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Abstract

Users and network administrators need ways to filter

email messages based primarily on the reputation of

the sender. Unfortunately, conventional mechanisms for

sender reputation—notably, IP blacklists—are cumber-

some to maintain and evadable. This paper investigates

ways to infer the reputation of an email sender based

solely on network-level features, without looking at the

contents of a message. First, we study first-order prop-

erties of network-level features that may help distinguish

spammers from legitimate senders. We examine features

that can be ascertained without ever looking at a packet’s

contents, such as the distance in IP space to other email

senders or the geographic distance between sender and

receiver. We derive features that are lightweight, since

they do not require seeing a large amount of email from

a single IP address and can be gleaned without looking

at an email’s contents—many such features are appar-

ent from even a single packet. Second, we incorporate

these features into a classification algorithm and evalu-

ate the classifier’s ability to automatically classify email

senders as spammers or legitimate senders. We build

an automated reputation engine, SNARE, based on these

features using labeled data from a deployed commercial

spam-filtering system. We demonstrate that SNARE can

achieve comparable accuracy to existing static IP black-

lists: about a 70% detection rate for less than a 0.3% false

positive rate. Third, we show how SNARE can be inte-

grated into existing blacklists, essentially as a first-pass

filter.

1 Introduction

Spam filtering systems use two mechanisms to filter

spam: content filters, which classify messages based on

the contents of a message; and sender reputation, which

maintains information about the IP address of a sender

as an input to filtering. Content filters (e.g., [22, 23])

can block certain types of unwanted email messages, but

they can be brittle and evadable, and they require ana-

lyzing the contents of email messages, which can be ex-

pensive. Hence, spam filters also rely on sender repu-

tation to filter messages; the idea is that a mail server

may be able to reject a message purely based on the rep-

utation of the sender, rather than the message contents.

DNS-based blacklists (DNSBLs) such as Spamhaus [7]

maintain lists of IP addresses that are known to send

spam. Unfortunately, these blacklists can be both in-

complete and slow-to-respond to new spammers [32].

This unresponsiveness will only become more serious

as both botnets and BGP route hijacking make it easier

for spammers to dynamically obtain new, unlisted IP ad-

dresses [33, 34]. Indeed, network administrators are still

searching for spam-filtering mechanisms that are both

lightweight (i.e., they do not require detailed message or

content analysis) and automated (i.e., they do not require

manual update, inspection, or verification).

Towards this goal, this paper presents SNARE (Spatio-

temporal Network-level Automatic Reputation Engine),

a sender reputation engine that can accurately and au-

tomatically classify email senders based on lightweight,

network-level features that can be determined early in

a sender’s history—sometimes even upon seeing only a

single packet. SNARE relies on the intuition that about

95% of all email is spam, and, of this, 75 − 95% can be

attributed to botnets, which often exhibit unusual send-

ing patterns that differ from those of legitimate email

senders. SNARE classifies senders based on how they are

sending messages (i.e., traffic patterns), rather than who

the senders are (i.e., their IP addresses). In other words,

SNARE rests on the assumption that there are lightweight

network-level features that can differentiate spammers

from legitimate senders; this paper finds such features

and uses them to build a system for automatically deter-

mining an email sender’s reputation.

SNARE bears some similarity to other approaches that

classify senders based on network-level behavior [12,21,



24, 27, 34], but these approaches rely on inspecting the

message contents, gathering information across a large

number of recipients, or both. In contrast, SNARE is

based on lightweight network-level features, which could

allow it to scale better and also to operate on higher traf-

fic rates. In addition, SNARE ismore accurate than previ-

ous reputation systems that use network-level behavioral

features to classify senders: for example, SNARE’s false

positive rate is an order of magnitude less than that in

our previous work [34] for a similar detection rate. It is

the first reputation system that is both as accurate as ex-

isting static IP blacklists and automated to keep up with

changing sender behavior.

Despite the advantages of automatically inferring

sender reputation based on “network-level” features, a

major hurdle remains: We must identify which features

effectively and efficiently distinguish spammers from le-

gitimate senders. Given the massive space of possible

features, finding a collection of features that classifies

senders with both low false positive and low false neg-

ative rates is challenging. This paper identifies thirteen

such network-level features that require varying levels of

information about senders’ history.

Different features impose different levels of overhead.

Thus, we begin by evaluating features that can be com-

puted purely locally at the receiver, with no information

from other receivers, no previous sending history, and

no inspection of the message itself. We found several

features that fall into this category are surprisingly ef-

fective for classifying senders, including: The AS of the

sender, the geographic distance between the IP address of

the sender and that of the receiver, the density of email

senders in the surrounding IP address space, and the time

of day the message was sent. We also looked at var-

ious aggregate statistics across messages and receivers

(e.g., the mean and standard deviations of messages sent

from a single IP address) and found that, while these

features require slightly more computation and message

overhead, they do help distinguish spammers from legit-

imate senders as well. After identifying these features,

we analyze the relative importance of these features and

incorporate them into an automated reputation engine,

based on the RuleFit [19] ensemble learning algorithm.

In addition to presenting the first automated classifier

based on network-level features, this paper presents sev-

eral additional contributions. First, we presented a de-

tailed study of various network-level characteristics of

both spammers and legitimate senders, a detailed study

of how well each feature distinguishes spammers from

legitimate senders, and explanations of why these fea-

tures are likely to exhibit differences between spammers

and legitimate senders. Second, we use state-of-the-art

ensemble learning techniques to build a classifier using

these features. Our results show that SNARE’s perfor-

mance is at least as good as static DNS-based blacklists,

achieving a 70% detection rate for about a 0.2% false

positive rate. Using features extracted from a single mes-

sage and aggregates of these features provides slight im-

provements, and adding an AS “whitelist” of the ASes

that host the most commonly misclassified senders re-

duces the false positive rate to 0.14%. This accuracy

is roughly equivalent to that of existing static IP black-

lists like SpamHaus [7]; the advantage, however, is that

SNARE is automated, and it characterizes a sender based

on its sending behavior, rather than its IP address, which

may change due to dynamic addressing, newly compro-

mised hosts, or route hijacks. Although SNARE’s per-

formance is still not perfect, we believe that the benefits

are clear: Unlike other email sender reputation systems,

SNARE is both automated and lightweight enough to op-

erate solely on network-level information. Third, we pro-

vide a deployment scenario for SNARE. Even if others do

not deploy SNARE’s algorithms exactly as we have de-

scribed, we believe that the collection of network-level

features themselves may provide useful inputs to other

commercial and open-source spam filtering appliances.

The rest of this paper is organized as follows. Sec-

tion 2 presents background on existing sender reputation

systems and a possible deployment scenario for SNARE

and introduces the ensemble learning algorithm. Sec-

tion 3 describes the network-level behavioral properties

of email senders and measures first-order statistics re-

lated to these features concerning both spammers and

legitimate senders. Section 4 evaluates SNARE’s perfor-

mance using different feature subsets, ranging from those

that can be determined from a single packet to those that

require some amount of history. We investigate the po-

tential to incorporate the classifier into a spam-filtering

system in Section 5. Section 6 discusses evasion and

other limitations, Section 7 describes related work, and

Section 8 concludes.

2 Background

In this section, we provide background on existing sender

reputation mechanisms, present motivation for improved

sender reputation mechanisms (we survey other related

work in Section 7), and describe a classification algo-

rithm called RuleFit to build the reputation engine. We

also describe McAfee’s TrustedSource system, which is

both the source of the data used for our analysis and a

possible deployment scenario for SNARE.

2.1 Email Sender Reputation Systems

Today’s spam filters look up IP addresses in DNS-

based blacklists (DNSBLs) to determine whether an

IP address is a known source of spam at the time



of lookup. One commonly used public blacklist is

Spamhaus [7]; other blacklist operators include Spam-

Cop [6] and SORBS [5]. Current blacklists have three

main shortcomings. First, they only provide reputation

at the granularity of IP addresses. Unfortunately, as our

earlier work observed [34], IP addresses of senders are

dynamic: roughly 10% of spam senders on any given day

have not been previously observed. This study also ob-

served that many spamming IP addresses will go inactive

for several weeks, presumably until they are removed

from IP blacklists. This dynamism makes maintaining

responsive IP blacklists a manual, tedious, and inaccu-

rate process; they are also often coarse-grained, black-

listing entire prefixes—sometimes too aggressively—

rather than individual senders. Second, IP blacklists are

typically incomplete: A previous study has noted that

as much as 20% of spam received at spam traps is not

listed in any blacklists [33]. Finally, they are sometimes

inaccurate: Anecdotal evidence is rife with stories of

IP addresses of legitimate mail servers being incorrectly

blacklisted (e.g., because they were reflecting spam to

mailing lists). To account for these shortcomings, com-

mercial reputation systems typically incorporate addi-

tional data such as SMTP metadata or message finger-

prints to mitigate these shortcomings [11]. Our previous

work introduced “behavioral blacklisting” and developed

a spam classifier based on a single behavioral feature: the

number of messages that a particular IP address sends

to each recipient domain [34]. This paper builds on the

main theme of behavioral blacklisting by finding better

features that can classify senders earlier and are more re-

sistant to evasion.

2.2 Data and Deployment Scenario

This section describes McAfee’s TrustedSource email

sender reputation system. We describe how we use the

data from this system to study the network-level features

of email senders and to evaluate SNARE’s classification.

We also describe how SNARE’s features and classifica-

tion algorithms could be incorporated into a real-time

sender reputation system such as TrustedSource.

Data source TrustedSource is a commercial reputation

system that allows lookups on various Internet identifiers

such as IP addresses, URLs, domains, or message finger-

prints. It receives query feedback from various differ-

ent device types such as mail gateways, Web gateways,

and firewalls. We evaluated SNARE using the query logs

from McAfee’s TrustedSource system over a fourteen-

day period from October 22–November 4, 2007. Each

received email generates a lookup to the TrustedSource

database, so each entry in the query log represents a

single email that was sent from some sender to one of

McAfee’s TrustedSource appliances. Due to the volume

Field Description

timestamp UNIX timestamp

ts_server_name Name of server that handles the

query

score Score for the message based on a

combination of anti-spam filters

source_ip Source IP in the packet (DNS server

relaying the query to us)

query_ip The IP being queried

body_length Length of message body

count_taddr Number of To-addresses

Figure 1: Description of data used from the McAfee

dataset.

Figure 2: Distribution of senders’ IP addresses in Hilbert

space for the one-week period (October 22–28, 2007) of

our feature study. (The grey blocks are unused IP space.)

of the full set of logs, we focused on logs from a sin-

gle TrustedSource server, which reflects about 25 million

email messages as received from over 1.3 million IP ad-

dresses each day. These messages were reported from

approximately 2,500 distinct TrustedSource appliances

geographically distributed around the world. While there

is not a precise one-to-one mapping between domains

and appliances, and we do not have a precise count for

the number of unique domains, the number of domains

is roughly of the same order of magnitude.

The logs contain many fields with metadata for each

email message; Figure 1 shows a subset of the fields that

we ultimately use to develop and evaluate SNARE’s clas-

sification algorithms. The timestamp field reflects the

time at which the message was received at a Trusted-

Source appliance in some domain; the source_ip field

reflects the source IP of the machine that issued the DNS

query (i.e., the recipient of the email). The query_ip



field is the IP address being queried (i.e., the IP address

of the email sender). The IP addresses of the senders

are shown in the Hilbert space, as in Figure 21, where

each pixel represents a /24 network prefix and the inten-

sity indicates the observed IP density in each block. The

distribution of the senders’ IP addresses shows that the

TrustedSource database collocated a representative set

of email across the Internet. We use many of the other

features in Figure 1 as input to SNARE’s classification

algorithms.

To help us label senders as either spammers or legiti-

mate senders for both our feature analysis (Section 3) and

training (Sections 2.3 and 4), the logs also contain scores

for each email message that indicate howMcAfee scored

the email sender based on its current system. The score

field indicates McAfee’s sender reputation score, which

we stratify into five labels: certain ham, likely ham, cer-

tain spam, likely ham, and uncertain. Although these

scores are not perfect ground truth, they do represent

the output of both manual classification and continually

tuned algorithms that also operate on more heavy-weight

features (e.g., packet payloads). Our goal is to develop a

fully automated classifier that is as accurate as Trusted-

Source but (1) classifies senders automatically and (2) re-

lies only on lightweight, evasion-resistant network-level

features.

Deployment and data aggregation scenario Because

it operates only on network-level features of email mes-

sages, SNARE could be deployed either as part of Trust-

edSource or as a standalone DNSBL. Some of the fea-

tures that SNARE uses rely on aggregating sender behav-

ior across a wide variety of senders. To aggregate these

features, a monitor could collect information about the

global behavior of a sender across a wide variety of re-

cipient domains. Aggregating this information is a rea-

sonably lightweight operation: Since the features that

SNARE uses are based on simple features (i.e., the IP

address, plus auxiliary information), they can be piggy-

backed in small control messages or in DNS messages

(as with McAfee’s TrustedSource deployment).

2.3 Supervised Learning: RuleFit

Ensemble learning: RuleFit Learning ensembles have

been among the popular predictive learning methods

over the last decade. Their structural model takes the

form

F (x) = a0 +

M∑

m=1

amfm(x) (1)

Where x are input variables derived form the train-

ing data (spatio-temporal features); fm(x) are different

1A larger figure is available at http://www.gtnoise.net/

snare/hilbert-ip.png.

functions called ensemble members (“base learner”) and

M is the size of the ensemble; and F (x) is the predictive
output (labels for “spam” or “ham”), which takes a lin-

ear combination of ensemble members. Given the base

learners, the technique determines the parameters for the

learners by regularized linear regression with a “lasso”

penalty (to penalize large coefficients am).

Friedman and Popescu proposed RuleFit [19] to con-

struct regression and classification problems as linear

combinations of simple rules. Because the number of

base learners in this case can be large, the authors pro-

pose using the rules in a decision tree as the base learn-

ers. Further, to improve the accuracy, the variables them-

selves are also included as basis functions. Moreover,

fast algorithms for minimizing the loss function [18] and

the strategy to control the tree size can greatly reduce the

computational complexity.

Variable importance Another advantage of RuleFit is

the interpretation. Because of its simple form, each rule

is easy to understand. The relative importance of the

respective variables can be assessed after the predictive

model is built. Input variables that frequently appear in

important rules or basic functions are deemed more rel-

evant. The importance of a variable xi is given as im-

portance of the basis functions that correspond directly

to the variable, plus the average importance of all the

other rules that involve xi. The RuleFit paper has more

details [19]. In Section 4.3, we show the relative impor-

tance of these features.

Comparison to other algorithms There exist two other

classic classifier candidates, both of which we tested

on our dataset and both of which yielded poorer per-

formance (i.e., higher false positive and lower detection

rates) than RuleFit. Support Vector Machine (SVM) [15]

has been shown empirically to give good generalization

performance on a wide variety of problems such as hand-

writing recognition, face detection, text categorization,

etc. On the other hand, they do require significant pa-

rameter tuning before the best performance can be ob-

tained. If the training set is large, the classifier itself can

take up a lot of storage space and classifying new data

points will be correspondingly slower since the classifi-

cation cost is O(S) for each test point, where S is the

number of support vectors. The computational complex-

ity of SVM conflicts with SNARE’s goal to make decision

quickly (at line rate). Decision trees [30] are another type

of popular classification method. The resulting classifier

is simple to understand and faster, with the prediction on

a new test point taking O(log(N)), where N is the num-

ber of nodes in the trained tree. Unfortunately, decision

trees compromise accuracy: its high false positive rates

make it less than ideal for our purpose.



3 Network-level Features

In this section, we explore various spatio-temporal fea-

tures of email senders and discuss why these properties

are relevant and useful for differentiating spammers from

legitimate senders. We categorize the features we ana-

lyze by increasing level of overhead:

• Single-packet features are those that can be deter-

mined with no previous history from the IP address

that SNARE is trying to classify, and given only a

single packet from the IP address in question (Sec-

tion 3.1).

• Single-header and single-message features can be

gleaned from a single SMTP message header or

email message (Section 3.2).

• Aggregate features can be computed with varying

amounts of history (i.e., aggregates of other fea-

tures) (Section 3.3).

Each class of features contains those that may be either

purely local to a single receiver or aggregated across

multiple receivers; the latter implies that the reputation

system must have some mechanism for aggregating fea-

tures in the network. In the following sections, we de-

scribe features in each of these classes, explain the intu-

ition behind selecting that feature, and compare the fea-

ture in terms of spammers vs. legitimate senders.

No single feature needs to be perfectly discriminative

between ham and spam. The analysis below shows that it

is unrealistic to have a single perfect feature to make op-

timal resolution. As we describe in Section 2.3, SNARE’s

classification algorithm uses a combination of these fea-

tures to build the best classifier. We do, however, evalu-

ate SNARE’s classifier using these three different classes

of features to see how well it can perform using these

different classes. Specifically, we evaluate how well

SNARE’s classification works using only single-packet

features to determine how well such a lightweight classi-

fier would perform; we then see whether using additional

features improves classification.

3.1 Single-Packet Features

In this section, we discuss some properties for identify-

ing a spammer that rely only on a single packet from

the sender IP address. In some cases, we also rely on

auxiliary information, such as routing table information,

sending history from neighboring IP addresses, etc., not

solely information in the packet itself. We first discuss

the features that can be extracted from just a single IP

packet: the geodesic distance between the sender and re-

ceiver, sender neighborhood density, probability ratio of

spam to ham at the time-of-day the IP packet arrives, AS

number of the sender and the status of open ports on the

machine that sent the email. The analysis is based on the

McAfee’s data from October 22–28, 2007 inclusive (7

days).2

3.1.1 Sender-receiver geodesic distance:

Spam travels further

Recent studies suggest that social structure between

communicating parties could be used to effectively iso-

late spammers [13, 20]. Based on the findings in these

studies, we hypothesized that legitimate emails tend to

travel shorter geographic distances, whereas the distance

traveled by spam will be closer to random. In other

words, a spam message may be just as likely to travel

a short distance as across the world.

Figure 3(a) shows that our intuition is roughly correct:

the distribution of the distance between the sender and

the target IP addresses for each of the four categories

of messages. The distance used in these plots is the

geodesic distance, that is, the distance along the surface

of the earth. It is computed by first finding the physical

latitude and longitude of the source and target IP using

the MaxMind’s GeoIP database [8] and then computing

the distance between these two points. These distance

calculations assume that the earth is a perfect sphere.

For certain ham, 90% of the messages travel about 2,500

miles or less. On the other hand, for certain spam, only

28% of messages stay within this range. In fact, about

10% of spam travels more than 7,000 miles, which is a

quarter of the earth’s circumference at the equator. These

results indicate that geodesic distance is a promisingmet-

ric for distinguishing spam from ham, which is also en-

couraging, since it can be computed quickly using just a

single IP packet.

3.1.2 Sender IP neighborhood density: Spammers

are surrounded by other spammers

Most spam messages today are generated by botnets

[33, 37]. For messages originating from the same bot-

net, the infected IP addresses may all lie close to one

another in numerical space, often even within the same

subnet. One way to detect whether an IP address belongs

to a botnet is to look at the past history and determine if

messages have been received from other IPs in the same

subnet as the current sender, where the subnet size can

be determined experimentally. If many different IPs from

the same subnet are sending email, the likelihood that the

whole subnet is infested with bots is high.

The problem with simply using subnet density is that

the frame of reference does not transcend the subnet

2The evaluation in Section 4 uses the data from October 22–

November 4, 2007 (14 days), some of which are not included in the

data trace used for measurement study.
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(a) Geodesic distance between the sender and recipient’s geo-

graphic location.
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(b) Average of numerical distances to the 20 nearest neighbors in

the IP space.

Figure 3: Spatial differences between spammers and legitimate senders.

boundaries. A more flexible measure of email sender

density in an IP’s neighborhood is the distances to its k
nearest neighbors. The distance to the k nearest neigh-

bors can be computed by treating the IPs as set of num-

bers from 0 to 232
− 1 (for IPv4) and finding the nearest

neighbors in this single dimensional space. We can ex-

pect these distances to exhibit different patterns for spam

and ham. If the neighborhood is crowded, these neighbor

distances will be small, indicating the possible presence

of a botnet. In normal circumstances, it would be unusual

to see a large number of IP addresses sending email in a

small IP address space range (one exception might be a

cluster of outbound mail servers, so choosing a proper

threshold is important, and an operator may need to eval-

uate which threshold works best on the specific network

where SNARE is running).

The average distances to the 20 nearest neighbors of

the senders are shown in Figure 3(b). The x-axis in-

dicates how many nearest neighbors we consider in IP

space, and the y-axis shows the average distance in the

sample to that many neighbors. The figure reflects the

fact that a large majority of spam originates from hosts

have high email sender density in a given IP region. The

distance to the kth nearest neighbor for spam tends to be

much shorter on average than it is for legitimate senders,

indicating that spammers generally reside in areas with

higher densities of email senders (in terms of IP address

space).

3.1.3 Time-of-day: Spammers send messages ac-

cording to machine off/on patterns

Another feature that can be extracted using information

from a single packet is the time of day when the mes-

sage was sent. We use the local time of day at the

sender’s physical location, as opposed to Coordinated
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Figure 4: Differences in diurnal sending patterns of

spammers and legitimate senders.

Universal Time (UTC). The intuition behind this feature

is that local legitimate email sending patterns may more

closely track “conventional” diurnal patterns, as opposed

to spam sending patterns.

Figure 4 shows the relative percentage of messages of

each type at different times of the day. The legitimate

senders and the spam senders show different diurnal pat-

terns. Two times of day are particularly striking: the rel-

ative amount of ham tends to ramp up quickly at the start

of the workday and peaks in the early morning. Volumes

decrease relatively quickly as well at the end of the work-

day. On the other hand spam increases at a slower, stead-

ier pace, probably as machines are switched on in the

morning. The spam volume stays steady throughout the

day and starts dropping around 9:00 p.m., probably when

machines are switched off again. In summary, legitimate



senders tend to follow workday cycles, and spammers

tend to follow machine power cycles.

To use the timestamp as a feature, we compute the

probability ratio of spam to ham at the time of the day

when the message is received. First, we compute the

a priori spam probability ps,t during some hour of the

day t, as ps,t = ns,t/ns, where ns,t is the number of

spam messages received in hour t, and ns is the number

of spam messages received over the entire day. We can

compute the a priori ham probability for some hour t,
ph,t in a similar fashion. The probability ratio, rt is then

simply ps,t/ph,t. When a new message is received, the

precomputed spam to ham probability ratio for the corre-

sponding hour of the day at the senders timezone, rt can

be used as a feature; this ratio can be recomputed on a

daily basis.

3.1.4 AS number of sender: A small number of

ASes send a large fraction of spam

As previously mentioned, using IP addresses to iden-

tify spammers has become less effective for several rea-

sons. First, IP addresses of senders are often transient.

The compromisedmachines could be from dial-up users,

which depend on dynamic IP assignment. If spam comes

form mobile devices (like laptops), the IP addresses will

be changed once the people carry the devices to a dif-

ferent place. In addition, spammers have been known to

adopt stealthy spamming strategies where each bot only

sends several spam to a single target domain, but overall

the botnets can launch a huge amount of spam to many

domains [33]. The low emission-rate and distributed at-

tack requires to share information across domains for de-

tection.

On the other hand, our previous study revealed that a

significant portion of spammers come from a relatively

small collection of ASes [33]. More importantly, the

ASes responsible for spam differ from those that send

legitimate email. As a result, the AS numbers of email

senders could be a promising feature for evaluating the

senders’ reputation. Over the course of the seven days in

our trace, more than 10% of unique spamming IPs (those

sending certain spam) originated from only 3 ASes; the

top 20 ASes host 42% of spamming IPs. Although our

previous work noticed that a small number of ASes orig-

inated a large fraction of spam [33], we believe that

this is the first work to suggest using the AS number of

the email sender as input to an automated classifier for

sender reputation.
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Figure 5: Distribution of number of open ports on hosts

sending spam and legitimate mail.

3.1.5 Status of service ports: Legitimate mail tends

to originate from machines with open ports

We hypothesized that legitimate mail senders may also

listen on other ports besides the SMTP port, while bots

might not; our intuition is that the bots usually send

spam directly to the victim domain’s mail servers, while

the legitimate email is handed over from other domains’

MSA (Mail Submission Agent). The techniques of

reverse DNS (rDNS) and Forward Confirmed Reverse

DNS (FCrDNS) have been widely used to check whether

the email is from dial-up users or dynamically assigned

addresses, and mail servers will refuse email from such

sources [1].

We propose an additional feature that is orthogonal to

DNSBL or rDNS checking. Outgoing mail servers open

specific ports to accept users’ connections, while the bots

are compromised hosts, where the well-known service

ports are closed (require root privilege to open). When

packets reach the mail server, the server issues an ac-

tive probe sent to the source host to scan the following

four ports that are commonly used for outgoing mail ser-

vice: 25 (SMTP), 465 (SSL SMTP), 80 (HTTP) and 443

(HTTPS), which are associated with outgoing mail ser-

vices. Because neither the current mail servers nor the

McAfee’s data offer email senders’ port information, we

need to probe back sender’s IP to check out what service

ports might be open. The probe process was performed

during both October 2008 and January 2009, well after

the time when the email was received. Despite this de-

lay, the status of open ports still exposes a striking differ-

ence between legitimate senders and spammers. Figure 5

shows the percentages and the numbers of opening ports

for spam and ham categories respectively. The statis-

tics are calculated on the senders’ IPs from the evalua-

tion dataset we used in Section 4 (October 22–28, 2007).

In the spam case, 90% of spamming IP addresses have

none of the standard mail service ports open; in contrast,
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Figure 6: Distribution of number of addresses listed

on the “To” field for each category (ignoring single-

recipient messages).

half of the legitimate email comes from machines listen-

ing on at least one mail service port. Although firewalls

might block the probing attempts (which causes the le-

gitimate mail servers show no port listening), the status

of the email-related ports still appears highly correlated

with the distinction of the senders. When providing this

feature as input to a classifier, we represent it as a bitmap

(4 bits), where each bit indicates whether the sender IP is

listening on a particular port.

3.2 Single-Header and Single-Message

Features

In this section, we discuss other features that can be ex-

tracted from a single SMTP header or message: the num-

ber of recipients in the message, and the length of the

message. We distinguish these features from those in

the previous section, since extracting these features ac-

tually requires opening an SMTP connection, accepting

the message, or both. Once a connection is accepted, and

the SMTP header and subsequently, the compete mes-

sage are received. At this point, a spam filter could ex-

tract additional non-content features.

3.2.1 Number of recipients: Spam tends to have

more recipients

The features discussed so far can be extracted from a sin-

gle IP packet from any given specific IP address com-

bined with some historical knowledge of messages from

other IPs. Another feature available without looking into

the content is the number of address in “To” field of the

header. This feature can be extracted after receiving the
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Figure 7: Distribution of message size (in bytes) for the

different categories of messages.

entire SMTP header but before accepting the message

body. However, the majority of messages only have one

address listed. Over 94% of spam and 96% of legitimate

email is sent to a single recipient. Figure 6 shows the

distribution of number of addresses in the “To” field for

each category of messages for all emails that are sent to

more than one recipient. The x-axis is on a log-scale to

focus the plot on the smaller values. Based on this plot

and looking at the actual values, it appears that if there

are very large number of recipients on the “To” field (100

or more), there does not seem to be a significant differ-

ence between the different types of senders for this mea-

sure. The noticeable differences around 2 to 10 addresses

show that, generally, ham has fewer recipients (close to

2) while spam is sent to multiple addresses (close to 10).

(We acknowledge that this feature is probably evadable

and discuss this in more detail in Section 6.1).

3.2.2 Message size: Legitimate mail has variable

message size; spam tends to be small

Once an entire message has been received, the email

body size in bytes is also known. Because a given spam

sender will mostly send the same or similar content in all

the messages, it can be expected that the variance in the

size of messages sent by a spammer will be lower than

among the messages sent by a legitimate sender. To stay

effective, the spam bots also need to keep the message

size small so that they can maximize the number of mes-

sages they can send out. As such the spam messages can

be expected to be biased towards the smaller size. Fig-

ure 7 shows the distribution of messages for each cate-

gory. The spammessages are all clustered in the 1–10KB

range, whereas the distribution of message size for legit-

imate senders is more evenly distributed. Thus, the mes-



sage body size is another property of messages that may

help differentiate spammers from legitimate senders.

3.3 Aggregate Features

The behavioral properties discussed so far can all be con-

structed using a single message (with auxiliary or neigh-

borhood information). If some history from an IP is

available, some aggregate IP-level features can also be

constructed. Given information about multiple messages

from a single IP address, the overall distribution of the

following measures can be captured by using a combi-

nation of mean and variance of: (1) geodesic distance

between the sender and recipient, (2) number of recipi-

ents in the “To” field of the SMTP header, and (3) mes-

sage body length in bytes. By summarizing behavior

over multiple messages and over time, these aggregate

features may yield a more reliable prediction. On the

flip side, computing these features comes at the cost of

increased latency as we need to collect a number of mes-

sages beforewe compute these. Sometimes gathering ag-

gregate information even requires cross-domain collabo-

ration. By averaging over multiple messages, these fea-

tures may also smooth the structure of the feature space,

making marginal cases more difficult to classify.

4 Evaluating the Reputation Engine

In this section, we evaluate the performance of SNARE’s

RuleFit classification algorithm using different sets of

features: those just from a single packet, those from a

single header or message, and aggregate features.

4.1 Setup

For this evaluation, we used fourteen days of data from

the traces, from October 22, 2007 to November 4, 2007,

part of which are different from the analysis data in Sec-

tion 3. In other words, the entire data trace is divided into

two parts: the first half is used for measurement study,

and the latter half is used to evaluate SNARE’s perfor-

mance. The purpose of this setup is both to verify the

hypothesis that the feature statistics we discoveredwould

stick to the same distribution over time and to ensure that

feature extractionwould not interfere with our evaluation

of prediction.

Training We first collected the features for each mes-

sage for a subset of the trace. We then randomly sampled

1 million messages from each day on average, where the

volume ratio of spam to ham is the same as the original

data (i.e., 5% ham and 95% spam; for now, we consider

only messages in the “certain ham” and “certain spam”

categories to obtain more accurate ground truth). Only

our evaluation is based on this sampled dataset, not the

feature analysis from Section 3, so the selection of those

features should not have been affected by sampling. We

then intentionally sampled equal amounts of spam as the

ham data (30,000 messages in each categories for each

day) to train the classifier because training requires that

each class have an equal number of samples. In practice,

spam volume is huge, andmuch spammight be discarded

before entering the SNARE engine, so sampling on spam

for training is reasonable.

Validation We evaluated the classifier using temporal

cross-validation, which is done by splitting the dataset

into subsets along the time sequence, training on the sub-

set of the data in a time window, testing using the next

subset, and moving the time window forward. This pro-

cess is repeated ten times (testing on October 26, 2007

to November 4, 2007), with each subset accounting for

one-day data and the time window set as 3 days (which

indicates that long-period history is not required). For

each round, we compute the detection rate and false pos-

itive rate respectively, where the detection rate (the “true

positive” rate) is the ratio of spotted spam to the whole

spam corpus, and false positive rate reflects the propor-

tion of misclassified ham to all ham instances. The final

evaluation reflects the average computed over all trials.

Summary Due to the high sampling rate that we used

for this experiment, we repeated the above experiment

for several trials to ensure that the results were consistent

across trials. As the results in this section show, detection

rates are approximately 70% and false positive rates are

approximately 0.4%, even when the classifier is based

only on single-packet features. The false positive drops

to less 0.2%with the same 70% detection as the classifier

incorporates additional features. Although this false pos-

itive rate is likely still too high for SNARE to subsume all

other spam filtering techniques, we believe that the per-

formance may be good enough to be used in conjunction

with other methods, perhaps as an early-stage classifier,

or as a substitute for conventional IP reputation systems

(e.g., SpamHaus).

4.2 Accuracy of Reputation Engine

In this section, we evaluate SNARE’s accuracy on three

different groups of features. Surprisingly, we find that,

even relying on only single-packet features, SNARE

can automatically distinguish spammers from legitimate

senders. Adding additional features based on single-

header or single-message, or aggregates of these features

based on 24 hours of history, improves the accuracy fur-

ther.



(a) Single Packet

Classified as

Spam Ham

Spam 70% 30%

Ham 0.44% 99.56%

(b) Single Header/Message

Classified as

Spam Ham

Spam 70% 30%

Ham 0.29% 99.71%

(c) 24+ Hour History

Classified as

Spam Ham

Spam 70% 30%

Ham 0.20% 99.80%

Table 1: SNARE performance using RuleFit on different sets of features using covariant shift. Detection and false posi-

tive rates are shown in bold. (The detection is fixed at 70% for comparison, in accordance with today’s DNSBLs [10]).
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Figure 8: ROC in SNARE.

4.2.1 Single-Packet Features

When a mail server receives a new connection request,

the server can provide SNARE with the IP addresses of

the sender and the recipient and the time-stamp based

on the TCP SYN packet alone. Recall from Section 3

even if SNARE has never seen this IP address before, it

can still combine this information with recent history of

behavior of other email servers and construct the follow-

ing features: (1) geodesic distance between the sender

and the recipient, (2) average distance to the 20 nearest

neighbors of the sender in the log, (3) probability ratio

of spam to ham at the time the connection is requested

(4) AS number of the sender’s IP, and (5) status of the

email-service ports on the sender.

To evaluate the effectiveness of these features, we

trained RuleFit on these features. The dash-dot curve in

Figure 8 demonstrate the ROC curve of SNARE’s reputa-

tion engine. The fp = 0.2% and tp = 70% statistics refer

to the curve with 24-hour history (solid line), which will

be addresses later. We check the false positive given a

fixed true positive, 70%. The confusion matrix is shown

in Table 1(a). Just over 0.44% of legitimate email gets la-

belled as spam. This result is significant because it relies

on features constructed from a limited amount of data
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Figure 9: ROC on fresh IPs in SNARE.

and just a single IP packet from the candidate IP. Sender

reputation system will be deployed in conjunction with a

combination of other techniques including content based

filtering. As such, as a first line of defense, this system

will be very effective in eliminating a lot of undesired

senders. In fact, once a sender is identified as a spam-

mer, the mail server does not even need to accept the

connection request, saving network bandwidth and com-

putational resources. The features we describe below im-

prove accuracy further.

4.2.2 Single-Header and Single-Message Features

Single-packet features allow SNARE to rapidly identify

and drop connections from spammers even before look-

ing at the message header. Once a mail server has ac-

cepted the connection and examined the entire message,

SNARE can determine sender reputation with increased

confidence by looking at an additional set of features. As

described in Section 3.2, these features include the num-

ber of recipients and message body length. Table 1(b)

shows the prediction accuracy when we combine the

single-packet features (i.e., those from the previous sec-

tion) with these additional features. As the results from

Section 3 suggest, adding the message body length and



number of recipients to the set of features further im-

proves SNARE’s detection rate and false positive rate.

It is worth mentioning that the number of recipients

listed on the “To” field is perhaps somewhat evadable: a

sender could list the target email addresses on “Cc” and

“Bcc” fields. Besides, if the spammers always place a

single recipient address in the “To” field, this value will

be the same as the large majority of legitimate messages.

Because we did not have logs of additional fields in the

SMTP header beyond the count of email addresses on

the “To” field, we could not evaluate whether considering

number of recipients listed under “Cc” and “Bcc” head-

ers is worthwhile.

4.2.3 Aggregate Features

If multiple messages from a sender are available, the fol-

lowing features can be computed: the mean and variance

of geodesic distances, message body lengths and number

of recipients. We evaluate a classifier that is trained on

aggregate statistics from the past 24 hours together with

the features from previous sections.

Table 1(c) shows the performance of RuleFit with

these aggregate features, and the ROC curve is plotted

as the solid one in Figure 8. Applying the aggregate fea-

tures decreases the error rate further: 70% of spam is

identified correctly, while the false positive rate is merely

0.20%. The content-based filtering is very efficient to

identify spam, but can not satisfy the requirement of pro-

cessing a huge amount of messages for big mail servers.

The prediction phase of RuleFit is faster, where the query

is traversed from the root of the decision tree to a bottom

label. Given the low false positive rate, SNARE would be

a perfect first line of defense, where suspicious messages

are dropped or re-routed to a farm for further analysis.

4.3 Other Considerations

Detection of “fresh” spammers We examined data

trace, extracted the IP addresses not showing up in the

previous training window, and further investigated the

detection accuracy for those ‘fresh’ spammers with all

SNARE’s features. If fixing the true positive as 70%,

the false positive will increase to 5.2%, as shown in Fig-

ure 9. Compared with Figure 8, the decision on the new

legitimate users becomes worse, but most of the new

spammers can still be identified, which validates that

SNARE is capable of automatically classifying “fresh”

spammers.

Relative importance of individual features We use

the fact that RuleFit can evaluate the relative importance

of the features we have examined in Sections 3. Ta-

ble 2 ranks all spatio-temporal features (with the most

important feature at top). The top three features—AS

rank Feature Description

1 AS number of the sender’s IP

2 average of message length in previous 24 hours

3 average distance to the 20 nearest IP neighbors of the sender in the log

4 standard deviation of message length in previous 24 hours

5 status of email-service ports on the sender

6 geodesic distance between the sender and the recipient

7 number of recipient

8 average geodesic distance in previous 24 hours

9 average recipient number in previous 24 hours

10 probability ratio of spam to ham when getting the message

11 standard deviation of recipient number in previous 24 hours

12 length of message body

13 standard deviation of geodesic distance in previous 24 hours

Table 2: Ranking of feature importance in SNARE.

num, avg length and neig density—play an important role

in separating out spammers from good senders. This

result is quite promising, since most of these features

are lightweight: Better yet, two of these three can be

computed having received only a single packet from the

sender. As we will discuss in Section 6, they are also

relatively resistant to evasion.

Correlation analysis among features We use mutual

information to investigate how tightly the features are

coupled, and to what extent they might contain redun-

dant information. Given two random variables, mutual

information measures howmuch uncertainty of one vari-

able is reduced after knowing the other (i.e., the infor-

mation they share). For discrete variables, the mutual

information of X and Y is calculated as: I(X, Y ) =∑
x,y p(x, y) log( p(x,y)

p(x)p(y) ). When logarithm base-two is

used, the quantity reflects howmany bits can be removed

to encode one variable given the other one. Table 3 shows

the mutual information between pairs of features for one

day of training data (October 23, 2007). We do not show

statistics from other days, but features on those days re-

flect similar quantities for mutual information. The fea-

tures with continuous values (e.g., geodesic distance be-

tween the sender and the recipient) are transformed into

discrete variables by dividing the value range into 4,000

bins (which yields good discrete approximation); we cal-

culate mutual information over the discrete probabilities.

The indexes of the features in the table are the same as the

ranks in Table 2; the packet-based features are marked

with black circles. We also calculate the entropy of ev-

ery feature and show them next to the indices in Table 3.

The interpretation of mutual information is consistent

only within a single column or row, since comparison

of mutual information without any common variable is

meaningless. The table, of course, begs additional anal-

ysis but shows some interesting observations. The top-

ranked feature, AS number, shares high mutual informa-

tion (shown in bold) with several other features, espe-

cially with feature 6, geodesic distance between sender

and recipient. The aggregate features of first-order statis-



Ê (8.68) 2 (7.29) Ì (2.42) 4 (6.92) Î (1.20) Ï (10.5) 7 (0.46) 8 (9.29) 9 (2.98) Ó (4.45) 11 (3.00) 12 (6.20)

2 (7.29) 4.04

Ì (2.42) 1.64 1.18

4 (6.92) 3.87 4.79 1.23

Î (1.20) 0.65 0.40 0.11 0.43

Ï (10.5) 5.20 3.42 0.88 3.20 0.35

7 (0.46) 0.11 0.08 0.02 0.08 0.004 0.15

8 (9.29) 5.27 5.06 1.20 4.79 0.46 5.16 0.13

9 (2.98) 1.54 1.95 0.53 2.03 0.09 1.17 0.10 2.08

Ó (4.45) 0.66 0.46 0.07 0.49 0.02 0.87 0.006 0.85 0.13

11 (3.00) 1.87 1.87 0.75 2.04 0.16 1.55 0.09 2.06 1.87 0.20

12 (6.20) 2.34 2.53 0.49 2.12 0.20 2.34 0.07 2.30 0.52 0.31 0.73

13 (8.89) 4.84 4.78 1.15 4.69 0.41 4.77 0.11 6.47 1.98 0.69 2.04 2.13

Table 3: Mutual information among features in SNARE; packet-based features are shown with numbers in dark circles.

(The indices are the feature ranking in Table 2.)
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Figure 10: ROC comparison with AS-only case.

tics (e.g., feature 2, 4, 8) also have high values with each

other. Because spammers may exhibit one or more of

these features across each message, aggregating the fea-

tures across multiple message over time indicates that,

observing a spammer over time will reveal many of these

features, though not necessarily on any message or sin-

gle group of message. For this reason, aggregate features

are likely to share high mutual information with other

features that are common to spammers.

One possible reason that aggregate features have high

mutual information with each other is that aggregating

the features across multiple messages over time incorpo-

rates history of an IP address that may exhibit many of

these characteristics over time.

Performance based on AS number only Since AS

number is the most influential feature according to Rule-

Fit and shares high mutual information with many other

features, we investigated how well this feature alone can

distinguish spammers from legitimate senders. We feed

the AS feature into the predictive model and plot the

ROC as the lower dashed curve in Figure 10. To make a

close comparison, the “packet-based”, “message-based”,

and “history-based” ROCs (the same as those in Fig-

ure 8) are shown as well, and the false positive is dis-

played on a log scale. The classifier gets false positive

0.76% under a 70% detection rate. Recall from Table 1

the false positive rate with “packet-based” features is al-

most a half, 0.44%, and that with “history-based” fea-

tures will further reduce to 0.20%, which demonstrates

that other features help to improve the performance. We

also note that using the AS number alone as a distin-

guishing feature may cause large amounts of legitimate

email to be misclassified, and could be evaded if an

spammer decides to announce routes with a forged ori-

gin AS (which is an easy attack to mount and a somewhat

common occurrence) [2, 26, 39].

5 A Spam-Filtering System

This section describes how SNARE’s reputation engine

could be integrated into an overall spam-filtering system

that includes a whitelist and an opportunity to continu-

ally retrain the classifier on labeled data (e.g., from spam

traps, user inboxes, etc.). Because SNARE’s reputation

engine still has a non-zero false positive rate, we show

how it might be incorporatedwith mechanisms that could

help further improve its accuracy, and also prevent dis-

carding legitimate mail even in the case of some false

positives. We propose an overview of the system and

evaluate the benefits of these two functions on overall

system accuracy.

5.1 System Overview

Figure 11 shows the overall system framework. The sys-

tem needs not reside on a single server. Large public

email providers might run their own instance of SNARE,

since they have plenty of email data and processing re-

sources. Smaller mail servers might query a remote



Figure 11: SNARE framework.

SNARE server. We envision that SNARE might be in-

tegrated into the workflow in the following way:

1. Email arrival. After getting the first packet, the

mail server submits a query to the SNARE server

(only the source and destination IP). Mail servers

can choose to send more information to SNARE af-

ter getting the SMTP header or the whole message.

Sending queries on a single packet or on a message

is a tradeoff between detection accuracy and pro-

cessing time for the email (i.e., sending the request

early will make mail server get the response early).

The statistics of messages in the received queries

will be used to build up the SNARE classifier.

2. Whitelisting. The queries not listed in the whitelist

will be passed to SNARE’s reputation engine (pre-

sented in Section 2.3) before any spam-filtering

checks or content-based analysis. The output is a

score, where, by default, positive valuemeans likely

spam and negative value means likely ham; and the

absolute values represent the confidence of the clas-

sification. Administrators can set a different score

threshold to make tradeoff between the false posi-

tive and the detection rate. We evaluate the benefits

of whitelisting in Section 5.2.1.

3. Greylisting and content-based detection. Once

the reputation engine calculates a score, the email

will be delivered into different queues. More

resource-sensitive and time-consuming detection

methods (e.g., content-based detection) can be ap-

plied at this point. When the mail server has the ca-

pability to receive email, the messages in ham-like

queue have higher priority to be processed, whereas

the messages in spam-like queue will be offered less

resources. This policy allows the server to speed up

processing the messages that SNARE classifies as

spam. The advantage of this hierarchical detecting

scheme is that the legitimate email will be delivered

to users’ inbox sooner. Messages in the spam-like

queue could be shunted to more resource-intensive

spam filters before they are ultimately dropped.3

4. Retraining Whether the IP address sends spam or

legitimate mail in that connection is not known at

the time of the request, but is known after mail is

processed by the spam filter. SNARE depends on ac-

curately labelled training data. The email will even-

tually receive more careful checks (shown as “Re-

train” in Figure 11). The results from those filters

are considered as ground truth and can be used as

feedback to dynamically adjust the SNARE thresh-

old. For example, when the mail server has spare

resource or much email in the spam-like queue is

considered as legitimate later, SNARE system will

be asked to act more generous to score email as

likely ham; on the other hand, if the mail server is

overwhelmed or the ham-like queue has too many

incorrect labels, SNARE will be less likely to put

email into ham-like queue. Section 5.2.2 evaluates

the benefits of retraining for different intervals.

5.2 Evaluation

In this section, we evaluate how the two additional

functions (whitelisting and retraining) improve SNARE’s

overall accuracy.

5.2.1 Benefits of Whitelisting

We believe that a whitelist can help reduce SNARE’s

overall false positive rate. To evaluate the effects of such

a whitelist, we examined the features associated with

the false positives, and determine that, 43% of all of

SNARE’s false positives for a single day originate from

just 10 ASes. We examined this characteristic for differ-

ent days and found that 30% to 40% of false positives

from any given day originate from the top 10 ASes. Un-

fortunately, however, these top 10 ASes do not remain

the same from day-to-day, so the whitelist may need to

be retrained periodically. It may also be the case that

other features besides AS number of the source provide

an even better opportunity for whitelisting. We leave the

details of refining the whitelist for future work.

Figure 12 shows the average ROC curve when we

whitelist the top 50 ASes responsible for most misclassi-

fied ham in each day. This whitelisting reduces the best

3Although SNARE’s false positive rates are quite low, some opera-

tors may feel that any non-zero chance that legitimate mail or sender

might be misclassified warrants at least a second-pass through a more

rigorous filter.
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Figure 12: ROC in SNARE with whitelisting on ASes.

possible detection rate considerably (effectively because

about 11% of spam originates from those ASes). How-

ever, this whitelisting also reduces the false positive rate

to about 0.14% for a 70% detection rate. More aggres-

sive whitelisting, or whitelisting of other features, could

result in even lower false positives.

5.2.2 Benefits of Retraining

Setup Because email sender behavior is dynamic, train-

ing SNARE on data from an earlier time periodmay even-

tually grow stale. To examine the requirements for peri-

odically retraining the classifier, we train SNARE based

on the first 3 days’ data (through October 23–25, 2007)

and test on the following 10 days. As before, we use

1 million randomly sampled spam and ham messages to

test the classifier for each day.

Results Figure 13 shows the false positive and true

positive on 3 future days, October 26, October 31, and

November 4, 2007, respectively. The prediction on fu-

ture days will become more inaccurate with time pas-

sage. For example, on November 4 (ten days after train-

ing), the false positive rate has dropped given the same

true positive on the ROC curve. This result suggests

that, for the spammer behavior in this trace, retraining

SNARE’s classification algorithms daily should be suffi-

cient to maintain accuracy. (We expect that the need to

retrain may vary across different datasets.)

6 Discussion and Limitations

In this section, we address various aspects of SNARE

that may present practical concerns. We first discuss

the extent to which an attacker might be able to evade

various features, as well as the extent to which these
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Figure 13: ROC using previous training rules to classify

future messages.

features might vary across time and datasets. We then

discuss scalability concerns that a production deploy-

ment of SNARE may present, as well as various possible

workarounds.

6.1 Evasion-Resistance and Robustness

In this section, we discuss the evasion resistance of the

various network-level features that form the inputs to

SNARE’s classification algorithm. Each of these features

is, to some degree, evadable. Nevertheless, SNARE raises

the bar by making it more difficult for spammers to evade

detection without altering the techniques that they use to

send spam. Although spammers might adapt to evade

some of the features below, we believe that it will be dif-

ficult for a spammer to adjust all features to pass through

SNARE, particularly without somewhat reducing the ef-

fectiveness of the spamming botnet. We survey each of

the features from Table 2 in turn.

AS number AS numbers are more persistently associ-

ated with a sender’s identity than the IP address, for two

reasons: (1) The spamming mail server might be set up

within specific ASes without the network administrator

shutting it down. (2) Bots tend to aggregate within ASes,

since the machines in the same ASes are likely to have

the same vulnerability. It is not easy for spammers to

move mail servers or the bot armies to a different AS;

therefore, AS numbers are robust to indicate malicious

hosts.

Message length In our analysis, we discovered that

the size of legitimate email messages tends to be much

more variable than that of spam (perhaps because spam-

mers often use templates to sent out large quantities of

mail [25]). With knowledge of this feature, a spammer

might start to randomize the lengths of their email mes-



sages; this attack would not be difficult to mount, but

it might restrict the types of messages that a spammer

could send or make it slightly more difficult to coordi-

nate a massive spam campaign with similar messages.

Nearest neighbor distances Nearest neighbor distance

is another feature that will be hard to modify. Distances

to k nearest neighbors effectively isolate existence of un-

usually large number of email servers within a small se-

quence of IP addresses. If the spammers try to alter their

neighborhood density, they will not be able to use too

many machines within a compromised subnet to send

spam to the same set of destinations. Although it is pos-

sible for a botnet controller to direct bots on the same

subnet to target different sets of destinations, such eva-

sion does require more coordination and, in some cases,

may restrict the agility that each spamming bot has in

selecting its target destinations.

Status of email service ports Some limitation might fail

the active probes, e.g., the outgoing mail servers use own

protocol to mitigate messages (such as Google mail) or a

firewall blocks the connections from out of the domain.

But the bots do not open such ports with high probabil-

ity, and the attackers need to get root privilege to enable

those ports (which requires more sophisticated methods

and resources). The basic idea is to find out whether the

sender is a legitimate mail server. Although we used ac-

tive probes in SNARE, other methods could facilitate the

test, such as domain name checking or mail server au-

thentication.

Sender-receiver geodesic distance The distribution of

geodesic distances between the spammers’ physical loca-

tion and their target IP’s location is a result of the spam-

mers’ requirement to reach as many target mail boxes

as possible and in the shortest possible time. Even in a

large, geographically distributed botnet, requiring each

bot to bias recipient domains to evade this feature may

limit the flexibility of how the botnet is used to send

spam. Although this feature can also be evaded by tun-

ing the recipient domains for each bot, if bots only sent

spam to nearby recipients, the flexibility of the botnet is

also somewhat restricted: it would be impossible, for ex-

ample, to mount a coordinate spam campaign against a

particular region from a fully distributed spamming bot-

net.

Number of recipients We found that spam messages

tend to have more recipients than legitimate messages;

a spammer could likely evade this feature by reducing

the number of recipients on each message, but this might

make sending the messages less efficient, and it might

alter the sender behavior in other ways that might make

a spammer more conspicuous (e.g., forcing the spammer

to open up more connections).

Time of day This feature may be less resistant to eva-

sion than others. Having said that, spamming botnets’

diurnal pattern results from when the infected machines

are switched on. For botnets to modify their diurnal mes-

sage volumes over the day to match the legitimate mes-

sage patterns, they will have to lower their spam volume

in the evenings, especially between 3:00 p.m. and 9:00

p.m. and also reduce email volumes in the afternoon.

This will again reduce the ability of botnets to send large

amounts of email.

6.2 Other Limitations

We briefly discuss other current limitations of SNARE,

including its ability to scale to a large number of recipi-

ents and its ability to classify IP addresses that send both

spam and legitimate mail.

Scale SNARE must ultimately scale to thousands of do-

mains and process hundreds of millions of email ad-

dresses per day. Unfortunately, even state-of-the-art ma-

chine learning algorithms are not well equipped to pro-

cess datasets this large; additionally, sending data to a

central coordinator for training could potentially con-

sume considerably bandwidth. Although our evaluation

suggests that SNARE’s classification is relatively robust

to sampling of training data, we intend to study further

the best ways to sample the training data, or perhaps even

perform in-network classification.

Dual-purpose IP addresses Our conversations with

large mail providers suggest that one of the biggest

emerging threats are “web bots” that send spam from

Web-based email accounts [35]. As these types of at-

tacks develop, an increasing fraction of spam may be

sent from IP addresses that also send significant amounts

of legitimate mail. These cases, where an IP address is

neither good nor bad, will need more sophisticated clas-

sifiers and features, perhaps involving timeseries-based

features.

7 Related Work

We survey previous work on characterizing the network-

level properties and behavior of email senders, email

sender reputation systems, and other email filtering sys-

tems that are not based on content.

Characterization studies Recent characterization stud-

ies have provided increasing evidence that spammers

have distinct network-level behavioral patterns. Ra-

machandran et al. [34] showed that spammers utilize

transient botnets to spam at low rate from any specific

IP to any domain. Xie et al. [38] discovered that a vast



majority of mail servers running on dynamic IP address

were used solely to send spam. In their recently pub-

lished study [37], they demonstrate a technique to iden-

tify bots by using signatures constructed from URLs in

spam messages. Unlike SNARE, their signature-based

botnet identification differs heavily on analyzing mes-

sage content. Others have also examined correlated be-

havior of botnets, primarily for characterization as op-

posed to detection [25,31]. Pathak et al. [29] deployed a

relay sinkhole to gather data from multiple spam senders

destined for multiple domains. They used this data to

demonstrate how spammers utilize compromised relay

servers to evade detection; this study looked at spam-

mers from multiple vantage points, but focused mostly

on characterizing spammers rather than developing new

detection mechanisms. Niu et al. analyzed network-

level behavior of Web spammers (e.g., URL redirections

and “doorway” pages) and proposed using context-based

analysis to defend against Web spam [28].

Sender reputation based on network-level behav-

ior SpamTracker [34] is most closely related to SNARE;

it uses network-level behavioral features from data ag-

gregated across multiple domains to infer sender reputa-

tion. While that work initiated the idea of behavioral

blacklisting, we have discovered many other features

that are more lightweight and more evasion-resistant

than the single feature used in that paper. Beverly and

Sollins built a similar classifier based on transport-level

characteristics (e.g., round-trip times, congestion win-

dows) [12], but their classifier is both heavyweight, as

it relies on SVM, and it also requires accepting the mes-

sages to gather the features. Tang et al. explored the

detection of spam senders by analyzing the behavior of

IP addresses as observed by query patterns [36]. Their

work focuses on the breadth and the periodicity of mes-

sage volumes in relation to sources of queries. Vari-

ous previous work has also attempted to cluster email

senders according to groups of recipients, often with an

eye towards spam filtering [21, 24, 27], which is similar

in spirit to SNARE’s geodesic distance feature; however,

these previous techniques typically require analysis of

message contents, across a large number of recipients, or

both, whereas SNARE can operate on more lightweight

features. McAfee’s TrustedSource [4] and Cisco Iron-

Port [3] deploy spam filtering appliances to hundreds or

thousands of domains which then query the central server

for sender reputation and also provide meta-data about

messages they receive; we are working with McAfee to

deploy SNARE as part of TrustedSource.

Non-content spam filtering Trinity [14] is a distributed,

content-free spam detection system for messages origi-

nating from botnets that relies on message volumes. The

SpamHINTS project [9] also has the stated goal of build-

ing a spam filter using analysis of network traffic patterns

instead of the message content. Clayton’s earlier work on

extrusion detection involves monitoring of server logs at

both the local ISP [16] as well as the remote ISP [17]

to detect spammers. This work has similar objectives as

ours, but the proposed methods focus more on properties

related to SMTP sessions from only a single sender.

8 Conclusion

Although there has been much progress in content-based

spam filtering, state-of-the-art systems for sender reputa-

tion (e.g., DNSBLs) are relatively unresponsive, incom-

plete, and coarse-grained. Towards improving this state

of affairs, this paper has presented SNARE, a sender repu-

tation system that can accurately and automatically clas-

sify email senders based on features that can be deter-

mined early in a sender’s history—sometimes after see-

ing only a single IP packet.

Several areas of future work remain. Perhaps the most

uncharted territory is that of using temporal features to

improve accuracy. All of SNARE’s features are essen-

tially discrete variables, but we know from experience

that spammers and legitimate senders also exhibit differ-

ent temporal patterns. In a future version of SNARE, we

aim to incorporate such temporal features into the classi-

fication engine. Another area for improvement is making

SNAREmore evasion-resistant. Although we believe that

it will be difficult for a spammer to evade SNARE’s fea-

tures and still remain effective, designing classifiers that

are more robust in the face of active attempts to evade

and mis-train the classifier may be a promising area for

future work.
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