
OPUS: Online Patches and Updates for Security

Gautam Altekar Ilya Bagrak Paul Burstein Andrew Schultz

{galtekar,ibagrak,burst,alschult}@cs.berkeley.edu
University of California, Berkeley

Abstract
We present OPUS, a tool for dynamic software patch-
ing capable of applying fixes to a C program at run-
time. OPUS’s primary goal is to enable application of
security patches to interactive applications that are a fre-
quent target of security exploits. By restricting the type
of patches admitted by our system, we are able to sig-
nificantly reduce any additional burden on the program-
mer beyond what would normally be required in develop-
ing and testing a conventional stop-and-restart patch. We
hand-tested 26 real CERT [1] vulnerabilities, of which 22
were dynamically patched with our current OPUS proto-
type, doing so with negligible runtime overhead and no
prior knowledge of the tool’s existence on the patch pro-
grammer’s part.

1 Introduction

Security holes are being discovered at an alarming rate:
the CERT Coordination Center has reported a 2,099 per-
cent rise in the number of security vulnerabilities re-
ported from 1998 through 2002 [27]. The onslaught of
security violations seems unlikely to abate in the near
future as opportunistic hackers focus their attention on
exploiting known application vulnerabilities [3].
Software patching is the traditional method for closing

known application vulnerabilities. After a vulnerability
has been disclosed, vendors expediently create and dis-
tribute reparative patches for their applications with the
hope that administrators will download and install them
on their systems. However, experience indicates that ad-
ministrators often opt to delay installing patches and in
some cases, to not install them at all [23].
Administrators forego patch installation for several

reasons. At the very least, applying a conventional patch
requires an application restart, if not a full system restart.
For many applications, the resulting disruption is often
too great [5]. Perhaps more problematic, patches have

become extremely unreliable due to shortened testing cy-
cles and developers’ tendency to bundle security fixes
with feature updates. These unreliable patches can se-
riously debilitate a system, leaving administrators with
no reliable method of undoing the damage [23]. Never-
theless, the industry’s recognition of the need for small,
feature-less security patches [27] and renewed emphasis
on patch testing [11] promises to mitigate irreversibility
and unreliability concerns. But even with these practices
in place, the call for disruption-free security patches re-
mains unanswered.

We believe that the disruption imposed by conven-
tional patching is and will continue to be a strong
deterrent to the quick installation of security patches.
While resource-rich organizations combat the disrup-
tion through the use of redundant hardware, rolling up-
grades, and application-specific schemes [6], many home
and small-business administrators lack similar resources
and consequently, they are forced to tradeoff applica-
tion work-flow for system security. As the number of
issued security patches continues to increase, the lack of
transparency inherent in conventional patching becomes
more evident, serving only to further dissuade users from
patching.
Home and small-business administrators need a non-

disruptive alternative to conventional security patching.
Toward that goal, we introduce OPUS–a system for con-
structing and applying dynamic security patches. Dy-
namic security patches are small, feature-less program
fixes that can be applied to a program at runtime. Many
types of vulnerabilities are amenable to dynamic patch-
ing: buffer overflow, format string, memory leaks, failed
input checks, double frees, and even bugs in core appli-
cation logic (e.g., a script interpreter bug). Our survey of
CERT vulnerabilities over the past 3 years has confirmed
this to be the case.
Applying dynamic patches to running programs intro-

duces additional complexity and implies fewer guaran-
tees of the patch’s correctness. In fact, determining the

14th USENIX Security SymposiumUSENIX Association 287

14th USENIX Security Symposium

correctness of dynamic patches has been proven unde-
cidable in the general case [15]. OPUS addresses this
theoretical limitation by supplying the programmer with
warnings of program modifications that are likely to re-
sult in an unsafe dynamic patch. We derive these warn-
ings from the static analysis of patched and unpatched
code. Once the programmer is confident with the patch’s
safety, OPUS produces a dynamic patch that can be dis-
seminated to end-users who in turn can immediately ap-
ply the patch using the OPUS patch application tool.
Despite expectations, our preliminary experience us-

ing OPUS on dozens of real security patches and real
applications free of instrumentation reveals that the pro-
cess is surprisingly safe and easy. We attribute this result
primarily to the small, isolated, and feature-less nature
of security patches, and secondarily to OPUS’s support
for the C programming language and seamless integra-
tion with a widely used development environment (GCC
and the Make system). While we hypothesized that static
analysis would significantly aid the programmer in con-
structing safer patches, security patches proved to be so
simple in practice that programmer intuition often suf-
ficed.

The rest of the paper is organized as follows. We first
describe the basic design goals of OPUS in section 2.
Then we describe the abstract patch model assumed by
OPUS in section 3. Section 4 fleshes out all major com-
ponents of the OPUS architecture, while section 5 relates
noteworthy implementation challenges. Experience and
evaluation are described in section 6. Related work in
the general area of vulnerability defense is highlighted
in section 7. Finally, we propose some future work in
section 8 and conclude in section 9.

2 Design considerations

The key observation behind OPUS is that most security
patches are small, isolated, and feature-less program
fixes. This observation motivates our goal of building
a widely applicable dynamic security patching sys-
tem rather than a generic dynamic software upgrade
mechanism. The following design decisions reflect the
practical nature of our approach:

Support the C programming language. Given the
significant amount of work done in type-safe dynamic
software updating [10, 16], it would be ideal if programs
were written in type-safe languages that preclude
many security bugs. However, programmers have
been reluctant in making the transition, often citing
the cost of porting to a safe language as a justification
for inaction. By supporting C as the ubiquitous unsafe
programming language, OPUS is able to accommodate
legacy code without monumental effort on the part of

the programmer.

Integrate with existing development environment. No
system is entirely practical if it intrudes on the software
development and deployment infrastructure. OPUS
works transparently with standard Unix build tools
(GCC and Makefiles). Moreover, it integrates smoothly
with large-scale software projects engineered with little
foresight of our tool.

Estimate dynamic patch safety. In general, it is
impossible to guarantee that dynamically and statically
applied versions of the same program change will
exhibit identical program behavior [15]. To mitigate
(but not eliminate) the danger of producing an un-
safe dynamic patch, OPUS employs static analysis to
point out potentially dangerous program changes. In
particular, we assume that unsafe dynamic patches
arise from modification of state that is not local to the
function being patched and provide warnings for all such
instances.

Require no code annotations. Many existing dynamic
update techniques provide programmer generated anno-
tations or transition functions to assist in patch analysis
and application (e.g., [16, 26]). While these systems
are very flexible with respect to the types of patches
they admit, the annotation features they provide are
rarely necessary in the constrained domain of security
patching. By not supporting such features in OPUS, we
were able to simplify its design and enforce our policy
of admitting only isolated and feature-less program
modifications.

Patch at function granularity. In OPUS, the smallest
possible patch still replaces a whole function definition.
Patch modifications that spread over multiple functions
will result in a patch containing the new definitions for
all functions affected. The new code is invoked when
control passes to the updated function’s body. Our deci-
sion to patch at function granularity not only simplified
reasoning about patch safety, but also eased implemen-
tation. The alternative, that of patching at sub-function
granularity, is too cumbersome to implement and results
in no appreciable benefit to the user.

3 Patch model

In abstract terms independent of the implementation
specifics, the patch model is intended to answer two
questions:

1. What kinds of patches don’t work with OPUS?

USENIX Association288

2. What kinds of patches may not be safe when used
with OPUS?

To answer the first question, we present detailed descrip-
tions of inadmissible patches (i.e., patches that OPUS
outright rejects). We then answer the second question
by defining our notion of dynamic patch safety.

3.1 Inadmissible patches
Inadmissible patches are classified into two types: those
that are prohibited due to fundamentally hard limitations
of dynamic patching and those that are excluded to ease
our initial implementation. While it is unlikely that we
can overcome the fundamentally hard limitations, future
versions of OPUS will eliminate many of the current
implementation-related limitations.

3.1.1 Fundamental limitations

No patching top-level functions. A dynamic patch
is useful only if the patched function is bound to be
called again at some future point in the execution of the
program. If top-level functions such as C’s main are
patched, the modifications will never take effect. This
is also true for functions that run once before the patch
is applied and, due to the structure of the program, will
never run again.

No changes to initial values of globals. All glob-
als are initialized when the program is loaded into
memory. Thus, all initialization is complete before the
patch is ever applied and as a result, modifications to
global initial values will never take effect.

3.1.2 Implementation limitations

No function signature changes. In C, a function
signature is defined by its name, the type of each of its
arguments, and the type of its return value (argument
name changes are allowed). A straightforward way to
handle altered function signatures is to consider it as a
newly added function and then patch all the functions
invoking it. In practice, however, we rarely encountered
security patches that alter function signatures and
therefore, we decided not to support them in our initial
implementation. Thus, all modifications introduced by a
patch must be confined to function bodies.

No patching inlined functions. C supports explicit
inlining through macro functions and GCC supports
implicit inlining as an optimization. In principle, a patch
for a macro function can be considered as a patch for
all the invoking functions. However, it’s more difficult
to determine if GCC has implicitly inlined a function.

Since we rarely encountered patched inline functions
in our evaluation and because we wanted to keep our
prototype implementation simple, we chose to prohibit
inlining all together.

3.2 Patch safety
A dynamic patch is safe if and only if its application re-
sults in identical program execution to that of a statically
applied version of the patch. More precisely, a safe patch
does not violate the program invariants of any function
other than the one in which the change was made.

Without programmer assistance, the problem of static
invariant checking is undecidable. Therefore, OPUS
adopts a conservative model of patch safety. We say that
a patch is conservatively safe if and only if the function
changes involved do not make additional writes to non-
local program state and do not alter the outcome of the
function’s return value. By non-local state, we mean any
program state other than that of the patched function’s
stack frame. Examples include global and heap data, data
in another function’s stack frame, files, and sockets.

A conservatively safe patch does not change the pro-
gram invariants of unpatched functions (assuming a con-
ventional application). Thus, conservative patch safety
implies safety as defined above. The converse, however,
is not true and therefore, a problem with the conserva-
tive safety model is that it is subject to false positives:
it labels many patches as dangerous when they are in
fact safe. For example, consider the following patch for
BIND 8.2.2-P6’s zone-transfer bug [29]:

*** 2195,2201 ***
zp->z_origin, zp_finish.z_serial);

}
soa_cnt++;

if ((methode == ISIXFR)
--> || (soa_cnt > 2)) {

return (result);
}

} else {

*** 2195,2201 ***
zp->z_origin, zp_finish.z_serial);

}
soa_cnt++;

if ((methode == ISIXFR)
--> || (soa_cnt >= 2)) {

return (result);
}

} else {

14th USENIX Security SymposiumUSENIX Association 289

14th USENIX Security Symposium

Although the patch is safe (as verified by the program-
mer), it is not conservatively safe due to its alteration of
the return value: the function now returns result when
soa cnt equals 2. Unfortunately, most security patches
alter the function return value in a similar manner, imply-
ing that strict adherence to the conservative patch model
will preclude a majority of patches in our domain.
Since we believe (and have verified to some extent)

that most security patches are safe in practice, a key goal
of OPUS is to admit as many security patches as possible.
Therefore, if a patch doesn’t meet the conservative patch
model, OPUS does not reject it. Rather, it informs the
programmer about the violation, thereby allowing him or
her to invoke intimate knowledge of the program before
making the decision to accept or reject the patch.

4 Architecture

4.1 Overview

OPUS combines three processing stages: (1) patch anal-
ysis, (2) patch generation, and (3) patch application. The
interconnection between these stages is governed by sim-
ple annotations that serve as a way to maintain interme-
diate state and hand off information from one stage to
the next. This allows for greater flexibility in terms of
the architecture’s future evolution and keeps the pieces
in relative isolation from each other, making them easier
to compose. The high-level architecture is presented in
Figure 1.
The OPUS architecture is motivated by two high-level

usability requirements: (1) user interaction with the sys-
tem should appear natural to a programmer, and (2) the
system should fit seamlessly on top of an existing soft-
ware build environment developed with no foresight of
OPUS. We meet these design goals by augmenting the
standard C compiler and substituting it for the default
one, which simultaneously suits our analysis needs and
preserves the native build environment of the patched ap-
plication (assuming that it is normally built with the de-
fault compiler).
The programmer interacts with the OPUS front-end

similar to the way a programmer would interact with a
regular C compiler. Compile time errors are still handled
by the compiler proper with OPUS generating additional
compiler-like warnings and errors specific to the differ-
ences found in a given patch. The programmer invokes
the annotation analysis on the patched source, acts on any
warning or errors, and finally invokes the patch genera-
tion to compile the dynamic security patch. The patch
injector then picks up the dynamic patch and applies it
into a running process.

4.2 Annotations and interface languages
The preamble to the patch analysis is a script that per-
forms a diff of the changed and the unchanged source
trees and invokes the appropriate build target in the
project’s master Makefile to initiate the build process.
Using the diff information, OPUS generates a series of
.opus files, one in every directory that has a changed
source file. The purpose of the .opus files is to notify
the instrumented C compiler which files have changed
and will require static analysis (described below).

The instrumented C compiler parses .opus files when
invoked from the project’s Makefile. If the file is present,
then a new set of annotations is generated for the file
by the compiler (“Source annotations” in Figure 1). The
line ranges found in .opus annotations are useful as an
aid to the programmer because they restrict the warnings
and errors the patch analysis produces to only the line
ranges associated with the patch (we obtain line ranges
from the textual diff, but other more sophisticated ap-
proaches are also possible [17]). The policy is reasonable
since only the changed lines are considered problematic
as far as patch safety is concerned (see section 3); the
unmodified code is assumed to work correctly.

Ideally, the old and the new source trees would be pro-
cessed in parallel obviating the need for external state
in the form of annotations. The established build envi-
ronment, however, prevents us from invoking the com-
piler in the order most convenient to us. To circumvent
this practical limitation, static analysis, which uses only
the local (per file) information, is handled by the instru-
mented compiler, while the rest of the cross-tree analysis
is deferred to the annotation analysis.

The source annotations produced by the instrumented
compiler contain tags specifying which function defini-
tions were changed by the patch. Similarly, the annota-
tions include hashes of function prototypes for cross-tree
comparison by our patch analysis. We also include in the
annotations a list of globals so that addition of new glob-
als is detected across the patched and unpatched source
trees.

4.3 Static analysis
The static analysis portion of the system has two goals.
One is to determine whether the patch is admissible as
described in section 3.1. The other is to determine if the
patch satisfies our definition of conservative safety de-
scribed in section 3.2.

We address the first goal by generating source annota-
tions that are fed into the annotation analysis, which then
alerts the programmer if the patch meets one of the inad-
missible criteria. For instance, if the annotations indicate
that the signature for a given function has changed, an

USENIX Association290

Figure 1 OPUS high-level architecture

� � �� � �� � �� 	�
� � �

� �� � �� � ��

��� ��� �

�� �� �� �� � � � � �� ��

!� � � �� � " #� $� �� %� � �

&' '

#� $ � ��(� � �) �) �� � �#� $� � �(� � �) �) �� � �#� $� ��(� � �) �) �� � �

*�+ �, - � -&' '

� � 	 �+ � � 	�� + �, - � -

. �)� �/ �� � � �0 0 � � � � �� � �� � � $� ��)� � � � � � �1 � � 0� � /
�) �) � � � � � "2 � �� � � � 3 � � � � �

4 5 0 � � � � �� �� � � �� �)� �)� �6 �) 3) 3 �
� � $� �� � 3 � � � � �8� � � � � �)� 9 �� � � 2 1 �) � 3

(1 1 "2 � 3 � � � � �)�
� $� � �� �1 �� �� � �

:

;

< �� � � 2� �) � 3
=+ �> ?

@ � A � > � 	�

=+ �> ?
& � � � �+ � � 	�

B � 6 #� $� �� %� � �

error message is returned to the user. The error message
denotes explicit rejection of the patch.

We address the second goal using static analysis. The
goal of static analysis is to direct the patch writer’s atten-
tion to program changes likely to result in an unsafe dy-
namic patch as defined by our conservative safety model.
The current implementation of static analysis checks for
only one component of our conservative safety model.
In particular, it checks if there are any new writes to non-
local state (e.g., global variables, data in another func-
tion’s stack frame) within the patched function, and if
there are, it marks those writes as harmful. Our current
implementation does not check for altered return values
(the other component of the conservative safety model):
such functionality requires program slicing, which we
haven’t fully implemented yet.

Given that our current implementation focuses only on
identifying new writes to non-local state, the chief dif-
ficulty is that the set of C variables that can be refer-
enced/dereferenced to affect the non-local state is a dy-
namic property of a program. To address this difficulty,
we employ a conservative static analysis algorithm that
computes a set of all local variables that could be used
to point and write to data outside of the function’s stack
frame. In effect, our analysis is similar to the static analy-
sis designed to catch format string vulnerabilities, except
in the format string case the tainted set of expressions is
the set whose values may have arrived over an untrusted

network [25].

4.3.1 Bootstrapping static analysis

Success of the static analysis depends on a crude over-
estimation of the set of variables determined to refer to
non-local state. We call this set the tainted set, and the
variables in it — tainted variables.

For any given function, the set of function arguments
of pointer type (as determined by the pointer_type_p
predicate) is considered tainted by default. Since neither
the content nor origin of these pointers is known in gen-
eral, we assume they point to non-local state. Currently,
we do not perform inter-procedural static analysis. How-
ever, we would like the tainting to be conservative, and
therefore the analysis also taints any pointer variable as-
signed as a return value of a callee.

4.3.2 Taint flow propagation rules

Figure 2 contains a subset of rules for computing the
tainted set. In our notation R stands for a set of tainted
expressions, and e is a string of C source denoting some
expression. The statement “given a set of tainted expres-
sions R, running the taint flow algorithm on expression e
results in a new set of tainted expressions R′” is written
as R � e ⇒ R′.

FUNCTION rule captures our assumption in regard
to pointer type function arguments. IF specifies that each

14th USENIX Security SymposiumUSENIX Association 291

14th USENIX Security Symposium

branch of the if expression is unaffected by the expres-
sions tainted in the other branch, but the statements fol-
lowing the entire expression are processed as if taintings
from both branches have been applied. BINOP rules and
SEQ show how taint sets are modified when analysis
walks over an expression tree and a sequence of state-
ments, respectively.
The ASSIGN family of rules cover the way the left

hand side of an assignment statement gets tainted, with
each rule specifying what happens when an array type,
struct type and a pointer type variable is assigned. Fi-
nally, the base case EMPTY rule shows that an empty
expression leaves the tainted set unaltered. We omit the
rest of the rules for brevity, but they follow the same
high-level pattern.
The static analysis generates warnings when it en-

counters the following situations in the program’s source
code: (1) a reference to non-local data is dereferenced
on the left hand side of an assignment or (2) a new value
is assigned to an explicitly-named global variable. The
reader should be careful not to confuse the computation
of the tainted set and the conditions under which a warn-
ing is issued. Specifically, aliasing of pointer variables
produces no warnings whereas dereferencing a tainted
pointer on the left-hand side of an assignment does.

4.3.3 Limitations of static analysis

Implementation limitations. Our current implementa-
tion of static analysis warns only about new modifica-
tions to non-local program state. A true conservative
analysis, however, should also produce warnings for al-
tered return values. This can be a problem, for exam-
ple, in the following sorting function, which periodically
invokes a comparator function to determine the desired
ordering on the input data.

void sort() {
qsort(array_of_numbers, array_length,

sizeof(int), &comparator);
}

int comparator(int* a, int* b) {
return *a > *b;

}

Suppose that the comparator function is modified such
that the ordering is reversed as follows:

int comparator(int* a, int* b) {
return *a < *b;

}

Further suppose that the program starts to sort with
the old comparator function, but then is dynamically
patched. Subsequently, it finishes the sort using the new

comparator function. The resulting “sort” does not corre-
spond to any sort produced by a statically applied version
of the original or patched version on the same data.
The above patch eludes our current implementation of

static analysis because it does not modify any non-local
data. However, it indirectly violates program semantics
through a change in return value and therefore violates
our notion of conservative safety. Ideally, a warning
should be produced, but our current implementation
does not do so, implying that the programmer must
consider the effects of the patch with respect to the
return value.

Fundamental limitations. Ignoring the implementation
limitations, a static analysis that strictly adheres to the
conservative safety model will generate false warnings
for many security patches (examples of which are given
in section 3.2 and section 6.5). These false warnings have
to be overridden by programmer intuition, which implies
that OPUS introduces some programmer overhead in the
patch development process. Perhaps more problematic,
incorrect programmer intuition may result in an unsafe
dynamic patch. In the end, OPUS can only alert the pro-
grammer to the potential dangers of dynamic patching.
It cannot guarantee that a dynamic patch is equivalent to
its static version nor can it point out flaws in the patch
itself.

4.4 Patch generation
Once the programmer is satisfied with the patch, having
removed any errors and examined any warnings gener-
ated by the analysis, the patch generation stage can be in-
voked. Although OPUS does patching at function gran-
ularity, a patch object is actually a collection of changed
functions aggregated based on the source file of their ori-
gin.

The first step in the patch generation is to pin down
exactly which files need to be compiled into a dynamic
patch object. The generation system does this by parsing
the annotation files sprinkled throughout the new and old
project source trees by the instrumented compiler. The
annotations are inspected in a pairwise fashion, identi-
fying which functions or globals have been added and
which functions have changed.

Next, the patch generator runs the source code through
the C preprocessor to create a single file with all the
header files spliced in. The static analysis tool is then re-
invoked on the preprocessed and stripped source code,
dumping annotation files which contain the new (post-
preprocessed) line numbers for each function and global
variable.

The final step is to cut and extern the preprocessed
source. Cutting removes all of the code for any functions

USENIX Association292

Figure 2 Operational semantics for computing the set of tainted expressions.

R � eempty ⇒ R
(EMPTY)

e2 ∈ R
R � e1 = e2 ⇒ R ∪ {e1}

(ASSIGN)

e2 ∈ R
R � e1.field∗ = e2 ⇒ R ∪ {e1}

(ASSIGN-FIELD)
e2 ∈ R

R � e1[∗]∗ = e2 ⇒ R ∪ {e1}
(ASSIGN-ARRAY)

v ∈ R ; pointer type p(v) ; R � e ⇒ R′

R � v ⊕ e ⇒ R′ ∪ {v ⊕ e}
(BINOP1)

v ∈ R′ ; pointer type p(v) ; R � e ⇒ R′

R � e ⊕ v ⇒ R′ ∪ {e ⊕ v}
(BINOP2)

R � e1 ⇒ R′ ; R′ � e2 ⇒ R′′

R � e1; e2 ⇒ R′′ (SEQ)

R � e1 ⇒ R1 ; R1 � e2 ⇒ R2 ; R1 � e3 ⇒ R3 ; R2 ∪ R3 � e4 ⇒ R′

R � if (e1) then {e2} else {e3} e4 ⇒ R′ (IF)

function type p(e)
{e.args[i] | 0 < i < e.numargs ∧ pointer type p(e.args[i])}

∪ {v | global p(v)} � e.body ⇒ R
{} � e ⇒ R

(FUNCTION)

that have not changed by blanking the line ranges of the
function definition. Externing involves placing an “ex-
tern” storage modifier before any function or global vari-
able that is not new or changed. The end result is a single
source file that contains code for only new or changed
functions, and extern definitions for any other variables
which have not changed, but references to which are
needed for successful compilation.
Once the processed source is ready, the generation sys-

tem invokes the standard C compiler on the code. Addi-
tionally, OPUS adds the -shared compiler switch which
causes the compiler to create a shared object. When all
of the shared objects have been compiled, OPUS packs
them together in an archive with a patch definition file
and an unstripped copy of the original program binary.
The resulting archive comprises a dynamic patch object,
which can then be transferred to the machine in need of
patching and applied to a running process by the patch
injector.

4.5 Patch application
The patch application process is straightforward and con-
sists of two distinct phases. In the first phase, the patch
installer attaches to a specified process. Once attached,
the installer gains complete control over the process: it
can inspect and modify the process’s address space, in-

tercept signals sent to the process, and can even execute
code on the child’s behalf.
In the second phase, the installer attempts to apply the

patch by redirecting calls of the target functions to the
newer versions contained in the patch. Before applying
the patch, however, the patch installer must ensure the
patch safety criteria discussed in section 3: current ex-
ecution point cannot be under the dynamic scope of a
target function, i.e., no frames on the stack should be-
long to the function being patched. If any of the stacks
contain activation frames of any of the target functions,
the safety criteria does not hold and patching is deferred.
Handling multiple threads posed a unique challenge in

the design of the patch injector. It is possible, although
unlikely, for threads to never exit the dynamic scope of
a target function. In such a case, program execution will
never satisfy our safety condition.

5 Implementation

A fully functional OPUS prototype has been developed
and vetted on real examples of dynamic patches (see
section 6). We now present noteworthy implementation
challenges encountered while building an OPUS proto-
type based on the preceding architecture.

14th USENIX Security SymposiumUSENIX Association 293

14th USENIX Security Symposium

5.1 GCC integration
GCC version 3.4.2 was taken as a baseline for our im-
plementation. The actual modifications to it were min-
imal — around 1,000 lines of code spread over 5 files.
Modifying GCC directly has imposed several implemen-
tation challenges not the least one of which has been sim-
ply grokking GCC APIs and finding the right time in the
compilation process to invoke our analysis. As a benefit,
the static analysis effectively supports all features of the
C programming language, including arcane C extensions
supported by GCC [12, 18].
Despite some of the benefits of integration, one of our

current action items is removing the static analysis from
GCC and implementing it externally under a tool like
cil [21]. We hope to report on the new version of the
static analysis in the final version of the paper.

The critical aspect of the current implementation is
that both the standard and the instrumented compilers
produce identical answers on identical inputs. For any
arbitrarily complex build environment where a default
GCC is used, the modified version “just works” in its
place.

5.1.1 L-values

The ASSIGN “family” of taint flow rules make the taint-
ing of the left hand side of an assignment expression ap-
pear straightforward. In reality, C allows deeply struc-
tured l-values that may include complex pointer manipu-
lation and conditionals, not just array indexes and struc-
ture field accesses [18].

Consider a contrived example of an assignment:

(a == 42 ? arr1 : arr2) [argc] = a;

In the example above, it cannot be determined statically
which of the arrays gets tainted. When an anomalous l-
value is encountered we alert the user and request that a
statement be rewritten as an explicit conditional.
Similar problems can arise when processing left hand

sides with array reference and the index expression
swapped and anything but the most trivial pointer arith-
metic. The examples that follow illustrate the non-trivial
expressions that can appear as l-values.

argc[argv] = 42;
(arr1 + (arr2 - (arr3 + 1)))[0] = 42;
((int) argv + (char**) argc)[0] = NULL;

This class of non-trivial assignment statements actually
requires some type-checking to disambiguate the target
of the assignment. The type-checking piece turned out to
be a great implementation hurdle in the GCC-integrated
version of the analysis, and is one of the reasons we are
considering a rewrite.

5.2 Patch injection up close
The patch installer can be thought of as a finite state ma-
chine with two states (see Figure 3): each state corre-
sponding to the execution of either the child thread(s) or
the installer thread. The installer periodically stops the
execution of the child thread to determine if the thread is
safe to be patched and if so, it moves on to the second
stage of actually applying the patch atomically. Our cri-
terion for safety (see section 3) is met via runtime stack
inspection of the thread we attach to, while the ptrace
system call is actually used to attach to the thread in the
first place.

5.2.1 Patch setup

At the fist stop signal received from the child, the patch
injector sets up for the patch. This involves gathering
data on the functions that need to be changed, setting up
a code playground that will be used to execute code on
the behalf of the child, gathering information on all the
threads that are running, and setting up the indirection
table used to specify the new function addresses.

For each function, we obtain its starting address in the
text segment as well as the code length via the nm and
objdump commands. The starting address is used for in-
serting breakpoints at the beginning of a patched function
and the code length is used at the stack inspection stage
(see section 4).

For multithreaded programs, we use the thread debug-
ging library to obtain the necessary information for all
the treads. In particular, we need to obtain the address
and length of the function body which would terminate
the stack inspection algorithm. Another requirement is
that all threads are stopped during the setup as we need
to modify the code segment shared among all the threads
in order to create the code playground and insert break-
points.

The code playground is a page within the child’s mem-
ory address which gives us a predictable place to exe-
cute code on the behalf of the patched thread. The play-
ground is created by temporarily inserting code that calls
mmap(2) into the child’s text segment and removing it
when we are done. The purpose of the code playground
is to make calls to dlopen(3) and dlsym(3) to load the
new versions of the code into the child thread.

The indirection table is another crucial segment in the
child’s memory space and is required for patch applica-
tion. This table stores the starting addresses of the new
functions. The addresses are used in the indirect jump
which we place in the old version of the code.

Before the execution of the child thread(s) is resumed,
we need to be notified by the child so we can make
progress with the patch. In particular, we want to be no-
tified when the child thread enters one of the functions to

USENIX Association294

Figure 3 Patch injection overview

� � � � � �
 � � � � �
� � � � � � � � � � �

� � � � � �

� � � � � �

� � � �
 # � � � $

%
 � '

� � � � � �)
 + �

� � � � � � � � � �
 -

. � /
 � � � � � � � � � /
/ � � '
 � 1 2

/ � - � 1 2
 � ' 1 2

3 45 678 9
: ; 6
5 <=

> > >

? � �
 � � � � � � � � � � � � ' � � � � B
�
 ' � � �
 � � - � � - � � � � � � � � � �
 �
' � � � � � �
 C � � � �
 � $ ' � � � � � � '

D 2 # � E
 � � � � $ � � �
 + �
F 2 � E
 � C � �
 �
 + � C � � � � /

� � � ' 1 2 ' � � � � � � � � /
G 2 H +
 � � �
 � � /
 � � � �
 � �

' � � � � � � � � /
I 2 �
 - � � �
 � � � � � � �
 + �

be patched (as this makes the thread’s stack unsafe), and
we want to know when the stack unwinds and the thread
returns from executing the old version of one of the func-
tions to be patched. The latter is performed by the stack
inspection mechanism and is described in a subsequent
section. The former is performed by placing the break-
point instruction at the beginning of every function we
are changing. Race conditions are not an issue at this
point as all of the threads are still stopped.
The setup ends with the insertion of break points at

the first instruction of every function that needs to be
patched. Once the setup phase is complete, we resume
the thread(s) and wait for a signal indicating either a call
to or return from one of the old functions.

5.2.2 Stack inspection

The desired invariant is that an old version of a patched
function should not be calling a new version of a function
that is also being patched. To make sure that the invariant
holds, the stack inspection must ensure that all functions
that need to be changed are not on the stack at the time
when the patch is applied. We first describe the proce-
dure for stack inspection for a single-threaded program
and later extend it to the multithreaded case.
The stack is unwound all the way up to the function

where execution of the program commenced, i.e., main.
The frame pointer is used to obtain the previous frame
pointer and the return address — the process depicted in
Figure 4. If some return address takes us back within
a patched function, one of the function already on the
stack is actually being patched. The stack is considered
safe if we are able to walk all the way up to mainwithout
detecting any of the patched functions.

Figure 4 Stack inspection and rewriting

� � � � � � � � �
 � � � � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � �
 � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � �
 � � � � � � � � �

� � � � � � � � � " � � �

� � � � � � � � � � �

If the return address does indeed lie within the bounds
of one of the functions that we are attempting to patch,
the top most such function on the stack is found and its
return address is replaced with the NULL, causing the
patched process to issue a SIGSEGV signal when that
function returns. The patch injector is awoken by the
SIGSEGV, at which point the patch can be applied safely
and the program can be restarted at the original return
address.

For a multithreaded program, we need to ensure that
all of the threads are not running any of the old versions
of the code when we apply a patch. One way that this
can be done is by inspecting all the threads’ stack and de-

14th USENIX Security SymposiumUSENIX Association 295

14th USENIX Security Symposium

ciding whether applying a patch is safe if every thread’s
stack is safe, but this incurs considerable latency over-
head. Instead, we maintain a list of threads that are not
in a safe state (based on the single threaded criterion of
safety) and apply the patch when this list becomes empty.
The list is initialized when the patch injector first attaches
to the process and stops all of the threads in order to
gather the necessary information about them. This is the
only point where every thread’s stack is inspected at the
same time.
A thread is added to this list when it hits a break-

point on entering an old version of a patched function.
A thread is removed from this list when the notification
of its return from the top most patched function on the
stack arrives. At this point we can observe the size of the
list, and proceed with patching if the list is empty.

5.2.3 Patching process

Figure 5 Function redirection

� � � � � � �

� � � 	 � �

� � � � � � � � �

� � � � � � � � � � � � ! "

$ % � � ' ! ()

* $, ! # - � � % $. � ,

/ 0 1 2
/ 3 4 5 1 5 3 6 7

2 9 0 : 6 ; < =
2 9 7 > ? < =

A 6 C 5 3 E 6
F G ; H E 3 0 ;

I 6 K E E 0
A 6 2 3 5 6 H E

F G ; H E 3 0 ; M N
4 5 6 1 O : 0 3 ; E P G ? : 9 3 4 5 1 5 > Q G ; H E 3 0 ;

R R R

Once it is determined through the stack inspection
mechanism that a patch can be applied, the patch pro-
cess is carried out atomically as shown in Figure 5).
The patching process involves two steps: (1) loading the
new version of the code into the target thread’s address
space and (2) overwriting the first instruction within the
old code by an indirect jump to the new code. In or-
der to load the new code we execute dlopen(3) and
dlsym(3) on the behalf of the patched thread. More pre-

cisely, we force the thread to execute the two functions
by placing pre-constructed code that calls dlopen(3)
and dlsym(3) with the correct arguments followed by
a breakpoint into the playground we have pre-allocated
specifically for this purpose.
When dlopen(3) and dlsym(3) return successfully,

they return with the address of the new version of a
patched function. We redirect execution to the new code
via an indirect jump, which involves specifying a loca-
tion that stores the address of the new function in the
indirection table. The atomicity of the patch is guaran-
teed by the fact that all the functions are patched at the
same time. A race condition may arise at this point as
redirects are inserted only for the single stopped thread,
while some other thread might start executing the old
version at the same time. This condition is made impos-
sible since the breakpoints at the beginning of each old
version act as a barrier synchronization primitive — any
thread attempting to run the old version will get trapped
and will be resumed in the new version.

6 Experience and evaluation

The goal of our evaluation is to asses the applicability of
OPUS in a real world setting and in the context of patch-
ing real security vulnerabilities. First, we isolate the
raw performance penalty imposed by OPUS in applying
patches dynamically from application-specific overhead.
Next, we report on the prevalence of OPUS-amenable
patches in an extensive survey conducted over all CERT
vulnerabilities [1] issued between December 2001 and
February 2005. Finally, we present three detailed case
studies of using OPUS on typical vulnerabilities and the
experience acquired in the process.

6.1 Performance
In this section, we consider the raw performance penalty
imposed by dynamically applying a patch. OPUS adds
two different sources of overhead that can potentially af-
fect performance: a one time cost to apply the patch and
a recurring cost for each call to a patched function.

Patch application proceeds in three phases described
in section 5.2: initialization of the code playground, as-
sessment of patch application safety, and patch appli-
cation. We measured the overhead of initialization and
patch application phases with patches of different sizes.
The overhead of initializing and applying a patch was
very small, ranging from 39.25ms to 81.44ms. Addi-
tional measurements showed that this cost scaled linearly
with the number of functions contained in a patch.

We did not determine the cost of detecting patch ap-
plication safety since this cost is highly dependent on
the state of the process at patch application time. Note,

USENIX Association296

however, that after an initial assessment of patch applica-
tion safety, the patch injection tool stops and inspects the
process only when a specific condition with safety impli-
cations occurs (e.g., when the stack is being unwound).
Otherwise, the process’s performance is unaffected.
In order to measure the recurring run-time overhead

introduced by our method of function indirection, we
evaluated the cycle times for a series of simple func-
tions. To arrive at a lower bound for the overhead, we
tested a function that takes no arguments and does no
work. Then we used a function with a simple loop to
simulate a longer running function to show that the over-
head is fixed regardless of the function’s execution time.
Finally, to show that the overhead is insensitive to the
number of arguments passed to the function, we tested
functions with varying numbers of arguments.
The standard deviation of the measurements is 4 cy-

cles and the measured average ranges from 3 to 9 cycles.
It is not unreasonable to conclude that the recurring over-
head incurred by function indirection is fixed in all tested
cases.

6.2 CERT survey
To evaluate and refine the patch model described in sec-
tion 3, we examined the last several years of public appli-
cation vulnerability reports available on the CERT web-
site [1]. The goal of the survey was to determine the
characteristics of the most common vulnerabilities and
their associated patches, and to determine if OPUS was
suitable for applying them.
Reviewing the source code for the vulnerabilities and

their respective patches led us to conclude that the major-
ity of security patches were indeed small and isolated to
function bodies, a conclusion similar to that of [26]. Ad-
ditionally, we identified five different classes of vulnera-
bilities that were most prevalent and proved to be small
and isolated in practice: (1) buffer overflows, (2) failed
input checks, (3) format string errors, (4) logic and off-
by-one errors, and (5) memory errors (double frees and
leaks).
Our survey of the CERT announcements proceeded in

three phases. First, we performed a high level classifica-
tion on every CERT announcement issued between De-
cember 2001 and February 2005. We examined the text
of each vulnerability description to determine whether
the vulnerability could potentially be amenable to patch-
ing with OPUS. We looked for two things in this first
high level pass: (1) that the vulnerability affects an ap-
plication written in C for a commodity operating sys-
tem and (2) that the description unambiguously placed
the vulnerability into one of the five most common er-
ror categories mentioned above. In the second stage of
our survey, we attempted to locate and inspect the source

code for as many of the suitable vulnerabilities as pos-
sible. Unfortunately, since many of the vulnerabilities
that made our first cut affected closed source systems,
we were limited in the actual number we could actually
inspect. Of the vulnerabilities we were able to inspect
by hand, we further attempted to find the original patch
associated with the vulnerability that was released by the
vendor. This helped us to understand the characteristics
of real-world vendor patches, and provided us with actual
fixes for our third phase of the survey. In the final phase,
we took several real-world patches from vendors and ran
them through OPUS to validate the intuition behind our
patch model.
Table 1 gives a summary of our survey results. Of

the 883 CERT notifications we examined, 445 (50.4%)
were found to be amenable to patching with OPUS based
on the description of the vulnerability. Since gauging
the amenability of patches by reading the description is
hardly conclusive, we examined the source code of 115
out of the 445 CERTs and found, through inspection,
that given the constraints of our patch model, 111 were
amenable. Finally, of the 111 CERT vulnerabilities we
examined by hand, we ran 26 real patches through OPUS
to verify that the patch was dynamically applicable and
to ensure that it did in fact close the vulnerability without
adversely affecting the application. Of the 26 patches we
tested 22 were successfully applied with OPUS. The four
failures were due to implementation bugs in our current
prototype, which we are in the process of fixing.

6.3 Experience with OPUS
To evaluate the practicality of using OPUS with real
world security patches, we tested OPUS on 26 vulner-
abilities taken from our CERT survey. We took each
vulnerability through OPUS from start to finish: static
analysis, patch generation, patch injection, and patch
verification. In many cases, patches were taken from
start to finish without intervention on our part. In cases
where the patch was part of a larger upgrade, we had to
manually isolate the changes relevant to the individual
vulnerability. The reason is that the OPUS patch gen-
eration component cannot automatically distinguish be-
tween patches and feature upgrades.

Table 2 gives a summary of the vulnerabilities tested.
In the table, Patch Type represents whether or not the
patch used in testing was directly from a vendor patch
(Source) or distilled from a version upgrade (Upgrade).
The Testing Type represents one or more methods we
used to determine the success of the patch:

• Exploit: The client was tested with an exploit pro-
gram associated with the vulnerability

• Load: The client was placed under a heavy load
during and after patching

14th USENIX Security SymposiumUSENIX Association 297

14th USENIX Security Symposium

Amenable Vulnerabilities
Amenable by description (no source) 334
Amenable by inspection (source) 111
Amenable by application (patch applied) 22

Non-amenable Vulnerabilities
Not amenable by description 212
Not amenable by inspection 4
Not amenable by application (failed patch) 4
Not written in C 56
Router or embedded OS 90
Other 78

Total 883

Table 1: Survey of CERT Vulnerabilities and Corresponding Patches

• Codepath: The code path through the replaced
functions was exercised

• Operational: The operation of the program was
checked after patching by normal interaction

Testing OPUS on each of the 26 vulnerabilities was
an arduous process that spanned several weeks of con-
centrated work. Specifically, for each application, test-
ing involved locating the source code and corresponding
patch, getting the application code to compile on a mod-
ern version of Linux (Fedora Core 2), separating patches
from feature upgrades, finding and applying exploits on
patched applications, and in the cases where exploits
weren’t available, devising them ourselves. Many of
these steps required a good understanding of the source
code. Nevertheless, we expect the process to be signif-
icantly more streamlined for the developers of these ap-
plications.

6.4 Case study: patching real vulnerabili-
ties

In order to highlight our experience of patching real vul-
nerabilities with OPUS, we provide case studies of three
different patches: one for the Apache webserver and two
for the MySQL DBMS.

6.4.1 Apache chunked transfer bug

For our first evaluation, we selected a vulnerability in the
Apache webserver’s handling of chunked transfer encod-
ing [2, 8]. This particular vulnerability was the source
of the Scalper exploit [20] and was the precursor to the
Slapper worm [4]. The vulnerability itself is a simple
failure to properly handle negative chunked encoding
sizes, which leads to a buffer overflow that can cause
execution of arbitrary code. We obtained a version of

the exploit attack code that was available on the web and
used it to test the success of the patch [13, 9].
The patch affected 7 functions in one file (including

one new function) and consisted of 16 changed lines of
source and 37 new lines. We were able to successfully
take the patch from source all the way through to
patching a running Apache process.

Functional evaluation. Ultimately, we used the ex-
ploit attack code to make sure the patch correctly
fixed the vulnerability. Running the attack code on the
unpatched process caused segmentation faults in the
forked request handlers, while running the attack code
after the patch was applied resulted in a nicely formatted
error message returned to the attack client.

Front end experience. Because the patch was rela-
tively complex, it helped to expose several bugs in our
front end processing and helped to refine our annotation
format. The source file that was patched contained static
functions that did not change, which initially caused
our patch generation tool to break. After examining our
handling of static functions with the patch, we were able
to make several implementation fixes and clarify our
understanding of how static functions should be handled
by OPUS.

Back end experience. We performed the online
patch on a running copy of Apache 1.3.24 under a
simulated heavy load using SPECweb99. We tested
patch injection on both the forked worker and thread
pool modes (using 200 threads), showing that OPUS
works well on real single threaded and multithreaded
applications.

Conclusion. We were able to show success fixing
a wild exploit using a patch that was developed without
any foresight of using OPUS, which meets the goals set

USENIX Association298

Application CERT ID Vulnerability Type Patch Type Result Testing Type
Apache 1.3.24 944335 Buffer overflow Upgrade Pass Load/Exploit
Apache 2.0.50 481998 Buffer overflow Upgrade Pass Load/Codepath
BIND 4.9.5 13145 Buffer overflow Source Pass Exploit
BIND 4.9.5 868916 Input checking Source Fail None
BIND 4.9.6 CA-1997-22 Input checking Upgrade Pass Exploit
BIND 4.9.7 572183 Buffer overflow Source Pass Operational
BIND 8.2 CA-1999-14 Multiple bugs (4) Source Pass Exploit
BIND 8.2.2 16532 Buffer overflow Source Pass Exploit
BIND 8.2.2 196945 Buffer overflow Source Pass Exploit
BIND 8.2.2 325431 Input checking Source Pass Exploit
BIND 8.2.2-P6 715973 DoS Source Pass Exploit
BIND 8.2.2-P6 198355 DoS Source Pass Exploit
BIND 9.2.1 739123 Buffer overflow Source Pass Exploit
freeRadius 1.0.0 541574 DoS Upgrade Pass Operational
Kerberos 1.3.4 350792 Double free Upgrade Fail None
mod dav 1.91 849993 Format string Source Pass Codepath
MPlayer 0.91 723910 Buffer overflow Upgrade Pass Operational
MySQL 4.0.15 516492 Buffer overflow Upgrade Pass Exploit
MySQL 4.1.2 184030 Input checking Upgrade Pass Exploit
rsync 2.5.5 325603 Buffer overflow Upgrade Fail None
Samba 2.2.6 958321 Buffer overflow Upgrade Pass Exploit
Samba 3.0.7 457622 Buffer overflow Upgrade Pass Codepath
Samba 3.0.9 226184 Buffer overflow Source Pass Codepath
Sendmail 8.12 398025 Buffer overflow Source Pass Operational
Squid 2.4 613459 Buffer overflow Upgrade Fail None
tcpdump 3.8.1 240790 Buffer overflow Upgrade Pass Operational

Table 2: Summary of real patches tested with OPUS

forth in developing OPUS.

6.4.2 MySQL password bugs

For our second application experience, we evaluated
MySQL–a service which is more stateful than Apache,
and thus would have a higher cost to shutdown and
patch. We chose two simple vulnerabilities found in the
MySQL database management application. The first
allows a local or remote user to bypass authentication
with a zero-length password [30]. The second exploits a
buffer overrun in the password field allowing execution
of arbitrary code [31]. We obtained exploits available
on the web for both to help evaluate the success of the
patch [24, 19].

Patch characteristics. Both patches supplied by
the vendor for these vulnerabilities were very simple
“one-liners” that changed either a single line or a handful
of lines contained within a single function. From our
survey of common vulnerabilities and patches, this is a
very common characteristic of buffer overflow patches.

Functional evaluation. We were able to success-
fully patch the running MySQL service while it was
under a simulated load from a simple database perfor-
mance benchmark (sql-bench). Running the first attack
on the unpatched process allowed us to gain access to
the DBMS server and running the second attack allowed
us to crash the server. After applying the patch, both
exploits failed to compromise the server, and both were
returned a proper error message.

Front end and back end experience. Because of
the rather simple nature of the patches themselves and
the fact that we performed this test after our experience
with Apache, these particular patches did not uncover
any new issues in either the front or back end. The
patches were both successfully generated and applied
with little difficulty.

Conclusion. The MySQL case study is significant
in that it shows OPUS can work with more stateful
applications (e.g., database servers). These stateful
applications are most likely to benefit from avoiding

14th USENIX Security SymposiumUSENIX Association 299

14th USENIX Security Symposium

the restart associated with the application of traditional
patches. Moreover, stateful services such as database
servers offer a high opportunity cost for those seeking to
exploit vulnerabilities. Thus, the ability to successfully
patch services like MySQL is an important validation of
our work.

6.5 Utility of static analysis
Was our static analysis useful in producing safer dynamic
security patches? The short answer is no. The reason is
that only a hand-full of the security patches we examined
modified non-local program state. For the few patches
that did modify non-local program state, we used our
understanding of program semantics to determine that
the corresponding modifications were in fact not danger-
ous. As an example, consider the following excerpt from
BIND 8.2’s “nxt bug” patch [28]:

...
if ((*cp & 0x01) == 0) {

/*
* Bit zero is not set; this is an
* ordinary NXT record. The bitmap
* must be at least 4 octets because
* the NXT bit should be set. It
* should be less than or equal to 16
* octets because this NXT format is
* only defined for types < 128.
*/
if (n2 < 4 || n2 > 16) {

hp->rcode = FORMERR;
return (-1);

}
}
...

The above code checks if a field in the incoming mes-
sage’s header is properly formed, and if it is not, it writes
an error code (FORMERR) to a memory location on the
heap (hp->rcode) and returns −1 to indicate failure.
We know that the write is benign: upon return from the
patched function, BIND checks the value of hp->rcode
for the error type and outputs a corresponding error mes-
sage. However, the OPUS static analysis issues the fol-
lowing false warning: error: 2089: writing to
dereferenced tainted pointer (hp). We encoun-
tered similar warnings in our evaluations, but our under-
standing of the source code allowed us to quickly discard
them as false positives.

7 Related work

Dynamic updates: Many existing works in dynamic
software updating make use of strong programming lan-

guage support (e.g., dynamic binding and type-safety
as provided in Lisp, Smalltalk, and Java) [10] [16].
All of these approaches target a wide class of software
updates—not just security patches—and can make strong
guarantees about the safety of a runtime patch. OPUS, in
contrast, does not assume strong language support nor
can it perform arbitrary upgrades. In fact, a fundamen-
tal design criteria of our system is that it must be able
to handle existing, widely-deployed software and conse-
quently, our decision to target C applications reflects this
generality vs. practicality tradeoff.
Dynamic update techniques that don’t rely on strong

language support have also been explored. Early work
by Gupta et al. [14], for example, targets C applications
and is the closest to ours in technique, but they neither
target security patches nor do they use static analysis
to estimate patch safety. More recently, Stoyle et
al. [26] presented a dynamic updating system for a
C-like language that provides strong safety guarantees.
Although more general in the type of patches it admits,
their system requires software updates to be written in
a special-purpose language; true support of C is cited
as future work. While OPUS does not provide strong
safety guarantees, it does not require that applications be
constructed in a custom language.

Shield: Shield [32] is a system of vulnerability-
specific network filters that examine incoming and
outgoing network traffic of vulnerable applications and
correct malicious traffic en-route. Properly constructed
Shield policies can be more reliable than conventional
patches and like dynamic patches, applying policies in
end hosts is a non-disruptive procedure. To distinguish
our work from Shield, we note the following differences:
• Shield requires the programmer to specify all vul-

nerability approach vectors—a task that involves
significant programmer effort and risks introducing
false positives as well as false negatives when deal-
ing with complicated applications. Unlike Shield,
OPUS does not require the programmer to specify
a vulnerability state machine. Little programming
effort beyond what would be required to construct a
conventional patch is necessary.

• While Shield can defend against network-borne
pathogens quite effectively, it cannot defend against
file-system worms, protocol-independent applica-
tion vulnerabilities (e.g., bugs in a script inter-
preter), or memory allocation problems not tied
with any specific malicious traffic. In contrast,
OPUS can defend against most vulnerabilities that
can be fixed via conventional security patching.

• Monitoring network traffic on a per-application ba-
sis induces a performance penalty on Shielded ap-

USENIX Association300

plication that is proportional to the amount of net-
work traffic. Dynamic patches result in negligible
performance overhead once applied.

Redundant hardware: Redundant hardware offers
a simple, high-availability patching solution. Visa,
for example, upgrades its 50 million line transaction
processing system by selectively taking machines down
and upgrading them using the on-line computers as a
temporary storage location for relevant program state
[22]. However, Visa’s upgrade strategy is expensive and
as a result precludes use by those with fewer resources.
Perhaps more severe, it requires that developers and
system administrators engineer application specific
upgrade strategies, thereby adding to the complexity of
development and online-evolution [16]. Our standpoint
is that ensuring system security should neither be expen-
sive nor require ad-hoc, application-specific solutions.

Microreboots: Microreboots [7] provide a conve-
nient way to patch applications composed of distinct,
fault-tolerant components—install the new component
and then restart it. While a microreboot approach to
patching may be viable for enterprise web applications,
it cannot serve as a generic non-disruptive patching
mechanism. The reason for this is that a microre-
bootable system must be composed of a set of small,
loosely-coupled components, each maintaining a mini-
mal amount of state. OPUS differs from microreboots
in that it makes no assumptions about the coupling
of software components: a monolithic system can be
patched just as easily as a heavily compartmentalized
system.

8 Future work

8.1 Prototype
In order to perform stack inspection, our current pro-
totype performs a backtrace on the stack using frame
pointers and return addresses. Some functions, however,
are compiled to omit frame pointers (e.g., several func-
tions in GNU libc). Furthermore, stack randomization
tools make it difficult to determine the structure of the
stack. While we have a makeshift solution to deal with
these problems, it insists that applications preload wrap-
per libraries–a requirement that somewhat tars our goal
of “no foresight required”. Thus, we are currently ex-
ploring more transparent mechanisms to deal with these
issues.
Many security patches are targeted at shared libraries.

While the current implementation of OPUS cannot dy-
namically patch libraries, the ability to do so would
be valuable in closing a vulnerability shared by several

applications. Thus, we are working on extending our
ptrace-based stack-inspection mechanism to work with
multiple processes, all of whom share a common vulner-
able library.
Finally, many system administrators choose to turn off

ptrace support, leaving OPUS unable to function. To
deal with this issue, we are currently working on harden-
ing ptrace support for OPUS.

8.2 Static analysis
Assessing the safety of a dynamic patch is undecideable
in the general case, so the burden falls on the static analy-
sis to alert the user of all possible changes that may fault
the application when a patch is applied. With respect to
tracking writes to new non-local data, the current imple-
mentation of static analysis could use a tighter bound on
the taint set. This can be accomplished by implementing
proper support for multi-level pointer variables (one can
think of structs and multi-dimensional arrays as multi-
level pointer variables). A more sophisticated algorithm
to compute pointer aliases and associated taintings is also
being considered. The analysis could also benefit from
better handling of explicit casts and non-straightforward
uses of the C type system.

In addition to the above refinements, we are con-
sidering implementing path-sensitive taint flow analy-
sis which would effectively re-enable warnings for all
blocks (as if they were new to the patch) depending on
some variable being assigned a new value in the patched
code.

Finally, the success of static analysis hinges on our
ability to tell which program fragments are new. Cur-
rently, this is accomplished by diff-ing the source trees, a
method that is too imprecise to arrive at a complete set of
statements being modified if the correspondence between
statements and line numbers is anything but uniform. We
are currently considering program differencing [17] as an
alternative to shallow diffs.

9 Conclusion

Despite our attempt to alleviate safety concerns through
static analysis, the complexity introduced by dynamic
update, although often negligible when applied to secu-
rity patches, makes the hard problem of ensuring patch
reliability even harder. In the end, the added complexity
may deter developers from adopting the technology or
worse, prevent users from patching their systems more
quickly. However, by looking at a large sample of real
security vulnerabilities, we have shown that a significant
number of applications within our problem scope could
have been safely patched with OPUS had OPUS been
available at the time of vulnerability announcement. This

14th USENIX Security SymposiumUSENIX Association 301

14th USENIX Security Symposium

result strongly supports our claim that dynamic security
patching is safe and useful in practice. To this effect,
we have presented a viable alternative to the traditional
security patching methodology.

10 Acknowledgments

We thank the anonymous reviewers, Nikita Borisov, Eric
Brewer, our shepherd Peter Chen, David Wagner, and the
Berkeley SysLunch and Security reading groups for their
valuable feedback.

References
[1] US-CERT Vulnerability Notes Database. http://www.kb.

cert.org/vuls/.

[2] Apache security bulletin. http://httpd.apache.org/info/
security_bulletin_20020617.txt, June 2002.

[3] ARBAUGH, W. A., FITHEN, W. L., AND MCHUGH, J. Win-
dows of vulnerability: A case study analysis. In IEEE Computer
(2000).

[4] ARCE, I., AND LEVY, E. An analysis of the slapper worm. IEEE
Security and Privacy 1, 1 (2003), 82–87.

[5] BEATTIE, S., ARNOLD, S., COWAN, C., WAGLE, P., WRIGHT,
C., AND SHOSTACK, A. Timing the application of security
patches for optimal uptime. In LISA (2002), USENIX, pp. 233–
242.

[6] BREWER, E. Lessons from giant-scale services. In IEEE Internet
Computing (Aug. 2001).

[7] CANDEA, G., KAWAMOTO, S., FUJIKI, Y., FRIEDMAN, G.,
AND FOX, A. Microreboot - a technique for cheap recovery. In
Proceedings of the 6th Operating System Design and Implemen-
tation (Dec. 2004), pp. 31–44.

[8] CERT. CERT Advisory CA-2002-17 Apache Web Server
Chunk Handling Vulnerability. http://www.cert.org/

advisories/CA-2002-17.html, June 2002.

[9] DTORS.NET. Apache chunked encoding example exploit.
http://packetstormsecurity.org/0207-exploits/

apache-chunk.c.

[10] DUGGAN, D. Type-based hot swapping of running modules (ex-
tended abstract). In ICFP ’01: Proceedings of the sixth ACM
SIGPLAN international conference on Functional programming
(2001), ACM Press, pp. 62–73.

[11] DUNAGAN, J., ROUSSEV, R., DANIELS, B., JOHNSON, A.,
VERBOWSKI, C., AND WANG, Y.-M. Towards a self-managing
software patching process using persistent-state manifests. In In-
ternational Conference on Autonomic Computing (ICAC) 2004
(2004).

[12] FREE SOFTWARE FOUNDATION, INC. Using the GNU Compiler
Collection. Boston, MA, USA, 2004.

[13] GOBBLES SECURITY. Apache “scalp” exploit. http://www.

hackindex.org/boletin/0602/apache-scalp.c.

[14] GUPTA, D., AND JALOTE, P. On-line software version change
using state transfer between processes. Softw., Pract. Exper. 23,
9 (1993), 949–964.

[15] GUPTA, D., JALOTE, P., AND BARUA, G. A formal framework
for on-line software version change. IEEE Trans. Softw. Eng. 22,
2 (1996), 120–131.

[16] HICKS, M., MOORE, J. T., AND NETTLES, S. Dynamic soft-
ware updating. In PLDI ’01: Proceedings of the ACM SIGPLAN
2001 conference on Programming language design and imple-
mentation (2001), ACM Press, pp. 13–23.

[17] HORWITZ, S. Identifying the semantic and textual differences
between two version of a program. In Proceedings of the ACM
SIGPLAN 90 Conference on Programming Language Design and
Implementation (June 1990), pp. 234–245.

[18] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION.
ISO/IEC 9899:1990: Programming languages—C. International
Organization for Standardization, Geneva, Switzerland, 1990.

[19] K-OTIK SECURITY. Remote MySQL Priviledges Exploit.
http://www.k-otik.com/exploits/09.14.mysql.c.php.

[20] MITUZAS, D. Freebsd scalper worm. http://dammit.lt/

apache-worm/.
[21] NECULA, G. C., MCPEAK, S., RAHUL, S. P., AND WEIMER,

W. Cil: Intermediate language and tools for analysis and transfor-
mations of c programs. In Proceedings of the 11th International
Conference on Compiler Construction (2002), pp. 213–228.

[22] PESCOBITZ, D. Monsters in a box. Wired 8, 12 (2000), 341–347.
[23] RESCORLA, E. Security holes . . . who cares? In 12th Usenix

Security Symposium (Washington, D.C., August 2003), pp. 75–
90.

[24] SECURITEAM.COM. Local and Remote Exploit for MySQL
(password scrambling). http://www.securiteam.com/

exploits/5OP0G2A8UG.html.
[25] SHANKAR, U., TALWAR, K., FOSTER, J. S., AND WAGNER, D.

Detecting Format String Vulnerabilities with Type Qualifiers. In
Proceedings of the 10th Usenix Security Symposium (Washing-
ton, D.C., Aug. 2001).

[26] STOYLE, G., HICKS, M., BIERMAN, G., SEWELL, P., AND
NEAMTIU, L. Mutatis mutandis: Safe and predictable dynamic
software updating. In Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(2005), pp. 183–194.

[27] THE SOFTWARE DEVELOPMENT LIFE CYCLE TASK FORCE,
S. A. Improving security across the software development lifecy-
cle. Tech. rep., National Cyber Security Partnership, April 2004.

[28] US-CERT. Vulnerability Note VU#16532 BIND T NXT record
processing may cause buffer overflow. http://www.kb.cert.
org/vuls/id/16532, November 1999.

[29] US-CERT. Vulnerability Note VU#715973 ISC BIND 8.2.2-
P6 vulnerable to DoS via compressed zone transfer, aka the zxfr
bug. http://www.kb.cert.org/vuls/id/715973, Novem-
ber 2000.

[30] US-CERT. Vulnerability Note VU#184030 MySQL fails to
properly evaluate zero-length strings in the check scramble 323()
function. http://www.kb.cert.org/vuls/id/184030, July
2004.

[31] US-CERT. Vulnerability Note VU#516492 MySQL fails to val-
idate length of password field. http://www.kb.cert.org/

vuls/id/516492, September 2004.
[32] WANG, H. J., GUO, C., SIMON, D. R., AND ZUGENMAIER,

A. Shield: Vulnerability-driven network filters for preventing
known vulnerability exploits. In Proceedings of SIGCOMM ’04
(Aug. 2004).

USENIX Association302

