service based on hash chains, which influenced
the design of Surety, a commercial timestamping service
that publishes their head commitment in a newspaper
once a week. Chronos is a digital timestamping service
inspired by a skip list, but with a hashing structure similar
to our history tree [7]. This and other timestamping
designs [9, 10] are round-based. In each round, the logger
collects a set of events and stores the events within that
round in a tree, skip list, or DAG. At the end of the round
the logger publicly broadcasts (e.g., in a newspaper)
the commitment for that round. Clients then obtain a
logarithmically-sized, tamper-evident proof that their
events are stored within that round and are consistent
with the published commitment. Efficient algorithms
have been constructed for outputting time stamp au-
thentication information for successive events within a
round in a streaming fashion, with minimal storage on the
server [37]. Unlike these systems, our history tree allows
events to be added to the log, commitments generated,
and audits to be performed at any time.

Maniatis and Baker [43] introduced the idea of timeline
entanglement, where every participant in a distributed
system maintains a log. Every time a message is received,
it is added to the log, and every message transmitted
contains the hash of the log head. This process spreads
commitments throughout the network, making it harder
for malicious nodes to diverge from the canonical time-
line without there being evidence somewhere that could
be used in an audit to detect tampering. Auditorium [55]
uses this property to create a shared “bulletin board” that
can detect tampering even when N −1 systems are faulty.

Secure aggregation has been investigated as a dis-
tributed protocol in sensor networks for computing sums,
medians, and other aggregate values when the host
doing the aggregation is not trusted. Techniques include
trading off approximate results in return for sublinear
communication complexity [12], or using MAC codes
to detect one-hop errors in computing aggregates [30].
Other aggregation protocols have been based around
hash tree structures similar to the ones we developed for
Merkle aggregation. These structures combine aggrega-
tion and cryptographic hashing, and include distributed
sensor-network aggregation protocols for computing au-
thenticated sums [13] and generic aggregation [45]. The
sensor network aggregation protocols interactively gener-

ate a secure aggregate of a set of measurements. In Merkle
aggregation, we use intermediate aggregates as a tool for
performing efficient queries. Also, our Merkle aggre-
gation construction is more efficient than these designs,
requiring fewer cryptographic hashes to verify an event.

8 Conclusions
In this work we have shown that regular and continous

auditing is a critical operation for any tamper-evident log
system, for without auditing, clients cannot detect if a
Byzantine logger is misbehaving by not logging events,
removing unaudited events, or forking the log. From this
requirement we have developed a new tamper-evident
log design, based on a new Merkle tree data structure
that permits a logger to produce concise proofs of its
correct behavior. Our system eliminates any need to trust
the logger, instead allowing clients and auditors of the
logger to efficiently verify its correct behavior with only a
constant amount of local state. By sharing commitments
among clients and auditors, our design is resistant even
to sophisticated forking or rollback attacks, even in cases
where a client might change its mind and try to repudiate
events that it had logged earlier.
We also proposed Merkle aggregation, a flexible

mechanism for encoding auxiliary attributes into a
Merkle tree that allows these attributes to be aggregated
from the leaves up to the root of the tree in a verifiable
fashion. This technique permits a wide range of efficient,
tamper-evident queries, as well as enabling verifiable,
safe deletion of “expired” events from the log.

Our prototype implementation supports thousands of
events per second, and can easily scale to very large
logs. We also demonstrated the effectiveness of Bloom
filters to enable a broad range of queries. By virtue of its
concise proofs and scalable design, our techniques can
be applied in a variety of domains where high volumes
of logged events might otherwise preclude the use of
tamper-evident logs.

Acknowledgements
The authors gratefully acknowledge Farinaz Koushan-

far, Daniel Sandler, and Moshe Vardi for many helpful
comments and discussions on this project. The authors
also thank the anonymous referees and Micah Sherr, our
shepherd, for their assistance. This work was supported,
in part, by NSF grants CNS-0524211 and CNS-0509297.

References
[1] ACCORSI, R., AND HOHL, A. Delegating secure logging

in pervasive computing systems. In Security in Pervasive
Computing (York, UK, Apr. 2006), pp. 58–72.

[2] ANAGNOSTOPOULOS, A., GOODRICH, M. T., AND
TAMASSIA, R. Persistent authenticated dictionaries and
their applications. In International Conference on

332 18th USENIX Security Symposium USENIX Association

Information Security (ISC) (Seoul, Korea, Dec. 2001),
pp. 379–393.

[3] BELLARE, M., AND MINER, S. K. A forward-secure
digital signature scheme. In CRYPTO ’99 (Santa Barbara,
CA, Aug. 1999), pp. 431–448.

[4] BELLARE, M., AND YEE, B. S. Forward integrity for
secure audit logs. Tech. rep., University of California at
San Diego, Nov. 1997.

[5] BENALOH, J., AND DE MARE, M. One-way
accumulators: a decentralized alternative to digital
signatures. In Workshop on the Theory and Application of
Cryptographic Techniques on Advances in Cryptology
(EuroCrypt ’93) (Lofthus, Norway, May 1993),
pp. 274–285.

[6] BETHENCOURT, J., BONEH, D., AND WATERS, B.
Cryptographic methods for storing ballots on a voting
machine. In Network and Distributed System Security
Symposium (NDSS) (San Diego, CA, Feb. 2007).

[7] BLIBECH, K., AND GABILLON, A. CHRONOS: An
authenticated dictionary based on skip lists for
timestamping systems. In Workshop on Secure Web
Services (Fairfax, VA, Nov. 2005), pp. 84–90.

[8] BLOOM, B. H. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM 13, 7
(1970), 422–426.

[9] BULDAS, A., LAUD, P., LIPMAA, H., AND
WILLEMSON, J. Time-stamping with binary linking
schemes. In CRYPTO ’98 (Santa Barbara, CA, Aug.
1998), pp. 486–501.

[10] BULDAS, A., LIPMAA, H., AND SCHOENMAKERS, B.
Optimally efficient accountable time-stamping. In
International Workshop on Practice and Theory in Public
Key Cryptography (PKC) (Melbourne, Victoria, Australia,
Jan. 2000), pp. 293–305.

[11] CAMENISCH, J., AND LYSYANSKAYA, A. Dynamic
accumulators and application to efficient revocation of
anonymous credentials. In CRYPTO ’02 (Santa Barbara,
CA, Aug. 2002), pp. 61–76.

[12] CHAN, H., PERRIG, A., PRZYDATEK, B., AND SONG,
D. SIA: Secure information aggregation in sensor
networks. Journal Computer Security 15, 1 (2007),
69–102.

[13] CHAN, H., PERRIG, A., AND SONG, D. Secure
hierarchical in-network aggregation in sensor networks.
In ACM Conference on Computer and Communications
Security (CCS ’06) (Alexandria, VA, Oct. 2006),
pp. 278–287.

[14] CHOR, B., GOLDREICH, O., KUSHILEVITZ, E., AND
SUDAN, M. Private information retrieval. In Annual
Symposium on Foundations of Computer Science
(Milwaukee, WI, Oct. 1995), pp. 41–50.

[15] CHUN, B.-G., MANIATIS, P., SHENKER, S., AND
KUBIATOWICZ, J. Attested append-only memory:
Making adversaries stick to their word. In SOSP ’07
(Stevenson, WA, Oct. 2007), pp. 189–204.

[16] D. S. PARKER, J., POPEK, G. J., RUDISIN, G.,
STOUGHTON, A., WALKER, B. J., WALTON, E., CHOW,
J. M., EDWARDS, D., KISER, S., AND KLINE, C.
Detection of mutual inconsistency in distributed systems.
IEEE Transactions on Software Engineering 9, 3 (1983),
240–247.

[17] DAVIS, D., MONROSE, F., AND REITER, M. K.
Time-scoped searching of encrypted audit logs. In
Information and Communications Security Conference

(Malaga, Spain, Oct. 2004), pp. 532–545.
[18] DEUTSCH, P. Gzip file format specification version 4.3.

RFC 1952, May 1996. http://www.ietf.org/rfc/rfc1952.txt.
[19] DEVANBU, P., GERTZ, M., KWONG, A., MARTEL, C.,

NUCKOLLS, G., AND STUBBLEBINE, S. G. Flexible
authentication of XML documents. Journal of Computer
Security 12, 6 (2004), 841–864.

[20] DEVANBU, P., GERTZ, M., MARTEL, C., AND
STUBBLEBINE, S. G. Authentic data publication over the
internet. Journal Computer Security 11, 3 (2003),
291–314.

[21] GENNARO, R., AND ROHATGI, P. How to sign digital
streams. In CRYPTO ’97 (Santa Barbara, CA, Aug.
1997), pp. 180–197.

[22] GERR, P. A., BABINEAU, B., AND GORDON, P. C.
Compliance: The effect on information management and
the storage industry. The Enterprise Storage Group, May
2003. http://searchstorage.techtarget.com/tip/0,289483,
sid5 gci906152,00.html.

[23] GOH, E.-J. Secure indexes. Cryptology ePrint Archive,
Report 2003/216, 2003. http://eprint.iacr.org/2003/216/
See also http://eujingoh.com/papers/secureindex/.

[24] GOODRICH, M., TAMASSIA, R., AND SCHWERIN, A.
Implementation of an authenticated dictionary with skip
lists and commutative hashing. In DARPA Information
Survivability Conference & Exposition II (DISCEX II)
(Anaheim, CA, June 2001), pp. 68–82.

[25] GOODRICH, M. T., TAMASSIA, R., TRIANDOPOULOS,
N., AND COHEN, R. F. Authenticated data structures for
graph and geometric searching. In Topics in Cryptology,
The Cryptographers’ Track at the RSA Conference
(CT-RSA) (San Francisco, CA, Apr. 2003), pp. 295–313.

[26] GOYAL, V., PANDEY, O., SAHAI, A., AND WATERS, B.
Attribute-based encryption for fine-grained access control
of encrypted data. In ACM Conference on Computer and
Communications Security (CCS ’06) (Alexandria,
Virginia, Oct. 2006), pp. 89–98.

[27] HABER, S., AND STORNETTA, W. S. How to time-stamp
a digital document. In CRYPTO ’98 (Santa Barbara, CA,
1990), pp. 437–455.

[28] HAEBERLEN, A., KOUZNETSOV, P., AND DRUSCHEL,
P. PeerReview: Practical accountability for distributed
systems. In SOSP ’07 (Stevenson, WA, Oct. 2007).

[29] HOLT, J. E. Logcrypt: Forward security and public
verification for secure audit logs. In Australasian
Workshops on Grid Computing and E-research (Hobart,
Tasmania, Australia, 2006).

[30] HU, L., AND EVANS, D. Secure aggregation for wireless
networks. In Symposium on Applications and the Internet
Workshops (SAINT) (Orlando, FL, July 2003), p. 384.

[31] ITKIS, G. Cryptographic tamper evidence. In ACM
Conference on Computer and Communications Security
(CCS ’03) (Washington D.C., Oct. 2003), pp. 355–364.

[32] KELSEY, J., CALLAS, J., AND CLEMM, A. Signed
Syslog messages.
http://tools.ietf.org/id/draft-ietf-syslog-sign-23.txt (work in
progress), Sept. 2007.

[33] KILTZ, E., MITYAGIN, A., PANJWANI, S., AND
RAGHAVAN, B. Append-only signatures. In International
Colloquium on Automata, Languages and Programming
(Lisboa, Portugal, July 2005).

[34] KOCHER, P. C. On certificate revocation and validation.
In International Conference on Financial Cryptography

USENIX Association 18th USENIX Security Symposium 333

(FC ’98) (Anguilla, British West Indies, Feb. 1998),
pp. 172–177.

[35] KOTLA, R., ALVISI, L., DAHLIN, M., CLEMENT, A.,
AND WONG, E. Zyzzyva: Speculative byzantine fault
tolerance. In SOSP ’07 (Stevenson, WA, Oct. 2007),
pp. 45–58.

[36] LI, J., KROHN, M., MAZIÈRES, D., AND SHASHA, D.
Secure untrusted data repository (SUNDR). In Operating
Systems Design & Implementation (OSDI) (San
Francisco, CA, Dec. 2004).

[37] LIPMAA, H. On optimal hash tree traversal for interval
time-stamping. In Proceedings of the 5th International
Conference on Information Security (ISC02) (Seoul,
Korea, Nov. 2002), pp. 357–371.

[38] LONVICK, C. The BSD Syslog protocol. RFC 3164,
Aug. 2001. http://www.ietf.org/rfc/rfc3164.txt.

[39] MA, D. Practical forward secure sequential aggregate
signatures. In Proceedings of the 2008 ACM symposium
on Information, computer and communications security
(ASIACCS’08) (Tokyo, Japan, Mar. 2008), pp. 341–352.

[40] MA, D., AND TSUDIK, G. Forward-secure sequential
aggregate authentication. In Proceedings of the 2007
IEEE Symposium on Security and Privacy (Oakland, CA,
May 2007), IEEE Computer Society, pp. 86–91.

[41] MA, D., AND TSUDIK, G. A new approach to secure
logging. Transactions on Storage 5, 1 (2009), 1–21.

[42] MANIATIS, P., AND BAKER, M. Enabling the archival
storage of signed documents. In FAST ’02: Proceedings
of the 1st USENIX Conference on File and Storage
Technologies (Monterey, CA, 2002).

[43] MANIATIS, P., AND BAKER, M. Secure history
preservation through timeline entanglement. In USENIX
Security Symposium (San Francisco, CA, Aug. 2002).

[44] MANIATIS, P., ROUSSOPOULOS, M., GIULI, T. J.,
ROSENTHAL, D. S. H., AND BAKER, M. The LOCKSS
peer-to-peer digital preservation system. ACM
Transactions on Computer Systems 23, 1 (2005), 2–50.

[45] MANULIS, M., AND SCHWENK, J. Provably secure
framework for information aggregation in sensor
networks. In Computational Science and Its Applications
(ICCSA) (Kuala Lumpur, Malaysia, Aug. 2007),
pp. 603–621.

[46] MERKLE, R. C. A digital signature based on a
conventional encryption function. In CRYPTO ’88 (1988),
pp. 369–378.

[47] MITRA, S., HSU, W. W., AND WINSLETT, M.
Trustworthy keyword search for regulatory-compliant
records retention. In International Conference on Very
Large Databases (VLDB) (Seoul, Korea, Sept. 2006),
pp. 1001–1012.

[48] MONTEIRO, S. D. S., AND ERBACHER, R. F.
Exemplifying attack identification and analysis in a novel
forensically viable Syslog model. In Workshop on
Systematic Approaches to Digital Forensic Engineering
(Oakland, CA, May 2008), pp. 57–68.

[49] NAOR, M., AND NISSIM, K. Certificate revocation and
certificate update. In USENIX Security Symposium (San
Antonio, TX, Jan. 1998).

[50] OSTROVSKY, R., SAHAI, A., AND WATERS, B.
Attribute-based encryption with non-monotonic access
structures. In ACM Conference on Computer and
Communications Security (CCS ’07) (Alexandria, VA,
Oct. 2007), pp. 195–203.

[51] PAVLOU, K., AND SNODGRASS, R. T. Forensic analysis
of database tampering. In ACM SIGMOD International
Conference on Management of Data (Chicago, IL, June
2006), pp. 109–120.

[52] PETERSON, Z. N. J., BURNS, R., ATENIESE, G., AND
BONO, S. Design and implementation of verifiable audit
trails for a versioning file system. In USENIX Conference
on File and Storage Technologies (San Jose, CA, Feb.
2007).

[53] PUGH, W. Skip lists: A probabilistic alternative to
balanced trees. In Workshop on Algorithms and Data
Structures (1989), pp. 437–449.

[54] SAHAI, A., AND WATERS, B. Fuzzy identity based
encryption. In Workshop on the Theory and Application
of Cryptographic Techniques on Advances in Cryptology
(EuroCrypt ’05) (May 2005), vol. 3494, pp. 457 – 473.

[55] SANDLER, D., AND WALLACH, D. S. Casting votes in
the Auditorium. In USENIX/ACCURATE Electronic
Voting Technology Workshop (EVT’07) (Boston, MA,
Aug. 2007).

[56] SCHNEIER, B., AND KELSEY, J. Automatic event-stream
notarization using digital signatures. In Security Protocols
Workshop (Cambridge, UK, Apr. 1996), pp. 155–169.

[57] SCHNEIER, B., AND KELSEY, J. Secure audit logs to
support computer forensics. ACM Transactions on
Information and System Security 1, 3 (1999).

[58] SION, R. Strong WORM. In International Conference on
Distributed Computing Systems (Beijing, China, May
2008), pp. 69–76.

[59] SNODGRASS, R. T., YAO, S. S., AND COLLBERG, C.
Tamper detection in audit logs. In Conference on Very
Large Data Bases (VLDB) (Toronto, Canada, Aug. 2004),
pp. 504–515.

[60] SONG, D. X., WAGNER, D., AND PERRIG, A. Practical
techniques for searches on encrypted data. In IEEE
Symposium on Security and Privacy (Berkeley, CA, May
2000), pp. 44–55.

[61] WATERS, B. R., BALFANZ, D., DURFEE, G., AND
SMETTERS, D. K. Building an encrypted and searchable
audit log. In Network and Distributed System Security
Symposium (NDSS) (San Diego, CA, Feb. 2004).

[62] WEATHERSPOON, H., WELLS, C., AND KUBIATOWICZ,
J. Naming and integrity: Self-verifying data in
peer-to-peer systems. In Future Directions in Distributed
Computing (2003), vol. 2584 of Lecture Notes in
Computer Science, pp. 142–147.

[63] YUMEREFENDI, A. R., AND CHASE, J. S. Strong
accountability for network storage. ACM Transactions on
Storage 3, 3 (2007).

[64] ZHU, Q., AND HSU, W. W. Fossilized index: The
linchpin of trustworthy non-alterable electronic records.
In ACM SIGMOD International Conference on
Management of Data (Baltimore, MD, June 2005),
pp. 395–406.

USENIX Association 18th USENIX Security Symposium 335

VPriv: Protecting Privacy in Location-Based Vehicular Services

Raluca Ada Popa and Hari Balakrishnan
Massachusetts Institute of Technology

Email: {ralucap,hari}@mit.edu

Andrew J. Blumberg
Stanford University

Email: blumberg@math.stanford.edu

Abstract
A variety of location-based vehicular services are cur-

rently being woven into the national transportation in-
frastructure in many countries. These include usage- or
congestion-based road pricing, traffic law enforcement,
traffic monitoring, “pay-as-you-go” insurance, and vehi-
cle safety systems. Although such applications promise
clear benefits, there are significant potential violations
of the location privacy of drivers under standard imple-
mentations (i.e., GPS monitoring of cars as they drive,
surveillance cameras, and toll transponders).

In this paper, we develop and evaluate VPriv, a sys-
tem that can be used by several such applications with-
out violating the location privacy of drivers. The start-
ing point is the observation that in many applications,
some centralized server needs to compute a function of a
user’s path—a list of time-position tuples. VPriv pro-
vides two components: 1) the first practical protocol
to compute path functions for various kinds of tolling,
speed and delay estimation, and insurance calculations
in a way that does not reveal anything more than the re-
sult of the function to the server, and 2) an out-of-band
enforcement mechanism using random spot checks that
allows the server and application to handle misbehav-
ing users. Our implementation and experimental eval-
uation of VPriv shows that a modest infrastructure of a
few multi-core PCs can easily serve 1 million cars. Us-
ing analysis and simulation based on real vehicular data
collected over one year from the CarTel project’s testbed
of 27 taxis running in the Boston area, we demonstrate
that VPriv is resistant to a range of possible attacks.

1 Introduction

Over the next few years, location-based vehicular ser-
vices using a combination of in-car devices and road-
side surveillance systems will become a standard fea-
ture of the transportation infrastructure in many coun-
tries. Already, there is a burgeoning array of applications

of such technology, including electronic toll collection,
automated traffic law enforcement, traffic statistic collec-
tion, insurance pricing using measured driving behavior,
vehicle safety systems, and so on.

These services promise substantial improvements to
the efficiency of the transportation network as well as
to the daily experience of drivers. Electronic toll col-
lection reduces bottlenecks at toll plazas, and more so-
phisticated forms of congestion tolling and usage pric-
ing (e.g., the London congestion tolling system [24]) re-
duce traffic at peak times and generate revenue for tran-
sit improvements. Although the efficacy of automated
traffic enforcement (e.g., stop-light cameras) is contro-
versial, many municipalities are exploring the possibility
that it will improve compliance with traffic laws and re-
duce accidents. Rapid collection and analysis of traffic
statistics can guide drivers to choose optimal routes and
allows for rational analysis of the benefits of specific al-
locations of transportation investments. Some insurance
companies (e.g. [21]) are now testing or even deploying
“pay-as-you-go” insurance programs in which insurance
premiums are adjusted using information about driving
behavior collected by GPS-equipped in-car devices.

Unfortunately, along with the tremendous promise of
these services come very serious threats to the location
privacy of drivers (see Section 3 for a precise definition).
For instance, some current implementations of these ser-
vices involve pervasive tracking—toll transponder trans-
mitting client/account ID, license-plate cameras, manda-
tory in-car GPS [32], and insurance “black boxes” that
monitor location and other driving information—with
the data aggregated centrally by various government and
corporate entities.

Furthermore, as a pragmatic matter, the widespread
deployment and adoption of traffic monitoring is greatly
impaired by public concern about privacy issues. A siz-
able impediment to further electronic tolling penetration
in the San Francisco Bay Area is the refusal of a sig-
nificant minority of drivers to install the devices due to

336 18th USENIX Security Symposium USENIX Association

privacy concerns [31]. Privacy worries also affect the
willingness of drivers to participate in the collection of
traffic statistics.

This paper proposes VPriv, a practical system to pro-
tect a user’s locational privacy while efficiently support-
ing a range of location-based vehicular services. VPriv
supports applications that compute functions over the
paths traveled by individual cars. A path is simply a se-
quence of points, where each point has a random time-
varying identifier, a timestamp, and a position. Usage-
based tolling, delay and speed estimation, as well as
pay-as-you-go calculations can all be computed given the
paths of each driver.

VPriv has two components. The first component is an
efficient protocol for tolling and speed or delay estima-
tion that protects the location privacy of the drivers. This
protocol, which belongs to the general family of secure
multi-party computations, guarantees that a joint com-
putation between server and client can proceed correctly
without revealing the private data of the parties involved.
The result is that each driver (car) is guaranteed that no
other information about his paths can be inferred from
the computation, other than what is revealed by the result
of the computed function. The idea of using multi-party
secure computation in the vehicular setting is inspired
from previous work [2, 3, 30]; however, these papers use
multi-party computations as a black box, relying on gen-
eral reductions from the literature. Unfortunately, these
are extremely slow and complex, at least three orders of
magnitude slower than our implementation in our exper-
iments (see Section 8.2), which makes them unpractical.

Our main contribution here is the first practically effi-
cient design, software implementation, and experimental
evaluation of multi-party secure protocols for functions
computed over driving paths. Our protocols exploit the
specificity of cost functions over path time-location tu-
ples: the path functions we are interested in consist of
sums of costs of tuples, and we use homomorphic en-
cryption [29] to allow the server to compute such sums
using encrypted data.

The second component of VPriv addresses a signifi-
cant concern: making VPriv robust to physical attacks.
Although we can prove security against “cryptographic
attacks” using the mathematical properties of our pro-
tocols, it is very difficult to protect against physical at-
tacks in this fashion (e.g., drivers turning off their de-
vices). However, one of the interesting aspects of the
problem is that the embedding in a social and physical
context provides a framework for discovering misbehav-
ior. We propose and analyze a method using sporadic
random spot-checks of vehicle locations that are linked
to the actual identity of the driver. This scheme is gen-
eral and independent of the function to be computed be-
cause it checks that the argument (driver paths) to the

secure two-party protocol is highly likely to be correct.
Our analysis shows that this goal can be achieved with a
small number of such checks, making this enforcement
method inexpensive and minimally invasive.

We have implemented VPriv in C++ (and also
Javascript for a browser-based demonstration). Our mea-
surements show that the protocol runs in 100 seconds per
car on a standard computer. We estimate that 30 cores
of 2.4GHz speed, connected over a 100 Megabits/s link,
can easily handle 1 million cars. Thus, the infrastruc-
ture required to handle an entire state’s vehicular pop-
ulation is relatively modest. Our code is available at
http://cartel.csail.mit.edu/#vpriv.

2 Related work

VPriv is inspired by recent work on designing crypto-
graphic protocols for vehicular applications [2, 3, 30].
These works also discuss using random vehicle iden-
tifiers combined with secure multi-party computation
or zero-knowledge proofs to perform various vehicu-
lar computations. However, these papers employ multi-
party computations as a black box, relying on general re-
sults from the literature for reducing arbitrary functions
to secure protocols [34]. Such protocols tend to be very
complex and slow. The state of the art “general purpose”
compiler for secure function evaluation, Fairplay [26],
produces implementations which run more than three or-
ders of magnitude more slowly than the VPriv protocol,
and scale very poorly with the number of participating
drivers (see Section 8.2). Given present hardware con-
straints, general purpose solutions for implementing se-
cure computations are simply not viable for this kind of
application. A key contribution of this paper is to present
a protocol for the specific class of cost functions on time-
location pairs, which maintains privacy and is efficient
enough to be run on practical devices and suitable for
deployment.

Electronic tolling and public transit fare collection
were some of the early application areas for anonymous
electronic cash. Satisfactory solutions to certain classes
of road-pricing problems (e.g., cordon-based tolling) can
be developed using electronic cash algorithms in con-
cert with anonymous credentials [6, 25, 1]. There has
been a substantial amount of work on practical proto-
cols for these problems so that they run efficiently on
small devices (e.g., [5]). Physical attacks based on the
details of the implementation and the associated bureau-
cratic structures remain a persistent problem, however
[13]. We explicitly attempt to address such attacks in
VPriv. Our “spot check” methodology provides a novel
approach to validating user participation in the crypto-
graphic protocols, and we prove its efficiency empiri-
cally. Furthermore, unlike VPriv, the electronic cash

2

USENIX Association 18th USENIX Security Symposium 337

approach is significantly less suitable for more sophisti-
cated road pricing applications, and does not apply at all
to the broader class of vehicular location-based services
such as “pay-as-you-go” insurance, automated traffic law
enforcement, and aggregate traffic statistic collection.

There has also been a great deal of related work on
protecting location privacy and anonymity while collect-
ing vehicular data (e.g., traffic flow data) [18, 22, 16].
The focus of this work is different from ours, although it
can be used in conjunction. It analyzes potential privacy
violations associated with the side channels present in
anonymized location databases (e.g., they conclude that
it is possible to infer to what driver some GPS traces be-
long in regions of low density).

Using spatial analogues of the notion of k-anonymity
[33], some work focused on using a trusted server to spa-
tially and temporally distort locational services [15, 10].
In addition, there has been a good deal of work on using
a trusted server to distort or degrade data before releas-
ing it. An interesting class of solutions to these prob-
lems were presented in the papers [19, 17], involving
“cloaking” the data using spatial and temporal subsam-
pling techniques. In addition, these papers [17, 19] de-
veloped tools to quantify the degree of mixing of cars
on a road needed to assure anonymity (notably the “time
to confusion” metric). However, these solutions treat a
different problem than VPriv, because most of them as-
sume a trusted server and a non-adversarial setting, in
which the user and server do not deviate from the pro-
tocol, unlike in the case of tolling or law enforcement.
Furthermore, for many of the protocols we are interested
in, it is not always possible to provide time-location tu-
ples for only a subset of the space.

Nonetheless, the work in these papers complements
our protocol nicely. Since VPriv does produce an
anonymized location database, the analysis in [17] about
designing “path upload” points that adequately preserve
privacy provides a method for placing tolling regions and
“spot checks” which do not violate the location privacy
of users. See Section 9 for further discussion of this
point.

3 Model

In this section, we describe the framework underlying
our scheme, goals, and threat model. The framework
captures a broad class of vehicular location-based ser-
vices.

3.1 Framework
The participants in the system are drivers, cars and a
server. Drivers operate cars, cars are equipped with
transponders that transmit information to the server, and

drivers also run client software which enacts the crypto-
graphic protocol on their behalf.

For any given problem (tolling, traffic statistics esti-
mation, insurance calculations, etc.), there is one logical
server and many drivers with their cars. The server com-
putes some function f for any given car; f takes the path
of the car generated during an interaction interval as its
argument. To compute f , the server must collect the set
of points corresponding to the path traveled by the car
during the desired interaction interval. Each point is a
tuple with three fields: tag, time, location.

While driving, each car’s transponder generates a col-
lection of such tuples and sends them to the server. The
server computes f using the set of time,location
pairs. If location privacy were not a concern, the tag
could uniquely identify the car. In such a case, the server
could aggregate all the tuples having the same tag and
know the path of the car. Thus, in our case, these tags will
be chosen at random so that they cannot be connected to
an individual car. However, the driver’s client applica-
tion will give the server a cryptographic commitment to
these tags (described in Sections 4.1, 5): in our protocol,
this commitment binds the driver to the particular tags
and hence the result of f (e.g., the tolling cost) without
revealing the tags to the server.

We are interested in developing protocols that preserve
location privacy for three important functions:

1. Usage-based tolls: The server assesses a path-
dependent toll on the car. The toll is some function
of the time and positions of the car, known to both
the driver and server. For example, we might have a
toll that sets a particular price per mile on any given
road, changing that price with time of day. We call
this form of tolling a path toll; VPriv also supports
a point toll, where a toll is charged whenever a ve-
hicle goes past a certain point.

2. Automated speeding tickets: The server detects vi-
olations of speed restrictions: for instance, did the
car ever travel at greater than 65 MPH? More gen-
erally, the server may wish to detect violations of
speed limits which vary across roads and are time-
dependent.

3. “Pay-as-you-go” insurance premiums: The server
computes a “safety score” based on the car’s path
to determine insurance premiums. Specifically, the
server computes some function of the time, posi-
tions, and speed of the car. For example, we might
wish to assess higher premiums on cars that persis-
tently drive close to the speed limit, or are operated
predominantly late at night.

These applications can be treated as essentially simi-
lar examples of the basic problem of computing a local-
ized cost function of the car’s path represented as points.
By localized we mean that the function can be decom-

3

338 18th USENIX Security Symposium USENIX Association

posed as a sum of costs associated to a specific point or
small number of specific points that are close together
in space-time. In fact, our general framework can be
applied to any function over path tuples because of the
general result that every polynomially computable func-
tion has a secure multi-party protocol [12, 34]. However,
as discussed in Section 8.2, these general results lead to
impractical implementations: instead, we devise efficient
protocols by exploiting the specific form of the cost func-
tions.

In our model, each car’s transponder (transponder may
be tampered with) obtains the point tuples as it drives and
delivers them to the server. These tasks can be performed
in several ways, depending on the infrastructure and re-
sources available. For example, tuples can be generated
as follows:
• A GPS device provides location and time, and the

car’s transponder prepares the tuples.
• Roadside devices sense passing cars, communicate

with a car’s transponder to receive a tag, and create
a tuple by attaching time information and the fixed
location of the roadside device.

Each car generates tuples periodically; depending on
the specific application, either at random intervals (e.g.,
roughly every 30 seconds) or potentially based on loca-
tion as well, for example at each intersection if the car
has GPS capability. The tuples can be delivered rapidly
(e.g., via roadside devices, the cellular network, or avail-
able WiFi [9]) or they can be batched until the end of
the day or of the month. Section 9 describes how to
avoid leaking private information when transmitting such
packets to the server.

Our protocol is independent of the way these tuples are
created and sent to the server, requiring only that tuples
need to reach the server before the function computation.
This abstract model is flexible and covers many practical
systems, including in-car device systems (such as Car-
Tel [20]), toll transponder systems such as E-ZPass [14],
and roadside surveillance systems.

3.2 Threat model

Many of the applications of VPriv are adversarial, in that
both the driver and the operator of the server may have
strong financial incentives to misbehave. VPriv is de-
signed to resist five types of attacks:

1. The driver attempts to cheat by using a modified
client application during the function computation
protocol to change the result of the function.

2. The driver attempts to cheat physically, by having
the car’s transponder upload incorrect tuples (pro-
viding incorrect inputs to the function computation
protocol):

(a) The driver turns off or selectively disables the
in-car transponder, so the car uploads no data
or only a subset of the actual path data.

(b) The transponder uploads synthetic data.
(c) The transponder eavesdrops on another car

and attempts to masquerade as that car.
3. The server guesses the path of the car from the up-

loaded tuples.
4. The server attempts to cheat during the function

computation protocol to change the result of the
function or obtain information about the path of the
car.

5. Some intermediate router synthesizes false packets
or systematically changes packets between the car’s
transponder and the server.

All these attacks are counteracted in our scheme as
discussed in Section 9. Note however that in the main
discussion of the protocol, for ease of exposition we treat
the server as a passive adversary; we assume that the
server attempts to violate the privacy of the driver by
inferring private data but correctly implements the pro-
tocol (e.g. does not claim the driver failed a verification
test, when she did not). We believe this is a reasonable
assumption since the server is likely to belong to an orga-
nization (e.g., the government or an insurance company)
which is unlikely to engage in active attacks. However,
as we discuss in Section 9, the protocol can be made re-
silient to a fully malicious server as well with very few
modifications.

3.3 Design goals
We have the following goals for the protocol between the
driver and the server, which allows the server to compute
a function over a private path.

Correctness. For the car C with path PC , the server
computes the correct value of f(PC).

Location privacy. We formalize our notion of loca-
tion privacy in this paper as follows:
Definition 1 (Location privacy) Let
• S denote the server’s database consisting of
tag,time,location tuples.

• S denote the database generated from S by remov-
ing the tag associated to each tuple: for every tuple
tag, location, time ∈ S, there is a tuple location,
time ∈ S.

• C be an arbitrary car.
• V denote all the information available to the server

in VPriv (“the server’s view”). This comprises the
information sent by C to the server while execut-
ing the protocol (including the result of the function
computation) and any other information owned or
computed by the server during the computation of
f (path of C), (which includes S).

4

USENIX Association 18th USENIX Security Symposium 339

• V denote all the information contained in S, the
result of applying f on C, and any other side chan-
nels present in the raw database S.

The computation of f (path of C) preserves the locational
privacy of C if the server’s information about C’s tuples
is insignificantly larger in V than in V .

Here the “insignificant amount” refers to an amount of
information that cannot be exploited by a computation-
ally bounded machine. For instance, the encryption of
a text typically offers some insignificant amount of in-
formation about the text. This notion can be formalized
using simulators, as is standard for this kind of crypto-
graphic guarantee. Such a mathematical definition and
proof is left for an extended version of our paper.

Informally, this definition says that the privacy guar-
antees of VPriv are the same as those of a system
in which the server stores only tag-free path points
time,location without any identifying informa-
tion and receives (from an oracle) the result of the func-
tion (without running any protocol). Note that this def-
inition means that any side channels present in the raw
data of S itself will remain in our protocols; for instance,
if one somehow knows that only a single car drives on
certain roads at a particular time, then that car’s privacy
will be violated. See Section 9 for further discussion of
this issue.

Efficiency. The protocol must be sufficiently efficient
so as to be feasible to run on inexpensive in-car devices.
This goal can be hard to achieve; modern cryptographic
protocols can be computationally intensive.

Note that we do not aim to hide the result of the
function; rather, we want to compute this result with-
out revealing private information. In some cases, such as
tolling, the result may reveal information about the path
of the driver. For example, a certain toll cost may be pos-
sible only by a combination of certain items. However,
if the toll period is large enough, there may be multiple
combinations of tolls that add to the result. Also, find-
ing such a combination is equivalent to the subset-sum
problem, which is NP-complete.

4 Architecture

This section gives an overview of the VPriv system and
its components. There are three software components:
the client application, which runs on the client’s com-
puter, a transponder device attached to the car, and the
server software attached to a tuple database. The only
requirements on the transponder are that it store a list of
random tags and generate tuples as described in Section
3.1. The client application is generally assumed to be ex-
ecuted on the driver’s home computer or mobile device
like a smart-phone.

Figure 1: Driving phase overview: A car with license
plate L1 is traveling from Location S1 at time 1 to Lo-
cation S2 at time 2 when it undergoes a spot check. It
uploads path tuples to the server.

The protocol consists of the following phases:
1. Registration. From time to time—say, upon re-

newing a car’s registration or driver license—the driver
must identify herself to the server by presenting a license
or registration information. At that time, the client ap-
plication generates a set of random tags that will be used
in the protocol. We assume that these are indistinguish-
able from random by a computationally bounded adver-
sary. The tags are also transferred to the car’s transpon-
der, but not given to the server. The client application
then cryptographically produces commitments to these
random tags. We describe the details of computing these
commitments in Sections 4.1 and 5. The client applica-
tion will provide the ciphertext of the commitments to
the server and these will be bound to the driver’s iden-
tity; however, they do not reveal any information about
the actual tags under cryptographic assumptions.

2. Driving. As the car is driven, the transponder gath-
ers time-location tuples and uploads them to the server.
Each path tuple is unique because the random tag is never
reused (or reused only in a precisely constrained fashion,
see Section 5). The server does not know which car up-
loaded a certain tuple. To ensure that the transponder
abides by the protocol, VPriv also uses sporadic random
spot checks that observe the physical locations of cars, as
described in Section 6. At a high level, this process gen-
erates tuples consisting of the actual license plate num-
ber, time, and location of observation. Since these spot
checks record license plate information, the server knows
which car they belong to. During the next phase, the
client application will have to prove that the tuples up-
loaded by the car’s transponder are consistent with these
spot checks. Figure 1 illustrates the driving phase.

3. Reconciliation. This stage happens at the end of
each interaction interval (e.g., at the end of the month,
when a driver pays a tolling bill) and computes the func-
tion f . The client authenticates itself via a web con-

5

340 18th USENIX Security Symposium USENIX Association

nection to the server. He does not need to transfer any
information from the transponder to the computer (un-
less the tuples can be corrupted or lost on their way to
the server and the client needs to check that they are
all there). It is enough if his computer knows the initial
tags (from registration). If the car had undergone a spot
check, the client application has to prove that the tuples
uploaded are consistent with the spot checks before pro-
ceeding (as explained in Section 6). Then, the client ap-
plication initiates the function computation. The server
has received tuples from the driver’s car, generated in
the driving phase. However, the server has also received
similar tuples from many other cars and does not know
which ones belong to a specific car. Based on this server
database of tuples as well as the driver’s commitment in-
formation from registration, the server and the client ap-
plication conduct a cryptographic protocol in which:

• The client computes the desired function on the
car’s path, the path being the private input.

• Using a zero-knowledge proof, the client applica-
tion proves to the server that the result of the func-
tion is correct, by answering correctly a series of
challenges posed by the server without revealing the
driver’s tags.

The reconciliation can be done transparently to the user
the client software; from the perspective of the user, he
only needs to perform an online payment.

To implement this protocol, VPriv uses a set of mod-
ern cryptographic tools: a homomorphic commitment
scheme and random function families. We provide a
brief overview of these tools below. The experienced
reader may skip to Section 5, where we provide efficient
realizations that exploit details of our restricted problem
setting.

4.1 Overview of cryptographic mecha-
nisms

A commitment scheme [4] consists of two algorithms,
Commit and Reveal or Decommit. Assume that Alice
wants to commit to a value v to Bob. In general terms,
Alice wants to provide a ciphertext to Bob from which
he cannot gain any information about v. However, Al-
ice needs to be bound to the value of v. This means
that, later when she wants to reveal v to Bob, she can-
not provide a different value, v = v, which matches
the same ciphertext. Specifically, she computes Com-
mit(v) → (c(v), d(v)), where c(v) is the resulting ci-
phertext and d(v) is a decommitment key with the fol-
lowing properties:

• Bob cannot feasibly gain any information from c.
• Alice cannot feasibly provide v = v such that Com-

mit(v) → (c(v), d), for some d.

COST Path tolling cost computed by the client
and reported to the server.

c(x), d(x) The ciphertext and decommitment
value resulting from commit-
ting to value x. That is, Com-
mit(x) = (c(x), d(x)).

vi The random tags used by the vehicle’s
transponder. A subset of these will be
used while driving.

(si, ti) A pair formed of a random tag uploaded
at the server and the toll cost the server
associates with it. {si} is the set of all
random tags the server received within
a tolling period with ti > 0.

Figure 2: Notation.

We say that Alice reveals v to Bob if she provides v
and d(v), the decommitment value, to Bob, who already
holds c(v). Note that c and d are not functions applied to
v; they are values resulting when computing Commit(v)
and stored for when v is revealed.

We use a homomorphic commitment scheme (such
as the one introduced by Pedersen [29]), in which per-
forming an arithmetic operation on the ciphertexts corre-
sponds to some arithmetic operation on the plaintext. For
instance, a commitment scheme that has the property that
c(v) · c(v) = c(v + v) is homomorphic. Here, the de-
commitment key of the sum of the plaintexts is the sum
of the decommitment keys d(v + v) = d(v) + d(v).

A secure multi-party computation [34] is a protocol
in which several parties hold private data and engage in
a protocol in which they compute the result of a function
on their private data. At the end of the protocol, the cor-
rect result is obtained and none of the participants can
learn the private information of any other beyond what
can be inferred from the result of the function. In this pa-
per, we designed a variant of a secure two-party protocol.
One party is the car/driver whose private data is the driv-
ing path, and the other is the server, which has no private
data. A zero-knowledge proof [12] is a related concept
that involves proving the truth of a statement without re-
vealing any other information.

A pseudorandom function family [27] is a collection
of functions {fk} : D → R with domain D and range R,
indexed by k. If one chooses k at random, for all v ∈ D,
fk(v) can be computed efficiently (that is, in polynomial
time) and fk is indistinguishable from a function with
random output for each input.

5 Protocols

This section presents a detailed description of the specific
interactive protocol for our applications, making precise

6

USENIX Association 18th USENIX Security Symposium 341

the preceding informal description. For concreteness, we
describe the protocol first in the case of the tolling appli-
cation; the minor variations necessary to implement the
speeding ticket and insurance premium applications are
presented subsequently.

5.1 Tolling protocol

We first introduce the notation in Figure 2. For clarity,
we present the protocol in a schematic manner in Fig-
ure 3. For simplicity, the protocol is illustrated for only
one round. For multiple rounds, we need a different ran-
dom function for each round. (The reason is that if the
same random function is used across rounds, the server
could guess the tuples of the driver by posing a b = 0 and
a b = 1 challenge.) The registration phase is the same for
multiple rounds, with the exception that multiple random
functions are chosen in Step (a) and Steps (b) and (c) are
executed for each random function.

This protocol is a case of two party-secure computa-
tion (the car is a malicious party with private data and
the server is an honest but curious party) that takes the
form of zero-knowledge proof: the car first computes the
tolling cost and then it proves to the server that the re-
sult is correct. Intuitively, the idea of the protocol is that
the client provides the server an encrypted version of her
tags on which the server can compute the tolling cost in
ciphertext. The server has a way of verifying that the ci-
phertext provided by the client is correct. The privacy
property comes from the fact that the server can perform
only one of the two operations at the same time: either
check that the ciphertext is computed correctly, or com-
pute the tolling cost on the vehicle tags using the cipher-
text. Performing both means figuring out the driver’s tu-
ples.

These verifications and computations occur within a
round, and there are multiple rounds. During each round,
the server has a probability of at least 1/2 to detect
whether the client provided an incorrect COST, as argued
in the proof below. The round protocol should be re-
peated s times, until the server has enough confidence in
the correctness of the result. After s rounds, the probabil-
ity of detecting a misbehaving client is at least 1−(1/2)s,
which decreases exponentially. Thus, for s = 10, the
client is detected with 99.9% probability. The number of
rounds is fixed and during registration the client selects a
pseudorandom function fk for each round and provides
a set of commitments for each round.

Note that this protocol also reveals the number of
tolling tuples of the car because the server knows the size
of the intersection (i.e. the number of matching encryp-
tions fk(vi) = fk(sj) in iv) for b = 1). We do not
regard this as a significant problem, since the very fact
that a particular amount was paid may reveal this num-

ber (especially for cases where the tolls are about equal).
However, if desired, we can handle this problem by up-
loading some “junk tuples”. These tuples still use valid
driver tags, but the location or time can be an indication
to the server that they are junk and thus the server as-
signs a zero cost. These tuples will be included in the
tolling protocol when the server will see them encrypted
and will not know how many junk tuples are in the inter-
section of server and driver tuples and thus will not know
how many actual tolling tuples the driver has. Further
details of this scheme are not treated here due to space
considerations.

First, it is clear that if the client is honest, the server
will accept the tolling cost.

Theorem 1 If the server responds with “ACCEPT”, the
protocol in Figure 3 results in the correct tolling cost and
respects the driver’s location privacy.

Proof: Assume that the client has provided an incorrect
tolling cost in step 3b. Note first that all decommitment
keys provided to the server must be correct; otherwise
the server would have detected this when checking that
the commitment was computed correctly. Then, at least
one of the following data provided by the client provides
has to be incorrect:

• The encryption of the pairs (sj , tj) obtained from
the server. For instance, the car could have removed
some entries with high cost so that the server com-
putes a lower total cost in step iv).

• The computation of the total toll COST . That is,
COST =

vi=sj

tj . For example, the car may
have reported a smaller cost.

For if both are correct, the tolling cost computed must be
correct.

During each round, the server chooses to test one of
these two conditions with a probability of 1/2. Thus, if
the tolling cost is incorrect, the server will detect the mis-
behavior with a probability of at least 1/2. As discussed,
the detection probability increases exponentially in the
number of rounds.

For location privacy, we prove that the server gains
no significant additional information about the car’s data
other than the tolling cost and the number of tuples in-
volved in the cost (and see above for how to avoid the lat-
ter). Let us examine the information the server receives
from the client:

Step (1c): The commitments c(k) and c(fk(vi)) do
not reveal information by the definition of a commitment
scheme.

Step (i): c(tj) does not reveal information by the def-
inition of a commitment scheme. By the definition of
the pseudorandom function, fk(si) looks random. After

7

342 18th USENIX Security Symposium USENIX Association

1. Registration phase:

(a) Each client chooses random vehicle tags, vi, and a random function, fk (one per round), by choosing k at
random.

(b) Encrypts the selected vehicle tags by computing fk(vi),∀i, commits to the random function by computing
c(k), commits to the encrypted vehicle tags by computing c(fk(vi)), and stores the associated decommit-
ment keys, (d(k), d(fk(vi))).

(c) Send c(k) and c(fk(vi)),∀i to the server. This will prevent the car from using different tags.

2. Driving phase: The car produces path tuples using the random tags, vi, and sends them to the server.
3. Reconciliation phase:

(a) The server computes the associated tolling cost, tj , for each random tag sj received at the server in the last
period based on the location and time where it was observed and sends (sj , tj) to the client only if tj > 0.

(b) The client computes the tolling cost COST =

vi=sj
tj and sends it to the server.

(c) The round protocol (client proves that COST is correct) begins:

Client Server

(i) Shuffle at random the pairs (sj , tj) obtained from the
server. Encrypt sj according to the chosen fk random func-
tion by computing fk(sj),∀j. Compute c(tj) and store the
associated decommitments.

Send to server fk(sj) and c(tj) , ∀j →

(ii) The server picks a bit b at random. If b = 0, chal-
lenge the client to verify that the ciphertext provided
is correct; else (b = 1) challenge the client to verify
that the total cost based on the received ciphertext
matches COST .(iii) If b = 0, the client sends k and the set of (sj , tj) in

the shuffled order to the server and proves that these are the
values she committed to in step (i) by providing d(k) and
d(tj). If b = 1, the client sends the ciphertexts of all vi

(fk(vi)) and proves that these are the values she committed
to during registration by providing d(fk(vi)). The client
also computes the intersection of her and the server’s tags,
I = {vi,∀ i} ∩ {sj ,∀ j}. Let T = {tj : sj ∈ I} be the
set of associated tolls to sj in the intersection. Note that

T tj represents the total tolling cost the client has to pay.
By the homomorphic property discussed in Section 4.1, the
product of the commitments to these tolls tj ,

tj∈T c(tj),

is a ciphertext of the total tolling cost whose decommitment
key is D =

tj∈T d(tj). The server will compute the sum

of these costs in ciphertext in order to verify that COST is
correct; the client needs to provide D for this verification.

If b = 0, d(k), d(ti) else D, d(fk(vi)) →

← Challenge random bit b

(iv) If b = 0, the server verifies that all pairs (sj , tj)
have been correctly shuffled, encrypted with fk, and
committed. This verifies that the client computed the
ciphertext correctly. If b = 1, the server computes

j:∃ i, fk(vi)=fk(sj)
c(tj). As discussed, this yields

a ciphertext of the total tolling cost and the server
verifies if it is a commitment to COST using D.
If all checks succeed, the server accepts the tolling
cost, else it denies it.

Figure 3: VPriv’s protocol for computing the path tolling cost (small modifications of this basic protocol work for the
other applications). The arrows indicate data flow.

the client shuffles at random the pairs (sj , tj), the server
cannot tell which fk(sj) corresponds to which sj . With-
out such shuffling, even if the sj is encrypted, the server
would still know that the j-th ciphertext corresponds to
the j-th plaintext. This will break privacy in Step (iv) for
b = 1 when the server compares the ciphertext of sj to
the ciphertext of vj .

Step (iii): If b = 0, the client will reveal k and tj and

no further information from the client will be sent to the
server in this round. Thus, the values of fk(vi) remain
committed so the server has no other information about
vi other than these committed values, which do not leak
information. If b = 1, the client reveals fk(vi). How-
ever, since k is not revealed, the server does not know
which pseudorandom function was used and due to the
pseudorandom function property, the server cannot find

8

USENIX Association 18th USENIX Security Symposium 343

vi. Providing D only provides decommitment to the sum
of the tolls which is the result of the function, and no
additional information is leaked (i.e., in the case of the
Pedersen scheme).

Information across rounds: A different pseudorandom
function is used during every round so the information
from one round cannot be used in the next round. Fur-
thermore, the commitment to the same value in different
rounds will be different and look random.

Therefore, we support our definition of location pri-
vacy because the road pricing protocol does not leak any
additional information about whom the tuple tags belong
to and the cars generated the tags randomly.

The protocol is linear in the number of tuples the car
commits to during registration and the number of tuples
received from the server in step 3a. It is easy to modify
slightly the protocol to reduce the number of tuples that
need to be downloaded as discussed in Section 7.
Point tolls (replacement of tollbooths). The predomi-
nant existing method of assessing road tolls comes from
point-tolling; in such schemes, tolls are assessed at par-
ticular points, or linked to entrance/exit pairs. The lat-
ter is commonly used to charge for distance traveled on
public highways. Such tolling schemes are easily han-
dled by our protocol; tuples are generated corresponding
to the tolling points. Tolls that depend on the entrance/
exit pairs can be handled by uploading a pair of tuples
with the same tag; we discuss this refinement in detail for
computation of speed below in Section 5.2. The tolling
points can be “virtual”, or alternatively an implementa-
tion can utilize the existing E-Zpass infrastructure:
• The transponder knows a list of places where tuples

need to be generated, or simply generates a tuple
per intersection using GPS information.

• An (existing) roadside router infrastructure at
tolling places can signal cars when to generate tu-
ples.

Other tolls. Another useful toll function is charging cars
for driving in certain regions. For example, cars can be
charged for driving in the lower Manhattan core, which
is frequently congested. One can modify the tolling cost
protocol such that the server assigns a cost of 1 to every
tuple inside the perimeter of this region. If the result of
the function is positive, it means that the client was in the
specific region.

5.2 Speeding tickets
In this application, we wish to detect and charge a driver
who travels above some fixed speed limit L. For sim-
plicity, we will initially assume that the speed limit is the
same for all roads, but it is straightforward to extend the
solution to varying speed limits. this constraint. The idea
is to cast speed detection as a tolling problem, as follows.

We modify the driving phase to require that the car
uses each random vehicle tag vi twice; thus the car will
upload pairs of linked path tuples. The server can com-
pute the speed from a pair of linked tuples, and so during
the reconciliation phase, the server assigns a cost ti to
each linked pair: if the speed computed from the pair
is > L, the cost is non-zero, else it is zero. Now the
reconciliation phase proceeds as discussed above. The
spot check challenge during the reconciliation phase now
requires verification that a consistent pair of tuples was
generated, but is otherwise the same. If it deemed useful
that the car reveal information about where the speed-
ing violation occurred, the server can set the cost ti for a
violating pair to be a unique identifier for that speeding
incident.

Note that this protocol leaves “gaps” in coverage dur-
ing which speeding violations are not detected. Since
these occur every other upload period, it is hard to imag-
ine a realistic driver exploiting this. Likely, the driver
will be travelling over the speed limit for the duration of
several tuple creations. However, if this is deemed to be
a concern for a given application, a variant can be used in
which the period of changing tuples is divided and linked
pairs are interleaved so that the whole time range is cov-
ered: . . . v2 v1 v3 v2 v4 v3 v5 v4 v6 v5 . . .

The computational costs of this protocol are analogous
to the costs of the tolling protocol and so the experimen-
tal analysis of that protocol applies in this case as well.
There is a potential concern about additional side chan-
nels in the server’s database associated with the use of
linked tuples. Although the driver has the same guar-
antees as in the tolling application that her participation
in the protocol does not reveal any information beyond
the value of the function, the server has additional raw
information in the form of the linkage. The positional
information leaked in the linked tuple model is roughly
the same as in the tolling model with twice the time inter-
val between successive path tuples. Varying speed limits
on different roads can be accommodated by having the
prices ti incorporate location.

5.3 Insurance premium computation

In this application, we wish to assign a “safety score”
to a driver based on some function of their path which
assesses their accident risk for purposes of setting insur-
ance premiums. For example, the safety score might re-
flect the fraction of total driving time that is spent driving
above 45 MPH at night. Or the safety score might be a
count of incidents of violation of local speed limits.

As in the speeding ticket example, it is straightforward
to compute these sorts of quantities from the variant of
the protocol in which we require repeated use of a vehi-
cle identifier vi on successive tuples. If only a function

9

344 18th USENIX Security Symposium USENIX Association

of speed and position is required, in fact the exact frame-
work of the speeding ticket example will suffice.

6 Enforcement

The cryptographic protocol described in Section 5 en-
sures that a driver cannot lie about the result of the func-
tion to be computed given some private inputs to the
function (the path tuples). However, when implementing
such a protocol in a real setting, we need to ensure that
the inputs to the function are correct. For example, the
driver can turn off the transponder device on a toll road.
The server will have no path tuples from that car on this
road. The driver can then successfully participate in the
protocol and compute the tolling cost only for the roads
where the transponder was on and prove to the server that
the cost was “correct”.

In this section, we present a general enforcement
scheme that deals with security problems of this nature.
The enforcement scheme applies to any function com-
puted over a car’s path data.

The enforcement scheme needs to be able to detect a
variety of driver misbehaviors such as using tags other
than the ones committed to during registration, send-
ing incorrect path tuples by modifying the time and
location fields, failing to send path tuples, etc. To
this end, we employ an end-to-end approach using spo-
radic random spot checks. We assume that at random
places on the road, unknown to the drivers, there will
be physical observations of a path tuple license
plate,time,location. We show in Section 8 that
such spot checks can be infrequent (and thus do not affect
driver privacy), while being effective.

The essential point is that the spot check tuples are
connected to the car’s physical identifier, the license
plate. For instance, such a spot check could be performed
by secret cameras that are able to take pictures of the li-
cense plates. At the end of the day or month, an officer
could extract license plate, time and location information
or this task could be automated. Alternatively, using the
existing surveillance infrastructure, spot checks can be
carried out by roving police cars that secretly record the
car information. This is similar to today’s “speed traps”
and the detection probability should be the same for the
same number of spot checks.

The data from the spot check is then used to vali-
date the entries in the server database. In the reconcil-
iation phase of the protocol from Section 5, the driver
is also required to prove that she uploaded a tuple that
is sufficiently close to the one observed during the spot
check (and verify that the tag used in this tuple was one
of the tags committed to during registration). Precisely,
given a spot check tuple (tc, c), the driver must prove
she generated a tuple (t,) such that |t − tc| < Ω1 and

| − c| < (Ω2)|t − tc|, where Ω1 is a threshold related
to the tuple production frequency and Ω2 is a threshold
related to the maximum rate of travel.

This proof can be performed in zero knowledge, al-
though since the spot check reveals the car’s location
at that point, this is not necessary. The driver can just
present as a proof the tuple it uploaded at that location.
If the driver did not upload such a tuple at the server
around the observation time and place, she will not be
able to claim that another driver’s tuple belongs to his
due to the commitment check. The server may allow a
threshold number of tuples to be missing in the database
to make up for accidental errors. Before starting the pro-
tocol, a driver can check if all his tuples were received at
the server and upload any missing ones.

Intuitively, we consider that the risk of being caught
tampering with the protocol is akin to the current risk of
being caught driving without a license plate or speeding.
It is also from this perspective that we regard the privacy
violation associated with the spot check method: the aug-
mented protocol by construction reveals the location of
the car at the spot check points. However, as we will
show in Section 8, the number of spot checks needed to
detect misbehaving drivers with high probability is very
small. This means that the privacy violation is limited,
and the burden on the server (or rather, whoever runs the
server) of doing the spot checks is manageable.

The spot check enforcement is feasible for organiza-
tions that can afford widespread deployment of such spot
checks; in practice, this would be restricted principally
to governmental entities. For some applications such as
insurance protocols, this assumption is unrealistic (al-
though depending on the nature of insurance regulation
in the region in question it may be the case that insurance
companies could benefit from governmental infrastruc-
ture).

In this case, the protocol can be enforced by requiring
auditable tamper-evident transponders. The transponder
should run correctly the driving phase with tuples from
registration. Correctness during the reconciliation phase
is ensured by the cryptographic protocol. The insurance
company can periodically check if the transponder has
been tampered with (and penalize the driver if neces-
sary). To handle the fact that the driver can temporarily
disable or remove the transponder, the insurance com-
pany can check the mileage recorded by the transponder
against that of the odometer, for example during annual
state inspections.

7 Implementation

We implemented the road pricing protocol in C++ (577
lines on the server side and 582 on the client side). It
consists of two modules, the client and the server. The

10

USENIX Association 18th USENIX Security Symposium 345

source code is available at http://cartel.csail.
mit.edu/#vpriv. We implemented the tolling pro-
tocol from Figure 3, where we used the Pedersen com-
mitment scheme [29] and the random function family
in [27], and a typical security parameter (key size) of
128 bits (for more security, one could use a larger key
size although considering the large number of commit-
ments produced by the client, breaking a significant frac-
tion of them is unlikely). The implementation runs the
registration and reconciliation phases one after the other
for one client and the server. Note that the protocol for
each client is independent of the one for any other client
so a logical server (which can be formed of multi-core
or multiple commodity machines) could run the protocol
for multiple clients in parallel.

7.1 Downloading a subset of the server’s
database

In the protocols described above, the client downloads
the entire set of tags (along with their associated costs)
from the server. When there are many clients and cor-
respondingly the set of tags is large, this might impose
unreasonable costs in terms of bandwidth and running
time. In this section we discuss variants of the protocol
in which these costs are reduced, at some loss of privacy.

Specifically, making a client’s tags unknown among
the tags of all users may not be necessary. For example,
one might decide that a client’s privacy would still be
adequately protected if her tags cannot be distinguished
in a collection of one thousand other clients’ tags. Using
this observation, we can trade off privacy for improved
performance.

In the revised protocol, the client downloads only a
subset of the total list of tags. For correctness, the client
needs to prove that all of her tags are among the ones
downloaded. Let the number of encrypted tags provided
to the server during registration be n; the first m ≤ n
of these tags have been used in the last reconciliation pe-
riod. Assume the driver informs the server of m. Any
misreporting regarding m can be discovered by the en-
forcement scheme (because any tags committed to dur-
ing registration but not included in the first m will not
verify the spot check). When step (iv) is executed for
b = 1, the server also checks that all the first m tu-
ples are included in the set si; that is {fk(vi)|i ≤ m} ∈
{fk(sj)|∀j}.

There are many ways in which the client could spec-
ify the subset of tags to download from the server. For
instance, one way is to ask the server for some ranges of
tags. For example, if the field of tags is between 0 and
(2128 − 1)/2128, and the client has a tag of value around
0.5673, she can ask for all the tuples with tags in the
range [0.5672, 0.5674]. The client can ask for an interval

for each of her tags as well as for some junk intervals.
The client’s tag should be in a random position in the re-
quested interval. Provided that the car tags are random,
in an interval of length ∆I , if there are total tags, there
will be about ∆I · total tags.

Alternatively, during registration clients could be as-
signed random “tag subsets” which are then subse-
quently used to download clusters of tags; the number
of clients per tag subset can be adjusted to achieve the
desired efficiency/ privacy characteristics. The tag sub-
set could be enforced by having the clients pick random
tags with a certain prefix. Clients living in the same
area would belong to the same tag subset. In this way,
a driver’s privacy comes from the fact that the server will
not know whether the driver’s tuples belong to him or to
any other driver from that region (beyond any side infor-
mation).

8 Evaluation

In this section we evaluate the protocols proposed. We
first evaluate the implementation of the road pricing pro-
tocol. We then analyze the effectiveness of the enforce-
ment scheme using theoretical analysis in Section 8.3.1
and with real data traces in Section 8.3.2.

We evaluated the C++ implementation by varying the
number of random vehicle tags, the total number of tags
seen at the server, and the number of rounds. In a real
setting, these numbers will depend on the duration of the
reconciliation period and the desired probability of de-
tecting a misbehaving client. We pick random tags seen
by the server and associate random costs with them. In
our experiments, the server and the clients are located
on the same computer, so network delays are not con-
sidered or evaluated. We believe that the network delay
should not be an overhead because we can see that there
are about two round trips per round. Also, the number of
tuples downloaded by a client from the server should be
reasonable because the client only downloads a subset of
these tuples as discussed in Section 7. We are concerned
primarily with measuring the cryptographic overhead.

8.1 Execution time

Figures 4, 5, and 6 show the performance results on a
dual-core processor with 2.0 GHz and 1 GByte of RAM.
Memory usage was rarely above 1%. The execution time
for a challenge bit of 0 was typically twice as long as the
one for a challenge type of 1. The running time reported
is the total of the registration and reconciliation times for
the server and client, averaged over multiple runs.

The graphs show an approximately linear dependency
of the execution time on the parameters chosen. This

11

346 18th USENIX Security Symposium USENIX Association

Figure 4: The running time of the road pricing protocol as a
function of the number of tags generated during registration for
one round.

Figure 5: The running time of the road pricing protocol as a
function of the number of tuples downloaded from the server
during the reconciliation phase for one round.

result makes sense because all the steps of the protocol
have linear complexity in these parameters.

In our experiments, we generated a random tag on av-
erage once every minute, using that tag for all the tuples
collected during that minute. This interval is adjustable;
the 1 minute seems reasonable given the 43 MPH aver-
age speed [28]. The average number of miles per car per
year in the US is 14, 500 miles and 55 min per day ([28]),
which means that each month sees about ≈ 28 hours of
driving per car. Picking a new tag once per minute leads
to 28 × 60 = 1680 tags per car per month (one month is
the reconciliation period that makes sense for our appli-
cations). So a car will use about 2000 tags per month.

We consider that downloading 10, 000 tuples from the
server offers good privacy, while increasing efficiency
(note that these are only tuples with non-zero tolling
cost). The reason is as follows. A person roughly drives
through less than 50 toll roads per month. Assuming no
side channels, the probability of guessing which tuples

Figure 6: The running time of the road pricing protocol as
a function of the number of rounds used in the protocol. The
number of tags the car uses is 2000 and the number of tuples
downloaded from the server is 10000.

belong to a car in this setting is 1/
�
10000

50

, which is very

small. Even if some of the traffic patterns of some drivers
are known, the 50 tuples of the driver would be mixed in
with the other 10000.

If the protocol uses 10 rounds (corresponding to a de-
tection probability of 99.9%), the running time will be
about 10 · 10 = 100 seconds, according to Figure 6.
This is a very reasonable latency for a task that is done
once per month and it is orders of magnitude less than
the latency of the generic protocol [2] evaluated below.
The server’s work is typically less than half of the ag-
gregate work, that is, 50 seconds. Downloading 10, 000
tuples (each about 50 bytes) at a rate of 10Mb/s yields
an additional delay of 4 seconds. Therefore, one similar
core could handle 30 days per month times 86400 sec-
onds per day divided by 54 seconds per car = 51840 cars
per month. Even if bandwidth does not scale linearly
with the number of cores, the latency due to bandwidth
utilization is still one order of magnitude less than the
one for computation; even if it adds up and cannot be
parallelized, the needed number of cores is still within
the same order of magnitude. Also, several computers
can be placed in different parts of the network in or-
der to parallelize the use of wide-area bandwidth. Since
the downloaded content for drivers in the same area is
the same, a proxy in certain regions will decrease band-
width usage significantly. Hence, for 1 million cars, one
needs 106/51840 ≈ 21 < 30 similar cores; this com-
putation suggests our protocol is feasible for real de-
ployment. (We assumed equal workloads per core be-
cause each core serves about 50000 users so the variance
among cores is made small.)

12

USENIX Association 18th USENIX Security Symposium 347

8.2 Comparison to Fairplay

Fairplay [26] is a general-purpose compiler for produc-
ing secure two-party protocols that implement arbitrary
functions. It generates circuits using Yao’s classic work
on secure two-party computation [34]. We implemented
a simplified version of the tolling protocol in Fairplay.
The driver has a set of tuples and the server simply com-
putes the sum of the costs of some of these tuples. We
made such simplifications because the Fairplay protocol
was prohibitively slow with a more similar protocol to
ours. Also, in our implementation, the Fairplay server
has no private state (to match our setting in which the
private state is only on the client). We found that the
performance and resource consumption of Fairplay were
untenable for very small-sized instances of this problem.
The Fairplay program ran out of 1 GB of heap space for
a server database of only 75 tags, and compiling and run-
ning the protocol in such a case required over 5 minutes.
In comparison, our protocol runs with about 10, 000 tu-
ples downloaded from the server in 100s, which yields a
difference in performance of three orders of magnitude.
In addition, the oblivious circuit generated in this case
was over 5 MB, and the scaling (both for memory and
latency) appeared to be worse than linear in the num-
ber of tuples. There have been various refinements to
aspects of Fairplay since its introduction which signifi-
cantly improve its performance and bandwidth require-
ments; notably, the use of ordered binary decision di-
agrams [23]. However, the performance improvements
associated with this work are less than an order of mag-
nitude at best, and so do not substantially change the gen-
eral conclusion that the general-purpose implementation
of the relevant protocol is orders of magnitude slower
than VPriv. This unfeasibility of using existing general
frameworks required us to invent our own protocol for
cost functions over path tuples that is efficient and pro-
vides the same security guarantees as the general proto-
cols.

8.3 Enforcement effectiveness

We now analyze the effectiveness of the enforcement
scheme both analytically and using trace-driven exper-
iments. We would like to show that the time a mo-
torist can drive illegally and the number of required
spot checks are small. We will see that the probability
to detect a misbehaving driver grows exponentially in
the number of spot checks, making the number of spot
checks logarithmic in the desired detection probability.
This result is attractive from the dual perspectives of im-
plementation cost and privacy preservation.

8.3.1 Analytical evaluation

We perform a probabilistic analysis of the time a motorist
can drive illegally as well as the number of spot checks
required. Let p be the probability that a driver undergoes
a spot check in a one-minute interval (or similarly, driv-
ing through a segment). Let m be the number of minutes
until a driver is detected with a desired probability. The
number of spot checks a driver undergoes is a binomial
random variable with parameters (p, m), pm being its
expected value.

The probability that a misbehaving driver undergoes at
least one spot check in m minutes is

Pr[spot check] = 1− (1− p)m. (1)

Figure 7 shows the number of minutes a misbehav-
ing driver will be able to drive before it will be observed
with high probability. This time decreases exponentially
in the probability of a spot check in each minute. Take
the example of p = 1/500. In this case, each car has
an expected time of 500 minutes (8.3h) of driving until
it undergoes a spot check and will be observed with 95%
probability after about 598 min (< 10 hours) of driving,
which means that overwhelmingly likely the driver will
not be able to complete a driving period of a month with-
out being detected.

However, a practical application does not need to en-
sure that cars upload tuples on all the roads. In the road
pricing example, it is only necessary to ensure that cars
upload tuples on toll roads. Since the number of toll
points is usually only a fraction of all the roads, a much
smaller number of spot checks will suffice. For example,
if we have a spot check at one tenth of the tolling roads,
after 29 minutes, each driver will undergo a spot check
with 95% probability.

Furthermore, if the penalty for failing the spot check
test is high, a small number of spot checks would suf-
fice because even a small probability of detecting each
driver would eliminate the incentive to cheat for many
drivers. In order to ensure compliance by rational agents,
we simply need to ensure that the penalty associated with
noncompliance, β, is such that β(Pr[penalization]) > α,
where α is the total toll that could possibly be accumu-
lated over the time period. Of course, evidence from
randomized law enforcement suggests strongly that in-
dependent of β, Pr[penalization] needs to be appreciable
(that is, a driver must have confidence that they will be
caught if they persist in flouting the compliance require-
ments) [8].

If there is concern about the possibility of tuples lost
in transit from client to server, our protocol can be aug-
mented with an anonymized interaction in which a client
checks to see if all of her tuples are included in the
server’s database (the client can perform this check af-

13

348 18th USENIX Security Symposium USENIX Association

ter downloading the desired tuples from the server and
before the spot check reconciliation and zero-knowledge
protocol). Alternatively, the client might simply blindly
upload duplicates of all her tuples at various points
throughout the month to ensure redundant inclusion in
the database. Note that it is essential that this interaction
should be desynchronized from the reconciliation pro-
cess in order to prevent linkage and associated privacy
violation.

Nevertheless, even if we allow for a threshold t of tu-
ples to be lost before penalizing a driver, the probabil-
ity of detection is still exponential in the driving time

1−
t

i=0

�
m
i

pi(1− p)m−i ≥ 1− e

−(t−mp)2

2mp , where the
last inequality uses Chernoff bounds.

8.3.2 Experimental evaluation

We now evaluate the effectiveness of the enforcement
scheme using a trace-driven experimental evaluation. We
obtained real traces from the CarTel project testbed [20],
containing the paths of 27 limousine drivers mostly in
the Boston area, though extending to other MA, NH, RI,
and CT areas, during a one-year period (2008). Each car
drives many hours every day. The cars carry GPS sensors
that record location and time. We match the locations
against the Navteq map database. The traces consist of
tuples of the form (car tag, segment tag, time) generated
at intervals with a mean of 20 seconds. Each segment
represents a continuous piece of road between two inter-
sections (one road usually consists of many segments).

We model each spot check as being performed by a
police car standing by the side of a road segment. The
idea is to place such police cars on certain road segments,
to replay the traces, and verify how many cars would be
spot-checked.

We do not claim that our data is representative of the
driving patterns of most motorists. However, these are
the best real data traces we could obtain with driver, time,
and location information. We believe that such data is
still informative; one might argue that a limousine’s path
is an aggregation of the paths of the different individuals
that took the vehicles in one day.

It is important to place spot checks randomly to pre-
vent misbehaving drivers from knowing the location of
the spot checks and consequently to behave correctly
only in that area. One solution is to examine traffic
patterns and to determine the most frequently travelled
roads. Then, spot checks would be placed with higher
probability on popular roads and with lower probability
on less popular roads. This scheme may not observe a
malicious client driving through very sparsely travelled
places; however, such clients may spend fuel and time
resources by driving through these roads and which most
likely do not even have tolls. More sophisticated place-

Figure 7: The time a motorist can drive illegally before it un-
dergoes a spot check with a probability 95% for various values
of p, the probability a driver undergoes a spot check in a minute.

Figure 8: The fraction of one-day paths observed out of a to-
tal of 4826 one-day paths as a function of the total number of
police cars placed.

ment schemes are possible; here, we are primarily con-
cerned with showing the ability to observe most traffic
with remarkably few spot checks.

Consider the following experiment: we use the traces
from a month as a training phase and the traces from the
next month as a testing phase, for each month except for
the last one. The first month is used to determine the
first 1% (≈ 300) popular sites. We choose an increasing
number of police cars to be placed randomly at some of
these sites. Then, in the testing phase we examine how
many drivers are observed in the next month. We per-
form this experiment for an increasing number of police
cars and for each experiment we average the results over
fifty runs. In order to have a large sample, we consider
the paths of a driver in two different days as the paths of
two different drivers. This yields 4826 different one-day
traces.

Figure 8 illustrates the data obtained. In few places,
the graph is not perfectly monotonic and this is due to
randomization: we are placing few spot checks in some

14

USENIX Association 18th USENIX Security Symposium 349

of the 300 locations. Even if in some cases we place a
spot check more than in others, due to randomization,
the spot checks may be placed in an unfavorable position
and observe less paths. The reason is that the 300 spot
check vary significantly in popularity. From the shape of
the graph, we can see that the fraction of paths observed
increases very fast at the beginning; this is explained by
the exponential behavior discussed in Section 8.3.1. Af-
ter 10 spot checks have been placed, the fraction of paths
observed grows much slower. This is because we are
only placing spot checks at 1% of the segments traveled
by the limousine drivers. Some one-day paths may not
be included at all in this set of paths. Overall, we can see
that this algorithm requires a relatively small number of
police cars, namely 20, to observe ≈ 90% of the 4826
one-day paths.

Our data unfortunately does not reflect the paths of
the entire population of a city and we could not find such
extensive trace data. A natural question to ask would
be how many police cars would be needed for a large
city. We speculate that this number is larger than the
number of drivers by a sublinear factor in the size of the
population; according to the discussion in Section 8.3.1,
the number of spot checks increases logarithmically in
the probability of detection of each driver and thus the
percentage of drivers observed.

9 Security analysis
In this section, we discuss the resistance of our protocol
to the various attacks outlined in Section 3.2.

Client and intermediate router attacks. Provided
that the client’s tuples are successfully and honestly up-
loaded at the server, the analysis of Section 5 shows that
the client cannot cheat about the result of the function.
To ensure that the tuples arrive uncorrupted, the client
should encrypt tuples with the public key of the server.
To deal with dropped or forged tuples, the drivers should
make sure that all their tuples are included in the subset
of tuples downloaded from the server during the function
computation. If some tuples are missing, the client can
upload them to the server. These measures overcome any
misbehavior on the part of intermediate routers.

The spot check method (backed with an appropriate
penalty) is a strong disincentive for client misbehavior.
An attractive feature of the spot check scheme is that
it protects against attacks involving bad tuple uploads
by drivers. For example, drivers cannot turn off their
transponders because they will fail the spot check test;
they will not be able to provide a consistent tuple. Simi-
larly, drivers cannot use invalid tags (synthetic or copied
from another driver), because the client will then not pass
the spot checks; the driver did not commit to such tags
during registration.

If two drivers agree to use the same tags (and commit

to them in registration), they will both be responsible for
the result of the function (i.e., they will pay the sum of
the tolling amounts for both of them).

Server misbehavior. Provided that the server hon-
estly carries out the protocol, the analysis of Section 5
shows that it cannot obtain any additional information
from the cryptographic protocol. A concern could be that
the server attempts to track the tuples a car sends by us-
ing network information (e.g., IP address). Well-studied
solutions from the network privacy and anonymization
literature can be used here, such as Tor [7], or onion rout-
ing [11]. The client can avoid any timing coincidence by
sending these tuples in separate packets (perhaps even at
some intervals of time) towards the end of the driving
period, when other people are sending such tuples.

Another issue is the presence of side channels in the
anonymized tuple database. As discussed in Section 2, a
number of papers have demonstrated that in low-density
regions it is possible to reconstruct paths with some ac-
curacy from anonymized traces [18, 22, 16]. As formal-
ized in Definition 1, our goal in this paper was to present
a protocol that avoids leaking any additional informa-
tion beyond what can be deduced from the anonymized
database. The obvious way to prevent this kind of attack
is to restrict the protocol so that tuples are uploaded (and
spot checks are conducted) only in areas of high traffic
density. An excellent framework for analyzing potential
privacy violations has been developed in [19, 17], which
use a time to confusion metric that measures how long
it takes an identified vehicle to mix back into traffic. In
[17], this is used to design traffic information upload pro-
tocols with exclusion areas and spacing constraints so as
to reduce location privacy loss.

Recall that in Section 5, we assumed that the server is
a passive adversary: it is trusted not to change the result
of the function, although it tries to obtain private infor-
mation. A malicious server might dishonestly provide
tuples to the driver or compute the function f wrongly.
With a few changes to the protocol, however, VPriv can
be made resilient to such attacks.
• The function f is made public. In Figure 3, step

3a), the server computes the tolls associated to each
tuple. A malicious server can attach any cost to
each tuple, and to counteract this, we require that
the tolling function is public. Thus, the client can
compute the cost of each tuple in a verifiable way.

• For all the client commitments sent to the server, the
client must also provide to the server a signed hash
of the ciphertext. This will prevent the server from
changing the client’s ciphertext because he cannot
forge the client’s signature.

• When the server sends the client the subset of tuples
in Step 3a, the server needs to send a signed hash of
these values as well. Then, the server cannot change

15

350 18th USENIX Security Symposium USENIX Association

his mind about the tuples provided.
• The server needs to prove to a separate entity that

the client misbehaved during enforcement before
penalizing it (eg. insurance companies must show
the tamper-evident device).

Note that it is very unlikely that the server could drop or
modify the tuples of a specific driver because the server
does not know which ones belong to the driver and would
need to drop or modify a large, detectable number of tu-
ples. If the server rejects the challenge information of
the client in Step iv) when it is correct, then the client
can prove to another person that its response to the chal-
lenge is correct.

10 Conclusion
In this paper, we presented VPriv, a practical system
to protect a driver’s location privacy while efficiently
supporting a range of location-based vehicular services.
VPriv combined cryptographic protocols to protect the
location privacy of the driver with a spot check enforce-
ment method. A central focus of our work was to ensure
that VPriv satisfies pragmatic goals: we wanted VPriv
to be efficient enough to run on stock hardware, to be
sufficiently flexible so as to support a variety of location-
based applications, to be implementable with many dif-
ferent physical setups. and to resist a wide array of phys-
ical attacks. We verified through analytical results and
simulation using real vehicular data that VPriv realized
these goals.
Acknowledgments. This work was supported in part
by the National Science Foundation under grants CNS-
0716273 and CNS-0520032. We thank the members of
the CarTel project, especially Jakob Eriksson, Sejoon
Lim, and Sam Madden for the vehicle traces, and Seth
Riney of PlanetTran. David Andersen, Sharon Goldberg,
Ramki Gummadi, Sachin Katti, Petros Maniatis, and the
members of the PMG group at MIT have provided many
useful comments on this paper. We thank Robin Chase
and Roy Russell for helpful discussions.

References
[1] BANGERTER, E., CAMENISCH, J., AND LYSYANSKAYA, A. A

cryptographic framework for the controlled release of certified
data. In Security Protocols Workshop (2004).

[2] BLUMBERG, A., AND CHASE, R. Congestion pricing that re-
spects “driver privacy”. In ITSC (2005).

[3] BLUMBERG, A., KEELER, L., AND SHELAT, A. Automated
traffic enforcement which respects driver privacy. In ITSC (2004).

[4] BRASSARD, G., CHAUM, D., AND CREPEAU, C. Minimum
disclosure proofs of knowledge. In JCSS, 37, pp. 156-189 (1988).

[5] CAMENISCH, J., HOHENBERGER, S., AND LYSYANSKAYA,
A. Balancing accountability and privacy using e-cash. In SCN
(2006).

[6] CHAUM, D. Security without identification: transaction systems
to make big brother obsolete. In CACM 28(10) (1985).

[7] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The second-generation onion router. In USENIX Sec. Symp.,
USENIX Association (2004).

[8] EIDE, E., RUBIN, P. H., AND SHEPHERD, J. Economics of
crime. Now Publishers, 2006.

[9] ERIKSSON, J., BALAKRISHNAN, H., AND MADDEN, S. Caber-
net: Vehicular content delivery using wifi. In MOBICOM (2008).

[10] GEDIK, B., AND LIU, L. Location privacy in mobile systems: A
personalized anonymization model. In 25th IEEE ICDCS (2005).

[11] GOLDSCHLAG, D., REED, M., AND SYVERSON, P. Onion rout-
ing for anonymous and private internet connections. In CACM,
42(2) (1999).

[12] GOLDWASSER, S., MICALI, S., AND RACKOFF, C. The knowl-
edge complexity of interactive proof-systems. In Proceedings
of 17th Symposium on the Theory of Computation, Providence,
Rhode Island. (1985).

[13] GOODIN, D. Microscope-wielding boffins crack tube smartcard.
[14] GROUP, E.-Z. I. E-zpass.
[15] GRUTESER, M., AND GRUNWALD, D. Anonymous usage of

location-based services through spatial and temporal cloaking. In
ACM MobiSys (2003).

[16] GRUTESER, M., AND HOH, B. On the anonymity of periodic
location samples. In Pervasive (2005).

[17] HOH, B., GRUTESER, M., HERRING, R., BAN, J., WORK, D.,
HERRERA, J.-C., BAYEN, A., ANNAVARAM, M., AND JACOB-
SON, Q. Virtual trip lines for distributed privacy-preserving traf-
fic monitoring. In Mobisys (2008).

[18] HOH, B., GRUTESER, M., XIONG, H., AND ALRABADY, A.
Enhancing security and privacy in trafc-monitoring systems. In
IEEE Pervasive Computing, 5(4):38-46 (2006).

[19] HOH, B., GRUTESER, M., XIONG, H., AND ALRABADY, A.
Preserving privacy in gps traces via uncertainty-aware path cloak-
ing. In ACM CCS (2007).

[20] HULL, B., BYCHKOVSKY, V., CHEN, K., GORACZKO, M.,
MIU, A., SHIH, E., ZHANG, Y., BALAKRISHNAN, H., AND
MADDEN, S. Cartel: A distributed mobile sensor computing
system. In ACM SenSys (2006).

[21] INSURANCE, A. Mile meter.
[22] KRUMM, J. Inference attacks on location tracks. In Pervasive

(2007).
[23] L. KRUGER, E. GOH, S. J., AND BONEH, D. Secure function

evaluation with ordered binary decision diagrams. In ACM CCS
(2006).

[24] LITMAN, T. London congestion pricing, 2006.
[25] LYSYANSKAYA, A., RIVEST, R., SAHAI, A., , AND WOLF, S.

Pseudonym systems. Springer, 2000.
[26] MALKHI, D., NISAN, N., PINKAS, B., AND SELLA, Y. Fairplay

- a secure two-party computation system. In USENIX Sec. Symp.,
USENIX Association (2004).

[27] NAOR, M., AND REINGOLD, O. Number-theoretic constructions
of efficient pseudo-random functions. In Journal of the ACM,
Volume 51, Issue 2, p. 231-262 (March 2004).

[28] OF TRANSPORTATION STATISTICS, B. National household
travel survey daily travel quick facts.

[29] PEDERSEN, T. P. Non-interactive and information-theoretic se-
cure verifiable secret sharing. In Springer-Verlag (1998).

[30] RASS, S., FUCHS, S., SCHAFFER, M., AND KYAMAKYA, K.
How to protect privacy in floating car data systems. In Proceed-
ings of the fifth ACM international workshop on VehiculAr Inter-
NETworking (2008).

[31] RILEY, P. The tolls of privacy: An underestimated roadblock for
electronic toll collection usage. In Third International Confer-
ence on Legal, Security + Privacy Issues in IT (2008).

[32] SALLADAY, R. Dmv chief backs tax by mile. In Los Angeles
Times (November 16, 2004).

[33] SWEENEY, L. k-anonymity: A model for protecting privacy. In
International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems v.10 n.5 (2002).

[34] YAO, A. C. Protocols for secure computations (extended ab-
stract). In FOCS (1982: 160-164).

16

