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ADbstract

Storage-based intrusion detection allows storage systems
to watch for data modifications characteristic of system in-
trusions. This enables storage systems to spot several com-
mon intruder actions, such as adding backdoors, inserting
Trojan horses, and tampering with audit logs. Further, an
intrusion detection system (IDS) embedded in a storage
device continues to operate even after client systems are
compromised. This paper describes a number of specific
warning signs visible at the storage interface. Examination
of 18 real intrusion tools reveals that most (15) can be de-
tected based on their changes to stored files. We describe
and evaluate a prototype storage IDS, embedded in an NFS
server, to demonstrate both feasibility and efficiency of
storage-based intrusion detection. In particular, both the
performance overhead and memory required (152 KB for
4730 rules) are minimal.

1 Introduction

Many intrusion detection systems (IDSs) have been devel-
oped over the years [1, 23, 29], with most falling into one
of two categories: network-based or host-based. Network
IDSs (NIDS) are usually embedded in sniffers or firewalls,
scanning traffic to, from, and within a network environ-
ment for attack signatures and suspicious traffic [5, 25].
Host-based IDSs (HIDS) are fully or partially embedded
within each host’s OS. They examine local information
(such as system calls [10]) for signs of intrusion or suspi-
cious behavior. Many environments employ multiple IDSs,
each watching activity from its own vantage point.

The storage system is another interesting vantage point for
intrusion detection. Several common intruder actions [7,
p- 218][34, pp. 363-365] are quite visible at the storage
interface. Examples include manipulating system utilities
(e.g., to add backdoors or Trojan horses), tampering with
audit log contents (e.g., to eliminate evidence), and reset-
ting attributes (e.g., to hide changes). By design, a stor-
age server sees all changes to persistent data, allowing it to
transparently watch for suspicious changes and issue alerts
about the corresponding client systems. Also, like a NIDS,
a storage IDS must be compromise-independent of the host

OS, meaning that it cannot be disabled by an intruder who
only successfully gets past a host’s OS-level protection.

This paper motivates and describes storage-based intrusion
detection. It presents several kinds of suspicious behav-
ior that can be spotted by a storage IDS. Using sixteen
“rootkits” and two worms as examples, we describe how
fifteen of them would be exposed rapidly by our storage
IDS. (The other three do not modify stored files.) Most
of them are exposed by modifying system binaries, adding
files to system directories, scrubbing the audit log, or using
suspicious file names. Of the fifteen detected, three mod-
ify the kernel to hide their presence from host-based detec-
tion including FS integrity checkers like Tripwire [18]. In
general, compromises cannot hide their changes from the
storage device if they wish to persist across reboots; to be
re-installed upon reboot, the tools must manipulate stored
files.

A storage IDS could be embedded in many kinds of storage
systems. The extra processing power and memory space
required should be feasible for file servers, disk array con-
trollers, and perhaps augmented disk drives. Most detec-
tion rules will also require FS-level understanding of the
stored data. Such understanding exists trivially for a file
server, and may be explicitly provided to block-based stor-
age devices. This understanding of a file system is anal-
ogous to the understanding of application protocols used
by a NIDS [27], but with fewer varieties and structural
changes over time.

As a concrete example with which to experiment, we have
augmented an NFS server with a storage IDS that sup-
ports online, rule-based detection of suspicious modifica-
tions. This storage IDS supports the detection of four cat-
egories of suspicious activities. First, it can detect unex-
pected changes to important system files and binaries, us-
ing a rule-set very similar to Tripwire’s. Second, it can de-
tect patterns of changes like non-append modification (e.g.,
of system log files) and reversing of inode times. Third, it
can detect specifically proscribed content changes to crit-
ical files (e.g., illegal shells inserted into /etc/passwd).
Fourth, it can detect the appearance of specific file names
(e.g., hidden “dot” files) or content (e.g., known viruses
or attack tools). An administrative interface supplies the
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detection rules, which are checked during the processing
of each NFS request. When a detection rule triggers, the
server sends the administrator an alert containing the full
pathname of the modified file, the violated rule, and the
offending NFS operation. Experiments show that the run-
time cost of such intrusion detection is minimal. Further
analysis indicates that little memory capacity is needed for
reasonable rulesets (e.g., only 152 KB for an example con-
taining 4730 rules).

The remainder of this paper is organized as follows. Sec-
tion 2 introduces storage-based intrusion detection. Sec-
tion 3 evaluates the potential of storage-based intrusion
detection by examining real intrusion tools. Section 4 dis-
cusses storage IDS design issues. Section 5 describes a
prototype storage IDS embedded in an NFS server. Sec-
tion 6 uses this prototype to evaluate the costs of storage-
based intrusion detection. Section 7 presents related work.
Section 8 summarizes this paper’s contributions and dis-
cusses continuing work.

2 Storage-based Intrusion Detection

Storage-based intrusion detection enables storage devices
to examine the requests they service for suspicious client
behavior. Although the world view that a storage server
sees is incomplete, two features combine to make it a well-
positioned platform for enhancing intrusion detection ef-
forts. First, since storage devices are independent of host
OSes, they can continue to look for intrusions after the ini-
tial compromise, whereas a host-based IDS can be disabled
by the intruder. Second, since most computer systems rely
heavily on persistent storage for their operation, many in-
truder actions will cause storage activity that can be cap-
tured and analyzed. This section expands on these two fea-
tures and identifies limitations of storage-based intrusion
detection.

2.1 Threat model and assumptions

Storage IDSs focus on the threat on of an attacker who has
compromised a host system in a managed computing en-
vironment. By “compromised,” we mean that the attacker
subverted the host’s software system, gaining the ability to
run arbitrary software on the host with OS-level privileges.
The compromise might have been achieved via technical
means (e.g., exploiting buggy software or a loose policy) or
non-technical means (e.g., social engineering or bribery).
Once the compromise occurs, most administrators wish to
detect the intrusion as quickly as possible and terminate it.
Intruders, on the other hand, often wish to hide their pres-
ence and retain access to the machine.

Unfortunately, once an intruder compromises a machine,
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Figure 1: The compromiseindependenceof a storage | DS. The stor-
age interface provides a physical boundary behind which a storage server
can observe the requests it is asked to service. Note that this same picture
works for block protocols, such as SCSI or IDE/ATA, and distributed file
system protocols, such as NFS or CIFS. Also note that storage IDSs do
not replace existing IDSs, but simply offer an additional vantage point
from which to detect intrusions.

intrusion detection with conventional schemes becomes
much more difficult. Host-based IDSs can be rendered in-
effective by intruder software that disables them or feeds
them misinformation, for which many tools exist. Network
IDSs can continue to look for suspicious behavior, but are
much less likely to find an already successful intruder—
most NIDSs look for attacks and intrusion attempts rather
than for system usage by an existing intruder [11]. A stor-
age IDS can help by offering a vantage point on a system
component that is often manipulated in suspicious ways
after the intruder compromises the system.

A key characteristic of the described threat model is that
the attacker has software control over the host, but does not
have physical access to its hardware. We are not specifi-
cally trying to address insider attacks, in which the intruder
would also have physical access to the hardware and its
storage components. Also, for the storage IDS to be ef-
fective, we assume that neither the storage device nor the
admin console are compromised.

2.2 Compromise independence

A storage IDS will continue watching for suspicious activ-
ity even when clients’ OSes are compromised. It capital-
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izes on the fact that storage devices (whether file servers,
disk array controllers, or even IDE disks) run different
software on separate hardware, as illustrated in Figure 1.
This fact enables server-embedded security functional-
ity that cannot be disabled by any software running on
client systems (including the OS kernel). Further, stor-
age devices often have fewer network interfaces (e.g.,
RPC+SNMP-+HTTP or just SCSI) and no local users.
Thus, compromising a storage server should be more dif-
ficult than compromising a client system. Of course, such
servers have a limited view of system activity, so they can-
not distinguish legitimate users from clever impostors. But,
from behind the physical storage interface, a storage IDS
can spot many common intruder actions and alert adminis-
trators.

Administrators must be able to communicate with the
storage IDS, both to configure it and to receive alerts.
This administrative channel must also be compromise-
independent of client systems, meaning that no user (in-
cluding root) and no software (including the OS kernel)
on a client system can have administrative privileges for
the storage IDS. Section 4 discusses deployment options
for the administrative console, including physical consoles
and cryptographic channels from a dedicated administra-
tive system.

All of the warning signs discussed in this paper could also
be spotted from within a HIDS, but host-based IDSs do not
enjoy the compromise independence of storage IDSs. A
host-based IDS is vulnerable to being disabled or bypassed
by intruders that compromise the OS kernel. Another in-
teresting place for a storage IDS is the virtual disk module
of a virtual machine monitor [39]; such deployment would
enjoy compromise independence from the OSes running in
its virtual machines [4].

2.3 Warning signsfor storage IDSs

Successful intruders often modify stored data. For in-
stance, they may overwrite system utilities to hide their
presence, install Trojan horse daemons to allow for re-
entry, add users, modify startup scripts to reinstall kernel
modifications upon reboot, remove evidence from the audit
log, or store illicit materials. These modifications are visi-
ble to the storage system when they are made persistent.
This section describes four categories of warning signs
that a storage IDS can monitor: data and attribute modi-
fications, update patterns, content integrity, and suspicious
content.

2.3.1 Data/attribute modification

In managed computing environments, the simplest (and
perhaps most effective) category of warning signs con-
sists of data or meta-data changes to files that administra-

tors expect to remain unchanged except during explicit up-
grades. Examples of such files include system executables
and scripts, configuration files, and system header files and
libraries. Given the importance of such files and the infre-
quency of updates to them, any modification is a potential
sign of intrusion. A storage IDS can detect all such modifi-
cations on-the-fly, before the storage device processes each
request, and issue an alert immediately.

In current systems, modification detection is sometimes
provided by a checksumming utility (e.g., Tripwire [18])
that periodically compares the current storage state against
a reference database stored elsewhere. Storage-based in-
trusion detection improves on this current approach in
three ways: (1) it allows immediate detection of changes
to watched files; (2) it can notice short-term changes, made
and then undone, which would not be noticed by a check-
summing utility if the changes occurred between two pe-
riodic checks; and (3) for local storage, it avoids trusting
the host OS to perform the checks, which many rootkits
disable or bypass.

2.3.2 Update patterns

A second category of warning signs consists of suspi-
cious access patterns, particularly updates. There are sev-
eral concrete examples for which storage IDSs can be use-
ful in watching. The clearest is client system audit logs;
these audit logs are critical to both intrusion detection [6]
and diagnosis [35], leading many intruders to scrub evi-
dence from them as a precaution. Any such manipulation
will be obvious to a storage IDS that understands the well-
defined update pattern of the specific audit log. For in-
stance, audit log files are usually append-only, and they
may be periodically “rotated.” This rotation consists of
renaming the current log file to an alternate name (e.g.,
logfile to logfile.0) and creating a new “current” log
file. Any deviation in the update pattern of the current log
file or any modification of a previous log file is suspicious.

Another suspicious update pattern is timestamp reversal.
Specifically, the data modification and attribute change
times commonly kept for each file can be quite useful
for post-intrusion diagnosis of which files were manipu-
lated [9]. By manipulating the times stored in inodes (e.g.,
setting them back to their original values), an intruder can
inhibit such diagnosis. Of course, care must be taken with
IDS rules, since some programs (e.g., tar) legitimately set
these times to old values. One possibility would be to only
set off an alert when the modification time is set back long
after a file’s creation. This would exclude tar-style activ-
ity but would catch an intruder trying to obfuscate a mod-
ified file. Of course, the intruder could now delete the file,
create a new one, set the date back, and hide from the stor-
age IDS—a more complex rule could catch this, but such
escalation is the nature of intrusion detection.
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Detection of storage denial-of-service (DoS) attacks also
falls into the category of suspicious access patterns. For
example, an attacker can disable specific services or en-
tire systems by allocating all or most of the free space. A
similar effect can be achieved by allocating inodes or other
metadata structures. A storage IDS can watch for such ex-
haustion, which may be deliberate, accidental, or coinci-
dental (e.g., a user just downloaded 10 GB of multime-
dia files). When the system reaches predetermined thresh-
olds of unallocated resources and allocation rate, warn-
ing the administrator is appropriate even in non-intrusion
situations—attention is likely to be necessary soon. A stor-
age IDS could similarly warn the administrator when stor-
age activity exceeds a threshold for too long, which may
be a DoS attack or just an indication that the server needs
to be upgraded.

Although specific rules can spot expected intruder actions,
more general rules may allow larger classes of suspicious
activity to be noticed. For example, some attribute mod-
ifications, like enabling “set UID” bits or reducing the
permissions needed for access, may indicate foul play.
Additionally, many applications access storage in a reg-
ular manner. As two examples: word processors often use
temporary and backup files in specific ways, and UNIX
password management involves a pair of inter-related files
(/etc/passwd and /etc/shadow). The corresponding
access patterns seen at the storage device will be a reflec-
tion of the application’s requests. This presents an oppor-
tunity for anomaly detection based on how a given file is
normally accessed. This could be done in a manner similar
to learning common patterns of system calls [10] or start-
ing with rules regarding the expected behavior of individ-
ual applications [19]. Deviation from the expected pattern
could indicate an intruder attempting to subvert the normal
method of accessing a given file. Of course, the downside
is an increase (likely substantial) in the number of false
alarms. Our focus to date has been on explicit detection
rules, but anomaly detection within storage access patterns
is an interesting topic for future research.

2.3.3 Content integrity

A third category of warning signs consists of changes that
violate internal consistency rules of specific files. This cat-
egory builds on the previous examples by understanding
the application-specific semantics of particularly important
stored data. Of course, to verify content integrity, the de-
vice must understand the format of a file. Further, while
simple formats may be verified in the context of the write
operation, file formats may be arbitrarily complex and veri-
fication may require access to additional data blocks (other
than those currently being written). This creates a perfor-
mance vs. security trade-off made by deciding which files
to verify and how often to verify them. In practice, there

are likely to be few critical files for which content integrity
verification is utilized.

As a concrete example, consider a UNIX system pass-
word file (/etc/passwd), which consists of a set of well-
defined records. Records are delimited by a line-break, and
each record consists of seven colon-separated fields. Fur-
ther, each of the fields has a specific meaning, some of
which are expected to conform to rules of practice. For
example, the seventh field specifies the “shell” program to
be launched when a user logs in, and (in Linux) the file
/etc/shells lists the legal options. During the “Capture
the Flag” information warfare game at the 2002 DEF CON
conference [21], one tactic used was to change the root
shell on compromised systems to /sbin/halt; once a tar-
geted system’s administrator noted the intrusion and at-
tempted to become root on the machine (the common ini-
tial reaction), considerable down-time and administrative
effort was needed to restore the system to operation. A
storage IDS can monitor changes to /etc/passwd and
verify that they conform to a set of basic integrity rules: 7-
field records, non-empty password field, legal default shell,
legal home directory, non-overlapping user IDs, etc. The
attack described above, among others, could be caught im-
mediately.

2.3.4 Suspiciouscontent

A fourth category of warning signs is the appearance of
suspicious content. The most obvious suspicious content
is a known virus or rootkit, detectable via its signature.
Several high-end storage servers (e.g., from EMC [24] and
Network Appliance [28]) now include support for internal
virus scanning. By executing the scans within the storage
server, viruses cannot disable the scanners even after in-
fecting clients.

Two other examples of suspicious content are large num-
bers of “hidden” files or empty files. Hidden files have
names that are not displayed by normal directory listing
interfaces [7, p. 217], and their use may indicate that an
intruder is using the system as a storage repository, per-
haps for illicit or pirated content. A large number of empty
files or directories may indicate an attempt to exploit a race
condition [2, 30] by inducing a time-consuming directory
listing, search, or removal.

2.4 Limitations, costs, and weaknesses

Although storage-based intrusion detection contributes to
security efforts, of course it is not a silver bullet.

Like any IDS, a storage IDS will produce some false posi-
tives. With very specific rules, such as “watch these 100
files for any modification,” false positives should be in-
frequent; they will occur only when there are legitimate
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changes to a watched file, which should be easily verified
if updates involve a careful procedure. The issue of false
alarms grows progressively more problematic as the rules
get less exact (e.g., the time reversal or resource exhaus-
tion examples). The far end of the spectrum from specific
rules is general anomaly detection.

Also like any IDS, a storage IDS will fail to spot some in-
trusions. Fundamentally, a storage IDS cannot notice intru-
sions whose actions do not cause odd storage behavior. For
example, three of the eighteen intrusion tools examined in
the next section modify the OS but change no files. Also,
an intruder may manipulate storage in unwatched ways.
Using network-based and host-based IDSs together with a
storage IDS can increase the odds of spotting various forms
of intrusion.

Intrusion detection, as an aspect of information warfare,
is by nature a “game” of escalation. As soon as one side
takes away an avenue of attack, the other starts looking
for the next. Since storage-based intrusion detection eas-
ily sees several common intruder activities, crafty intruders
will change tactics. For example, an intruder can make any
number of changes to the host’s memory, so long as those
modifications do not propagate to storage. A reboot, how-
ever, will reset the system and remove the intrusion, which
argues for proactive restart [3, 16, 43]. To counter this, at-
tackers must have their changes re-established automati-
cally after a reboot, such as by manipulating the various
boot-time (e.g., rc.local in UNIX-like systems) or peri-
odic (e.g., cron in UNIX-like systems) programs. Doing
so exposes them to the storage IDS, creating a traditional
intrusion detection game of cat and mouse.

As a practical consideration, storage IDSs embedded
within individual components of decentralized storage sys-
tems are unlikely to be effective. For example, a disk array
controller is a fine place for storage-based intrusion detec-
tion, but individual disks behind software striping are not.
Each of the disks has only part of the file system’s state,
making it difficult to check non-trivial rules without adding
new inter-device communication paths.

Finally, storage-based intrusion detection is not free.
Checking rules comes with some cost in processing and
memory resources, and more rules require more resources.
In configuring a storage IDS, one must balance detection
efforts with performance costs for the particular operating
environment.

3 Case Studies

This section explores how well a storage IDS might fare
in the face of actual compromises. To do so, we examined
eighteen intrusion tools (Table 1) designed to be run on
compromised systems. All were downloaded from public

websites, most of them from Packet Storm [26].

Most of the actions taken by these tools fall into two cat-
egories. Actions in the first category involve hiding evi-
dence of the intrusion and the rootkit’s activity. The second
provides a mechanism for reentry into a system. Twelve of
the tools operate by running various binaries on the host
system and overwriting existing binaries to continue gain-
ing control. The other six insert code into the operating
system kernel.

For the analysis in this section, we focus on a subset
of the rules supported by our prototype storage-based
IDS described in Section 5. Specifically, we include
the file/directory modification (Tripwire-like) rules, the
append-only logfile rule, and the hidden filename rules. We
do not consider any “suspicious content” rules, which may
or may not catch a rootkit depending on whether its partic-
ular signature is known.! In these eighteen toolkits, we did
not find any instances of resource exhaustion attacks or of
reverting inode times.

3.1 Detection results

Of the eighteen toolkits tested, storage IDS rules would
immediately detect fifteen based on their storage modifi-
cations. Most would trigger numerous alerts, highlighting
their presence. The other three make no changes to per-
sistent storage. However, they are removed if the system
reboots; all three modify the kernel, but would have to be
combined with system file changes to be re-inserted upon
reboot.

Non-append changes to the system audit log. Seven of
the eighteen toolkits scrub evidence of system compro-
mise from the audit log. All of them do so by selectively
overwriting entries related to their intrusion into the sys-
tem, rather than by truncating the logfile entirely. All cause
alerts to be generated in our prototype.

System file modification. Fifteen of the eighteen toolkits
modify a number of watched system files (ranging from
1 to 20). Each such modification generates an alert. Al-
though three of the rootkits replace the files with bina-
ries that match the size and CRC checksum of the previ-
ous files, they do not foil cryptographically-strong hashes.
Thus, Tripwire-like systems would be able to catch them
as well, though the evasion mechanism described in Sec-
tion 3.2 defeats Tripwire.

Many of the files modified are common utilities for sys-
tem administration, found in /bin, /sbin, and /usr/bin
on a UNIX machine. They are modified to hide the pres-
ence and activity of the intruder. Common changes include

! An interesting note is that rootkit developers reuse code: four of the
rootkits use the same audit log scrubbing program (sauber), and another
three use a different program (zap2).
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Name Description Syscall | Log | Hidden| Watched Total

redir. | scrub dirs files || alerts
Ramen Linux worm X 2 3
lion Linux worm 10 10
FK 0.4 Linux LKM rootkit and trojan ssh X 1 1
Taskigt Linux LKM rootkit 1 1
SK 1.3a Linux kernel rootkit via /dev/kmem X -
Darkside 0.2.3 FreeBSD LKM rootkit X -
Knark 0.59 Linux LKM rootkit X X 1 2
Adore Linux LKM rootkit X -
Irk5 User level rootkit from source X X 20 22
Sun rootkit SunOS rootkit with trojan rlogin 1 1
FreeBSD Rootkit 2 User level FreeBSD rootkit X X 15 17
tOrn Linux user level rootkit X X 20 22
Advanced Rootkit Linux user level rootkit X 10 11
ASMD Rootkit w/SUID binary trojan X 1 2
Dica Linux user level rootkit X X 9 11
Flea Linux user level rootkit X X 20 22
Ohara Rootkit w/PAM trojan X X 4 6
TK 6.66 Linux user level rootkit X X 10 12

Table 1: Visible actions of several intruder toolKits. For each of the tools, the table shows which of the following actions are performed: redirecting
system calls, scrubbing the system log files, and creating hidden directories. It also shows how many of the files watched by our rule set are modified
by a given tool. The final column shows the total number of alerts generated by a given tool.

modifying ps to not show an intruder’s processes, 1s to not
show an intruder’s files, and netstat to not show an in-
truder’s open network ports and connections. Similar mod-
ifications are often made to grep, find, du, and pstree.

The other common reason for modifying system binaries
is to create backdoors for system reentry. Most commonly,
the target is telnetd or sshd, although one rootkit added
a backdoored PAM module [33] as well. Methods for using
the backdoor vary and do not impact our analysis.

Hidden file or directory names. Twelve of the rootkits
make a hard-coded effort to hide their non-executable and
working files (i.e., the files that are not replacing existing
files). Ten of the kits use directories starting in a ‘.’ to hide
from default 1s listings. Three of these generate alerts by
trying to make a hidden directory look like the reserved .’
or ‘.. directories by appending one or more spaces (‘. ’ or
‘..7). This also makes the path harder to type if a system
administrator does not know the number of spaces.

3.2 Kernd-inserted evasion techniques

Six of the eighteen toolkits modified the running operating
system kernel. Five of these six “kernel rootkits” include
loadable kernel modules (LKMs), and the other inserts it-
self directly into kernel memory by use of the /dev/kmem
interface. Most of the kernel modifications allow intrud-
ers to hide as well as reenter the system, similarly to the

file modifications described above. Especially interesting
for this analysis is the use of exec () redirection by four
of the kernel rootkits. With such redirection, the exec ()
system call uses a replacement version of a targeted pro-
gram, while other system calls return information about
or data from the original. As a result, any tool relying on
the accuracy of system calls to check file integrity, such as
Tripwire, will be fooled.

All of these rootkits are detected using our storage IDS
rules—they all put their replacement programs in the orig-
inals’ directories (which are watched), and four of the six
actually move the original file to a new name and store
their replacement file with the original name (which also
triggers an alert). However, future rootkits could be mod-
ified to be less obvious to a storage IDS. Specifically, the
original files could be left untouched and replacement files
could be stored someplace not watched by the storage IDS,
such as a random user directory—neither would gener-
ate an alert. With this approach, file modification can be
completely hidden from a storage IDS unless the rootkit
wants to reinstall the kernel modification after a reboot.
To accomplish this, some original files would need to be
changed, which forces intruders to make an interesting
choice: hide from the storage IDS or persist beyond the
next reboot.
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3.3 Anecdotal experience

During the writing of this paper, one of the authors hap-
pened to be asked to analyze a system that had been
recently compromised. Several modifications similar to
those made by the above rootkits were found on the sys-
tem. Root’s .bash_profile was modified to run the zap2
log scrubber, so that as soon as root logged into the sys-
tem to investigate the intrusion, the related logs would
be scrubbed. Several binaries were modified (ps, top,
netstat, pstree, sshd, and telnetd). The binaries
were setup to hide the existence of an IRC bot, running
out of the directory ¢/dev/.. /’. This experience helps
validate our choice of “rootkits” for study, as they appear to
be representative of at least one real-world intrusion. This
intrusion would have triggered at least 8 storage IDS rules.

4 Design of a Storage DS

To be useful in practice, a storage IDS must simultane-
ously achieve several goals. It must support a useful set of
detection rules, while also being easy for human admin-
istrators to understand and configure. It must be efficient,
minimizing both added delay and added resource require-
ments; some user communities still accept security mea-
sures only when they are “free.” Additionally, it should be
invisible to users at least until an intrusion detection rule is
matched.

This section describes four aspects of storage IDS design:
specifying detection rules, administering a storage IDS se-
curely, checking detection rules, and responding to suspi-
cious activity.

4.1 Specifying detection rules

Specifying rules for an IDS is a tedious, error prone activ-
ity. The tools an administrator uses to write and manipu-
late those rules should be as simple and straightforward as
possible. Each of the four categories of suspicious activity
presented earlier will likely need a unique format for rule
specification.

The rule format used by Tripwire seems to work well for
specifying rules concerned with data and attribute modifi-
cation. This format allows an administrator to specify the
pathname of a file and a list of properties that should be
monitored for that file. The set of watchable properties are
codified, and they include most file attributes. This rule
language works well, because it allows the administrator
to manipulate a well understood representation (pathnames
and files), and the list of attributes that can be watched is
small and well-defined.

The methods used by virus scanners work well for config-

uring an IDS to look for suspicious content. Rules can be
specified as signatures that are compared against files’ con-
tents. Similarly, filename expression grammars (like those
provided in scripting languages) could be used to describe
suspicious filenames.

Less guidance exists for the other two categories of warn-
ing signs: update patterns and content integrity. We do not
currently know how to specify general rules for these cat-
egories. Our approach has been to fall back on Tripwire-
style rules; we hard-code checking functions (e.g., for non-
append update or a particular content integrity violation)
and then allow an administrator to specify on which files
they should be checked (or that they should be checked for
every file). More general approaches to specifying detec-
tion rules for these categories of warning signs are left for
future work.

4.2 Secureadministration

The security administrator must have a secure interface to
the storage IDS. This interface is needed for the admin-
istrator to configure detection rules and to receive alerts.
The interface must prevent client systems from forging or
blocking administrative requests, since this could allow a
crafty intruder to sneak around the IDS by disarming it. At
a minimum, it must be tamper-evident. Otherwise, intrud-
ers could stop rule updates or prevent alerts from reaching
the administrator. To maintain compromise independence,
it must be the case that obtaining “superuser” or even ker-
nel privileges on a client system is insufficient to gain ad-
ministrative access to the storage device.

Two promising architectures exist for such administration:
one based on physical access and one based on cryptogra-
phy. For environments where the administrator has phys-
ical access to the device, a local administration terminal
that allows the administrator to set detection rules and re-
ceive the corresponding alert messages satisfies the above
goals.

In environments where physical access to the device is
not practical, cryptography can be used to secure com-
munications. In this scenario, the storage device acts as
an endpoint for a cryptographic channel to the adminis-
trative system. The device must maintain keys and per-
form the necessary cryptographic functions to detect mod-
ified messages, lost messages, and blocked channels. Ar-
chitectures for such trust models in storage systems ex-
ist [14]. This type of infrastructure is already common for
administration of other network-attached security compo-
nents, such as firewalls or network intrusion detection sys-
tems. For direct-attached storage devices, cryptographic
channels can be used to tunnel administrative requests and
alerts through the OS of the host system, as illustrated in
Figure 2. Such tunneling simply treats the host OS as an

USENIX Association

12th USENIX Security Symposium

143



Storage

Operating System

Device
Driver

........
.

File
System

Client

N

Cryptographic tunnel
through the client OS

1 Admin Console

Figure 2: Tunneling administrative commands through client sys-
tems. For storage devices attached directly to client systems, a crypto-
graphic tunnel can allow the administrator to securely manage a storage
IDS. This tunnel uses the untrusted client OS to transport administrative
commands and alerts.

untrusted network component.

For small numbers of dedicated servers in a machine room,
either approach is feasible. For large numbers of storage
devices or components operating in physically insecure en-
vironments, cryptography is the only viable solution.

4.3 Checkingthe detection rules

Checking detection rules can be non-trivial, because rules
generally apply to full pathnames rather than inodes. Addi-
tional complications arise because rules can watch for files
that do not yet exist.

For simple operations that act on individual files (e.g.,
READ and WRITE), rule verification is localized. The de-
vice need only check that the rules pertaining to that spe-
cific file are not violated (usually a simple flag comparison,
sometimes a content check). For operations that affect the
file system’s namespace, verification is more complicated.
For example, a rename of a directory tree may impact a
large number of individual files, any of which could have
IDS rules that must be checked. Renaming a directory re-
quires examining all files and directories that are children
of the one being renamed.

In the case of rules pertaining to files that do not currently
exist, this list of rules must be consulted when operations
change the namespace. For example, the administrator may
want to watch for the existence of a file named /a/b/c
even if the directory named /a does not yet exist. However,
a single file system operation (e.g.,mv /z /a)could cause
the watched file to suddenly exist, given the appropriate
structure for z’s directory tree.

4.4 Respondingtoruleviolations

Since a detected “intruder action” may actually be legiti-
mate user activity (i.e., a false alarm), our default response
is simply to send an alert to the administrative system or
the designated alert log file. The alert message should con-
tain such information as the file(s) involved, the time of the
event, the action being performed, the action’s attributes
(e.g., the data written into the file), and the client’s identity.
Note that, if the rules are set properly, most false positives
should be caused by legitimate updates (e.g., upgrades)
from an administrator. With the right information in alerts,
an administrative system that also coordinates legitimate
upgrades could correlate the generated alert (which can
include the new content) with the in-progress upgrade; if
this were done, it could prevent the false alarm from reach-
ing the human administrator while simultaneously verify-
ing that the upgrade went through to persistent storage cor-
rectly.

There are more active responses that a storage IDS could
trigger upon detecting suspicious activity. When choosing
a response policy, of course, the administrator must weigh
the benefits of an active response against the inconvenience
and potential damage caused by false alarms.

One reasonable active response is to slow down the sus-
pected intruder’s storage accesses. For example, a storage
device could wait until the alert is acknowledged before
completing the suspicious request. It could also artificially
increase request latencies for a client or user that is sus-
pected of foul play. Doing so would provide increased time
for a more thorough response, and, while it will cause some
annoyance in false alarm situations, it is unlikely to cause
damage. The device could even deny a request entirely if it
violates one of the rules, although this response to a false
alarm could cause damage and/or application failure. For
some rules, like append-only audit logs, such access con-
trol may be desirable.

Liu, et al. proposed a more radical response to detected
intrusions: isolating intruders, via versioning, at the file
system level [22]. To do so, the file system forks the ver-
sion trees to sandbox suspicious users until the administra-
tor verifies the legitimacy of their actions. Unfortunately,
such forking is likely to interfere with system operation,
unless the intrusion detection mechanism yields no false
alarms. Specifically, since suspected users modify differ-
ent versions of files from regular users, the system faces a
difficult reintegration [20, 41] problem, should the updates
be judged legitimate. Still, it is interesting to consider em-
bedding this approach, together with a storage IDS, into
storage systems for particularly sensitive environments.

A less intrusive storage-embedded response is to start ver-
sioning all data and auditing all storage requests when an
intrusion is detected. Doing so provides the administra-
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tor with significant information for post-intrusion diagno-
sis and recovery. Of course, some intrusion-related infor-
mation will likely be lost unless the intrusion is detected
immediately, which is why Strunk et al. [38] argue for al-
ways doing these things (just in case). Still, IDS-triggered
employment of this functionality may be a useful trade-off
point.

5 Storage-based intrusion detection
in an NFS server

To explore the concepts and feasibility of storage-based in-
trusion detection, we implemented a storage IDS in an NFS
server. Unmodified client systems access the server using
the standard NFS version 2 protocol [40]?, while storage-
based intrusion detection occurs transparently. This section
describes how the prototype storage IDS handles detection
rule specification, the structures and algorithms for check-
ing rules, and alert generation.

The base NFS server is called S4, and its implementa-
tion is described and evaluated elsewhere [38]. It inter-
nally performs file versioning and request auditing, using
a log-structured file system [32], but these features are not
relevant here. For our purposes, it is a convenient NFS
file server with performance comparable to the Linux and
FreeBSD NFS servers. Secure administration is performed
via the server’s console, using the physical access control
approach.

5.1 Specifying detection rules

Our prototype storage IDS is capable of watching for a va-
riety of data and metadata changes to files. The administra-
tor specifies a list of Tripwire-style rules to configure the
detection system. Each administrator-supplied rule is of
the form: {pathname, attribute-list}—designating which
attributes to monitor for a particular file. The list of at-
tributes that can be watched is shown in Table 2. In ad-
dition to standard Tripwire rules, we have added two ad-
ditional functions that can be specified on a per-file ba-
sis. The first watches for non-append changes, as described
earlier; any truncation or write anywhere but at the previ-
ous end of a file will generate an alert. The second checks
a file’s integrity against the password file integrity rule dis-
cussed earlier. After every write, the file must conform to
the rigid structure of a password file (7 colons per line),
and all of the shells must be contained in the “acceptable”
list.

In addition to per-file rules, an administrator can choose to

2The use of the NFSv2 protocol is an artifact of the server implemen-
tation the IDS is built into, but makes no difference in the areas we care
about.

Metadata
e inode modification time e data modification time
e access time o file permissions
e link count e device number

o file owner e inode number
o file type o file owner group
o file size

Data
e append only

e any modification
e password structure

Table 2: Attribute list. Rules can be established to watch these at-
tributes in real-time on a file-by-file basis.

enable any of three system-wide rules: one that matches on
any operation that rolls-back a file’s modification time, one
that matches on any operation that creates a “hidden” di-
rectory (e.g., a directory name beginning with ‘" and hav-
ing spaces in it), and one that looks for known (currently
hard-coded) intrusion tools by their sizes and SHA-1 di-
gests. Although the system currently checks the digests on
every file update, periodic scanning of the system would
likely be more practical. These rules apply to all parts of
the directory hierarchy and are specified as simply ON or
OFF.

Rules are communicated to the server through the use of
an administrative RPC. This RPC interface has two com-
mands (see Table 3). The setRule() RPC gives the IDS
two values: the path of the file to be watched, and a set of
flags describing the specific rules for that file. Rules are re-
moved through the same mechanism, specifying the path
and an empty rule set.

5.2 Checkingthedetection rules

This subsection describes the core of the storage IDS. It
discusses how rules are stored and subsequently checked
during operation.

5.2.1 Datastructures

Three new structures allow the storage IDS to efficiently
support the detection rules: the reverse lookup table, the
inode watch flags, and the non-existent names table.

Reverse lookup table: The reverse lookup table serves
two functions. First, it serves as a list of rules that the server
is currently enforcing. Second, it maps an inode number to
a pathname. The alert generation mechanism uses the lat-
ter to provide the administrator with file names instead of
inode numbers, without resorting to a brute-force search of
the namespace.

The reverse lookup table is populated via the setRule ()
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| Command | Purpose | Direction
setRule(path, rules) Changes the watched characteristics of a file. This | admin=-server
command is used to both set and delete rules.
listRules() Retrieves the server’s rule table as a list of | admin=-server
{pathname, rules} records.
alert(path, rules, operation) Delivers a warning of a rule violation to the admin- | server=-admin
istrator.

Table 3: Administrative commands for our storage | DS. This table lists the small set of administrative commands needed for an administrative
console to configure and manage the storage IDS. The first two are sent by the console, and the third is sent by the storage IDS. The pathname refers
to a file relative to the root of an exported file system. The rules are a description of what to check for, which can be any of the changes described in

Table 2. The operation is the NFS operation that caused the rule violation.

RPC. Each rule’s full pathname is broken into its com-
ponent names, which are stored in distinct rows of the
table. For each component, the table records four fields:
inode-number, directory-inode-number, name, and rules.
Indexed by inode-number, an entry contains the name
within a parent directory (identified by its directory-inode-
number). The rulesassociated with this name are a bitmask
of the attributes and patterns to watch. Since a particular
inode number can have more than one name, multiple en-
tries for each inode may exist. A given inode number can
be translated to a full pathname by looking up its lowest-
level name and recursively looking up the name of the cor-
responding directory inode number. The search ends with
the known inode number of the root directory. All names
for an inode can be found by following all paths given by
the lookup of the inode number.

Inode watchflags field: During the setRule () RPC, in
addition to populating the reverse lookup table, a rule mask
of 16 bits is computed and stored in the watchflags field
of the watched file’s inode. Since multiple pathnames may
refer to the same inode, there may be more than one rule
for a given file, and the mask contains the union. The inode
watchflags field is a performance enhancement designed
to co-locate the rules governing a file with that file’s meta-
data. This field is not necessary for correctness since the
pertinent data could be read from the reverse lookup table.
However, it allows efficient verification of detection rules
during the processing of an NFS request. Since the inode is
read as part of any file access, most rule checking becomes
a simple mask comparison.

Non-existent names table: The non-existent names table
lists rules for pathnames that do not currently exist. Each
entry in the table is associated with the deepest-level (ex-
isting) directory within the pathname of the original rule.
Each entry contains three fields: directory-inode-number,
remaining-path, and rules. Indexed by directory-inode-
number, an entry specifies the remaining-path. When a file
or directory is created or removed, the non-existent names
table is consulted and updated, if necessary. For example,

upon creation of a file for which a detection rule exists, the
rules are checked and inserted in the watchflags field of
the inode. Together, the reverse lookup table and the non-
existent names table contain the entire set of IDS rules in
effect.

5.2.2 Checkingrulesduring NFS operations

We now describe the flow of rule checking, much of which
is diagrammed in Figure 3, in two parts: changes to indi-
vidual files and changes to the namespace.

Checking rules on individual file operations: For each
NFS operation that affects only a single file, a mask of
rules that might be violated is computed. This mask is
compared, bitwise, to the corresponding watchflags field
in the file’s inode. For most of the rules, this comparison
quickly determines if any alerts should be triggered. If the
“password file” or “append only” flags are set, the corre-
sponding verification function executes to determine if the
rule is violated.

Checking rules on namespace operations: Namespace
operations can cause watched pathnames to appear or dis-
appear, which will usually trigger an alert. For operations
that create watched pathnames, the storage IDS moves
rules from the non-existent names table to the reverse
lookup table. Conversely, operations that delete watched
pathnames cause rules to move between tables in the op-
posite direction.

When a name is created (via CREATE, MKDIR, LINK, or
SYMLINK) the non-existent names table is checked. If
there are rules for the new file, they are checked and placed
in the watchflags field of the new inode. In addition,
the corresponding rule is removed from the non-existent
names table and is added to the reverse lookup table. Dur-
ing a MKDIR, any entries in the non-existent names table
that include the new directory as the next step in their re-
maining path are replaced; the new entries are indexed by
the new directory’s inode number and its name is removed
from the remaining path.
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Figure 3: Flowchart of our storage | DS. Few structures and decision points are needed. In the common case (no rules for the file), only one inode’s
watchflags field is checked. The picture does not show RENAME operations here due to their complexity.

When a name is removed (via UNLINK or RMDIR), the
watchflags field of the corresponding inode is checked
for rules. Most such rules will trigger an alert, and an en-
try for them is also added to the non-existent names ta-
ble. For RMDIR, the reverses of the actions for MKDIR are
necessary. Any non-existent table entries parented on the
removed directory must be modified. The removed direc-
tory’s name is added to the beginning of each remaining
path, and the directory inode number in the table is modi-
fied to be the directory’s parent.

By far, the most complex namespace operation is a RE-
NAME. For a RENAME of an individual file, modifying the
rules is the same as a CREATE of the new name and a RE-
MOVE of the old. When a directory is renamed, its sub-
trees must be recursively checked for watched files. If any
are found, and once appropriate alerts are generated, their
rules and pathname up to the parent of the renamed di-
rectory are stored in the non-existent names table, and the
watchflags field of the inode is cleared. Then, the non-
existent names table must be checked (again recursively)
for any rules that map into the directory’s new name and
its children; such rules are checked, added to the inode’s
watchflags field, and updated as for name creation.

5.3 Generating alerts

Alerts are generated and sent immediately when a detec-
tion rule is triggered. The alert consists of the original de-
tection rule (pathname and attributes watched), the specific
attributes that were affected, and the RPC operation that
triggered the rule. To get the original rule information, the
reverse lookup table is consulted. If a single RPC operation
triggers multiple rules, one alert is sent for each.

54 StoragelDSrulesin aNIDS

Because NFS traffic goes over a traditional network, the
detection rules described for our prototype storage IDS
could be implemented in a NIDS. However, this would in-
volve several new costs. First, it would require the NIDS to
watch the LAN links that carry NFS activity. These links
are usually higher bandwidth than the Internet uplinks on
which most NIDSs are used.? Second, it would require
that the NIDS replicate a substantial amount of work al-
ready performed by the NFS server, increasing the CPU
requirements relative to an in-server storage IDS. Third,
the NIDS would have to replicate and hold substantial
amounts of state (e.g. mappings of file handles to their cor-
responding files). Our experiences checking rules against
NFS traces indicate that this state grows rapidly because
the NFS protocol does not expose to the network (or the
server) when such state can be removed. Even simple at-
tribute updates cannot be checked without caching the old
values of the attributes, otherwise the NIDS could not dis-
tinguish modified attributes from reapplied values. Fourth,
rules cannot always be checked by looking only at the cur-
rent command. The NIDS may need to read file data and
attributes to deal with namespace operations, content in-
tegrity checks, and update pattern rules. In addition to the
performance penalty, this requires giving the NIDS read
permission for all NFS files and directories.

Given all of these issues, we believe that embedding stor-
age IDS checks directly into the storage component is
more appropriate.

3Tapping a NIDS into direct-attached storage interconnects, such as
SCSI and FibreChannel, would be more difficult.
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6 Evaluation

This section evaluates the costs of our storage IDS in terms
of performance impact and memory required—both costs
are minimal.

6.1 Experimental setup

All experiments use the S4 NFS server, with and without
the new support for storage-based intrusion detection. The
client system is a dual 1 GHz Pentium III with 128 MB
RAM and a 3Com 3C905B 100 Mbps network adapter.
The server is a dual 700 MHz Pentium III with 512 MB
RAM, a 9 GB 10,000 RPM Quantum Atlas 10K II drive, an
Adaptec AIC-7896/7 Ultra2 SCSI controller, and an Intel
EtherExpress Pro 100 Mb network adapter. The client and
server are on the same 100 Mb network switch. The oper-
ating system on all machines is Red Hat Linux 6.2 with
Linux kernel version 2.2.14.

SSH-build was constructed as a replacement for the An-
drew file system benchmark [15, 36]. It consists of 3
phases: The unpack phase, which unpacks the compressed
tar archive of SSH v. 1.2.27 (approximately 1 MB in size
before decompression), stresses metadata operations on
files of varying sizes. The configure phase consists of the
automatic generation of header files and makefiles, which
involves building various small programs that check the
existing system configuration. The build phase compiles,
links, and removes temporary files. This last phase is the
most CPU intensive, but it also generates a large number
of object files and a few executables. Both the server and
client caches are flushed between phases.

PostMark was designed to measure the performance of
a file system used for electronic mail, netnews, and web
based services [17]. It creates a large number of small
randomly-sized files (between 512 B and 16 KB) and per-
forms a specified number of transactions on them. Each
transaction consists of two sub-transactions, with one be-
ing a create or delete and the other being a read or append.
The default configuration used for the experiments consists
of 100,000 transactions on 20,000 files, and the biases for
transaction types are equal.

6.2 Performanceimpact

The storage IDS checks a file’s rules before any oper-
ation that could possibly trigger an alert. This includes
READ operations, since they may change a file’s last ac-
cess time. Additionally, namespace-modifying operations
require further checks and possible updates of the non-
existent names table. To understand the performance con-
sequences of the storage IDS design, we ran PostMark and
SSH-Build tests. Since our main concern is avoiding a per-

| Benchmark [ Baseline | WithIDS | Change |
SSHuntar | 27.3(0.02) | 27.4(0.02) | 0.03%
SSH config. | 42.6 (0.68) | 43.2(0.37) 1.3%
SSHbuild | 85.9(0.18) | 86.8 (0.17) 1.0%
PostMark 4288 (11.9) | 4290 (13.0) 0.04%

Table 4: Performance of macro benchmarks. All benchmarks were
run with and without the storage IDS functionality. Each number repre-
sents the average of 10 trials in seconds (with the standard deviation in
parenthesis).

| Benchmark | Baseline | WithIDS [ Change |
Create 4.32 4.35 0.7%
Remove 4.50 4.65 3.3%
Mkdir 4.36 4.38 0.5%
Rmdir 4.52 4.59 1.5%
Rename file 3.81 391 2.6%
Rename dir 3.91 4.04 3.3%

Table 5: Performance of micro benchmarks. All benchmarks were
run with and without the storage IDS functionality. Each number repre-
sents the average of 1000 trials in milliseconds.

formance loss in the case where no rule is violated, we ran
these benchmarks with no relevant rules set. As long as no
rules match, the results are similar with O rules, 1000 rules
on existing files, or 1000 rules on non-existing files. Ta-
ble 4 shows that the performance impact of the storage IDS
is minimal. The largest performance difference is for the
configure and build phases of SSH-build, which involve
large numbers of namespace operations.

Microbenchmarks on specific filesystem actions help ex-
plain the overheads. Table 5 shows results for the most ex-
pensive operations, which all affect the namespace. The
performance differences are caused by redundancy in the
implementation. The storage IDS code is kept separate
from the NFS server internals, valuing modularity over
performance. For example, name removal operations in-
volve a redundant directory lookup and inode fetch (from
cache) to locate the corresponding inode’s watchflags
field.

Rules take very little time to generate alerts. For example,
a write to a file with a rule set takes 4.901 milliseconds
if no alert is set off. If an alert is set off the time is
4.941 milliseconds. These represent the average over 1000
trials, and show a .8% overhead.

6.3 Space efficiency

The storage IDS structures are stored on disk. To avoid
extra disk accesses for most rule checking, though, it is
important that they fit in memory.
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Three structures are used to check a set of rules. First, each
inode in the system has an additional two-byte field for
the bitmask of the rules on that file. There is no cost for
this, because the space in the inode was previously un-
used. Linux’s ext2fs and BSD’s FFS also have sufficient
unused space to store such data without increasing their
inode sizes. If space were not available, the reverse lookup
table can be used instead, since it provides the same infor-
mation. Second, for each pathname component of a rule,
the reverse lookup table requires 20 + N bytes: a 16-byte
inode number, 2 bytes for the rule bitmask, and N 42 bytes
for a pathname component of length N. Third, the non-
existent names table contains one entry for every file be-
ing watched that does not currently exist. Each entry con-
sumes 274 bytes: a 16-byte inode number, 2 bytes for the
rule bitmask, and 256 bytes for the maximum pathname
supported.

To examine a concrete example of how an administrator
might use this system, we downloaded the open source
version of Tripwire [42]. Included with it is an example
rule file for Linux, containing (after expanding directories
to lists of files) 4730 rules. We examined a Red Hat Linux
6.1 [31] desktop machine to obtain an idea of the number
of watched files that actually exist on the hard drive. Of
the 4730 watched files, 4689 existed on our example sys-
tem. Using data structure sizes from above, reverse lookup
entries for the watched files consume 141 KB. Entries in
the non-existent name table for the remaining 41 watched
files consume 11 KB. In total, only 152 KB are needed for
the storage IDS.

6.4 Falsepositives

We have explored the false positive rate of storage-based
intrusion detection in several ways.

To evaluate the file watch rules, two months of traces of all
file system operations were gathered on a desktop machine
in our group. We compared the files modified on this sys-
tem with the watched file list from the open source version
of Tripwire. This uncovered two distinct patterns where
files were modified. Nightly, the user list (/etc/passwd)
on the machine was overwritten by a central server. Most
nights it does not change but the create and rename per-
formed would have triggered an alert. Additionally, mul-
tiple binaries in the system were replaced over time by
the administrative upgrade process. In only one case was
a configuration file on the system changed by a local user.

For alert-triggering modifications arising from explicit ad-
ministrative action, a storage IDS can provide an added
benefit. If an administrator pre-informs the admin console
of updated files before they are distributed to machines,
the IDS can verify that desired updates happen correctly.
Specifically, the admin console can read the new contents

via the admin channel and verify that they are as intended.
If so, the update is known to have succeeded, and the alert
can be suppressed.

We have also performed two (much) smaller studies. First,
we have evaluated our “hidden filename” rules by examin-
ing the entire filesystems of several desktops and servers—
we found no uses of any of them, including the *.” or “.." fol-
lowed by any number of spaces discussed above. Second,
we evaluated our “inode time reversal” rules by examin-
ing lengthy traces of NFS activity from our environment
and from two Harvard environments [8]—we found a siz-
able number of false positives, caused mainly by unpack-
ing archives with utilities like tar. Combined with the lack
of time reversal in any of the toolkits, use of this rule may
be a bad idea.

7 Additional Related Work

Much related work has been discussed within the flow of
the paper. For emphasis, we note that there have been many
intrusion detection systems focused on host OS activity
and network communication; Axelsson [1] recently sur-
veyed the state-of-the-art. Also, the most closely related
tool, Tripwire [18], was used as an initial template for our
prototype’s file modification detection ruleset.

Our work is part of a recent line of research exploiting
physical [12, 44] and virtual [4] protection boundaries to
detect intrusions into system software. Notably, Garfinkel
et al. [13] explore the utility of an IDS embedded in a vir-
tual machine monitor (VMM), which can inspect machine
state while being compromise independent of most host
software. Storage-based intrusion detection rules could be
embedded in a VMM’s storage module, rather than in a
physical storage device, to identify suspicious storage ac-
tivity.

Perhaps the most closely related work is the original pro-
posal for self-securing storage [38], which argued for
storage-embedded support for intrusion survival. Self-
securing storage retains every version of all data and a
log of all requests for a period of time called the detec-
tion window. For intrusions detected within this window,
security administrators have a wealth of information for
post-intrusion diagnosis and recovery.

Such versioning and auditing complements storage-based
intrusion detection in several additional ways. First, when
creating rules about storage activity for use in detection,
administrators can use the latest audit log and version his-
tory to test new rules for false alarms. Second, the audit
log could simplify implementation of rules looking for pat-
terns of requests. Third, administrators can use the history
to investigate alerts of suspicious behavior (i.e., to check
for supporting evidence within the history). Fourth, since
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the history is retained, a storage IDS can delay checks until
the device is idle, allowing the device to avoid performance
penalties for expensive checks by accepting a potentially
longer detection latency.

8 Conclusionsand Future Work

A storage IDS watches system activity from a new view-
point, which immediately exposes some common intruder
actions. Running on separate hardware, this functionality
remains in place even when client OSes or user accounts
are compromised. Our prototype storage IDS demonstrates
both feasibility and efficiency within a file server. Analysis
of real intrusion tools indicates that most would be imme-
diately detected by a storage IDS. After adjusting for stor-
age IDS presence, intrusion tools will have to choose be-
tween exposing themselves to detection or being removed
whenever the system reboots.

In continuing work, we are developing a prototype stor-
age IDS embedded in a device exporting a block-based
interface (SCSI). To implement the same rules as our aug-
mented NFS server, such a device must be able to parse and
traverse the on-disk metadata structures of the file system
it holds. For example, knowing whether /usr/sbin/sshd
has changed on disk requires knowing not only whether the
corresponding data blocks have changed, but also whether
the inode still points to the same blocks and whether the
name still translates to the same inode. We have developed
this translation functionality for two popular file systems,
Linux’s ext2fs and FreeBSD’s FFS. The additional com-
plexity required is small (under 200 lines of C code for
each), simple (under 3 days of programming effort each),
and changes infrequently (about 5 years between incom-
patible changes to on-disk structures). The latter, in partic-
ular, indicates that device vendors can deploy firmware and
expect useful lifetimes that match the hardware. Sivathanu
et al. [37] have evaluated the costs and benefits of device-
embedded FS knowledge more generally, finding that it is
feasible and valuable.

Another continuing direction is exploration of less exact
rules and their impact on detection and false positive rates.
In particular, the potential of pattern matching rules and
general anomaly detection for storage remains unknown.
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